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1. Introduction

Let J(X) be the J-group of CW-complex X of finite dimension. Then
by J. F. Adams [2] and D. Quillen [17], it is shown that

(1.1) J(X) = KO(X)/KerJ, KerJ =Y, (N k(¥ - 1)KO(X)),

where KO(X) is the KO-group of X,J: KO(X)—-J(X) is the natural
epimorphism and ¥* is the Adams operation.

Let Q, (r=2""!=2) be the generalized quaternion group of order 4r
given by

0, ={x, y: x" = y* xyx =y},

the group generated by two elements x and y with the relations x" = y* and
xyx =y, that is, Q, is the subgroup of the unit sphere S* in the quaternion
field H generated by the two elements

x=exp(ni/r) and y=j.

In this paper, we study the J-group of the quaternionic spherical space
form:

N"(m) = $4*3/0,  (r=2""'2D),

which is the orbit manifold of the unit sphere S***3 in the quaternion
(n + 1)-space H"*! by the diagonal action of Q,. In the case m =2 and 3,
the reduced J-group J (N"(m)) is determined by H. Oshima [15], T. Kobayashi
[12], respectively.

Throughout this paper, we identify the orthogonal representation ring
RO(Q,) with the subring c(RO(Q,)) of the unitary represetation ring R(Q,)
through the complexification ¢: RO(Q,)— R(Q,), since ¢ is a ring monomorphism
(cf. (2.1)).

Consider the complex representation a,, a, and b, of Q, given by

aO(X)z 1 al(x)= —1 _ X 0 ) _<0 _1)
{ao(Y)= -1, {al(y)= 1, bl(x)—<0 x~1 , bl(y)— 1 0/,
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and the elements in R(Q,) defined by
o, =a;,—1 (=01, B=b -2 (cf. (2.4)),

BO) =B, Bs)=p(s—1>+4B(s—1)  (cf. (2.8)).
Then

o (i=0,1), 2@B(s)eRO(Q, (cf. Prop.2.7),

where ¢(i) =0 if i is even, =1 if i is o%l.
Furthermore, consider the elements in KO(N"(m)):

(1.2) o; = &) (i=0,1), 22C7p(s) = E(2°*B(s))  (cf. (3.2)),

where ¢ is the natural ring homomorphism of R?)(Q,) to K?)(N"(m)). Then,
the main purpose of this paper is to prove the following

THEOREM 1.3. Let m = 2 and put n = 2n + e(n). Then, the order of the
J-image

7o =J2B) (vz0)
of the element 2°?V B(v) is equal to 27™™").  Here, in the case m = 2,
fn,2;0=n, f(n,2;)=n+em), f(n,2;0)=0 - (v22);

and in the case m = 3,

f(n,m;0)=max {2n+ 1,s — 1 + 2°[n/2°]: 0 < s < m, 2° < i},

fn,m; )=max{n+1,s—1+2"[n/25]: 1 <s <m, 2° <7},

fr,m;v)=max {s —v+2°"[n/2]:v<s<m, 2°Zn} (v=2),
where we define max{ } =0, if {s;v<s<m, 2°<n}=o0.

Some partial results for the order of y, are obtained by H. Oshima [15],
T. Kobayashi [12] and K. Komatsu [14], and are applied to get the
information about the stable homotopy types of the stunted spaces of N"(m)

(cf. also [13]).
On the group structure of the reduced J-group J(N"(m)) (m = 2), we have
the following theorem, where

(14)  a,=[i/2], by=i—2[7/2], i=2n+eMm), en)=(1—(—1/2

2d
_ _ )i@2v+)
(1.5) X(d, v) Zjez( 1y <d + 20j>’

2d -1
(L6) Y, v) = ZjeZ(d +2°Q2j + 1)>'
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TueoreM 1.7. (i) J(N "(m)) is generated by the J-images
Jo; i=0,1) and y,= J(2:?"B(v)) O0OZv<m)

of the elements in (1.2).

(i) ([15, Th.6.1]) J: I&)(N”(2)) =~ J(N"(2)).

(i) The relations of J(N "(m)) for m = 3 are given as follows:

(@) The case n=0 mod2: Let [2X]Sn<2**! for k= — 1.
(1.7.1) 2" 2, =0 i=0,1)
(1.7.2) amosTltas 29y = 0O =s<m).
1.7.3) Y5 _2mTETINEINa D=y =0 (2<s<min{k,m—1}).
(1.74) Y5 _ (= DFrammsmar et et 0@ =22 X (d )y, = 0

1<s<min{k,m—2},0<d<2 2°+d<N),

where 6 =0 if 2d > by,,, =1 otherwise and N = min {2"', n}.
(1.7.5) 2273y, N 2°DY(i, v)y, =0 (N<ig2m?),
where 2! < i< 2!t

(b) The case n=1 mod2: The relations in (a) replaced n with n + 1,
and in addition,

(1.7.6) 2" 1Ja, =0 (i=0,1),
(1.7.7) 22nty =N Y(n+1,0)y,=0, where 2'<n+1<2'*L,

For the special case n = 2™~ 2a, we can reduce the relations of J (N"(m))
in (iii) of the above theorem to more simple ones, and J (N"(m)) is given by
the following explicit form, where Z,{x) denotes the cyclic group of order h
generated by the element x.

THEOREM 1.8. If n=2""2a (m = 3, a = 2), then J(N"(m)) is the direct sum
Zyn+2{J o) @ Zpn+2{J 1D @ Zym-2+a0{Y0) ® Z3a:{y1 — 27700 @
@:;_21 ZZ“v“<'yv - 2av—|‘a.,+1,yv_1>’
where a, = 2""1"q in (1.4).

By using the above theorem, we can determine the kernel of the
homomorphism

(1.9) j*: J(N"(m)) — J(N"*(m))
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induced by the inclusion j: N"~!(m) = N"(m) as follows:
ProposiTION 1.10. j* in (1.9) is epimorphic, and Ker j* is given by

Ker i* — {Zza(-](zﬁ")) if nis odd,
Zy 2oy ®Zy 2"y £ 277372705 @ Zon I (B")>  if 1 is even,

where h,, = min {m + 1, v,(n) + 3} and v,(n) is the exponent of 2 in the prime
power decomposition of n, and the term + 2™ ~3*2"y does not appear if m = 2.

By this proposition, we see immediately the following
THEOREM 1.11. The order of the reduced J-group J (N"(m)) is equal to
200m (n, m) = Y70 (s + 2) [(a, + 1)/2] + 4e(n + 1),
where ¢(i) is the integer in (1.4).

By using Proposition 1.10 and Theorem 1.8, we can prove Theorem 1.3
by the induction on n and m.

We prepare in §2 some results on the orthogonal representation ring
RO(Q,) (r =2"""). In §3, we recall the additive structure of the KO-ring of
I\E(m) given in [10]. We study the behavior of the Adams operations on
KO(N"(m)) and determine the generators of KerJ in (1.1) for X = N"(m)
explicitely in §4. In §5, we give the key relations of J(N"(m)) in Lemma 5.6,
and the defining relations of J (N"(m)) in Proposition 5.7, which are useful in
the proof of Theorem 1.7. Some lemmas for the coefficients X (d, v) and Y(d, v)
in (1.5-6) are prepared in §6.

By using these results, we prove Theorem 1.7 (i), (i) and (iii) (a) in §7,
and Theorem 1.8 in §8. In §9, we prove Proposition 1.10 in Corollary 9.10,
and Theorem 1.11 ig Proposition 9.8 (ii)) by wusing the results on
Ker {j*: I?O(N"“)-—»KO(N")} ([10, §47), where N* is the k-skeleton of the
CW-complex N"(m) ([6, Lemma 2.1]). In §10, Theorem 1.3 is proved first,
and then Theorem 1.7 (iii) (b) is shown by using Proposition 1.10, Theorems
1.3 and 1.7 (iii) (a).

In the final section, we study the relation between .7(N"(m+ 1)) and
J(N"(m)) for n < 2"~ 1,

2. The representation rings of Q, (r =2™71)

We denote the unitary (resp. orthogonal) representation ring of the group
G by R(G) (resp. RO(G)). By the natural inclusions

OmcUm and U(n) < OQ2n),



J-groups of the quaternionic spherical space forms 369
the following group homomorphisms are defined:

RO(G) - R(G), R(G) -5 RO(G).
The following facts are well known (cf., e.g. [3]).

(2.1) These representation rings are free over Z, and ¢ is a ring
homomorphism. Also

re=2 cr=1+t,
(t denotes the conjugation), and ¢ is monomorphic.

Hence throughout this paper, we identify RO(G) with the subring c(RO(G))
of R(G).

