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Introduction

A number of papers published in recent years have actively studied the
relationship between the structure of a Lie algebra to that of the lattice of
its subalgebras. In these studies, Lie algebras whose proper subalgebras are
either semisimple, abelian or almost-abelian (that we shall call X-algebras for
short) have occurred frequently (c.f. [9], [10], [13]). For instance, Lie
algebras with a relatively complemented lattice of subalgebras are X-algebras
(Gein and Muhin [10]). Of special interest are the Lie algebras in which
every subalgebra of dimension > 1 is simple (supersimple Lie algebras).

The purpose of this paper is first to investigate the structure of an
X-algebra; and secondly to study upper semi-modular, relatively complemen-
ted, supersimple, and minimal non-modular Lie algebras; and thirdly to
determine the Lie algebras with a subalgebra lattice of length 3 as well as
their corresponding subalgebra lattices.

In section 1, we consider Lie algebras L having an element x such that
CL(x) is abelian and dim NL(CL(x))/CL(x) < 1. This class of Lie algebras
contains all X-algebras and the Lie algebras having a self-centralizing
ad-nilpotent element (which have been determined in [4]). If NL(CL(x)) =
CL(x), then we show that x lies in the center of L. If dim NL(CL(x))/CL(x) = 1,
then we get that either NL(CL(x)) is nilpotent, CL(x) < L, or L/Z(L) has a
self-centralizing ad-nilpotent element.

Moreover, we prove that the Engel subalgebras of a simple Lie algebra
of dimension > 3 are neither almost-abelian nor 3-dimensional simple. This
section finishes with two criteria for an element of a Lie algebra to be
ad-semisimple.

In section 2, we study the structure of a nonsolvable X-algebra. Solvable
X-algebras have been studied in Gein [12, Theorem 3].

In section 3, we use results in the previous sections to study upper
semi-modular and relatively complemented Lie algebras. It is known that
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every upper semimodular Lie algebra is relatively complemented (see

[17]). Gein [9] proved that an upper semimodular Lie algebra is either

abelian, almost-abelian or supersimple. We obtain this same result for

relatively complemented Lie algebras of characteristic φ 2, 3. If the ground

field F is perfect with char (F) Φ 2, 3, then every supersimple Lie algebra is

3-dimensional non-split ([21]). An example of a supersimple Lie algebra of

dimension 7 over a perfect field of characteristic 3 is given in [12, Example

2], every proper subalgebra of this algebra is either 1-dimensional or

3-dimensional non-split simple.

The existence of supersimple Lie algebras over a field F of characteristic

> 3, other than the 3-dimensional non-split, is an interesting open problem.

By contrast with the characteristic 3 case, we obtain that such Lie algebras

cannot contain 3-dimensional non-split proper subalgebras. Therefore, there

exists a supersimple Lie algebra over F of dimension greater than three if

and only if there is over F a Lie algebra of dimension > 3 whose non-trivial

subalgebras are 1-dimensional.

In section 4, we assume that F is perfect with char (F) Φ 2, 3. We prove

that if L is simple and minimal non-modular then either L ^ si (2), or L has

only abelian subalgebras, or L is 3-dimensional non-split simple over its

centroid. This result is a slight refinement of a Gein's result [12].

In section 5, we determine the Lie algebras whose lattice of subalgebras

has length 3 and the structure of the corresponding lattices of subalgebras. In

particular, we show that the lattice-theoretical characterization of the algebra

si (2, F) given by Gein in [11], when F has characteristic 0, remains true when

F is any perfect field of characteristic p φ 2, 3.

A Lie algebra L is called almost-abelian if there exists a basis α 1 ? . . . ,α n , x

for L with product [αt , aj] = 0, [αt , x] = at for f, j = l,...,w.

Throughout L will denote a finite dimensional Lie algebra over a field

F, and Ω will be an algebraic closure of F.

1. On Lie algebras containing an abelian centralizer

If L contains a self-centralizing ad-nilpotent element x, then NL(CL(x)) is

2-dimensional almost-abelian (see [4]). It is easy to see that if L is a

semisimple X-algebra, then NL(CL(x)) is either abelian or almost-abelian for

every xeL-(O). This leads us to study Lie algebras having an element x such

that CL(x) is abelian and dim NL{CL(x))/CL(x) < 1.

Let x be an element of a Lie algebra L. We will denote by EL(x) the

Engel subalgebra of L relative to x; that is EL(x) is the Fitting null-component

of L relative to the linear transformation ad x.
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LEMMA 1.1. Let xeL such that CL(x) is abelian. Then the following

holds :

1) NL(CL(x)) = Ker (ad x)2 is a subalgebra of L.

2) If in addition NL(CL(x))/CL(x) is abelian, then Ker (ad x)3 is a

subalgebra too.

PROOF. (1): Clearly, NL(CL(x)) c Ker (ad x)2. Let yeKer (ad x)2. Then

[_yx]eCL(x). For every ceCL(x) we have [[j>c]x] = [[yx]c] = 0, so that

[yc]eCL(x). This means ysNL{CL(x)).
(2): Let u, veKer (ad x)3. Since [MX], [ι;x]eKer (ad x)2 = NL(CL(x)), we

have

[[Mx],[ι;x])eNL(CL(x))'<CL(x).

This yields, [(ad X)2(M), [we]] = - [[MX], (ad x)2(ι>)]. Then, by using Leibniz's

rule we obtain (ad x)3 [MI?] = 0. So that, [MI;] e Ker (ad x)3.

PROPOSITION 1.2. Let x e L such that JVL(CL(x)) is abelian. Then EL(x) =

CL(x).

