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1. Introduction

Linearization of vector fields and diffeomorphisms at a hyperbolic fixed
point has been investigated by many authors. In this theory, one tries to
locally reduce nonlinear vector fields and diffeomorphisms to linear ones.
There are, roughly speaking, two groups of works according to the smoothness
class to which the reduction belongs. One group tries to find a smooth
(meaning Cr, r > 1) conjugacy under so-called non-resonance conditions
[12] [13] [1] [11]. The second group seek a homeomorphism which conju-
gates a nonlinear vector field to a linear one [3] [2].

The idea of linearization around fixed points was extended by Pugh and
Shub [6] to that around normally hyperbolic invariant manifolds. A similar
result was later obtained by Osipenko [4] [5]. In both of the work by
Pugh-Shub and that of Osipenko, the conjugacy between nonlinear vector
fields (or diffeomorphisms) and linear ones is a homeomorphism. In this
regard, their works fall into the second group in the above.

The purpose of this paper is to show that there are situations in which
vector fields can be smoothly (Cr,r > 0) linearzed in a neighborhood of
normally hyperbolic invariant manifolds. The conditions to be placed on the
linear part of the vector fields in this paper are considered as a kind of
non-resonance conditions. This work therefore falls into the first group in
the above. Non-resonance conditions on the linear part of vector fields at
fixed points are easy to state because they are algebraic relations between the
eigenvalues of a matrix. When one deals with the linear part of vector fields
near invariant manifolds, the eigenvalues of matrices are of little use except
for special situations, e.g., singularly perturbed vector fields, see [8]. In this
paper the non-resonance conditions will be given in terms of a certain
relationship among growth and decay rates of solutions of linear differential
systems. These can be regarded as gap conditions on the spectra of invariant
manifolds in the sense of Sacker and Sell [7].

Although analyses are given to vector fields in this paper, the ideas and
techniques employed can readily be modified to treat diffeomorphisms. It is
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also straight-forward to deal with non-autonomous vector fields based on the

same ideas as the present work.

The organization of this paper is this: In section 2, main result is

presented after the precise formulation of the probem. This is followed by

several remarks. The proof of the main theorem is given in section 3. Section

4 is devoted to the proof of technical lemmas employed in section 3. To

conclude this introduction, notations used in the sequel follow: x means the

derivative of a function x(t) with respect to time t. Dj means the derivative

of a function with respect to j-th argument. For example, D2g(x, y9 z) stands

for the Jacobian of g with respect to y. The expression D2g(x, y, z) is

sometimes denoted by Dyg(x, y, z) if there is no chance of confusion. D

without any subscript means the derivative of a function with respect to all

the arguments. For example, Dg(x, y, z) is the Jacobian of g{x, y, z) with

respect to (x, y, z). The symbol gl(Rn) stands for the set of n by n matrices

with real entries, and InXn stands for the identity matrix.

2. Main Theorem

Let M be a compact manifold of class Cr+1 and consider the following system

of equations

( 2 1 )

ύ = Λ(x)u + G(x, u)

where x e M , and weR\ We assume throughout the paper that /, A, G are

Cr bounded functions with r > 3. Moreover, we assume G(x, u) = 0 ( | M | 2 ) as

| M | - » 0 and we consider the system (2.1) as a perturbation of the following

X = f(f where f(x) = f(x9 0). (2.2)
u = A(x)u

Since we are interested in the flow structure of (2.1) near u = 0, we can, and

will, assume the following:

For ε > 0 small,

'\G(x, u)\ < Mε 2 , |DG(x, u)\ < Mε for (x, κ)eM x Rw

.G(x, u) = 0 for (x, u)φM x D(ε)

where D(ε) = {ueRn; \u\ < ε}. Therefore, we are interested in the flow

structure of (2.1) in the ε-neighborhood M x D(ε) of M in M x R\ We will

also assume that M is embedded in Rm for some m > 0.

Let φ(t, x) stand for the flow on M generated by the first equation in
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(2.2). We denote by Φ(t, s; x) the fundamental solution operator of the linear

system

X = Df(φ(t, x))X. (2.3)

Let U(t, s; x) be the fundamental solution operator of

U = A(φ(t9x))U. (2.4)

Our basic condition is that (2.4) has an exponential dichotomy on the whole

line R uniformly in x e M and that the dynamics of (2.3) is dominated by that

of (2.4). More precisely, we assume:

(HI) There exist families of projections P(x), β(x): R"->Rn for x e M such

that P(x) + Q(x) = InXn * e M >

U(t, s; x)P(φ(s9 x)) = P(φ(t9 x))U(t9 s; x)

U(t, s; x)Q(φ(s, x)) = Q(φ(t, x))U(t, s; x)

and Rank P(x) = /c, Rank Q(x) = /, xeM, k + / = n. Moreover, there are

constants 0 < δ < a < β and K > 1 such that α > r<5, (where r is the degre of

smoothness of the functions /, A, G) and that

-ie-δ\t-s\< \φ(t9s;x)\ <Keδ]t-s] t, SER

κ-ie-β{t-s) < i^/^ s ; X)p(φ(s9 x))\ < Ke~ait-S) t > s (2.5)

K-ieβ(ts) < n / ^ s . x)Q(φ(s, X)) | < Keait~s) t < s

In the language of the spectral theory of Sacker and Sell [7], the condition

(2.5) is the same as saying that the tangential spectrum Σ Γ and the normal

spectrum ΣN are sepatated as follows:

Σ Γ c ( - δ9 δ), ΣN a ( - β9 - α )u(α, β).

Under the condition (HI), let Es and Eu be defined by:

Es = {(x, w)eM x RM;sup|ί/(ί, 0;x)u\eat < oo}
ί > 0

Eu = {(x, u)eM x R * ; s u p | l / ( ί , 0 ; x ) w | β ~ α ί < oo}.
ί < 0

These are, respectively, called the stable and the unstable bundles. It is known

[8] [14] that under the condition (HI) Es and Eu are Cr-vector bundles over

the base M. Without losing generality, we can assume that these bundles are

trivial ones. The reason is this: If d1 and d2 are, respectively, the dimension

of trivializing bundles of Es and £", namely

£ S 0 ( M x Rdl) = M x R d l + k and Eu ® (M x Rd2) = M x
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then we can extend the system (2.1) by adding extra equations v = — λv and
vv = λw where veRd\ weRd2 and λ = (α + β)/2. This modification does not
affect the earlier conditions on (2.1) or the condition (HI). Therefore we
assume the following condition.

(H2) The vector bundles Es and Eu are trivial.