We regard the generalized quaternion group Q, (r = 2™~ ! = 2) of order
4r as the subgroup of the unit sphere S in the quaternion field H generated
by the two elements

x =exp(ni/r) and y=]j.
Consider the complex representations a; (i =0, 1,2) and b; (jeZ) of Q,

given by

{ao(x) = 1 {ai(x) =-1 (=12

a)=-1 (a@()=(=D""

x 0 _ 0 (—-l)j
bj(x)<0 x_j>s bj()’)—<1 0 >

Then, we see easily the following

2.2)

ProposiTION 2.3 (cf. [4, §47.15, Example 2]). R(Q,) is a free Z-module
with basis 1, a; (i=0,1,2) and b; (1 <j <r) and the multiplicative structure
is given as follows:

at=1,al=1, a,=apay, bp=1+ay, b,=a, +a,,
byi=b,_;y b_y=b;, bbj=b; ;+ b,_;, agh;=b;, a;b;=b,_,;.
Let
(2.4) o=a—1(=01,2 and B;=b;—2 (je2Z)
be the elements in the reduced representation ring R(Q,).
From now on, we denote f instead of §, for simplicity. Then, we have

PROPOSITION 2.5 (cf. [6, Prop. 3.3]). R(Q,) is a free Z-module with basis
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o (i=0,1,2) and B; (1 =£j<r), and the multiplicative structure is given as
follows::

oad = — 20, 02 = — 20, 0y = 0o0; + 0o + %,

Bo =00, Br=0y + 0y, Bosi=Pr—i, B-i =P

BiB; = Bivj+ Bi—j —2(B:i + By, %oBi = — 200, 1 B = B,—; — Bi — 205
These show that the ring R(Q,) is generated by agy, a; and B.

Regarding RO(Q,) as the subring of R(Q,) under the complexification
¢: RO(Q,) — R(Q,) in (2.1), we have

ProPoOSITION 2.6 (cf. [5, (3.5) and (12.3)]). RO(Q,) is a free Z-module with
basis 1,a; (i=0,1,2), by; and 2b,;.; (1 =2j,2j+1<7).

By (2.4), Propositions 2.5 and 2.6, we have

. PropositioN 2.7 (cf. [10, Prop. 2.7]). The reduced representation ring
RO(Q,) is a free Z-module withNbasis o (i=0,1,2), B,; and 2B,
(1<2j,2j+1<r). Also, the ring RO(Q,) is generated by o, oy, 2B and B>.

Let m = 2, and define f(s) in R(Q,) inductively as follows:

28) BO) =B, Bs)=Ps—1*+4ps—1) (s=1).
Then, we have the following

LemMa 2.9 (cf. [10, Lemma 2.16], [9, Lemmas 5.3 and 5.4]). The
following relations hold in R(Q,):

(i) Pus=BOIL2, 2+ B1))=0 and B(s)=0 (s=m).
() o fr =" — (=2 BE T @+ BE) + (— ey
for any positive integer n.

Proor. (i) The first relation is proved in [10, Lemma 2.16]. By the
first relation, f(m)= P, , =0, and so f(s)=0 (s=m) follows from the
definition of B(s) in (2.8).

(i) Since a,f=p,_, — B — 2a;, by Proposition 2.5,

wpr=p"1By = B — 20,7}
= (Lo (=B B — B+ (— 2y
On the other hand,

Boor —B=Q+ B IBOTTE 2+ B)
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by [9, Lemma 5.3]. Therefore, we have the desired relation. g.e.d.
By the definition of (s), P,, ;, Lemma 2.9 and Proposition 2.7, we have

Lemma 2.10 (cf. [10, Lemma 217]). 2P,,=0, BP,, =0, P, ,=0
(2=s=m) and B(s) =0 (s = m) hold in RO(Q,).

3. The structure of be(N"(m))

The generalized quaternion group Q, (r = 2™~ ! = 2) acts on the unit sphere
S3 in the quaternion (n + 1)-space H"*! by the diagonal action

9(os---»4s) = (490>-..,94,)  for q€Q,, g;€H,
and we have the quaternionic spherical space form
N™(m) = $4"*3/Q, of dimension 4n + 3.

Then the natural projection S*"*3 — N"(m) define the ring homomorphism (cf.
[11, Ch. 12, 54])

X)) £: RO(Q,) — KO(N"(m)),

and by using the same letter, we define the elements

o=@ (i=0,1), 2°0p =20 (jz ),

26(0) = £Q2B(O), B(S) = £(B®) (s 2 1) in KON"(m)),

where ¢(j) is the integer in (1.4). -~ ~
For the ring homomorphism &: RO(Q,) - KO(N"(m)) in (3.1),

(3.2)

(3.3) (cf. [16, Th. 2.5], [7, Th. 1.1 and Cor. 1.2]) & is an epimorphism, and

By if n is odd,
Q2pHt, gty if n is even,

where (S means the ideal generated by the set S.

Ker€={

. Consider the following integers u(i) and the elements J; and a; in
KO(N"(m)) (m = 2), where «;, 2 = 2(0) and B(s) are the ones in (3.2). For
i=2+d<N=min{2" ', n} with 0<s<mand 0<d <2, put

n=2n+ ¢(n) = 2%, + b, 0=<b,<?2

u(l) =2m"2%% 5 =28 if i=1;

m-—3+ay .
-2 (n: odd),
am=2+a (n: even),
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_ B(1) — 2 1 B(0) — Ro(1,0; a, + 1) (n: odd),
B (n: even) ifi=2;

u(l) = 2m—s—2+as’
(3.4)
5 — {Z;o(_ 1)¥ 1@ - Dt Dgg — 1) — R,O(s’ 0; a, + 1) (n: odd),
' yr_ 2@ Vet DB(s —t) (n: even) if i=2°Q2<s<m);
agq +1 for 2d < by, 4,

N\ — m—s-3+a(i) N\ —
ui) =2 » o) {as for 2d > b, ,,,

287 B2 2 + B@) + Yoo (= D22 T DOBIB(s — 1)
(d: odd),

si=1 B 2BQTIC) @+ B(t) + R(s, d; a(i))  (n: odd, d: even),
Bd—2ﬁ(2)nf;1l(2 + B(t)) + Zf=0(_ 1)2t+a(i)2(2‘“—1)a(i)—1ﬁdﬁ(s _ t)
(n: even, d: even) if i=2°+d=23,dz1;
)y (n: even or m = 2),
M o, £272*8 (n:odd and m 2 3),

where &(n) is the integer in (1.4), and Ry(s, 0; k) and R(s, d; k) are the elements

given in [10, Props. 7.1 and 7.2]. ~
Then, the additive structure of KO(N"(m)) is given by the following

theorem:

THEOREM 3.5 (cf. [10, Th. 1.6]). KO(N"(m)) (m = 2) is additively generated
by the elements agy, a; and 2°VB (1 i< 2™ 1Y), and the additive structure is
given by the following relations:

(3.5.1) 2n+2—e(n)<x0 =0, 2n+2—e(n)o—Cl =0,
(3.5.2) u(@é; =0 (1<i<N=min{2" ', n},
(3.5.3) 20pi =0 (N<ig2"™}),

where ¢(i) is the integer in (1.4).

REMARK 3.6. §; is the linear combination of 2°Vp7 (1 £j < i) such that
the coefficient of 2°PB' is odd. Also, by the definition of P(s) in (2.8), B' is
the linear combination of the monomials

B =BGy BG) O=iy <--<ip<m, |I| i)

such that the coefficient of B(I) with |I| = i is equal to 1, where |I| = 2" + .. 4 2t
Jor I=(iy,...,i).
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4. The Adams operations on KN(J)(N"(m))

Now, consider the complex representation rings R(S?%), R(S?), R(Q,)
(r=2m"1=2) and the ring homomorphisms

4.1) i*: R(S®) — R(SY) and j*: R(S%) —> R(Q,)

induced by the natural inclusions S' < §° and Q, = §3.
The following lemmas are well known:

LemMMA 4.2 (cf. [11, Ch. 13, Th. 3.1]). R(S?®) is the polynomial ring Z[{],
where ( is given by the representation

z
_ 2) for z, +jz,e83.

Z;

23

{(zy +Jz3) = <

Lemma 4.3 (cf. [11, Ch. 13, Th. 3.1]). R(S') is the polynomial ring
Z[x, x~ '], where x(z) =z (zeS') and x~' is the conjugation of x.

Define the elements {(s) in R(S3) inductively as follows:
(4.4) (O)=(~-2, {O=L6—-1)*+4s—-1) (=)

Then, we have the following lemmas.

LemMma 4.5. i*: R(S®) — R(S?) in (4.1) is monomorphic, and

*CE))=x¥+x" =2  (s=0).

Proor. The first half follows from [11, Ch. 9, Th. 9.3]. We see easily
that i*() = x + x~ !, and so i*({(0)) = x + x~! — 2. Hence, the second half
is shown by the induction on s. q.e.d.

By the definitions of f(s) in (2.8) and ((s) in (4.4), we see easily the
following

LeMMA 4.6. For the homomorphism j*: R(S%) — R(Q,) in (4.1), we have
the equality

J*(C(s) = Bls)  (s20).
Let ¥ be the Adams operation on R(S3), and
@.7) W= [(P2%*1 — 1)220L(0): ke Z, i 2 1]

be the subgroup of R(S3) generated by the elements in the bracket.
Then, we have the following lemmas.

