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1. Introduction
Consider the nonparametric regression model
Yi=g(ti)+£i5 i=1"”’n’

where observations are taken at design points t; for i = 1,---,n, and the errors
¢g; are independent identically distributed as normal distribution with mean
zero and variance o?. The normality assumption is unnecessary in Section
2. The response function g is assumed to belong to a space W= {g:g and
g are absolutely continuous, and jé lg"(¢)|*>dt < 0}.

We deal with minimax estimators of g and ¢2 in some sense, based on a
restricted class of the response function W, = {geW: [;1g"(t)|*dt < C}. To
simplify the minimax problem, we shall use a natural coordinate system.
Demmler and Reinsch [3] showed that there is a basis for the natural cubic
splines, ¢,(-),--,¢,(-), determined essentially uniquely by

n

1
2 () Pel(t) = J ;O i ()dt = b0,
0

with 0 =w; =w, <--<w, Here §; =1 if j=k and 0 otherwise. Let
y=(Y;,-, YY) and § = (g(t,), -+, 9g(t,))" be the vectors expressed with respect
to a natural basis of R", {(¢;(t))}. To estimate g, Speckman [4] proposed

the linear estimator of g which minimizes the expected summed squared
criterion

J@) =n" max ELY. {4t) — 9(t))7]

defined for any given estimator § of g. Furthermore, he introduced a family-
of linear estimators §,, y >0 which is optimal in the sense minJ(g) =
min,,, J(4,). In this paper, Section 2 gives an explicit expression of the
minimax solution 7y, for fixed value of C/o2.

To estimate o2, Buckley, Eagleson and Silverman [1] proposed the
quadratic estimator of ¢? which minimizes the expected squared criterion
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M(6%) = max E(6% — ¢?)*
geWc

defined for given any estimator ¢? of ¢2. Furthermore, they gave a family
6%, o >0, which is optimal in the sense min M(6?%) = min,.,J(62). In

a

Section 3, we also give an explicit expression of the minimax solution o, for
fixed value of C/g2.

For an asymptotic approximation for large n, we use a particular series
w;=pn~'j*(3 <j < n) for some constant p. Asymptotic expansions of the
minimax solutions are given in Section 4.

2. Minimax solution for estimating g

Let § be a linear estimator of j. Then we can write (4(t;),--,4(t,))" =
Aj. For simplicity, write (§(t,),-,d(t)" = (g1,,9,)", and J(g) = J(A).
Let .# be the set of all n x n matrices. Then

JA)=n"1! Jmax {gTU — AT — A)g + o* tr ATA}.
wig? <
Speckman [4] proposed interpolating A,y for A, which minimizes J(4) over

Ae /. The following theorem gives an explicit expression for A,.

THEOREM 1. For any fixed value of C/a?, say r, the minimum over A€ M
of J(A) is attained when A is diagonal with diagonal elements a;; given by

a; =1 — (yow)'? (i<vy

=0 (l > vJ);

where y, and v, are determined as follows: if for some 3 <j<n-—1
L & 2 2 1/2
2 1/2 1/2 1 1
Zwil/ (wj/ —wi/)—rszwi/(wjil—wi/)
i=3 i=3

then
il )2
. i=3 Wi
v,;=j and y0=<——. ,
Pt Yies @
and if

o} 0}~ 0l <1

R

i=3

then
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n 1/2 \2
v;=n and y0=<L_=_.3”w—'_> .
r+ Yl w
ProoF. Let Mp={Ael:A=diag(l, 1, as,---,a,)}. Speckman [4]
showed that min,, J(4) = min,_,, J(A) and for 4 = diag(l, 1, a3,---,a,)

J(4)=n"'0*r max (1 —a) /o, + 3 a?}.
<i<n =1

Now let 4, = {AeMy: maxy_;., (1 —a)*/w; =7}, y=>0. We get
min, , nJ(A)/e? =ry+2+ )7 ,max {0, 1 — (w)''?}?, y<w;!
=ry+2+ (1 - (w)'??, P2 w3l
Define H by H(y'/?) = min,,,, nJ(4)/o*. Then for ¢ >0
HO=r&+2+ 3,1 -¢0l??, ¢<w)?
=rE+2+ 3] (1 -ol??,  of{*<é<oj'?
=r& +2+ (1 — éwl/?)?, wi? < &
The H(¢) has a continuous derivative and twice differentiable on {£ > 0} except
for points w; V2 (4 <i<n). H"(¢)>0, lim.. o H'(¢) <0, and H'(w3 ") > 0.
Therefore there uniquely exists &,€(0, w; '/?) which minimizes H() over
{¢ >0}. Note that H(¢) is piecewise polynomial of degree 2. If ¢, < w, '/?
then (3., w!?)/(r+ Y s0)<w;*? and & =031, w}/z)/(r + 30, w).
If for some 3<j<n oi{’<{<wj'? then o {*<(}]_;0!)/(r+
ioyw) <wj'? and & =G _,0!?)/(r+Yi_, »). Replacing &, by 74>
we complete the proof of Theorem 1.
REMARK. We can write min, , J(4)/0% as n™* {ryo+ Y12, (1 —y8/> o}/?)}?