Under the conditions (HI) and (H2), one can introduce a new coordinate
system in terms of Es and Eu. In this new coordinate system, the equations
in(2.1) can be expressed as

x = f(χ> y> z)

y = B(x)y + g(x9 y, z) (2.6)

i = C(x)z + h(x9 y, z)

where yeRk, zeR\ /(x, 0, 0) = /(x). The functions on the right hand side
of (2.6) are Cr-bounded. When one transforms a system of differential
equations by using a diffeomorphism, the vector field in the new system usually
has less smoothness than the original. This loss of smoothness does not
happen in the present case. The reason is the following: Although DP(x)
is only C1""1 -bounded, the product [DP(x)]/(x) is Cr-bounded. This can be
verified by differentiating the relation

at t = 0. The same remark holds for Q(x). Since we use linearly independent
column vectors of the projection matrices P(x) and Q(x) to define our
coordinate transformation, the loss of smoothness does not happen. The
functions g and h share the properties of G in (2.1). Namely, we have:

g = 0, h = 0 outside the set M x D(e)

\g\ < Mε2, \h\ < Mε\ \Dg\ < Mε, \Dh\ < Me.

The linear part of (2.6) has the same properties as that of (2.2). If we denote
by Y(t, s; x) and Z(ί, s; x) the fundamental solution operators of y = B(φ(t, x))y
and i = C(φ(t, x))z then the following estimates are valid.

κ-le-δ\t-s\ < | φ ( ί ? 5 . ^ | ^ KeS\ts\ u 5 G R

κ-ie-β(t-s) < i γ ^ s ; X)| < Ke-*{t-8) t > s (2.7)

κ-ieβ(t-s) <\z(t,s;x)\<Ke*(t-s) t<s

We are now in a position to state the main result of this paper.

THEOREM. Suppose the conditions (HI) and (H2) are satisfied. For ε > 0
sufficiently small the following are true.
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(A) If the constants α, β, and δ in (HI) satisfy 2α — β > (r — l)δ, then there

is a C1 -bounded coordinate transformation in M x D(ε) which brings the

equation (2.6) into

y = B(*)y (2.8)

i = C(x)z

where F is a C1 -bounded function satisfying F(x, 0, z) = 0 = F(x9 y, 0).

(B) If 2oc - β > (r - l)δ is satisfied and either Rank P = 0 or RankQ = 0

holds, then there is a C'1-bounded transformation in M x D(ε) which brings

the equation (2.1) into

i = f i x ) (2.9)
y = Λ(x)u.

The proof of Theorem (A)(B) will be given in the following two

sections. The result in Theorem (A) calls for a special attention. The result

by Pugh and Shub [6] and by Osipenko [4, 5] says that if α > δ is satisfied

there is a homeomorphism which conjugates the system (2.6) and the system

(2.8) with F(x, y, z) = 0. Let us say in general that the system (2.1) is

Cr-synchronized with the flow on M if there is a Cr-diffeomorphism (or

homeomorphism if r = 0) which transforms the system (2.1) into a form

x=f(x)

ύ = H(x, u).

Theorem (A) indicates that in general the flow near a normally hyperbolic

invariant manifold M is not C1-synchronized with the flow on M. The flow

on the stable and unstable manifolds of M, however, can be smoothly

synchronized with the flow on M. In fact, Theorem (B) and its proof show

that the flow on W5(M) and W"(M) are C"1-synchronized with that on M

if the original vector field is C r, r > 2.

The extra condition 2α - β > (r — l)δ in Theorem (A)(B) can be

considered as a non-resonance condition. An example by Hartman [3] says

that such a condition cannot be dropped in general to have a C1-linearization

of flow near, even, hyperbolic fixed points. The condition 2α — β > (r — l)δ,

when specialized to the case where M is a point, is not satisfied by the example

of Hartman [3]. It is natural to try to write down more general

non-resonance conditions which ensure C1-linearization. Such a generalization

can be done by extending the techniques of Samovol [10] developed for

linearization around fixed points.
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One of the technical difficulties in the proof of Theorem (A)(B) is that

the matrices A(x), £(x), C(x) are not constant (in SamovoΓs work [10], these

matrices are constant). This difficulty is overcome by Henry's perturbation

theorem for exponential dichotomies and some of its consequences. An idea

of Bo Deng is adapted to seek a special kind of coordinate changes leading

to Lemmas 3.1 and 3.2.

3. Proof of Theorem (A)(B)

Throughout the rest of the article, we use the exponential estimates in (2.7)

frequently. The outline of the proof is this: We first introduce a coordinate

transformation which have the effect of straightening the stable and unstable

fibers of M. We then linearize the flows on WS(M) and WS(M). Up to this

point, the coordinate transformations are C " 1 (and hence the proof of (B) is

complete). Finally, we linearize the flow in a full neighborhood of M. In

the last step, the coordinate change is C 1 .

3.1. Coordinate change by using the stable and the unstable manifolds

The system (2.6) has the stable manifold WS(M) and the unstable manifold

W"(M). We refer the readers to [8] and [14] for the properties of these

manifolds. Since the nonlinear terms in (2.6) has been modified appropriately

outside a small neighborhood of M, local and global manifolds need not be

distinguished. The unstable manifold W"(M) is the union of unstable fibers

W({), ξeM,

where W"(£) is expressed as the graph of functions,

W"(0 = {(x, y, z); x = q(ξ, z), y = p(ξ, z)}.

Under the condition (HI) the functions q and p are C-bounded and satisfy

q(ξ, 0) = ξ9 D2q(ξ, 0) = 0, p(ξ, 0) = 0, D2p(ξ, 0) = 0. The fibe WM(£) through

a point ξ e M has the following characterization. Let (x, y, z) t = (x t, y t,

z -1) represent the flow generated by (2.6). Then for each γe(δ9 α),

W"(0 = {(x, y, z); sup \x t - φ(t9 x)^^ < oo,
ί < 0

sup \y - t\e~γt < oo, sup \z t\e~yt < oo},
f < 0 ί < 0

where φ(t, x) represents the flow on M. As we have assumed that the manifold

M is embedded in Rm for some m > 0, we used the notation |x t — φ(t, x)\

instead of the distance between two points x ί, φ(t, x) on M. Moreover,
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Vίu(φ(t9 x)) = W"(ί) t holds true. In terms of the functions p and q, the last

fact translates into the following. If x 0 = q(ξ, z0), y0 = p(ζ, z0) for ξeM then

(x0 t,yo t, z0 t) satisfies x0 t = q(φ(t, x), z 0 ί), y0 t = p(φ(t, x), z0 ί).