LemMma 4.8. (i) i*(W) is the subgroup of R(S') generated by
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(P2 — 1)2°C@(x2" + x™2%) k=20,v=0),

where W' is the Adams operation on R(S!).

(il) W is the subgroup of R(S') generated by

25292 + ()L (V) O=v<v,<--<p,t21),

where {(V) = {(vy)---{(v) for V = (vy,...,0).

ProOOF. (i) Since ((0) ={ — 2, we see that

W=[(P*+! —1)2°0¢ keZ, i 21].

By the naturality of the Adams operations i*?' = ¥'i* and Lemma 4.5, we
have
i*((q/2k+1 _ l)éz) — (W2k+1 _ 1)1*((’) — ((I/2k+1 _ 1)(x + x—l)i
i

— [(i—l)/2]< )(QPZk+1 _ 1)(xi—-2j + x—i+2j).
J

j=0

Here, we set i — 2j =2°q (q: odd). Then
(q/2k+1 _ 1)(xi—2j + x—i+2j) — (W(2k+1)q _ 1)(x2v + x—2v)
— (P - 1)(x* +x~2Y).

On the other hand, x2° 4+ x~2" is the linear combination of (x + x ™)' (i = 1),
and Y7'(x* + x~ %) = P'(x** + x~%"). Therefore, we have (i).
(i) Let k=0 and v = 0. By the equality

(W2k+1 _ 1)(x2" + x—Z") — (x2" + x—2")2k+1 _ 22k(x2" + x—Z")

2k +1 .
L < j ><&”2“‘“1’“—1)(x2"+x-2"),

j=1

we see easily that
i*(W) = [25C7 {(x?" + x 21 — 22K (x?" + x72")}: k20,02 0].
Since i*({(v)) = x** + x~2* — 2 and i* is monomorphic by Lemma 4.5,

W=[22C"{(2 + {(v))***"* = 22*Q2 + {(v))}: k= 0,v = 0].
Put

(W, b)=Q2+ )" =222 +{@) (kz20,020),
(o k) =2+ @+1) (kz1,v20).

Then, we have
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{(v, k)= C(v, k) + 4L, k—1) (k=1,0v=0) and {(v,0) =0,
and so
W=[22®"Q2 + {())****{(v + 1): k20,02 0].
Let k=0, v=0 and set
k+1=2"+...428  (0ZLi, <---<i).
By the definition of {(v) in (4.4),
Q+ LT+ D) =2+ {)E+ DCE+ 1)+ 4,

and {(v + 1)({(v + 1) + 4)* is the polynomial of degree k + 1 in {(v + 1). Thus,
we have the equality

C+ LT+ ) =2+ )0+ 1+i) L+ 1+0)+
+ 42+ )0+ 1).

This equality implies (ii). g.e.d.
LEMMA 4.9. j*(W) is the subgroup of RO(Q,) (r = 2"~ = 2) generated by
2EHBWBWV) — (- 2B)}  O=sv<vy<-<ysm—2121),

where B(V) = B(vy)-+B(v) for V= (vy,...,0).

PRrOOF. Since RO(Q,) is identified with the subring c(I%(Q,)) of ﬁ(Q,),
Jj¥*(W) < RO(Q,) and j*(W) is generated by

2202 + B)BV) O=Lv<v,<--<v,t21)

by Lemmas 2.7, 4.6 and 4.8 (ii). On the other hand, by Lemma 2.10, f(s) =
(s = m) and

2220y 1 = 2220{(2 + BB — 1) + Y a2 + B)B(D)} =
hold in RO(Q,), where P, ,., = [)’(v + DI, 2(2 + B(¢)) and I = (iy,...,i;) runs
over {(iy,...,i):v<i; <--<i;<m—2)in ). Hence, j*(W) is generated by
292+ pHBV)  O=Sv<v<--<p=m—=2t21),
and also by
2CHBWPWV) — (- 2'B)}  O=<v<v, <<y, =m—21t21).
g.e.d.

Here, we notice the following
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REMARK 4.10. For j*: R(S®) — R(Q,) in (4.1) and &: R?)(Q,)—» KNO(N"(m))
in (3.1), we have
Ei*(W) =[P — 1)2°OB ke Z, i 2 1],
where ¥' is the Adams operation on K?)(N"(m)).

In fact, the above assertion follows from the facts that &j*({(0)) = ji by
Lemma 4.6, (2.8) and (3.2), and the Adams operations on R(S?), R(Q,), RO(Q,)
and KO(N"(m)) are natural with respect to j*, the complexification

c: RO(Q,) > R(Q,) and &
Now, consider the J-homomorphism

J: KON"(m) — J(N"(m) ~ (m 2 2),
where J is an epimorphism and
4.11) KerJ=),L,, L,=)k(¥— 1)I€O(N"(m))
by (1.1). Then, we have
LemMA 4.12. Ker J = {j*(W) holds, and Ket J is generated by
2EBOBV) — (= D'B)}  O=sv<v, <--<p,Sm—2t21),
where B(V) = B(vy)---B(v) for V= (vy,...,0,).

Proor. By Lemma 4.9 and (3.2), it is sufficient to show that
Ker J = {j*(W). Since KO(N"(m)) is a 2-group by Theorem 3.5, L, in (4.11)
is 0 if k=0 mod 2. Also, the group KO(N"(m)) is generated by «; (i =0, 1)
and 2°VB" (1 £i 2™ ') by Theorem 3.5. We see easily that (¥* — 1)a; =0
(i=0,1) if k=1 mod2 by [1, Th. 5.1], (2.4), Proposition 2.3, (3.2) and the
naturality of the Adams operations with respect to & in (3.1). Therefore, Ker J
is generated by the elements

(P2 1)20f  (keZ iz 1),
and so Ker J = &j*(W) holds by Remark 4.10. g.e.d.

5. Some relations in J(N"(m))

For any non-negative integers a, b, and s with (a, b) # (0, 0), consider the
integers ¢; (i = 0) satisfying

(5.1 e+ xT =200+ xTE =  =co+ Y, X+ xTY

in the ring Z[x, x"']. Then, we have the following
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. 2 2b
Lemma 5.2. () ¢ =Y (— 1)'+“+'+ZS(b_l)<2S(b—l)a+a+i>< l )

(i)  c+2),,6=0,
Co t+ 2(2,-;1 Caj— zjgl Cj-1) =(—4"2(— )% -2y,
co+22jg1czuj:0 b=1and s=zv=0).

a+2sb+i

Proor. (i) follows from the fact that c; is the coefficient of x in

X2 (x 4+ xT 2P (x% 4+ x7F = 2)P = (x — 1)?9(x% — 1)?°,

(i) Set x=1 (resp. x=—1) in (5.1). Then the first (resp. second)
equality follows. Also, consider (5.1) modulo x2>*—1, and compair the
constant terms of both sides. Then, the last equality is easily seen. q.e.d.

Let v = 0, and define the integers
(5.3) 0(a, b;s,0) =3 10Cav2it 1)
where c; are the integers in (5.1). Then, we have
LEMMA 5.4. O(a,b;s,v)=0if b=1 and s> v, or a+ 2°b <2, and
O(a, b;s, 0)=(— 4" 2(- 1)* - 2.
Proor. In case b=>1 and s> v, by Lemma 5.2 (ii)

ijlczu-uj = — C0/2 = Z}.Blczuj.

Also, in case a+2°b<2’ c¢,;=0 (j=1) by the definition of ¢; in
(5.1). Therefore, O(a, b; s, v) = 0 in these cases. The second equality follows
from the first two equalities of Lemma 5.2 (ii) and (5.3). q.e.d.

Consider the elements
(5.5) Yo = J(2B(0), 7, = J(B(W)) (v Z 1) in T(N"(m)).
Then, we have the following

LeEMMA 5.6. For any non-negative integers a, b and s with a + 2°b > 0,
the relation

J@UTEDB(s)) = U1 20 D E@0(a, by s, v)y,
holds in J (N"(m)), where ¢(i) is the integer in (1.4).

Proor. First, we notice that the coefficient of y, in the right hand side
is an integer, since 6(a, b; s, v) =0 mod 2 if ¢(a + 2°b) = 0 by Lemma 5.4.

Put e =2:@*2Y  and consider the i*-image of el(0)°{(s)) in Lemma
4.5. Then, we have
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i*(el)PL(s))) =e(x +x~1 —2*(x* +x ¥ =2 (by Lemma 4.5)

=e(co+ ) ip, Gilx" + x7H) (by (5.1)

=e) ., a(x'+x71=2) (by Lemma 5.2 (ii))

= eszoZ,goc2u<z,-+1>(x2”‘”+ D4 x~2v@i+D _ )

= Zugoe(zjgoczv(zjﬂ))(xz” + x~2" — 2) mod i*(W)

(by Lemma 4.8 (i))

= i*(zugoeﬁ(a, b; s, v){(v) (by (5.3) and Lemma 4.5).
Since i* is monomorphic, we see that
(*) el(0L(s)’ = Zugoeﬁ(a, b; s, v){(v) mod W in RNO(Q,).