in the proof of Theorem 1. By substituting our expression for y, to this
expression, we also have

vy
: 2, -1fy _ a1)2 12} _ -1
min J(4)/c* = n {v; — 78 i;3 w}’?} =n"1trA,.

3. Minimax solution for estimating o’

We restrict our attention to estimators of 62 whose form is 6%(D) = j* Dy/
trD, Ded. Here 4 is the class of nxn symmetric non-negative definite
matrices D for which 6%(D) is unbiased when g is a straight line. For
simplicity, write M (6*(D)) = M(D). Then
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M(D) = _ax {(g"DG)* + 46*G"D*§ + 20* tr D*}/(tr D)*
wigf' <
Buckley et al. [1] proposed minimizing M (D) over Ded of M(D). The
following theorem gives an explicit expression for D which minimizes M (D).

THEOREM 2. For any fixed value of C/c?, say r, the minimum over D e A
of M(D) is attained when D is diagonal with diagonal elements d; given by

di = a0 (i <vy)
=1 (i> vy,

with o] = w;(1 + 4w;/r)" %, where ay and v, are determined as follows: if

for some 3<j<n-—1
jt1

2Zw+(w —0f)<rr<2) of (0, — o)
i=3 i=3
then
2 J
VM=j and ao Z
r2 427 3(co
and if
2Y of (@F —of) <1
then

2Z?=3 o
24230 (o)

Proor. Let 4, = {Ded: D =diag(0, 0, d3,---,d,)}. Buckley et al. [1]
reduced the problem of minimizing M (D) to finding De 4 which minimizes

V=n and og=

L(D) = pmax {(G"D§)* + 46?G"D*§ + 20* tr D* — Atr D}
for any fixed Lagrangian multiplier A. Furthermore they showed that
minp 4 L(D) = minp., , L(D) and for D = diag (0, 0, d;,---,d,)
L(D) = ¢*{r? max d;/ o) + Zii d,(d; — 1/20%)}.
If A<0, then L(D) is minimized when D is zero matrix. Assume that

A > 0. Multiplying D by a positive constant does not change M (D), so that we
replace d; by Ad;/46*(3 <i<n). Then
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L(D) = (A*/166%) {r? Jmax d/of +2) di(d; —2)}.
<i<n =
Now let 4, ={Dedy: max; ;. d;/w; =a}, >0. If « <(w7)"' then the
minimum of L(D) over Ded, is attained when d; =min {1, xw;"} and if
o > (w3)~! then the minimum of L(D) over De 4, is attained when d; = aw;
and d;=1(4 <i<n). Define H by H(x) = min,.,, 166*L(D)/A*>. Then for
a=>0

HQE@ =02 {r* +2)_, (@)} —4ad ], o, o< (o)) !
=a2{r?+2Y 7 (@)} —4aY I s of —2(n—j), (@) '<a<(@])"!"
=a?{r? + 2(w3)*} — 4aw;y —2(n - 3), (i) <o

The H(x) has a continuous derivative and twice differentiable on {« > 0} except
for points (w}) !4 <i<n). H'(2)>0, lim,,,,H (x) <0, and H'((w3)"")
> 0. Therefore there uniquely exists ay€(0, (wy)~ ') which minimizes H ()
over {&>0}. Note that H(x) is piecewise polynomial of degree 2. If
o < ()"t then Y, o)/ (P +2Y7 s 0})<(w) ' and g =(2).]_, ")/
(r*+237 s(@*)?). If for some 3<j<n—1, (0fi;) ' <& < (w])”" then
@) < @Y, 01/ + 23], @f)) < (@) and o =YL, o)/
r* + 22 _3(®)?). This completes the proof.