Therefore, by differentiating with respect to ί, one finds that p(ξ, z) and q(ξ, z)

satisfy the functional equations

Dιq(ξ, z)f(ξ) + D2q(ξ, z)ίC(q(ξ9 z))z + h(q(ξ, z), p(ξr z), z)]

(3.1)

ξ, z)lC(q(ξ, z))z + Ate«, z), p({, z), z)]

= B(q(ξ9 z))p{ξ, z) + g(q(ξ9 z), p({, z), z). (3.2)

Change the variables in (2.6) through (x, y, z) -• (x, j ; , z) defined by x = q(x, z),

y = j ; + p(χ? f)9 z = 2. By using the functional equations (3.1) and (3.2) one

finds the equations for (x9 y, z) as follows. The bars are dropped from (x, y, z).

x = fix) + fo(*> y> z) = /Jx, y, z)

y = B(x)y + go(x, y, z)y (3.3)

i = C(x)z + h(x9 y, z)

where f0, gθ9 and /i are given by

/ 0 ( x , y, z) = [Dιq2 '' U(q, y + P,z)- f(q9 p9 z ) ]

- \P1qY1D1q\h(q9 y + p, z) - fc(q, p, z)],

0o(x, j ; , z) = β( f̂) - B(x) + D 2 ^ ( ^ ^ + P, z)ds - D2p D2h(q, sy + p, z)ds
Jo Jo

- D i P C D i ? ] " 1 D 2 / f e 5y + p, z)ds-D2q D2h(q, sy + p, z)ds [

h{x9 y9 z) = h(q9 y + P,z) + [C(q) - C(x)]x.

Here the functions p9 q9 DjP, D}q are evaluated at(x, z). One should notice

that f0, g0 and D2f0 are Cr~ι-bounded and h is Cr-bounded. Moreover,

/0(x, 0, z) = 0. This and the fact that the second equation in (3.3) vanishes

for y = 0 mean that the unstable manifold W"(M) for (3.3) is given by

M x {0} x R* and that the flow on WM(M) is synchronized with that on M.

The stable fibers of M for the equation (3.3) (not for (2.6)) are now used

to further simplify (3.3). Let WS(M) be the stable manifold of M for the

system (3.3). Let WS(M) = {JξeM^s{ξ) be the decomposition of WS(M) into

the stable fibers. Each fiber has a dynamical characterization as before, and

can be expressed as a graph of functions r and 5:

W s (ξ) = {(x, y9 z): x = r(ξ9 y)9 z = s(ξ9 y)}.
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Under the condition (HI), r and 5 are Cr~^bounded and satisty

r(ξ9 0) = ξ, D2r(ξ, 0) = 0, s(ξ9 0) = 0, D2s(ξ, 0) = 0.

These functions satisfy functional equations similar to those in (3.1) and

(3.2). In terms of these functions, a new coordinate system (x, y, z) is

introduced via x = r{x, y), y = y, z = z + s(x, y). With the help of the

functinal equations mentioned above, the equations for the new variables

become, after dropping the bars, as follows.

'χ=f(χ)+f2(χ,y,z)

(x)y + g1(x,y,z)y (3.4)

J = C(x)z + h^x, y, z)z

where

fi(x, * *) = IDJl^LMr, y, z + s) -Mr, y, 5)]

- ίD1ry1D2r[jgΌ(r9 y, z + s)y - go{r, y, s)y],

gx(x, y, z) = [B(r) - B(x)] + go(r9 y9 z + s),

fci(x, y9 z) = C(r) - C(x) + D3h(r, y, τz + s)dτ - D2s D3g0(r, y9 τz + s)ydτ
Jo Jo

D3fx (r, y9 τz + s)dτI
-D2r\ D3g0(r9y,τz

The functions r, s, D, r, DjS are evaluated at (x, y). It is easy to verify that

f2(x,09z) = 0=f(x9y90)9 that g1 is C r"^bounded, and that f29 ht are

Cr"2-bounded. The stable manifold WS(M) = M x Rk x {0} and the unstable

manifold W"(M) = M x {0} x Rz for the system (3.4) are straightened.

3.2. Linearization on WS(M) and on W"(M)

The equations for the flows on WS(M) and W"(M) for (3.4) are given,

respectively, by

x = fix), y = B{x)y + gx (x, y, 0)y9 (3.5)

x = f(x), z = C(x)z + hλ(x, 0, z)z. (3.6)

Here one should observe that gx(x9 y, 0) and Λ^x, 0, z) are C""1-bounded

functions. To see this for ft^x, 0, z), recall that D2s(x, 0) = 0, s(x, 0) = 0.

Therefore,
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Λ 1(x,0,z)= D3h{x,0,τz)dτ9

Jo

and h is Cr-bounded, and hence h1(x, 0, z) is Cr ^bounded.

We will show that there is a coordinate transformation which linearizes

the system (3.5) and (3.6) simultaneously. We look for the change of

coordinates in the form y = y + P(x, y)y, z = z + β(x, z)z, where P and Q are

matrix-valued functions (different from those appearing in section 2) satisfying

P(x, 0) = 0, β(x, 0) = 0. They are also required to be C" 1 -bounded. We

will show the existence of such P and β. Since the argument is the same

for both P and β we only give a treatment for P in detail.

The equation for y is explicitly given by

y = = B(x)y + [P - B(x)P + PB(x) + gi(x, y, 0) + P ^ x , y, 0)]y,

in which P stands for the derivative of P(x, y) along the solution of (3.5). If

the function P can be chosen so that the quantity inside the square bracket

in the equation for y vanishes, then the equation for y becomes linear in y

as desired. In order to show the existence of such a function, we consider

the following differential equation,

p = B(φ(t, x))p - plB(φ(t9 x)) + gt(φ(t9 x), ψ(t, x, y)9 0)]

r, x), M , x, 3θ, 0)

where p is in gl(Rk) and (φ(ί, x), ι/̂ (ί, x, y)) is the unique solution of (3.5) with

the initial value (x, y). The equation (3.7) is linear inhomogeneous. The

fundamental solution operator of the principal part of this equation is given by

L(ί, s; x, y)(p) = Y(ί, s; x)pY(s, ί; x, y),

where Y(t9 s; x) is the fundamental solution operator of y = B(φ(t, x))y and

7(s, ί; x, y) is that of y = [B(ψ(ί, x)) + ^ ( ί , x), ^(ί, x, y), 0)]y. Therefore,

by applying the variation of constants formula to (3.7), we have

p ( t ) = Y(t9s;x)p(s)Y{s9 t;x9y)

- I Y{t9 τ; x)gi{φ(τ9 x), ^(τ, x, y)9 0)7(τ, ί; x, y)dτ.