Therefore, the desired relation follows from (3.2), Lemmas 4.6, 4.12 and (5.5)
by considering the &£j*-image of (). g.e.d.

By the above results, we have the following
PROPOSITION 5.7. J (N"(m)) is generated by
Jo, i=0,1) and 7y, (0=Zv<m),

where Jo; is the J-image of «; in (32) and 1y, is the element of
(5.5). Furthermore, J: KO(N"(2)) = J(N"(2)), and the relations between these
generators for m = 3 are given by the J-images

(5.7.1) 2"+2_£(")Joc0 =0, 2n+2—s(n)‘]o‘cl =0,
(572 u@J(@)=0 (1<i<N=min{2"" !, n}),
(5.7.3) JRUBY=0 (N<i<2mh

of the relations (3.5.1-3) in KNCJ)(N "(m)). Here, the left hand sides of (5.7.1-3)
can be written by Jay, Ja, and y, (0 S v <m) by using Lemma 4.6 and the
definition of a, in (3.4).

Proor. By Theorem 3.5, KA(J)(N"(m)) is an abelian group generated by
the elements

o, ¢, and 2°0pF (1 gig2mY

with the relations (3.5.1-3). Furthermore, by Remark 3.6, the subgroup
generated by 2:Wp* (1 <i £ 2™~ 1) coinsides with the one generated by

2@BwB(V) O=Lv<v;<--<p<m—1,t21) and

229B(w) 0 s v <m);
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and it contains Ker J, which is generated by
2CHBWBWV) — (= 2fBw)} O=v<v;<--<p,<m—1t21)
and is 0 if m =2 by Lemma 4.12, where (V) = B(v,)---B(v,) for V= (vq,...,v,).

Thus, we see the proposition for .7(N"(m))=K~ (N"(m))/Ker J by (5.5),
Remark 3.6 and Lemma 5.6. q.e.d.

Remark 5.8. Especialy for J(N°(m)), the relations (5.7.1-3) are written as
follows:

22Jay =0, 22Ja; =0 and y,=0 (0<v<m).

In fact, the first two relations are the ones of (5.7.1), and y, =00 < v <m)
are equivalent to (5.7.3) by the definitions of y, in (5.5) and S(v).
We notice that there hold the relations

(5.9) QmosTltaste, — (0 (1<s<m) in J(N"(m)),
where a, is the integer in (3.4). In fact, (5.9) is the J-images of the relations
am-sTltastem pig) = 0 (1<s<m) in K~0(N"(m))

by [10, Lemmas 5.1 and 8.1]. In §7, we use these relations to represent the
left hand sides of (5.7.1-3) by Ja,, Ja; and y, (0 < v < m).

6. Some preliminary lemmas for binomial coefficients

In this section, we prepare some properties about the integers 6(a, b; s, v)
in (5.3).
Let d >0 and v = 0, and define the integers

_ 1)@yl

(61) X(ds U) Zjez( I)J (d + 20]-)’
2d -1

6.2) Y(d v) = ZjeZ(d +2°Q2j + 1)>

Then, we have
LeMMA 6.3. 0(d, 1;v,v)=(— 1)*X(d, v), 8, 0; s, v) = (— 1)**2°Y(d, v).

Proor. By (5.3) and Lemma 5.2 (i), we see that

2d
6@, 1; v, v)=(—1)"{( >
d+2v+1 +21:+1j
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+2(—1)2"+1< > >+< 2 :
d+2"+ 211 d+ 2+

. ( 2d ) < 2d ) ( 2d ) ( 2d
Since = and = ’
d42°%1 4201 d—2°(2j+2) d+2°+2v*1j d—2"(2j+1)>

the right hand side of the above equality is equal to
2d
-2y (— 1y .
( )ZJEZ( )] <d+2u]>

Thus, we have the first equality by (6.1). For the integer 6(d, 0; s, v), we see
also that

2d
g(d, 0;s,v)= (—- 1)d+2”2jgo<d + 20(2]‘ + 1))

by (5.3) and Lemma 5.2 (i). Here, we notice that

< 2d )_( 2d —1 > < 2d — 1
d+2°2j+1)) \d+2°Q2j+1) * d—1+2"(2j+1)>

_< 2d -1 ) < 2d —1
T \d+2°@Qj+ 1) * d—2"(2j+1)>'

Therefore, the second equality follows. q.e.d.
From now on, for any integer n, we denote by
v(n) =v,(n) and pu(n) = pu,(n)

the exponent of 2 in the prime power decomposition of n and the number of
terms in the dyadic expansion of n, respectively. Also, we regard u(0) = 0.
Now, we state some properties of the integers X(d, v).

Lemma 6.4 (cf. [8, Lemmas 4.9 and 4.15]). Put
X(d, v)=2"4Y¢d, v) (£, v): odd integer)
for the integer X(d, v) (d>0,v=0) in (6.1). Then,

(i) v(d, 0)=2d, {(d 0)=1;
(i) v(d v)=[d/2" ']+ pd—2""[d/2°"']D)  (>0);

2S
(iii) 6(2‘_1,1)):2'1(25_1) for v=s, and EQ2°" Y, s)=1if s=1,=3
mod 8 if s=2;
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s

iv) ¢! —1)~2-2{<2
(iv) €@t s—1)= -

>—2}51 mod 4 for s = 2.
LemMa 6.5 (cf. [8, Lemma 4.16]). Let 0 <d <2°. Then
i (= 1)*27iXd, s —i)=0.

In the rest of this section, we shall study the divisibility of the integer
Y(d, v) in (6.2) by the powers of 2.
Let d>0 and v=0. For the integers defined by

(6.6) X(d,v) =Y (— l}i<d+2"j>’
_ 2d
(6.7) Yd o)=Y, < e 2uj>,

we have the following

LemMa 6.8. () X(d, )+ Y(d, v)=2Y(d, v+ 1), X(d, v) = X(d, v) (v = 1),
X(d, 0)=0, X(d, 1) = 2.

() Y(d,0) =22, ¥(d, 1) =221, ¥(d, 2) = 20" 1(1 + 24~ 1),

Proor. (i) The first three equalities are trivial. The last equality is
easily seen by the following equality:

o 2d . 2d
2d=(1 +i)2d/l'd=2jez(— 1)]<d+ 2]) + Zjez('— 1)J<d+2j n 1>i'

(i) The first equality is obvious. The last two equalities are the
immediate consequences of (i). q.e.d.

LEMMA 6.9. Let v=0 and d =2°*. Then
[d/2°] + p(d —2°[d/2°]) < [d/2°" ") + u(d — 2°7'[d/2°71]) — L.

Proor. The assertion is trivial in case v =0. Suppose v =1 and put
d=2"4...42% (iy>--->i). Then, u(d—2°[d/2"]) = u(d —2°~1[d/2""1])
and [d/2°7']=2[d/2"] hold if i;#v—1 for any j. On the other hand,
u(d —2°[d/2°]) = u(d — 2°"*[d/2*"*]) + 1 and [d/2°"'] = 2[d/2"] + 1 hold if
i;=v—1 for some j. Therefore, we obtain the desired inequality. g.e.d.

LEMMA 6.10. Let d>0 and v=0. Then
v(Y(d, v+ 1)) = [d/2°7 '] + p(d — 2°71[d/2°71]) — &(d, v),
where e(d,v) =0 if d<2°,=1if d=2".
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_ 2d
Proor. If d <2° then Y(d, v+ 1) =< P ), and so the desired equality
2
follows from the equality v,( P )) = u(d) given in [8, Lemma 4.8]. Hence,
we shall prove the equality
*)y, v(Y(d, v+ 1)=[d/2"" ]+ ud—-2""'[d/2""']) -1 for d = 2°

by the induction on v.

If v =0, (%), holds by Lemma 6.8 (ii). Thus, we assume that (%), holds,
and prove (¥),4,. Suppose d=2°*!. Then, v(Y(d,v+ 1))=[d/2°" ']+
u(d —2°"1[d/2°"*]) — 1 by the inductive assumption, and v(X(d, v + 1)) =
v(X(d, v+ 1)) =[d/2"] + u(d — 2°[d/2"]) by Lemmas 6.8 (i) and 6.4 (ii). On
the other hand, by Lemma 6.8 (i), Y(d, v +2) = {Y(d, v+ 1) + X(d, v + 1)}/2
holds. Hence, we see that

v(Y(d, v + 2)) = min {(W(Y(d, v + 1)), v(X(d, v + 1))} — 1
=[d/2] + ud — 2°[d/2"]) — 1

by the above argument and Lemma 6.9. Thus, (x),,; holds. g.e.d.

