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1. Introduction

du
A wide range of computations for n-dimensional heat equation —- =

ct

α Y —j have been extensively investigated today [1], [3], [5], [8], because
ί=l OXf

of their importance in applied sciences. Although the explicit method is
computationally simple, it has one serious drawback: The time step δt should

n δt 1
be taken to be very small because the process is stable only for α £ 7̂ —2 — ~»

ι=ι (δxi) 2

where δxt is step size on the space variable. The Crank-Nicolson method
has widly been used since it reduces the total volume of calculation and is

valid for all small finite value of rX| = —— .̂ It is however, necessary to

solve a large linear system. In this paper, based on the representation of
the Trotter product [6], we shall propose a new technique, which does not
yield a large linear system by using a splitting of coefficient matrix that is
obtained by applying the usual centered difference to the partial differential
term in space of the above equation. The proposed method has an explicit
form and unconditionally stable. Furthermore, we find that it is superior to
the Crank-Nicolson method as is illustrated by numerical examples.

2. The formulation of the local Crank-Nicolson method for one-dimensional
problem with the Dirichlet boundary conditions

Let us first consider the following heat equation of (2.1):

lΓ = αΐ!4> xe(0, l ) , ί > 0 , (2.1)
ct ox

with the initial and the boundary conditions:

ιι(x,0)=/(x), xe(0, l ) , (2.2)

tt(0, ί) = 0 , ί > 0 , (2.3)
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κ(U) = 0, f > 0 , (2.4)

where α is the constant thermal conductivity, u(x, t) the non-dimensional tem-
perature at point (x, ί), and f(x) a known function. We apply the usual
centered difference to the partial differential term in space in (2.1) to obtain
the following equations [5]:

(2.5)

where V(t) = \v(xlt t), υ(x2, t),..., v(xrι.1, t)]7", xt = ih, i = 1, ..., N - 1, h =
l/N. For small h, we could find that v(xι, t) is an approximation to u(xt, t)
and A is the following tridiagonal matrix:

(2.6)

Without loss of generality, we may set α = 1. Then the solution of (2.5) is
given by

(2.7)

where F(0) = [/(xj,/(x2)> •• >/(*ΛΓ-I)]Γ Here the exponential function of
the matrix /I is

"-2

1

0

1

-2 1

0 "

1

1 -2

A2 A3

e\p(A) = I + A + — + _ (2.8)

If the matrix A is bounded, the right hand side of (2.8) converges. Equation
(2.7) may be written in a stepwise fashion as

(2.9)

where tm = mk (m = 1,..., N) and k is a convenient time step. Let V(tm) =

0>ι,m. ^2,m». » Γ Λf-ι ,m)^ where vί<m is an approximation to M(X, , tj The well-
known explicit, the implicit and the Crank-Nicolson methods are expressed
as the following forms, respectively:

(2.10)
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V(tm+1) = (l-±A) V(tJ (2.11)

and

V(tm+l) = (l- ^A^ ^/ + ̂ 2 A) V(tJ . (2.12)

From (2.9), (2.10), (2.11) and (2.12), we have following approximate equations.

M->+ϊ+ m
and

(2.15)

In this paper we shall propose a method named a local Crank-Nicolson
method. In the following, we consider the concept of a splitting theory of

coefficient matrix A and give an approximation of exp I —^ A 1. We first show

the following lemma for the exponential function of the matrix.

LEMMA 1. Suppose that the coefficient matrix in (2.5) has the form ex-
pressed as

s

// the matrix At is bounded for any i, then we have the Trotter product form
of the semi-group such that

where S and σ are some positive integers.

By lemma 1, for any σ = ξ, (2.16) can be approximated in the following form

We decompose A in (2.6) into S = (N — l)-part splitting in the following block
form:
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-2 1 0

1 -1 0

0 0 0 ' - .

0

A,=

AN-ί =

0

• . o
0 0

o

0

0 0

0 '-. '-.

0

0

0

0 0 0

0 - 1 1

0 1 -2

(2 < j < N - 2) (2.18)

where each matrix A( is a negative semi definite matrix. Let us consider

k
the approximation of the operator exp I —^ Aί I by using the Crank-Nicolson

method (2.15). For each i the following relation holds:

(2.19)
2ξh2

Substituting (2.19) into (2.17) we obtain

'k

2ξh2

2ξh2

Hence we have from (2.9) and (2.20)

Πv-i ΓY k

"^ -

(2.20)

(2 21)

which is an approximation of u(xh tm). If we replace A{ by B{ = AN_t then
we obtain the following form:

1

(2.22)
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We now put

v-i
+ (2.23)

and employ V(tm+1) as a numerical solution of (2.5). This scheme is called

the local Crank-Nicolson scheme.