If we seek a solution of (3.7) which satisfies \Y(t, s; x)p(s)7(s, ί; x, y)| -•() as

s -> oo, then, by using the estimates in (2.7), we have

p(ί) = - Y{t9 τ; x)gΛΦ(τ, x), ψ{τ, x, y), 0)7(τ, ί; x,
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We now define our function P as the initial value of this special solution.

P(x, y) = p(0) = - Γ 7(0, τ; x)gi(Φ(τ, x), Ψ(τ, x, y), 0)Y(τ9 0; x, y)dτ.
J 00

(3.8)

The following lemma completes the proof of Theorem (B).

LEMMA 3.1. Under the conditions (H1)(H2) and 2α - β > (r - l)δ, the

formula (3.8) defines a Cr~γ-bounded function P(x, y) satisfying P(x, 0) = 0 and

P = B(x)P - P[B(x) + gi(x, y, 0)] - gx(x9 y9 0),

where P is the derivative of P(x, y) along the solution of (3.5).

The proof of this lemma will be given in section 4. By using this function,

we achieve the linearization of the equation (3.5) on WS(M). The argument

for Q(x, z) is similar.

3.3. Proof of Theorem (A)

If we change variables in (3.4) in terms of y = y + P(x, y)y, z = z + Q(x, z)z

with the C " 1 -bounded functions P and Q obtained in the previous subsection,

we find the equations for the new variables (x, y, z). By using the functional

equations that P and Q satisfy, the equations for (x, y, z) are given as

follows. Here, we again drop the bars from y and z.

= / ( x ) + / 3 ( x , )>, z)

y = B(x)y + g2{x, y, z)z (3.9)

i = C(x)z + h2{x, y, z)y.

The formulae for g2 and h2 are a little more complicated than those for gx

and hί. Let us define gx and ϊιγ by

gγ(x, y, z) = [/fcxk + P(x, y)~] [g^x, y, z) - g^x, y9

Si(x, y9 z) = [/IXI + Q(x, z)] lh,(x, y, z) - hx(x9 0, z)~\z.

Let (x, y9 z)-> (x, P(x, y), Q(x, z)) be the inverse map of

(x, y9 z) • (x, y9z) = (x9y + P(x, ^3;, z + β(x, z)z).

The inverse exists in M x D(e) for small ε > 0, since P(x, 0) = 0 and Q(x, 0) = 0

hold. The functions P and β are also C r " ^bounded. Now we define

gx(x9 y9 z) = g^x, P(x, y)9 Q(x, z)), /ί^x, y, z) = h^x, P(x, y), β(x, z)).

In terms of these, # 2

 a n d ^2 a r e defined by
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Γ 1 Γ 1 ~
g2(x9y9z)=:\ D3g1(x,y,τz)dτ, h2(x, y, z) = D2hί(x, τy, z)dτ,

Jo Jo

and f3 is given by

/ 3 (x,y,z)=/ 2 (x,P(x,y), £(x,z)).

These functions have the following properties.

/ 3 is Cr~ι -bounded,

g2 and h2 are Cr~2-bounded,
/3(x, 0, z) = 0 = /3(x, y, 0), g2(x9 0, z) = 0, Λ2(x, y, 0) = 0.

So far, we have transformed the equation (2.6) into (3.9) in terms of a

C " 1 diffeomorphism. We shall transform (3.9) into (2.8). We can, however,

do this final step with a C1-diffeomorphism. We seek our change of variables

in the form: y — y + R(x, y9 z)z, z = z + S(x9 y9 z)y9 where R and S are

C 1 -functions (matrix-valued) to be determined, satistying R(x, 0, 0) = 0,

S(x, 0, 0) = 0. The equations for y and z are given by

y = B(x)y + [/?• - B(x)R + RC(x) + g2(x9 y9 z) + Rh2(x9 y9 z)]z,

z = C(x)z + [S - C(x)S + SB(x) + Λ2(x, y, z) + Sg2(x, y9 z)]y,

where K and S stand for the derivative of R and 5 along the solution of (3.9)

and g2 and h2 are defined by

g2ix,y,z)=\ D2gi(x>τy>*)dτ, h2(x,y,z)=\ D^fa y,
Jo Jo

τz)dτ.

It is easy to verify:

g2(x, y, z)z = #2(x, y9 z)y, h2(x9 y, z)y = h2(x, y, z)z,

and g2, h2 are C r~^bounded. Moreover, we have

g2(x9 0, z) = 0, §2{x9 y9 0) = 0, Λ2(x, y9 0) = 0, 62(x, 0, z) = 0.

We will show the existence of functions R and S satisfying

R - B(x)R + RC(x) + flf2(x, y, z) + Rh2(x9 y9 z) = 0, (3.10)

S - C(x)S + SB(x) + Λ2(x, y, z) + S^2(x, y, z) = 0. (3.11)

The idea of proof is the same as that for P and Q used in the previous

subsection. Namely, we define our functions R and S as the initial value of

a special solution to (3.10) and (3.11) respectively. Let w(ί) = (ξ(t)9 η(t)9 ζ(t))

denote the solution of (3.9) with the initial condition w(0) = (x, y, z) = ue
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M x D(ε). The matrices

yo(ί, 5; M), Z 0 ( ί , s; M), yx(ί9 5; w), Z x ( ί , 5; 11)

respectively stand for the fundamental solution operators of

y = B(ξ(t))y, z = C(ξ(t))z, y = [B(ξ(ή) + 02(w(ί))] y, i = [C(£(ί)) + ί 2

With these notations in place, K(w) = R(x, y, z) and S(u) = S(x, y, z) are defined

by

R(u) = - I Yo(0, t; u)0 2(w(ί))Z1(ί, 0; u)dt, (3.12)
J — 00

S(u) = - ί °Z o (0, ί; MjΛ^wίt))^^, 0; u)dt,
J 00

(3.13)

where u = (x, y, z)eM x D(ε). The following lemma will be proven in section

4.

LEMMA 3.2. //* the conditions (H 1)(H2) αλirf 2α - jS > (r - 1)<5 αr^ satisfied,

then (3.12)(3.13) define C1^functions satisfying R(x, 0, z) = 0, S(x, y, 0) = 0 and

the equations (3.10)(3.11).