LEMMA 6.11. Let d >0 and v=0. Then, we have the following:
Yd,v)=0 (d<?2Y;
Y(d 0=2%"2 dz1), Yd 1)=2"22"1—1) (d=2);
v(Y(d, v)) =[d/2°" "]+ p(d — 27 [d/2°7']) =2 (d 22"
Proor. By (6.7),

~ _ 2d
Y(d, v) — Y(d, v+ 1)=Zjez<d + 2v(2J+ 1))

2d -1 2d -1
<d +2°(2j + 1)) * <d —14+2°2j + 1))
2d -1 2d -1
<d+ym+4)+<d—rw+n>
Therefore, we see easily that

(*) Yd, v)— Y(d, v+ 1) =2Y(d, v)

holds, and

4+ 20551)
d+2°Q2j + 1)

by the definition of Y(d, v) in (6.2).
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The first equality follows from Lemmas 5.4 and 6.3. The second and the
third equalities are the immediate consequences of Lemma 6.8 (ii) and (x) above.

Since the last equality for v = 0 follows from the second one, we prove
the last equality under the assumption d =2 (v=1). By Lemma 6.10, we
have

v(Y(d, v) = [d/2°7?] + u(d — 272 [d/2°"*D — 1,
v(Y(d, v+ 1)) = [d/2°7 1]+ p(d — 271 [d/2"1]) — 1.

On the other hand, we see that v(Y(d, v)) > v(Y(d, v+ 1)) by Lemma
6.9. Therefore, by (%) above, we have

v(Yd, v)=v(Y(d, v+ 1)—1,

which is the desired equality. g.e.d.

7. Proof of Theorem 1.7 (i), (ii) and (iii) (a)

Throughout this section, we assume that m = 3. By using Lemma 5.6
and the results obtained in the previous sections, J(2:¥)8) in (5.7.3) and u(i)J (5,)
in (5.7.2) can be represented by y, (0 <v<m — 1) as follows:

LemMAa 7.1. If 2'<i< 2%, then
(= DI QOB) = 22340y, — T 2O (i, )y, in T(N"(m),
where Y(i, v) is the integer given in (1.6) or (6.2).
ProorF. By Lemmas 5.6, 5.4 and 6.3, we see that
JEOB) = T, 20790, 03 5, 0}y,
= (= 125071 Y (i, 0)yo + (— VYL 2°DY(i, v)y,.

Here, Y(i, 0) = 22/"2 by Lemma 6.11. Thus, we have the desired relation.
g.e.d.

In the following lemma, we use the relations
7.2) 2mosTlta, — 0 (1<s<m) (cf. (59)
inJ (N"(m)) for even n.

LeMMA 7.3. Let 22+ d<N=min{2" ', n}, 0<d<2’>, 1<s<m-—2
and 0 S v<s. Then,

J(zm_s_4+2s+xfua(i)ﬂdﬁ(v)) - (_ l)dzm_s_4+25+l-"a(i)“e(lv)X(d, U))’w
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in J(N"(m)) for even n, where a(i) is the integer given in (3.4).

Proor. By the assumption 2° +d < n and the definitions of a,, {, by,
and a(i) in (3.4), we see easily that a,,, =1 if 2d<b,,, and a,,, =2
otherwise. Thus, we have

(%) 2a(i) =2 + a,4 4.
Lemma 5.6 implies that the left hand side of the desired relation is equal to
Wop 2n T ARG, 15 v, u)y,
=Y _ 2mosmar2ritva®-e@99(d 15 v, u)y,  (by Lemma 5.4).
Here, we notice that
(7.4) a,=2""a, +[b/2"] <2, +2""" =1 t=v)
holds by the definitions of a, and b,. Then, if u > v, we have
m—s—4+2"1"q(y>m—s—-3+a,+2°""""Zm—-u—1+a,

by (%) and (7.4), and so 2m~s~4*+2*"'"raly — (O (4 > v) by (7.2). On the other
hand, 8(d, 1; v, v) = (— 1)*X(d, v) by Lemma 6.3. Thus, we have the lemma.
g.e.d.

Now, consider the integers d; and e; satisfying

c+x7 =210 + x 72 = TP (k% + x7%)
=do+ Y, d(x+x7) (0<d<2),

e+ x71 =22t + x4 =) T0C; (6 + x7%)

=e + Y, a(x+x7) (1<d<2)

(7.5.1)

(1.5.2)

in the ring Z[x, x~']. Then, we see easily that d, = 0 = ¢, and dyj=0=e,;
if v=s+1 and j = 1, since left hand sides of (7.5.1-2) are equal to

(c— D)2+ 1)(x = 1)/x¥ 4 and  (x — 1297 4(x* — 1) (x> = 1)/x?" *4,

respectively. Also, consider (7.5.1-2) modulo x?" — 1 in case v <s + 1, and
compair the constant terms of both sides. Then, we see that

do + szgl d2vj = 0 =€y + 221.;1 e2"j'

Therefore, we have
(7.6) do == 0 = eo and ijo dZ"j = 0 = ngoezvj (U ; 0).

By using (7.6), we can prove the following lemma by the similar way to
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the proof of Lemma 5.6.
LEMMA 7.7. In J(N"(m)), the following relations hold:
JROBBMIIoQ+BW) =0  for 0<d <2,
J2OB2BTEZ 2+ BE) =0  for 1<d<2s.

Proor. Since the second relation can be proved in the same manner as
the proof of the first one, we shall prove only the first relation.

Consider the i*-mage of 2°@¢(0)~'¢()[[iZ,(2 + {(t)) in Lemma 4.5.
Then, this is equal to

2@(x 4+ x71 =21 (x 4 x72 = [P0 (xF + x7%)
=22@Y di(x*+x7)  (by (7.6)
= 2% a0 Lo davaje (XTI 4 x72ITY)
=29% o (X ja0d2v@j+ 1) (X + x7 ) mod i*(W)  (by Lemma 4.8 (i)).

Here, ), 0d2ojs1)= D jaod2vj = 2 ja0d2ve1;=0 by (7.6). Hence, we see
that

(*) 20001 {(W]Ze @+ () =0mod W in RO(Q,),

since i* is monomorphic by Lemma 4.5. Therefore, the desired relation follows
from (3.2), Lemmas 4.6 and 4.12 by considering the &j*-image of (x), where
¢ and j* are the homomorphisms in (3.1) and (4.1), respectively. g.e.d.

Now, we are ready to prove Theorem 1.7(i), (ii) and (iii)(a).

ProoF oF THEOREM 1.7 (i), (ii) AND (iii)(a). Based on Proposition 5.7, we
complete the proof of Theorem 1.7 (i), (ii) and (iii)(a) by combining (3.4), (7.2),
Lemmas 7.1, 7.3, 7.7 and Remark 5.8. q.e.d.

8. Proof of Theorem 1.8

In this section, we assume that m =3 and n is a positive even integer
with n = 4 unless otherwise stated.
Let | be an integer such that

8.1 n=2 and 2<I<m-1.

Then, the following relations hold in J(N"(m)) by Theorem 1.7 (iii) (a) and (7.4):
8.2) 2" 20y =0, 2"*2Ja, =0,

(8.3 amosTlHas =29y = () 0=s<m)),
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(84) Yo 2n TSI TBATIRRTIEY, =0 2552 )),
(851) Zz=o(_ 1)2s—v2m—s—4+a.,—[bs+z/2v]+2s+1—v+e(d)—£(2v)X(d, U)% =0
(1§S§1_130<2d§bs+1)1
(852) Zi=0(_ 1)2s—v2m—s—4+au—[bs+1/2v]+£(d)—e(2")X(d, U)'Vu =0
(1s<l—1,b,,, <2d <25,
where X (d, v) = 2*“®Y¢(d, v) is the integer in Lemma 6.4.
Here, we notice the following

REMARK 8.6. In case n=2""2a (a = 2), the relations (1.7.1-5) in Theorem
1.7 (iii) (a) are equivalent to (8.2—4) and (8.5.2) for | =m — 1 above.

In fact, n=2""! and b,,, =0 (1 £s<m—2) hold, and so the above
remark follows.

Now, we shall reduce (8.34) and (8.5.2) to more simple ones under some
condition in the following lemmas.

LemMa 8.7. In addition to (8.1), assume b,,, = 0 for some integer t with
1=<t=s1-1. Then, (8.3) and (8.5.2) for s =1t imply

(8.7.1) omo3tan, o g gm=3%aoy  fp= ]
(872) 2m—t—3+a,yt + 2m—t—2+a¢_1,yt_1 + 2m—l+a¢_z-£(2"2)yt_2 =0 lf t=2.

Proor. Let t=1. Then, the relation (8.7.1) follows from (8.5.2) for
s=1=d and (8.3), since X(1, 1) =2 and X(1, 0) = 2> by Lemma 6.4.

Let ¢t = 2, and consider (8.5.2) for s=t and d =2""!:
(*) ZL:O(_ 1)2“"2m—1—4+a.,—s(2")+v(2‘"‘,v)é(zt—l, U)?p =0.