REMARK. We can write minp.,M(D)/c* as {rfad+ Y ™, (xow;)* +
n— v}/ {3, 00w + n—vy}? in the proof of Theorem 2 By substntutmg
our expression for a, to this expression, we also have

M
min M(D)/e* = 2{aq i; of +n—vy,h
Buckley et al. [1] defined a new criterion
K(D) = Jmax {(g"Dg)* + 20* tr D*}/(tr D)?
wig} <

for estimating o2, and discussed the relations between minimax estimators
based on these two criterions. The following theorem gives an explicit
expression for D which minimizes K (D).

THEOREM 3. For any fixed value of C/c?, say r, the minimum over De A
of K(D) is attained when D is diagonal with diagonal elements d;; given by

dii = Bow; (i<vg)
=1 (i>vg),

where B, and vy are determined as follows: if for some 3 <j<n—1



60 Teruo Fujioka

2 zj: wi(w; — w) < r’ < 21&; w;(wj, — @)
i=3 i=
then
vg=j and ﬂo=r2—.2'_22—:§?£:i—w?,
and if
2 i (0w, — ;) <r?
i=3

then

2)0_, o

ve =n and = ===
K ﬁO 72+2Z?=3(J),~2

PrOOF. Replacing w;" by w; in the proof of the Theorem 2 suffices the
proof.

REMARK. We can write minp., K(D)/a* as {r?B3 + 375, (Bow)* +n—vg}/
{S% Bow; + n—vg}? in the proof of Theorem 3. By substituting our
expression for B, to this expression, we also have

min K(D)/o* =2{By Y w;+n—vg} L

i=3

4. Asymptotic results

In this section we discuss the asymptotic behavior for large sample size
of minimax solutions obtained in Sections 2 and 3. Speckman [4] showed
that for large n the w; is approximately n~'pj*, where p is a constant.

Let v, be the solution of the equation ) !_, w!/?(w!/?> — w!’/*) =r. Then
the v, is the largest integer that is smaller than n and v, by Theorem 1. By

expanding v; in decreasing powers of n, we have the following theorem.

THEOREM 4. Under the assumption w;=pn~'j*(3<j<n), v, —1<v, <
v, and the v, is expanded as

1
@.1) =z +0(z7?)

with z = (15rn/2p)*'%, as n— 0. Write v; = v; —a,;(0 < a; < 1), then the y,
is expanded as
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1
42) o= 1o z[1 + (= 64} + 6a, = D22 + 0],
r
The minimum of J(A)/c? is
112 1
43 1 Zz4-406Y)
(4.3) n|:32 5 (z )]

Speckman [4] obtained the leading terms of (4.1) and (4.2). Carter,
Eagleson and Silverman [2] obtained the leading tem of (4.3).

Similarly the next theofem gives the asymptotic results on minimax
solutions for estimating o2 based on two criterions M (D) and K (D).

THEOREM 5. Under the assumption w; = pn™'j*(3 <j<n), vpy—1<vy <
Vs Vk — 1 < vg < Vg, and the vy and vy are expanded as

@4 S 46 <45)1/2W1,2 2095 73016675 <45)”2W_1,2
' M 17\ 8 5746 63530649 \ 8

16413426245
—_—Ww
2160042066

L oW

5
@3 Se=w+ow +0w2)

with w = (45r2n?/8p?)'/°, as n— co. Write vy = vy — ap (0 < apy < 1), and
vk = Vg — ag(0 < ag < 1), respectively, then the o, and B, are expanded as

(4.6)

§ \1/2 wii2 S0 (45\'2 _ . 8725 _
oo =|{ — 1+ —| =) w——"w!
45 r 117\ 8 7956

922875 (45\!/? 08518055
_2 (-) w‘3’2+<—10a§,+10aM+9—80 >w‘2
9773946 \ 8 182860704
+ 0(w‘3)],
8 \1/2 /2 5
4.7) /30=<—> L[1+<— 10a + IOaK——>w_2+0(W'3)].
45 r 3
The minimum of M(D)/c* is
1 1/2
()
n 2p \ 45 13p

_ 10r(51714ay, + 31217)<§_>‘/2w_9,2 N O(w_s)]
45986 45 '
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4.9)
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minimum of K(D)/c* is

1[1 — &<§>1/2w‘7/2 - 45r(2$+1~)<8>1/2w—9/2 + 0(w‘5)].
n 2p \ 45 16p 45

Buckley et al. [1] obtained the leading term in (4.5), (4.7) and (4.9). Carter

et al. [2] obtained the second order term in (4.9). They made use of
approximations of sums by integrals.
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