Let (x, y,z)^> (x, R(x, y, z), S(x, y, z)) be the inverse of the map

(x, y, z) • (x, y + R(x, y, z)z9 z + S(x, y, z)y).

The inverse exists in M x D(ε) and is C 1 . Since R(x, 0, z) = 0 and S(x, y, 0) =

0 are valid, one can easily verify that R(x, 0, z) = 0 and 5(x, j ; , 0) = 0. We

have therefore transformed the system (3.9) into (2.8) where

F(x, y, z) = /3(x, R{x, y9 z), S(x, y, z)).

Since /3(x, y,0) = 0= /3(χ, 0, z), S(x, J;, 0) = 0, and R(x, 0, z) = 0, the function

F has the desired property F(x, 0, z) = 0 = F(x, y, 0). This complete the proof

of Theorem (A).

4. Proof of technical lemmas

The proof of Lemma 3.1 and that of Lemma 3.2 are given in this section. The

ideas and techniques used are the same for both cases. The exponential

estimates in (2.7) are used frequently in the below.

4.1. Proof of Lemma 3.1

Recall the equation (3.5);
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x=f(x)>- y =

Note that the following estimates are valid for i > 1, j > 1, iI +j < r — i :

Iflfxίx, y, 0)| < Λf |y|,. I D ^ f e Λ 0)| < M|y|,

|J>20i(*. * 0)| < M, IDΊDiflf^x, y, 0)| < M.

We also have

\gi(x,y,0)\<Mε, \D{gi(x, y9 0)| < Me, j = l , . . . , r - l .

PROPOSITION 4.1. Le/ ((/>(r, x), ^(ί, x, >;)) όe ίΛ6 solution of (3.5) vwY/z ί/ẑ

initial value (x, y) at t = 0. There exist constants Mj > 0, j = l , . . . , r — 1, which

depend only on j , k, α, jβ, <5, β^rf ε swc/z /Λβ/ /Â  following statements are true.

(a) The functions φ(t, x), ι/f(ί, x, y) are C " 1 /« (x, j;)eM x Rk and satisfy

\ψ(t,x,y)\<K\y\e-{"-εMK)\ t > 0,

ΊDiΦ(ί, x)| < M ^ Λ , t > 0, j - l,...,r - 1,

t, x, y)| < M / + j β - ( a - ε X M ) ί β ^ , ί > 0, ί +7 = l,...,r - 1.

(b) Let 7(ί, s; x) and Y(t, s; x, y) 6e &s defined before Lemma 3.1. For

ί, 5 > 0, /λese functions are C " 1 /« (x, y) and satisfy

\Dj

xY(t, s; x)| < Mje-i'-w*, j = 0, l,...,r - 1, ί > s,

\D{Y(t, s; x)| < M ^ < * - t ) + ^ , j = 0, l,...,r - 1, t < s,

{D^Yit, s; x, y)\ < Mi+je-{Cί-2εKM)it-s)e{ί+j)δ\ i +j = 0, l,...,r - 1, ί > s,

I D ^ y ί ί , s; x, y)\ < M l + i ^ + M M ) ( s - r ) β ( i + Λ Λ s , i + ; = 0, l,...,r - 1, ί < s,

The proof of this proposition will be given after we complete the proof

of Lemma 3.1. Now choose ε > 0 so small that 2α — β — (r — l)δ > 3εMK.

Recall the definition of P(x, y).

P{x, y)=-\ m τ; x)gi(φ{τ, x), ψ(τ, x, y), 0)7(τ, 0; x, y)dτ.
J 00

We immediately obtain the following by using Proposition 4.1.

\P(x9 y)\ < K e β t M \ φ ( t , x , y ) \ K e ~ Λ t d t < \ y \ K 3 M / { 2 o c - β - ε M K ) .
Jo

We will show that formal derivatives of P(x, y) are well-defined. The

verification that these formal derivatives are actually the derivatives of P(x, y)

is omitted, although it is not so complicated to do so in the present
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situation. We will go through the verification in the proof of Lemma 3.2. The

procedure is the same and easier for the present case. The (formal) derivative

of P(x, y) with respect to x is

D x P ( x , y)=-Iί-I2-I3

where Il9 / 2 , / 3 are given by (g^x, y):= g^x, y, 0) here)

I, = ϊ°DxY(09 t; x)gi(Φ(t), Φ(t))Y(U 0; x, y)dt,
J 00

I2=\Oγ(Oitιx)lD1g1(φ(t),φ(t))(Dxφ(t))
J 00

+ D2dl(Φ(t), Φ(t))(Dxφ(t)ΏY(t, 0; x, y)dt,

13 = Γ 7(0, t; x)βι(Φ(t), φ(t))DxY(t, 0; x, y)dt.
J 00

The estimates in Proposition 4.1 allow us to give bounds on Ij9 j = 1, 2, 3.

IΛI < ΓM^^^^yle'^-^^Moe-^-^^dt
Jo

= (M0M1K\y\)/(2a - β - δ - 2εMK).

This computation is valid since 2α — β — (r — \)δ > 3εMK, r > 3. We also

have

K2M(KM1 \y\ + M M x ) / 2 α - β - δ - 3εMK)

Γ

Joo

< K2AfAf! |y|/(2α - β - δ - 2εMK).

By arguing inductively, it is not difficult to show that

, jθ| < ς f M o , . . . ^ ^ ^ α, ft 5, ε), / +7 < r - 1,

where C y is a positive polynomial in Mθ9...9Mi+j9 and (2<x-β — mδ — 2εMK)~ι,

m < i +j. To conclude the proof of Lemma 3.1, let us show that the function

P(x, y) satisfies the desired functional equation in Lemma 3.1. Recall that

P(x, y) is defined as the initial value of the special solution to (3.7). By

definition
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P{φ(t,x)),φ(t,x,y))

= - I 7(0, τ; φ(t, x))gι(Φ(t + τ, x), ψ(t + τ, x, y), 0)Y(τ, 0; φ(t, x), φ{t, x, y))dτ.
J 00

Making use of the identities 7(0, τ; φ(t9 x)) = Y(t, τ + ί; x) and Y(τ, 0; φ(t, x),

φ(t, x, y)) = Y(t + τ, ί; x, y), the last integral is expressed as

P(φ(t9x)),φ(t,x,y))

0)Y(τ, t; x, y)dτ.= - Γ Y(ί, τ; xj^iίφίτ, x), φ(τ9 x, y),
J 00

By differntiating with respect to t and setting t = 0, one can verify that P

satisfies the functional equation in Lemma 3.1. The property P(x, 0) = 0

follows from ψ(t, x, 0) = 0.