Here, £(2'71, v) is odd and

— 1 mod4 if v=t,

v ) =270 6, v =
( ) ¢ ) { 1 mod 4 if v=t-1,

by Lemma 6.4. Thus, (8.3) and (x) imply (8.7.2), since 2* > k + 3 if k = 3.
g.e.d.

LEMMA 8.8. Under the same assumption as Lemma 8.7, (8.3) and (8.5.2)
for 1 < s <t imply

(881) 2m—t—2+a1,y1 = 2m—t—2+ao,yo lf t_Z_ 1’
(8.8.2) gmotm3tay _gmmim2tas o (Q<p<t)  if 122

PrOOF. The assumption b, = 0 implies b,,; =0 (1 =s =t). Therefore,
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by the above lemma, there hold the relations

(8.7.1y QmT3tany = 4 mT3%aoy

(8.7.2y QmosT3%asy |y gmmsm24as-uy g gmestas-2me20T, = ()
(I<s=t).

Thus, (8.8.1) for t =1 is equal to (8.7.1).

Let t = 2. Then, (8.8.2) for v =t follows easily from (8.7.1-2). Consider
(8.5.2) for s=2 and d=1. Then

_ 2m~4+a2,y2 + 2m—4+ln,y1 + 2m—4+a0y0 — 0,

since X(1,2)=2=X(1.1) and X(1,0) =22 by Lemma 6.4. Thus, (8.8.1) for
t =2 is easily seen from (8.8.2) for t =2 and the above relation. Therefore,
(8.8.1-2) hold for t = 2.

Now, let ¢t = 3, and assume inductively that (8.8.1-2) hold for t — 1 (= 2),
i.e., that

(881)/ 2m—1—1+a1,y1 — 2m—-t—1+ao,yo,
(8.8.2y Qmotm 2Ny, pmotm A, 2=2v<it).
Then, (8.8.2) for v =1t follows easily from (8.7.2) for s=1t, 2 x (8.8.2) for

v=t—1and (83) for s=t— 1. Let 2 <k <t and assume inductively that
(8.8.2) holds for any v with k <v <t. Consider the relation

(*) Z' (_ 1)2“"2m—-t—4+av—e(2")+v(d,u)é(d, v))’., =0

v=0

in (8.5.2) for s=1¢ and even integer d with 2*"! < d <2*. Then, by (6.1),
Lemma 6.4 and the condition 2¥~! < d < 2*, we see that v(d, v) = v(d, k) and

2d
Ed,v)=¢&E(d, k) for k<v <t since X(d, v) = ( P ) = X(d, k). Therefore,
() Yo, in () is equal to — 27T AtaV@REG K)y
by the inductive assumption (8.8.2) for k < v <t. Furthermore, if v < k, then
vd,v)22*"" (Zk—v+ 1) by Lemma 6.4, and hence
m—t—3+k—v+a, if 15v<k,

m—t——4+a,,+v(d,v)—s(2")g{ .
m—t—1+a, if v=0.

Therefore,

(b) Yk in (%) is equal to

P L oL (by (512
— 2m—t—3+ak—1+"(dy’¢)f(d’ k)yk—l (by Lemma 65)
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Thus, () is written as

(**) 2m—t—4+ak+v(d,k)yk — 2m—t—3+ak4 1 +v(d,k),yk_ L

for any even integer d with 27! < d < 2% since &(d, k) is odd. (»*) for
d=2*1is (8.8.2) for v = k, since v(2*"!, k) = 1 by Lemma 6.4 (ii). Therefore,

(8.8.2) holds for any v with 1 < v <t by the induction on v. Consider (8.5.2)
for s=t and d =1. Then, we have

P N G
since X(1,v)=2%ifv=0,=2if v>1 by Lemma 6.4. On the other hand,
we have

) e e O 2
by (8.8.2) for t. Therefore, (8.8.1) holds for t. Hence, (8.8.1-2) are shown by

the induction on t. q.e.d.
Lemma 8.9. In addition to (8.1), assume b, = 0. Then, (8.3) and (8.4) for
s =1 imply

2m—l—2+a1,yl = + 2m—l—-1+ap1,yl_1.

Proor. By (8.4) for s =1, we have

Zl gm=l=3+ay,+217v —¢(2Y)
v=0

7% =0.
fosv<1-2,

m—I1—-3+4+a,+2""—e2)Zm—v—1+a,— 2,
since 2'"" 21— v + 2. Therefore, we have the desired result by (8.3).

q.e.d.

LemMa 8.10. In addition to (8.1), assume b,=0. Then, (8.3),(8.4) and
(8.5.2) are equivalent to (8.3),

(8.10.1) 2"'_’—1‘”1.))1 — 2m—l—1+aoyo’
(8.10.2) amoim2tany —gmolitltaciy o 2<u<)

ProoF. By Lemma 8.8 for t =/—1 and Lemma 8.9, it is sufficient to
show that (8.3) and (8.10.1-2) imply (8.4) and (8.5.2).
Let 2<s<! and assume that (8.3) and (8.10.1-2). Since b, =0 and
27v>s—v+2(0ZLv=<s5—2), we have
m—s—3+a,—[b/2"]+2"—e()2m—1—v+a,— &2
0=v=s-2).
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Therefore, by (8.3), the left hand side of (8.4) is equal to
QmosT2tasy yogmTsTiNas-y = QmTsT YAy = () (by (8.10.2) and (8.3)).

Hence, (8.4) is shown.
Let 1<s<!—1 and 2*"' <d<?2* and assume (8.3) and (8.10.1-2).
Since b,,, = 0, the left hand side of (8.5.2) is equal to

(*) Zizo(_ 1)23‘”2m—s—4+a.,+c(d)—a(2")+v(d,v)é(d’ U)Vv-

Here, we see that X(d, v) = <2dd> =X, k) k=v<s) by (6.1) and the
condition 2*"!'<d<2* and so v(d, v)=v(d k)=1, &d,v)=¢Ed k) for
k <v<s by Lemma 64. Therefore, Y _, in () is equal to
— gmms—4tacte@ vk g (] k),
by (8.10.2). If v<k, v(d,v)=2*"">k—v+ 1 by Lemma 64, and so
m—s—4+a,+ ed) —e2°) + v(d, v)

>{m—s—3+(k—v)+a,, 12v<k),

T (m—s—2+a, v =0).
Thus, by (8.10.1-2), Y¥_1 in (¥) is equal to

Ykl gmosmdtao im0 ed —e@ D HADE(D p)y,

— 2m—s—3+ak‘1+s(d)—e(2"‘1)+v(d,k)é(d, k)yk-l (by Lemma 65)

Therefore, (x) = 0 follows from (8.10.1-2), since d =1 if k =1, v(d, k) = 1 and
&(d, k) is odd. Hence, (8.5.2) is shown. g.e.d.

PrOOF OF THEOREM 1.8. Let n=2""2a (m>=3,a=2). Then, b,_, =0.
Thus, (8.2-4) and (8.5.2) for I = m — 1 are equivalent to (8.2), (8.3) and (8.10.1-2)
for l=m — 1 by Lemma 8.10. Furthermore, (8.3) for s =0 and (8.10.1-2) for
l=m—1 are equivalent to (8.3) and (8.10.1-2) for I =m — 1. Therefore,
Theorem 1.8 is proved by Theorem 1.7 and Remark 8.6. q.e.d.

Finally, we notice the following

LEMMA 8.11. If n=2""2 (m = 3), there hold the following relations in
J(N"(m)):
2y; =2%qoy0, 271y, =2""'qy_1y,-y  QSv=m-—1)
for some odd integer q, (0 < v=m— 2).

Proor. By (1.7.5) in Theorem 1.7(iii)(a), the relation
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(*) 2Ty, = 3 200y, (M <is2mTY)
holds in J(N"(m)), where 2' < i< 2'*1. Let v/(i, v) and &'(i, v) be the integers
such that
Y(i, 0) =228, v)  (¢'(i, v): odd integer)
for i = 2°.
The relation (*) for i = 2™"! is equal to
')}m—l = 22m_3)’0 - ,’,n=_12 22"‘_”—25,(1.’ U)yva

since Y(i, m—1)=1 by (6.2), and v'(i, v) =2" " — 2 by Lemma 6.11. Also,
2mv—22m—1—v+a, (0=<v<m-—3) holds. Thus, by (1.7.2), we have
Yme1= — 2%Ym_,, Which is the desired relation for v =m — 1.

Consider the case i =2""2 +2¥ (0<k<m —3) in (*). Since,

. v) {av—l if k<v<m-2,
V(i, v) =

a, +2xv*1 -2 if 0<v<k,
by Lemma 6.11, (x) is equal to

+2k+1 3 4g(i k v+2k-u+1_2+ 3 .
2% o = Vo= 2° “0E(i, v)y,

(**) m—2 ay —1+e(@) gr(:
= Qiv=k+12 ¢'(i, v)7,.