LEMMA 2. The local Crank-Nicolson method have the second-order approx-

imation in time.

PROOF. By the. expansion formula, we have

'k Λ £ / k

The equation on right hand side of (2.17) is rewritten as

k

(2.24)

(2.25)

By the comparison of (2.24) and (2.25), it turns out that (2.21) is an approxima-

tion of order k in time.

If we replace A{ by Ei = AN_t then we obtain

(2.26)

By taking the arithmetic mean of (2.25) and (2.26) we have

(2.27)

We could find that scheme (2.23) approximates the solution u of (2.5) with

the second order accuracy in ί.

It is not difficult to check that the coefficient matrix of (2.21) is the trans-

posed matrix of the coefficient matrix of (2.22). The matrix [/ - (k/(2ξh2))Ai']

has the simple form:

"/ι-ι

R, (2.28)
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where /, is the unit matrix of order i and R, is given by

Hence, the inversion of [/ - (k/(2h2))Ai~\ can be writen as

"/I-l

KΓ1

for each /. Here the inversion of Λ f can be written as

"1 Γ

(2.29)

1 + r * 2(1 + r)

Therefore, the inversion of [/ — (k/(2ξh2))Ai] can be computed quite

easily, which leads to the explicit description of our method. It means that

it is unnecessary to solve a large linear system to carry out the method. This

is an important matter in computation processes.

3. Stability, consistency and convergence

In this section, we discuss the stability, consistency and convergence of

the difference scheme (2.23).

N-l

THEOREM 1. Suppose that the matrix A is of the form A = ]Γ Ai9 where

each At is negative semi definite (i = 1, 2, ...,N— 1). Then the local Crank-

Nίcolson method is unconditionally stable.

PROOF. Let λt be an eigenvalue of the matrix At and ηt be an eigenvalue

of the matrix on right hand side of (2.19). Then we know Λ,f < 0 and

Since it is easily shown that |^| < 1, the following relation holds:

'AΓ-l V

Π l v - l ) *i
i=l /

Therefore, this scheme is an unconditionally stable [4].

In the next place, we examine the consistency condition of this scheme.

THEOREM 2. The local Crank-Nicolson method satisfies the consistency

condition.
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PROOF. Using the initial function /, the solution u of (2.1)-(2.4) at time
t can be expressed as

u(t) = E(t)f, (3.2)

where E(t) is a solution operator of (2.1)-(2.4). By the property of the semi-
group [7],

u(t + k) = E(k)u(t)9 (3.3)

we know that the truncation error Γ from (2.23) is

k V1 / k \Ύ

1 k

Since E(/c)-»/ as fc-»0, we find that, as k->Q

k \~l ( k

k 1

So we obtain Γ-*0. It means that the proposed scheme satisfies the consis-
tency condition.

From the above results, by using the Lax equivalence theorem it is easily
shown that the proposed scheme has the convergence property.

THEOREM 3. Given a properly posed linear initial-value problem and a
linear finite-difference approximation to it that satisfies the consistency condition,
stability is the necessary and sufficient condition for convergence.

4. The formulation of the local Crank-Nicolson method for

two-dimensional problem

Let us consider the following two-dimensional initial-boundary value
problem for

£-?? + ??. i n Ω x ( 0 , Γ ] (4.1)
dt dx2 dy2

where Ω is a bounded domain with smooth boundary dΩ in R2. The initial
and the boundary conditions
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u(x, y, 0) = /(x, y) on Ω ,

w(x, y, t) = 0 on dΩ ,

(4.2)

(4.3)

are imposed, respectively. Over the domain Ω we set an orthogonal finite

difference lattice in which lattice points are numbered with the natural order-

ing. Applying the centered difference approximation in space variables by
using the lattice to the equation (4.1) we have the system of the differential

equation

(4.4)

where the matrix A is a block tridiagonal matrix since we take the natural
ordering. For the equation (4.4) the local Crank-Nicolson method can be
formulated by using the block decomposition. In this case it is necessary to

solve sublinear systems induced from the decomposition. The order of the
each sublinear system is small comparing with the order of the matrix A. For

simplicity, we shall show the concrete formulation to the problem defined on
the rectangler domain. Set Ax = Ay = h = l/N9 xf = ih (i = 1, 2,..., N — 1),

yj = jh(j=l,2,...,N- 1), and V(t) = [y(xl9 yί9 ί), v(xl9 y2, f), . . . , V(XN, yN, ί)]Γ

and v(xi9 yj91) denotes an approximate solution for u(xh yj91). In this case,
the matrix A is an N2 x N2 block tridiagonal matrix which is given as