PROOF OF PROPOSITION 4.1. (a) The estimate \Dxφ(t, x)| < Keδ\ t > 0 is

valid from (2.7). The function a(t):= D2

xφ(U *) satisfies

ά(t) = Df(φ(t))a(t) + D2f(φ(t))(Dxφ(t), Dxφ{t)).

The variation of constants formula implies

Jo
x)D2f(φ(s))(Dxφ(s),Dxφ(s))ds\a(t)\ =

< X3(sup \D2f\) eδ{t-s)e2δsds < X 3(sup |Z) 2 /|)β 2 5 75.
Jo

By induction, one obtains \Dj

xφ(t)\ < Mjejδt. The function ψ(t, x, y) satisfies

φ(t) = Y(ί, 0; x)y + Γ Y(ί, 5; x)gi(φ(s)9 ψ{s), O)ψ(s)ds.
Jo

Bounds \gx\<Mε and | Y(ί, s; x)\<Ke~a(t~s) are available for ί > s . GronwalΓs

inequality applies and

\φ(t)\ <Ke~ia-εMK)\ ί > 0

follows. Let b(t) = Dxφ(t, x, y). It satisfies b(0) = 0 and

= B(φ(t))b(t) + D2gi(φ(t)9 φ(t), 0)&(ί)

Digi(φ(t)9 φ(t), O)(Dxφ(t))-]ψ(t\.
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By using the variation of constants formula and the estimates

\Dxφ(t)\ < M,ed\ {\DB{φ)\ + \Digi\)\φ\ < (M + εM)ε < 2εM, t > 0

together with GronwalΓs inequality, one obains

\Dxψ(t, x, y)\ < 2εMM 1K 2 | ;He~ ( α~< 5~ 2 ε M* ) ί, t > 0.

Arguing by induction, one can obtain the remaining estimates in (a).

(b) Y(ί, s x) is (r - 1) times differentiable in x for ί, s fixed. The

derivative satisfies (see the appendix of [8])

>DxY(t9 s; x) = Γy(ί, τ; x)lDB(φ(τ))Dxφ(τ)]Y(τ9 s; x)dτ.
Js

By using (2.7) and \Dxφ(t)\ <KeaM, one immediately obtains

*i'-s) + δ<, t>s>0

The remaining cases are handled similarly.

4.2. Proof of Lemma 3.2

In this subsection, we write the system (3.9) as

y = B(x)y + 0 3 (x, y9 z) (3.9)

J = C(x)z + h3(x,y, z)

where

03(x, y, z) = 02(x, >;, z)z = g2(x9 y, z)y9 h3{x, y9 z) = Λ2(x, >;, z)y = h2(x, y, z)z.

The functions /, g3 and h3 vanish identically outside the set M x D(ε).

The estimates | / 3 | < Mε 2 , \Df3\ < Mε and similar estimates for g3 and h3 are

available. We also assume that M is chosen large enough to have max {| B \,

\DB\9 \C\, \DC\} < M. To avoid writing unessential constants repeatedly, we

also assume that M is large enough to bound such expressions as

sup {\B\ + I JOB I + \Dg3\} < M, and so on.

The function R(x, y, z) and S(x, y9 z) as defined in (3.12) and (3.13) do

not depend on the value of solution w(t) which are outside of M x D(ε). This

is an important observation to obtain the estimates in the sequel. Therefore,

we need to estimate the solution w(ί) of (3.9) only so long as it remains in

M x D(ε). Let Φ(t,s;u) denot the fundamental solution operator of
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PROPOSITION 4.2. Let w(ί), wo(ί), and w^t) be solutions of (3.9) with

w(0) = w, wo(0) = u0, w^O) = uγ where w, w0, UXGM x D(ε). 7Vίe estimates in

the sequel are valid so long as w(ί), wo(ί), w^ίJeM x D(ε).

(i) For (α l 5 jSj, ^ J swc/z ίfeί αx < cc, β1 > β, δι > δ, there exists a constant

Kx > 1 wA/cΛ depends only on (K, a, β, δ, OL19 βί9 δj such that for ε > 0 small

the following estimates are valid.

\Φ(t,s;u)\ <Kie^'-sK

| lo(t,s;«)l <Kie-*>«-s) t>s, lYofas uyzK^-w-* t < s,

\Z0(t,s;u)\<Kie^'-s) t<s, \Z0(t,s;u)\<Kie^'-s) t > s.

With <x2 =
 α i — εM'K^, β2 = βi + εMKlt the following also hold true.

| r 1 ( ί , s ;«) l<K 1 e~ o t 2 ( t ~ s ) t>s, \Y1(t,s;u)\^K1e-h<f-'^ t < s,

[Z^s iήl^K^'-* t<s, | Z 1 ( t , s ; u ) | ^ K 1 e ' I « - I ) t>s.

(ϋ)

|Wl(0 - W0(ί) - D,,W0(t)(«i - Mo)I = 0 ( 1 " ! - M0l

and below, o(\u1 — uo\) is a quantity such that o(\u1 — UQD/IUX — uo\ -+0

(iii) Let L=KfM/β2.

\Yo(0,t;Ul)-Y(0,t;uo)\ < L\u, - uo\e^-^', t < 0,

|Z0(0, ί; Ml) - Zo(0, ί; «0)l ^ ^l«i - "ok"'" 1"" 2", t > 0,

ly^ί, 0; Ml) - Y^t, 0; uo)| < L|ux - uo\e~^-fiit, t > 0,

IZΛί, 0; Ml) - Zi(ί, 0; uo)| < L|U l - uo\^~'Λt, t < 0.

(iv)

\DuYo(0,t;u)\ <Le^-™<, ί < 0,

| D u Z 0 ( 0 , t ; u ) | < L e - ( α ' - ^ ' , t > 0,

lA.rΛt.O tOI < L e - f e - " 2 ) ( , ί > 0,

ID.Ziίt.O tt)! <Le ( α 2 - ί 2 ) I , t < 0.

(v) For t < 0, we have the following
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I yo(0, t; ux) - 70(0, t; u0) - DuYo(0, t; κ o )( t t l - uo)\ < o{\ux - u

\Zt(t9 0; ux) - Zx(t9 0; u0) - DuZx(t9 0; uo)(Uι - uo)\ < o(\ux - u

Similar estimates are valid for Zo(0, t) and Y1(t, 0) when t > 0.