Moreover, let k =0 in (*x). Then, we have
(3x%) 2990 = Y0l 2 2%E (L, )7,
zlnd so the desired relation 2°'y, = 2%q,y, for m =3 is easily seen, since
J(N"(m)) is a 2-group. If m = 4, we have
20y, =20"""ly (12vE=m-=2)

by Lemma 8.10 for | =m — 2 and Theorem 1.7(iii)(a). Hence, the desired
first relation for m = 4 follows from (¥xx). Let m=4 and 1 <k<m—3 in
(**). Then, by Lemma 8.10 for / =m — 2 and Theorem 1.7 (iii) (a),

ap+2k+1 -3 _ Aa+2ktl-2-k
2 Yo =2 V>

2a.,+2"*“”—2,yv=2ak+2"+“"—2—k+u,yk (1 éD_S_k)

hold. Therefore, by (x*), we have

Yoo (= DFTIRMT RISk 2T gy, = YT 2%, v)y,s

where &'(i, 0) = 1. Here, Z:zo(— )2Vt vk 2-0E () §s an odd
integer, and so the relation
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(**)k zak’yk = :;"=_k2+1 2au_1pu‘))v (1 é k é m— 3)

is obtained for some odd integers p,. The desired second relation for
v =m — 2 is obtained from (xx),_;. Now, we shall prove the desired second
relations for 2 <v <m — 1 by the downward induction on v. Let 1 <k =
m — 3 and assume that

2%_1')}0 = 2au_lqv—1yv—1
holds for any v with k+2 <v<m— 2 for some odd integer q,_,. Then,
by (*), and the inductive assumption, it is easily seen that the relation
25 Ty = 2% Gy

holds for some odd integer g,, since J(N"(m)) is a 2-group. Thus, the proof
is completed. g.e.d.

9. The induced homomorphism on the J-groups of the inclusion N"~!(m) <
N*™(m)

Let N* be the k-skeleton of the CW-complex N"(m)(m = 2) in [6, Lemma
2.1], and j: N* = N"(m) be the inclusion. For an element ae KO(N"(m)) (resp.
J (N"(m))), we denote its j*-image j*(a)e KO(N") (resp. J(N¥) by the same
letter a.

Consider the inclusion

©.1) jeu: NSKFISUC NBERL (0 <1 < 7).

Then, for the induced homomorphism j, *: KO(N®*) - KO(N®*!™1),
we have

PRroPOSITION 9.2 (cf. [10, §4]). ji,* is isomorphic if 1 =1,6,5 or 3, and
epimorphic otherwise. Furthermore,

sz+1<2ﬂ2k+1> if 1=4,k=0,

9.3) o v | 22U OZ,Qu P if 1=2k20,
' =Y Z,<ao B2 @ ZyCay B4 if 1=1,k20,
sz+1<ﬂ2k> l_f l=0,k>0

LEMMA 9.4. Let n =0 be even. Then, the following relations hold:
200" = 2" Lag, 20,7 = 2" 1o, in KO(N*"*?),
agf" = 2"y, a = 2"a; £2"*™73B(1) in KO(N*"*Y,

where the term +2"*™73B(1) in the last relation does not appear if m = 2.
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PrOOF. By Propositions 2.5 and 2.7, af' =2'a, holds in I?O(Q,)
(r=2""1) for any integer i 2 0, and so the first and the third relations also
hold by (3.2). In RO(Q,) (r=2"" 1) and also in KO(N”(m)) the relation

o "= (" — CBOTTSS @+ BW) + 2"y

holds by Propositions 2.5, 2.7, Lemma 2.9(ii) and (3.2). Hence, the second
and the last relations are obtained. Let m = 3. Then, the relations p"f(s) =
(s=1), 2Mi728m —i)=0 2Q<Li<m—2) and 2"*™"2B(1)=0 hold in
KO(N"(m)) = I%VO(N“"”) (cf. [10, Lemma 8.1]). Therefore,

alﬂ" = 2"(%1 + 2n+m—3ﬁ(1)

holds in KO(N***2) and also in K~0(N 4nt1)  Thus, we complete the proof.
g.e.d.

To study the induced homomorphism j, *: J(N®**!)  J(N8*+1~1) we use
the following

(9.5) ([2, 11, 3.12)] and [17]) Let X 5 YD Z be a cofibering of finite
connected CW-complexes and assume that the upper sequence in the commutative
diagram

K0(z) =5 Ko(Y) -2 KO(X) — 0

Lo b

J(Z) =, J(Y) AN J(X) —0
is exact. Then the lower sequence is also exact.

LEMMA 9.6. Let W3 be the Adams operation on fO(N Y. Then
. . . . (20 o
(P° = DO = (3% - 1)2°Op + 212;1< . )321—&5(‘)5‘” (iz1),
J

and 3*' —1=2""3mod 2"**, where v = v,(i).
Proor. For the monomorphism i*: R(S®) — R(S!) in Lemma 4.5, we have
*P30) = P3i*LO0)) =P x +x ' =2)=x3+x"3-2
=(x+x"1=2)(x+x"+ 1) =i*0)((0) + 3)?).
Therefore, we have
PLO) ={O(O +3)* in R(S?).
Also, by (3.2), Lemma 4.6 and the naturality of the Adams operation ¥3, we
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have
tp3(2€(i)ﬁi) — 2s(i)'Bi(ﬁ + 3)2i

in KO(N"(m)), and so in KO(N¥) (4n+3=k). Thus, we have the first
half. The second half is easily shown by the induction on v (cf. [8, Lemma
7.81). q.e.d.

LeMMA 9.7. Let m=3 and k=2 0. Then, the relation

2m—3+2k,y — 2m—3+4k
1=

Yo
holds in J(N®*1).

Proor. It is sufficient to show that

2m—3+2k.y _ 2m—3+4k
1=

Yo

holds in J(N8*3) = J(N?*(m)). Since y,=7y, =0 if k=0 by Remark 5.8,
we assume that k> 0. In case k =1, we have 2%y, = 22-3y, by (1.7.5) in
Theorem 1.7 (iii)(a) and Y(3, 1) = 6 in (6.2). Thus, by (8.3), the desired relation
for k = 1 is obtained. In case k > 1, the desired relation is (8.10.1) for [ = 2.
q.e.d.

By using the above results and Theorem 1.8, we see the following
proposition, where (ii) is Theorem 1.11:

PROPOSITION 9.8. (i) The induced homomorphism
jk,l*: j(N8k+l) __)j(N8k+l——1) (jk,l: NBk+I-1 — N8k+l’ m=2)
is isomorphic if 1="1,6,5 or 3, epimorphic otherwise, and

Zg<J@2p*TY)) if 1=4k=20,
Zz<22k+1J°‘o>@Zz<22k+1-]°‘1> if 1=2,k=20,
Z,2%*Jayy ® Z,(2*Ja, + 0) if 1=1L,k=0,
Z I (B> if 1=0,k>0,

(9.9) Kel‘jk’,* =

where h = min {m + 1, v(4k) + 2}, and the term w = 2" 3***y, does not
appear if m=2.

(i) #T(N"(m) = 20,
o, m)= ;":“01 s+ 2)[(a; + 1)/2] + (m + Da,,,, + 4e(n + 1),
where #G is the order of the group G, a, and ¢(i) are the integers in (1.4).

ProOF. Consider (9.5) for the cofibering Ni"! =« N'> Ni/Ni™! (i=8k +1).
Then, the first half of (i) is obvious by the first half of Proposition 9.2.
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Furthermore, by (9.3), Lemmas 9.4 and 9.7, it is easy to see that Ker j; ,*
is generated by the generators of the group given in the right hand side of (9.9).
Now, we can show that

8 if I1=4k20,
(%) #Kerj,*<{4 ifI=2o0r k20,
2 if 1=0,k>0.

In fact, () for the second case is easily seen by (9.3) and (9.5) for the cofibering
N"'c N'> N'/N"! (i=8k+1). Now, Kerj ,* is the cyclic group
generated by J(2B%**!). On the other hand, by Lemma 9.6, the first half
of Proposition 9.2 and_(3.5.3), (¥°—1)Q2p**") = (3*k*+2 — 1)(2[32"“) =
23a(2p***Y) (a: odd) in KO(N®*%). Thus, 23J2p%**!) =0 in J(N8*%) by
(1.1), since J(N?) is a 2-group by Theorem 3.5 and (1.1), and so (x) for the
first case is valid. Finally, Kerj, ,* is the cyclic group generated by
J(?*). In the similar way to the case [ = 4 above, (¥° — 1)(8*¥) = (3** — 1)**
=24 +2pp2k (b: odd) in KO(N®¥). Therefore, 2°“"*2J(B?*) =0 in J(N8
by (1.1), and also 2"**J(B%*) = 0 by (9.3). Thus (*) for the last case follows.
Now, (*) implies that
[T03 #Ker ji o* < 240,y (n, m) = Y77 (s + 2)[(a, + 1)/2] + (m + Day,
A #Kerj * <2270 (I=1 or 2),
Lniz()]—1+6(")#Kerjk,4* é 2n+[n/2]+25(n)’
and hence we see by the routine calculations that

(¥*) (x) implies #J (N"(m)) < 2°™™ and the equality holds if and only if the
equality holds in () for any k and | with 8k + 1 < 4n + 3.

