A note on G-extensible regularity condition

Shyuichi IZUMIYA (Received November 14, 1992)

0. Introduction

Let X and Y be smooth G-manifolds, where G is a finite group. Then the r-jet bundle $J^{r}(X, Y)$ is naturally a differentiable G-fibre bundle. Let $J_{G}^{r}(X, Y)$ be the subspace of $J^{r}(X, Y)$ consisting of all the r-jets of "equivariant local maps". Then $J_{G}^{r}(X, Y)$ is a G-invariant subspace of $J^{r}(X, Y)$.

Let $\Omega(X, Y)$ be an open G-subbundle of $J'(X, Y) \to X$ which is invariant under the natural action by local equivariant diffeomorphisms of X on J'(X, Y). Then $\Omega(X, Y)$ is called a natural stable regularity condition. We say that a map $f: X \to Y$ is Ω -regular if $j^r f(X) \subset \Omega(X, Y)$. Now we assume that $\Omega(X, Y)$ be a natural stable regularity condition. We say that $\Omega(X, Y)$ is G-extensible if the following conditions hold: There exists a natural stable regularity condition $\Omega'(X \times \mathbb{R}, Y) \subset J^r(X \times \mathbb{R}, Y)$ (where G acts on \mathbb{R} trivially) such that

 $\begin{cases} \pi(i^*(\Omega'(X \times \mathbb{R}, Y))) = \Omega(X, Y) \\ \pi(i^*(\Omega'(X \times \mathbb{R}, Y) \cap J'(X \times \mathbb{R}, Y))) = \Omega(X, Y) \cap J'_G(X, Y), \end{cases}$

where $\pi: i^*(J^r(X \times \mathbb{R}, Y)) \to J^r(X, Y)$ is the natural projection defined by $\pi(j_{(x,0)}^r f) = j_x^r f \circ i$ for the canonical inclusion $i: X \to X \times \mathbb{R}$. The examples of the G-extensible regularity condition are given in ([2], [3]).

In this paper we will prove the following approximation theorem.

THEOREM 0.1. Let $\Omega(X, Y)$ be a G-extensible regularity condition, and suppose that there is a continuous equivariant section $\sigma: X \to \Omega(X, Y)$ covering the map $f: X \to Y$. Then f may be fine C^0 -approximated by smooth Ω -regular equivariant maps whose r-jets are G-homotopic to σ as sections of $\Omega(X, Y)$.

This result is an equivariant generalization of the approximation theorem in Appendix of [4]. In [2] we have shown a theorem of homotopy classification on Ω -regular smooth equivariant maps. If we consider an open manifold X, Theorem 1.3 in [2] does not assert that the homotopy class of a proper equivariant map is represented by the jet of an Ω -regular proper smooth equivariant map. However, Theorem 0.1 guarantees this property, so that the theorem refines the previous result in [2].

Shyuichi IZUMIYA

In §1 we recall some elementary facts about transformation groups. Theorem 0.1 will be proved in §2 by using the usual extension technique for G-equivariant maps on equivariant simplicial complexes and the C^1 -triangulation theorem for smooth G-manifolds which has been proved in [1].

1. Preliminaries

Let G be a finite group and X a G-manifold. For any $x \in X$, we denote Gx the orbit of x and G_x the isotropy subgroup of x. Let V, W be Riemannian G-vector bundles over Gx. The fibres V_x , W_x of V, W over the point x are G_x -modules and we have canonical isomorphisms $V \cong G \times_{G_x} V_x$, $W \cong G \times_{G_x} W_x$. The bundle

$$D(V) \oplus D(W) = \{(v, w) \in V \oplus W | ||v|| \le 1, ||w|| \le 1\}$$

with fibre $D(V_x) \times D(W_x)$ is called a handle bundle with index = dim V. Let Z, Y be invariant submanifolds of X and $\phi: S(V) \oplus D(W) \to \partial Z$ be an equivariant embedding, where $S(V) \oplus D(W) = \{(v, w) \in V \oplus W | ||x|| = 1, ||w|| \le 1\}$. If $Y = Z \bigcup_{\phi} (D(V) \oplus D(W))$, then we say that Y is obtained by attaching the handle bundle $D(V) \oplus D(W)$ to Z via $S(V) \oplus D(W)$. We may consider that $D(V) \oplus D(W) \cong G \times_{G_x} (D(V_x) \times D(W_x))$. Then there is an open G_x -equivariant C^{∞} -map

$$F: J^{r}(D_{2}(V) \oplus D(W), Y) | D_{2}(V_{x}) \times D(W_{x}) \longrightarrow J^{r}(D_{2}(V_{x}) \times D(W_{x}), Y)$$

defined by $F(j_y^r f) = j_y^r(f | D_2(V_x) \times D(W_x))$. Here, $D_2(V) = \{v \in V | ||v|| \le 2\}$. Since G is a finite group, F is an isomorphism on fibre and maps

$$J_G^r(D_2(V) \oplus D(W), Y) | D_s(V_x) \times D(W_x)$$

isomorphically onto $J_{G_x}^r(D_2(V_x) \times D(W_x), Y)$. We define

$$\Omega_{\mathbf{x}}(D_2(V_{\mathbf{x}}) \times D(W_{\mathbf{x}}), Y) = F(\Omega(D_2(V) \oplus D(W), Y) | D_2(V_{\mathbf{x}}) \times D(W_{\mathbf{x}})).$$