(iv)

\Duwx(t) - Duw0(t)\ = o ( l ) ^ 2 + ί)W, ίGR,

|yo(0, t; M l) - yo(0, ί; tt0)I = o ( i y α > - ^ , ί < o,

\ZX(U 0; Hi) - Z x(ί, 0; iιo)| = o(l)e ( α 2 - δ ) ί , ί < 0.

Similar estimates for Zo(0, ί) ^«rf Yi(ί, 0) are tw/W w/ze« ί > 0. If H(w) is a

continuous bounded function of w, then \H(w1(t)) — if(wo(ί))| = 0(1)^'''.

(l)->0 as \u1 — uo\ ->0.

PROOF. (1) The first three extimates follow from Henry's perturbation

theorem (see [9]). The constant Kt is given by

where

/ = (log 2X) max

By the variation of constants formula applied to y = B(ξ(t))y + ^ 2 ( w (0)} ;

?

 o n e

has

YX{U s;u)= yo(ί, 5; M) + yo(ί, τ ; w)^2(w(ί))yi(τ, s;
Js

The GronwalΓs inequality establishes the estimate on Yx. The argument for

Zγ is the same.

(ii) The first two estimates follow from the variation of constants formula

and the GronwalΓs inequality together with the estimates in part (i). It is,

however, crucial to keep in mind that we are concerned only with wx(ί) and

wo(ί) in M x D(ε). Therefore one can bound \η(t)\ and |ζ(ί)l> whenever

necessary, from above by ε. In order to prove the third inequality, let

ξ = ξί - £ o - A Λ ( " i -Wo),

I = ί i - Co - £>uCo("i - Mo)>

and w = (ξ, ή, ζ). By using the mean value theorem, one finds that they satisfy

ζ = Df(ξo)ξ + D/3(w0)w + a{t)9
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η = B(ξo)ή + DB{ξo)ξηo + Dg3(w0)w + b{t),

ζ = C(ξo)C + DC({o)ICo + Dh3{w0)w + c(ί),

where a(t), b(t), and c(ί) are given by

a(t) = Γ
Jo

b(t) = ί1

Jo

ί(wi - w0)) -

t - ξ0)) -

- w 0 ] ,

Jo
i - w0)) - i - w 0 ],

and c(ί) is the same as b(t) with C, ζί9 ζ0, and Λ3 replacing, respectively,

B, ηί9 ηθ9 and g3. Let us take the first term in a(t). The coefficient of ξt — ξ0

in this term can be bounded as

ί
Jo

LDf(ξo(t) - ζo(t))) - Df(ξo(t))ldl

**IΊ Γ
Jo

lDf(ξ0 + l(ξ0 + /(^ - ξ0)) - Df(ξo)ldl

where \p( )\δ = s u p t e R | p ( ί ) k W ^s a n weighted norm of a function p(ί) Since

Df is continuous and bounded, and ξ^t) — ξo(t) -> 0 as | u x — MO | -• 0 uniformlu

on every compact time interval,

Γ
Jo

lDf(ξ0 x - ξ0)) - Df(ξo)ldl 0

as I Mi — uo\ ->0. Other coefficients in α, b, and c are estimated in the same

manner. Therefore, using the estimate on |w1 — wo |, one obtains

Using the variation of constants formula together with the estimates in part

(i), w(0) = 0, and

\DB(ξo)ηo\ + \Dg3\ < Me, \DC(ξo)ζo\

one obtains, for t > 0,

Mε,
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< \ eKMeβίit-s)\ύ{s)\ds+ 0(111,-uo\)\ eβί{t-s)eiδ+β2)sds.
Jo Jo

The GronwalΓs inequality applied to \w(t)\e~βιt yields \w(t)\ = o(\uί-u0\)eiβ2 + δ)t

for t > 0. Here we used β2 — β1 = &MKX. The argument for t < 0 is the

same.

(iii) The variation of constants formula yield, for t < 0,

|Y0(0, f ; M l ) - y o ( 0 , t ;n o )l = 70(0, 5; uo)lB(ξί(s)) - Y0(s, t; ujds

: I |M X -uo\e~β2Sds

<(K3

1M/β2)e^-β2)t\u1-u0\.

The remaining estimates follow in the same way.

(iv) The derivative DUYO is given by

ω Yo(0, t; uo)(ύ) = yo(0, 5; M o s, ί; uo

Using this and the estimates in parts (i) and (iii), one can verify (see the proof

of (vi) below):

Γ yo(0, ί, Mj - yo(0, t; M0) — ATo(0, ί; ιιo)(wi - uo)

ί<0.

Therefore Du Yo defined in the above is the actual derivative of Yo. The

estimate on |DMy 0 | is obtained by the same computation as in the proof of

part (iii). The remaining cases are similar. The argument here also proves

part (v).

(vi) We have for t < s < 0,

\Y0(s, t u j - Y0(s, t;uo)\

Y0(s, τ ; u o ) [ B ( ί i ( τ ) ) - B{ξo(τ))] Yo(*> t\ ux)dτΓ
J - B(ξo)\δ



Smooth linearization near Invariant manifolds 351

= o(l)eaι{t~s)-δt.

The second estimate in (vi) is established by setting s = 0. The estimate in

the above is used in the proof of part (iii). The argument for Z1 is the

same. The estimate on l/^w^ί) — Duw0(t)\ follows from the same line of

argument as the proof of part (ii). The last statement in part (vi) follows

since \wx(t) — wo(t)\ ->0 as \u1 — uo\ ->0 uniformly on every compact set.

We are now in a position to give the proof of Lemma 3.2.

Since 2α - β > (r - l)δ, r > 3, one can choose αx < α, β x > β such that

2ccx - βx > δ. Then choose ε > 0 so small that 2oc1 — βx — δ > 2εMKx. As

before, we use a short hand notation: α2 = αx - εMKl9 β2 = β2 + εMK1. In

the sequel, we will give the proof for R(u) = R(x, y, z). The proof for S(u) is

almost identical.

Now, Proposition 4.2 (i) and \g2\ < εM give rise to

Γ°
\R(u)\ < K^εMe^dt = εMK2J{a2 4- α2) < ex).

J — oo

For ul9 uoeM x D(ε), consider the difference RiuJ — R(u0) = — Jx — J2 — J3

where

Γ°
Ji = C^o(0, t; ux) - 70(0, t; uo)lg2(w1(t))Zί(t, 0, Ul)dt9

J — 00

r°
J2 = yo(0, t; uo)[jg2(w1(t)) - ff2(w0(ί))]Zi(ί, 0, uλ)dt,

J — oo

Γ°
7 3 = yo(O, t; «o)ff2(wo(0)[Zi(ί, 0, M l ) - Z ^ ί , 0; iιo)]dt.