A =

H I

I H I

0

0

' - . /

/ H

(4.5)

where I is an N x N unit matrix and H is an N x N tridiagonal matrix
such as

H =

-4 1

1 -4 1

0

0

1 -4

(4.6)

If we give an initial vector F(0) = [v(xl9 yl9 0), v(xl9 y29 0),..., υ(xN9 yN, 0)]Γ

then the solution of the equation (4.4) at the time t is given as follows:

(4.7)π-4 mo-
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By applying the formulation for the one-dimensional problem, we are able

to formulate the method for (4.7). In order to obtain the scheme we consider
a decomposition of the matrix A, as follows:

~H

I

0

"0

0

"0

0

0

/ 0~
H/2

• . o
0 0

5

0"

H/2 I

I H/2

0

0 0"

H/2 I

I H

(2 < i < N - 2) (4.8)

By using the same manner for the one-dimensional scheme, we obtain the
following iteration scheme:

V(tm). (4.9)

Then the solutions of (4.9) are obtained by using the L-U decomposition:

k \ ( k

2ξh2

2ξh2 N-l V0 ,

2ξh2 N-
V,,

(4.10)

where V{ is an N2 vector and Vt = K(ίf). The stability and convergence for
the present scheme are satisfied as same as the scheme for one-dimensional
problem.
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5. Numerical test

In order to test the feasibility and efficiency of our proposed algorithm
we carried out several numerical tests. Firstly, we solved the equation (2.1)

imposed the initial condition

f(x) = 100 sin (πx) for x 6 (0, 1),

and the boundary conditions (2.3) and (2.4). In this case, the exact solution

is given as

w(x, ί) = 100 exp (-π20 sin (πx).

The result is shown in Fig. 1 and Table 1, at t = 0.5 with N = 20, k = 0.05,

ξ = 20. Secondly, we solved the model problem [2]

du _ d2u

δί.~5J?'

«(x,0) = 1.0,

xe(0,2),

u(χ, t) *

— Exact solution

— — Crank-Nicolson method

— Δ — Local Crank-Nicolson method

0.00 0.20 0.40 0.60 0.80

Fig. 1 N = 20, k = 0.05, { = 20, t = 0.5

1.00
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Table 1. Comparisons of the exact solution with the

numerical solutions for N = 20, k = 0.05, { = 20.

Method

Exact solution

Crank-Nicolson

Local Crank-Nicolson

x10 = 0.5, ί = 0.5

0.71918809

0.65520500

0.68657660

Error

0.08896573

0.04534487

which has a theoretical solution

«,it-tιι-(-ιn*-<-f-*
t=ι nπ

-n2π2t

The numerical results for h = 0.05 and k = 0.1 are depicted in Fig. 2. We
have tabulated relative errors in Table 2. From Fig. 1, 2 and Table 1, 2
we concluded that local Crank-Nicolson method gives better approximations
than the Crank-Nicolson method.

u(x, t) 1

— Exact solution

— — Crank-Nicolson method

— Δ — Local Crank-Nicolson method

Fig. 2 N = 40, k = 0.1, { = 40, t = 1.0
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Table 2. Comparisons of the theoretical solution with the

numerical solutions for N = 40, k = 0.1, ζ = 40.

Method

Theoretical solution

Crank-Nicolson

Local Crank-Nicolson

x20 = l.o, ί = 1.0

0.1079770

0.1067305

0.1075128

Error

0.0116789

0.0043176

Finally, we solved the equation (4.1) in the rectangle domain Ω =

{(x, y) e R2 |0 < x < 1, 0 < y < 1} with the initial condition

/(x, y) = 100 sin (πx) sin (πy) for x, y e (0, 1),

and the boundary conditions (4.3). In this case, the exact solution is easily

given as

w(x, y, t) = 100 exp ( —2π2ί) sin (πx) sin (πy)

The result is shown in Table 3, at t = 0.1 with N = 10, k = 0.01, ξ = 10
From Table 3 we concluded that local Crank-Nicolson method gives

better approximation than the original Crank-Nicolson one.

Table 3. The comparison of the exact solution with

the numerical solutions for N = 10, k = 0.01, ξ = 10.

Method

Exact solution

Crank-Nicolson

Local Crank-Nicolson

x 5=> 5==0.5,

t= 1.0

13.891119

14.095628

14.028540

Error

0.0147223

0.009827
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