If $\Omega(X, Y)$ is G-extensible, then $\Omega_x(D_2(V_x) \times D(W_x), Y)$ is G_x -extensible. Since G is a finite group, we can interpret Propositions 4.3 and 4.4 in [2] as follows:

PROPOSITION 1.1. Let G be a finite group. Suppose that $\Omega(X, Y)$ is G-extensible and G_x acts on V trivially. Then the restriction map

$$\rho_{\Omega} \colon C^{\infty}_{G_{x}\Omega_{x}}(D_{2}(V_{x}) \times D(W_{x}), Y) \longrightarrow C^{\infty}_{G_{x}\Omega_{x}}(D_{[1\,2]}(V_{x}) \times D(W_{x}), Y)$$

is a Serre fibration, where $D_{[1\,2]}(V_x) = \{v \in V_x \mid 1 \le ||v|| \le 2\}$.

PROPOSITION 1.2. With the same assumption, the restriction map

$$\rho \colon \Gamma^0_{G_x}(\Omega_x(D_2(V_x) \times D(W_x), Y)) \longrightarrow \Gamma^0_{G_x}(D_{[1\,2]}(V_x \times D(W_x), Y))$$

is a Serre fibration.

Here, the notation is the same as in [2].

We now review some results of equivariant simplicial complexes in [1]. By a simplicial complex we mean a geometric simplicial complex, that is, the topological realization of an abstract simplicial complex considered as a topological space together with the structure given by the simplexes. A similicial G-complex consists of a simplicial complex K together with a G-action $\phi: G \times K \to K$ such that $g: K \to K$ is a simplicial homeomorphism for every $g \in G$. For a simplicial G-complex K we say that it is an equivariant simplicial complex if the following conditions are satisfied.

1. For any subgroup H of G we have that if $s = \langle v_0, ..., v_n \rangle$ is a simplex of K and $s' = \langle h_0 v_0, ..., h_n v_n \rangle$ is also a simplex of K for some $h_i \in H$ (i = 0, ..., n) then there exists $h \in H$ such that $hv_i = h_i v_i$ (i = 0, ..., n).

2. For any simplex s of K the vertices v_0, \ldots, b_n of s can be ordered in such a way that $G_{v_n} \subset \cdots \subset G_{v_0}$.

In condition 1 the vertices $v_0, ..., v_n$ need not be distinct. We call G_{v_n} the principal isotropy subgroup of s. The above conditions are purely technical since the second barycentric subdivision of any simplicial G-complex is an equivariant simplicial complex. In [1] Illman has shown the C^1 -triangulability theorem for smooth G-manifold when G is a finite group.

2. Proof of Theorem 0.1

Let ρ be any invariant smooth metric on Y, and let $\alpha: X \to (0 \infty)$ be an invariant smooth function. We shall show that there exists an Ω -regular equivariant map $g: X \to Y$ such that $j^r g$ is Ω -regulary G-homotopic to σ (i.e. σ and $j^r g$ is G-homotopic as sections of $\Omega(X, Y)$) and that $\rho(f(x), g(x)) < \alpha(x)$ for each $x \in X$. For an open invariant submanifold W of Y, we define $\Omega(X, W) = J^r(X, W) \cap \Omega(X, Y)$. If $\Omega(X, Y)$ is G-extensible then $\Omega(X, W)$ is also G-extensible. We will use this fact to prove Theorem 0.1. Furthermore, we need the following simple lemma.

LEMMA 2.1. Suppose that we have a commutative diagram

$$E \xrightarrow{\bar{g}} E'$$

$$\downarrow p \qquad \qquad \downarrow p'$$

$$B \xrightarrow{g} B',$$

where p, p' are Serre fibrations and g is a weak homotopy equivalence. Then \bar{g} is a weak homotopy equivalence if and only if its restriction to each fibre of E is a weak homotopy equivalence.

Proof of Theorem 0.1. For each $x \in X$, let W_x be an open $G_{f(x)}$ -invariant convex coordinate neighbourhood of f(x) contained in $\{y \in Y | \rho(f(x), y) < 1/4\alpha(x)\}$ such that $gW_x = W_{gx}$ for each $g \in G$. Take an open covering $\{U_x\}$ of X such that each U_x is a G_x -invariant subset which is included in $\{y \in Y | \alpha(y) > 1/2\alpha(x)\} \cap f^{-1}W_x$. Choose a smooth equivariant triangulation of X so fine that each n-simplex A lies in one of the open sets U_x , say U_A , where $n = \dim X$. Suppose inductively that we have construct an invariant neighborhood X_{j-1} of (j-1)-skeleton on X, and an Ω -regular equivariant map $g_{j-1}: X_{j-1} \to Y$ such that $j^r g_{j-1}$ is Ω -regularly G-homotopic to $\sigma | X_{j-1}$ and such that $j^r g_{j-1}(X_{j-1} \cap U_A) \subset W_A$ for each n-simplex A (these constructions may clearly be made for j = 1).