J - oo

By using Proposition 4.2 (i)(iii),

< (XfMIWi - uo\/β2) Γ

α2 - /? 2))|W l - ιιo | . (4.1)

Note that αL + α2 - β2 = 2ot1 - βi - 2εMK1 > δ. The estimates \J2\ =

O(\u1 - uo\) and \J3\ = O(\u1 - uo\) follow in the same way. Therefore R(u)

is Lipschitz continuous with a Lipschitz constant

Lip R = (2εKtM2)/β2(oc1 + α2 - β2) + (εKlM)/(^ + α2 - β2).

Let us now prove that R(u) is differentiable in u with the derivative given by:
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)uy0(0, t; u)(ύ)]gr2(w(£))Z1(ί, 0, u)dt

DuYo(0, f, u)\_Dg2(wt))Dttw(t)(ύΏZ1(t, 0, u)dt

^(ί, 0, M)(ii)]dt.

- oo

o

y o (0, t ;
J - oo

The function DuR(u) is well defined and Proposition 4.2 (ϋ)(iv) give

\DuR{u)\<LipR.

To show that DuR(u) is the actual derivative of R{ύ), consider the difference

R ( U ί ) - R ( u 0 ) - DuR(u)(Ul -uo)=-Σ Jt

where

lo(0, t; ux) - yo(0, ί; u0) - DuYo(0, t; uo)(Ul -

J5 = Duyo(0, t; uo)(Ml - «0)[ff2(wi(ί)) - ff2(w0(ί))]Z1(t, 0; iijdt,
J - 00

DuFo(0, ί; uo)(U l - uo)g2(wo(t))lZl(t, 0; M l) - Z^ί, 0; M0)]dί,
— oo

J7 = yo(0, ί; Uo)[02(Wi(t)) - β2(wo(t)) - Dg2(w0(t))Duw0(t)(Ul - u0)]
J — 00

x Z^t, O u^dt,

J 8 = yo(0, ί; uo)Dff2(wo(ί))ββWo(ί)(«i - Mo)[^i(t. 0; «i) - Ztίt, 0; «0)]dί,

•Γ
•/ — c

Y0(0,f,u0)g2(w0(t))

x [Zi(i, 0; M l) - Z^ί, 0; M0) - ΌJZ^t, 0; WoXii! - uo)]dί.

We will now show that |J f | = o{\uι — uo\) as \u1 — uo\-*0, i = 4,...,9. By

Proposition 4.2 (v), |J 4 | is bounded by

IJJ = o ( | M l - Mol) Γ *'*-'*-<>'e»*'dt = o ( | M l - UoD/ί*! - δ).
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Applying the fourth estimate in Proposition 4.2 (vi), one has, for t < 0,

This, together with Proposition 4.2 (iv), gives

\J5\ = o(\u1 -uo\).

By Proposition 4.2 (iv)(vi), one also obtains \J6\ = o{\u1 — uo\). The estimates

on | J 7 | , | J 8 | , and \J9\ are similar. Thus we have proven that DuR(u) is the

true derivative of R(u).

We will now show that DuR(u) is continuous in u with respect to the

operator norm. To show this, consider the difference

DuR(Uί)(ύ) - DuR(u0)(ύ) = - Σ Ij9

7 = 1

where /,-,; = 1,...,9, are given by

f°
h = IDUY0(0, ί; uγ)(ύ) - DuYo(0, t; uo)(ύ)]g2(w1(t))Z1(t, 0; ujdt,

J - oo

12 = I ° DUYO(Q, t; uo)(ύ)[.g2(Wl(t)) - g2(wo(tmz1{t, 0; ujdt,
J — 00

Γ°
73 = DuYo(0, t; uo)(u)g2(wo(t))[_ZΛt, 0; uΛ - ZΛt, 0; «o)]ίίί,

J-OO

[yo(0, t; U l ) - yo(0, t; UoίDCββiίwiίtMD.MΊίίXώίlZ^t, 0; iijdί,
0

Is= Γ yoίO t MoίC^ίwiWίD.MΊWίώί-D^ίwoWίD.WoίtKώ)]
J — oo

x [Z1(t,0;M1)-Z1(ί,0;iί0)]dί,

Γ°
ί6 = yo(0, t; Uo)[Dgf2(wo(t))Duwo(ί)(")][Z1(ί, 0; u t) - Z ^ t , 0; M0)]dί,

J — GO

_ Γ°
7 " J - o o ° o , t , u 0 g2Wίt „ ! ί, , « !

Γ°
I8 = yo(0, t; Ko)[flf2(wi(ί)) - 0 2 K ( t ) ) ] [^ uZi(ί, 0; MJCM)

J-00

_ Γ°
J — oo
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We will show how to estimate |Zj, . The computation for the

remaining /js is similar. Now we consider the difference

0, s;

- ί°Yo(0,s;uo)\_DB(ξo(s))Duξo(s)(ύ)-\Yo(s,t;uo)ds

3

^ Σ
where

Λi = Γ [50(0, s; ut) - yo(0, s; u0)] ίDB(ξ1(s))Dllζ1(s)(ύn Y0(s, t; ujds,

= Γhi = Γ Yo(0, s; «0 - DB(ξo(s))Duξo(s)(ύn Y0{s, t; ujds,

113 = Γ lo(0, s; uo)ίDB(ξo(s))Duξo(s)(ύniYo(s, t; uj - Y0(s, t; «0)]ds.

Applying Proposition 4.2, we obtain the following estimates:

\I^\ <(\ύ\MK3Jδ(β2 + δMBiξJ - Biξo)^-"*-*'

= o(l)\ύ\elaι-βl-i)t,

\Iί2\ < K* ί°e^ΊDBiξJDvξ! - DB(ξo)Duξo\\ύ\ds

Therefore, we have

|/J < o(l)\ ύ\ Γ
J - o

At = o{\)\ύ\l{a, + α2 - β2 - δ).

The computation is the same for 1^ j = 2,...,9. We have thus proven that
R(x, y, z) is a C1-function of (x, j , Z)GM X D(ε), for ε > 0 small. To show
that R(x, 0, z) = 0, one should observe that w(ί) = (ξ(t), 0, ζ(t)) when w(0) =
(x, 0, z) and that g2(x9 0, z) = 0. Therefore R(x, 0,z) = 0 follows.

It is also easy to show that R(x, y, z) satisfies the functional equation
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(3.10) by the same type of arguments as in the proof of Lemma 3.1. This
completes the proof of Lemma 3.2.
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