On the other hand, by Theorems 1.7(ii), 3.5 and 1.8, we see easily that
#J(N"(m)) = 2°™™  for n=2""2g (a2 ?2).
Thus, we see the proposition by (x#). q.e.d.

Propositions 5.7 and 9.8(i) imply immediately the following corollary,
which is Proposition 1.10:

COROLLARY 9.10. For the homomorphism
P J(N"m) — J(N""Hm)  (j: N"*(m) = N"(m), m = 2),
j* is epimorphic, and

Ker j* = {Zs<J(2ﬁ")> if nisodd,
Z, (2" ag) ®Z4<(2"Jo; + 0) D Znn{J ("D if nis even,
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3+2n

where h,, = min {m + 1, v,(n) + 3} and the term w = £+ 2"~ Yo does not

appear if m = 2.

10. Proofs of Theorems 1.3 and 1.7 (iii) (b)
Let f(n, m; v) be the non-negative integer such that
(10.1) #y, =2/@m9 iy J(N"(m)) (n=0,m=2)

by Proposition 9.8 (ii), where #y denotes the order of y. Then, by the definition
of vy, in (5.5) and by Lemma 2.10, (3.2) and Remark 5.8,

(10.2) f(n,m;v)=0 if n=0or v=m

For the case m =2, by Theorems 1.7(ii), 3.5 (cf. [7, Th. 1.3]) and (5.5),
we have

(10.3) f(n,2;0)=ay, f(n2;1)=a, + en).
LemMA 104, If n=2""2a (a=1) and m = 3, then
flo,m;0)=m—2+a,, f(h,m;v)=m—1—v+a, (1 =2v<m).
ProOF. Let n=2""2g (a=1) and m = 3. Then, by Corollary 9.10,
#I(F) =21 in J(N"(m).

On the other hand, 2"g" = — 2™*2"~3(28) in KO(N"(m)) by [10, Lemma 8.1].
Thus, we obtain

f(n,m;0)=m—2+ a,.
Furthermore, Theorem 1.8 and Lemma 8.11 imply immediately
fay,m;v)=m—1—v+aq, 12v<m).
g.e.d.

Let G(n, m) be the subgroup of J(N"(m)) generated by 7, 0O =v<m),
and define K (n, m) = Ker j*n G(n, m), where j*: J(N"(m)) —» J(N"~1(m)) is the
homomorphism in Corollary 9.10. Then, by Lemma 5.6, Proposition 5.7 and
Corollary 9.10, we have

ZeJQ2BYS  if nis odd,

(10.5) K(n, m) = {Z:m(-’(ﬂ")) if n> 0is even,

where m = 2 and h,, = min {m + 1, v,(n) + 3}.
Let m =3 and n: N"(m — 1) > N"(m) be the natural projection induced
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by the inclusion i: Qym-2 = Qym-1 (i(x) = x, i(y) = y). Then, we see easily
that n*(y,) =7, (0 <v<m) by the definition of y,, where n*: J(N"(m)) —
J(N"(m — 1)) is the induced homomorphism of n. Therefore, we can define
the homomorphism

n*: G(n,m) — G(n,m — 1) (m=3)

by the restriction of 7*: f(N"(m))—»j(N”(m— 1)). Also, we can define the
restricted homomorphism

j¥:Gn,m)— G(n— 1, m) mz=2)
of j*: J(N"(m)) » J(N"~'(m)) in Corollary 9.10, since j*(y,) =7y, (0 < v < m)

holds. For these homomorphisms, we have the commutative diagram (m = 3)

K(n, m) = Kerj* =« G(n, m) AN Gn—1,m)

(10.6) | = [ =
K(n, m— 1) =Kerj* = G(n,m — 1) 25 G(n — 1, m — 1).
LeMMA 10.7. If n# 0mod 2™ 2 (m = 3), then
n*|K(n, m): K(n,m) — K(n, m — 1)
is isomorphic.

PrROOF. Since n*(J(2°™B") = J(2*™B") holds, n*|K(n, m) is epimorphic
by (10.5). On the other hand, we see easily that #K(n, m) = #K(n, m — 1)
by the assumption n#O0mod2™ 2 and (10.5). Therefore, n*|K(n, m) is
isomorphic. g.e.d.

LeEmMa 10.8. If n % 0 mod 2™~ 2 (m = 3), then
f(n, m;v) =max {f(n — 1, m;v), f(n,m —1; v)}.

Proor. Consider the diagram (10.6). Then the definition of f(n, m; v)
in (10.1) implies that

f(n, m; v) 2 max {f(n— 1, m; ), f(n,m — 1; v)},

since j*(y,) = y, and n*(y,) =y,. Moreover, if f(n, m; v) > max { f(n— 1, m; v),

f(n,m —1; v)}, then the non-zero element 2/™™"~1y in J(N"(m)) is mapped

to 0 by j* and n*. This contradicts Lemma 10.7. Thus we have the lemma.
q.e.d.

For the case m = 3, by Lemmas 10.4, 10.8, (10.2) and (10.3), we see easily
that
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f(n,3;0)={1+a0 %f n.>0iseven,
ag if nis odd,

(10.9)
fm3;0=2—-v+a, (v=1,2) if n>0.

ProOF OF THEOREM 1.3. The results for m = 2 and 3 are given in (10.2-3)
and (10.9). By (10.2), it is sufficient to show that f(n, m;v) (0 <v<m) is
equal to the number given in Theorem 1.3 for the case m = 4 and n > 0. By
Lemma 104, Theorem 1.3 holds if m =4 and n =0 mod 2™~ 2.

For the case m =24 and 2" 2a <n <2" ?(a + 1), assume that Theorem
1.3 holds for (n — 1, m; v) and (n, m — 1; v) instead of (n, m; v). Then, we see
easily that the right hand side of the equality in Lemma 10.8 is equal to

fln,m—1;v) if a=0,
{max{f(n,m—1;0),m—2+2'"_‘a} (v=0)
max {f(n,m—1;v),m—1—v+2""1"%a) (1<v<m) ifa>0,

and hence to the right hand side of the equality in Theorem 1.3. Thus,
Lemma 10.8 implies Theorem 1.3 by the induction on n and m.
These complete the proof of Theorem 1.3. g.e.d.

Proor oF THEOREM 1.7(iii)(b). Let m =3 and n is odd. By Corollary
9.10, j*: J (N"*1(m)) - J (N"(m)) is epimorphic, and Ker j* is generated by the
elements 2" "1 Jag, 2" Ja, + 271+ 2% and J(B"*!). Thus, J(N"(m)) is the
abelian group generated by Ja; (i =0, 1) and y, (0 £ s < m) with the relations
in Theorem 1.7 (iii)(a) replaced n with n + 1, and in addition,

M+ Ty =0, 2" 1 Jq, £ 2™ 1¥2ny — 0 and J(B"+!) = 0.

On the other hand, it is easily seen that f(n, m; 0) < m — 2 + 2n by Theorem
1.3, and so 2" 1*2"y =0 in J(N"(m)). By Lemma 7.1, the relation J(f"*?!)
=0 is written as

22ty =3 Y(n+1,0)y,=0 where 2'<n+1<2'*L.

Therefore, we complete the proof of Theorem 1.7 (iii) (b). q.e.d.

11. The relation between .7(N"(m+ 1)) and .7(N"(m)) for n <2m1

In this section, we present the relation between J(N"(m + 1)) and J (N"(m))
for n < 2™~ !, which is stated as follows:

ProposITION 11.1. (i) J(N™(m)) (m = 2) is the direct sum

szz-a(,.)(thO) @ Zzn+2-;(n)<-]0€1> @ G(n, m),
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where G(n, m) is the subgroup of J(N"(m)) generated by y, (0 < v < m).

(i) Let m=2 and n<2™"'. Then there exists an isomorphism

[ J(N"(m + 1)) —> J(N"(m)),

which is given by

(11.2)

fUa)=Jo; (i=0,1) and f(y)=7, 0=v<m+1).

Proor. (i) follows immediately from Theorem 1.7 and~[7, Th. 1.3].
(i) The subgroups generated by Ja; (i=0,1) of J(N"(m + 1)) and

J(N"(m)) are isomorphic via f(Ja;) = Ja; (i = 0, 1). The assumption n < 2™~*
implies that #J(N"(m + 1)) = #J(N"(m)) by Proposition 9.8(ii). On the other
hand, n*(y,) = y, for the homomorphism 7*: G(n, m + 1) - G(n, m) in (10.6).
Thus G(n, m + 1) and G(n, m) are isomorphic via f(y,) =7,. Therefore, we
obtain the desired isomorphism f by (11.2). g.e.d.
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