Now let X'_{j-1} be an invariant neighbourhood of the (j-1)-skeleton in X_{j-1} , and for each *j*-simplex *E* let X(E) be a G_e -invariant neighbourhood of *E*, where $e \in \text{Int } E$, in $U_E = \cap \{U_A | E \prec A\}$ such that $X(E) - X'_{j-1}$ are disjoint and there is a G_e -diffeomorphism

$$(X(E), X(E) \cap X'_{j-1}) \cong (D^{j}_{2}(V_{e}) \times D^{n-j}(W_{e}), D^{j}_{[1\,2]} \times D^{n-j}(W_{e})).$$

Here we may choose X(E) with the following properties:

- a) V_e and W_e are G_e -vector spaces and the action of G_e on V_e is trivial.
- b) For any $h \in G$, $h(D_2^j(V_e) \times D^{n-j}(W_e)) = D_2^j(V_{he}) \times D^{n-j}(W_{he})$.
- c) If $h(D_2^j(V_e) \times D^{n-j}(W_e)) \cap (D_2^j(V_e) \times D^{n-j}(W_e)) \neq \emptyset$, then $h \in G_e$.

We have a G-diffeomorphism from $G \times_{G_e}(D_2^j(V_e) \times D^{n-j}(W_e))$ to $G(D_2^j(V_e) \times D^{n-j}(W_e)) \cong GX(E)$.

Consider the following commutative diagram:

$$\begin{array}{ccc} C^{\infty}_{G_{e}\Omega_{e}}(X(E), W_{A}) & \stackrel{j'}{\longrightarrow} & \Gamma^{0}_{G_{e}}(\Omega_{e}(X(E), W_{A})) \\ & & & \downarrow^{\rho} \\ C^{\infty}_{G_{e}\Omega_{e}}(X(E) \cap X'_{j-1}, W_{A}) & \stackrel{j'}{\longrightarrow} \Gamma^{0}_{G_{e}}(\Omega_{e}(X(E) \cap X'_{j-1}, W_{A})) \end{array}$$

whose vertical maps are Serre fibrations (by Propositions 1.1 and 1.2) and whose horizontal maps are weak homotopy equivalence by Theorem 1.3 in [2].

Since $j^r g_{j-1} | X(E) \cap X'_{j-1}$ is Ω_e -regularly G_e -homotopic to $\sigma | X(E) \cap X'_{j-1}$, and so there is a section τ in the fibre over $j^r g_{j-1} | X(E) \cap X'_j - 1$ which is Ω_e -regularly G_e -homotopic to $\sigma | X(E)$ and there is an Ω_e -regular G_e -equivariant map $g_E: X(E) \to W_E$ in the fibre over $g_{j-1} | X(E) \cap X'_{j-1}$ (using Lemma 2.1) such that $j^r g_E$ is Ω_e -regularly G_e -homotopic to τ and hence σ . Now we define X(GE) = GX(E) and $g_{GE}: X(GE) \to GW_E$ by $g_{GE(hz)} = hg_E(z)$ for any $z \in X(E)$ and each $h \in G$. Then g_{GE} is an equivariant map and $j^r g_{GE}$ is Ω -regularly G-homotopic to σ . Define $X_j = \bigcap_{GE} X(GE)$, and $g_j: X_j \to Y$ by $g_j(z) = g_{GE}(z)$ for $z \in X(GE)$. This completes the induction step.

By this method, we can construct an Ω -regular equivariant map $g: X \to Y$ such that $j^r g$ is Ω -regularly G-homotopic to σ and such that $g(U_A) \subset W_A$ for each *n*-simplex A.

By the definition, $U_A = U_{x_A}$ for some $x_A \in X$. If $z \in U_A$, then f(z), $g(z) \in W_{x_A}$, so that $\rho(f(z), g(z)) \le \rho(f(z), f(x_A)) + \rho(g(z), f(x_A)) < 1/4(\alpha(x_A) + \alpha(x_A)) = 1/2\alpha(x_A)$. However, $z \in U_A$, then $\alpha(z) > 1/2\alpha(x_A)$. It follows that $\rho(f(z), g(z)) < \alpha(z)$. This completes the proof.

References

- S. Illman, Smooth equivariant triangiulations of G-manifolds for G a finite group, Math. Ann., 233 (1978), 199-220.
- [2] S. Izumiya, Homotopy classification of equivariant regular sections, manuscripta math., 28 (1979), 337-360.
- [3] S. Izumiya, On G-extensible regularity condition and Thom-Boardman singularities, J. Math. Soc. Japan, 33 (1981), 497–504.
- [4] A. A. du Plessis, Homotopy classification of regular sections, Comps. Math., 32 (1976), 301-333.

Department of Mathematics Hokkaido University Sapporo 060, Japan