PROOF. AS iVL(CL(x)) is abelian, we have ΛΓL(CL(x)) = CL(x). On the

other hand, NL(CL(x)) = Ker (ad x)2 by Lemma 1.1. This yields, EL(x) = CL{x).

LEMMA 1.3. Lex x be an ad-nilpotent element of L such that CL(x) is

abelian and dim NL(CL(x))/CL(x) = 1. Then the following holds:

1) The simple elementary divisor polynomials of ad x have the form:

λr, λ,...,λ where r > 1.

2) Either CL(x) < L or CL(x) = Z(NL(CL(x)) + Fx.

PROOF. (1): By Lemma 1.1, NL{CL(x)) = Ker (ad x)2. Then, (1) follows

from dim NL(CL(x))/CL(x) = 1 and a Jordan matrix argument.

(2): Assume NL(CL(x)) φ L. Then, there exists weKer (ad x)3-Ker (ad x) 2.

Put NL(CL(x)) = CL(x) + Fy. Since [MX]GAΓL(CL(X)), we can decompose

[MX] = c0 + ay where c o eC L (x), α e F . If α = 0, then we have [[MX]X] = [c o x]

= 0 and so MeKer(adx) 2, which is a contradiction. Therefore, α φ 0. For

every ceCL(x), we find

[[wc]x] = [[MX]C] = [c 0 , c] + α | > ] = α|>c]eJVL(CL(x))' < CL(x).

Then, for every c'eCL(x), [ [ [MC]C']X] = [[ [MC]X]C'] = 0 since CL(x) is

abelian. This yields, [uc^eNL(CL(x)). Then we can write [uc~\ = cx + βy

where C ! G C L ( X ) and J8GF. SO, [[MC]X] = β[yx~\. This yields, x[yc] = β[yx]

and so [y, ac - βx~\ = 0. Therefore, αc - βxeZ(NL(CL(x)). From this it

follows (2).
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THEOREM 1.4. Assume char (F) φ 2. Let x e L such that CL(x) is abelian

and dim NL(CL(x))/CL(x) = 1. Then one of the following holds:

1) CL(x)<EL(x).

2) NL(CL(x)) is nilpotent.

3) EL(x)/Z(EL(x)) is a simple Lie algebra having a self-centralizing

ad-nilpotent element (the element x + Z(EL(x)) is such an element).

PROOF. We may assume without loss of generality that EL(x) = L. By

Lemma 1.3, the simple elementary divisor polynomials of ad x have the form:

λ\ λ,...9λ where r > 1. Thus, from the Jordan canonical matrix for ad x it

follows that there exits a basis uί9...9ur9 vί9...,vs for L with [ui9 x] = ui^1 for

2 < i < r, and [uί9 x] = [ι;ί5 x] = 0 for 1 < ί < s. Let 1 < m < s, then we see

that Ker(adx) m is the span of up vk for j = l,...,m; k = l,...,s.

Assume CL(x)<flL. Let Z:= Z(NL(CL(x)). By Lemma 1.3, CL(x) =

Z -f Fx. Thus we may decompose uί = ax + z0 where α e F , zoeZ. Suppose

α = 0. Then we have [u2 [u2, x] ] = 0. This yields that u2 acts nilpotently

on CL(x), so NL(CL(x)) is nilpotent. Therefore, (2) holds. Now assume

α φ 0. Then we claim that Z = Z(L). Clearly, [Z, M2] = 0. Let 2<i<r.

We argue by induction. Suppose that [Z, w,-] = 0 for j < i and let zeZ. Then

we find [[z, wi + i ]x] = [z, ι/J + [ ^ ] w I + 1 ] = 0, so [z, M i + 1 ]eC L (x). Decom-

pose [z, wί + 1 ] = jβx + zγ where jSeF, zγeZ. Then we have,

On the other hand, by using Leibniz's rule we obtain (— I)1 (ad x)ι[ui + l9 u2~\ =

(Ϊ—lJαMi It follows that [w I + 1, w 2]eKer (ad x)I + 1 and that [wί + 1 , u2~\ =

(i - l ) α κ ί + 1 (modKer(adxy). Then, [z[w i + 1, w2]] = (Ϊ - l)α[z, M i+1] =

(i - I)α(j8x + z j . This yields, (1 - i)<xβ = β(x and (1 - ί)(xzί = /?z0. Since

α # 0 and i > 1, we get β = 0 and then zλ = 0. This yields, [z, ui + 1~] = 0. It

follows Z = Z(L), and the claim is proved.

Now we consider the Lie algebra L= L/Z(L). Let x : = x + Z(L). We

see that x is a self-centralizing ad-nilpotent element of L. So, Theorem 2.8

of [4] applies and L/Z(L) is either 2-dimensional nonabelian or simple. In

the former case, we have CL(x) <\ L a contradiction. Therefore, L/Z(L) is

simple. The proof is complete.

COROLLARY 1.5. Assume char (F)φ2. For a Lie algebra L, the

following are equivalent:

1) L has an ad-nilpotent element x such that (ad x)2 φ 0, CL(x) is abelian,

ΛΓL(CL(x)) is non-nilpotent and dim NL(CL(x))/CL(x) = 1,

2) L/Z(L) is simple and has a self-centralizing ad-nilpotent element.

PROOF. (1) implies (2) follows from Theorem 1.4 and Lemma 1.1. To
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prove the converse, let x:= x + Z(L) be a self-centralizing ad-nilpotent element

of L=L/Z(L). Then, by Theorem 2.8 of [4] it follows that NE(CE{x)) is

2-dimensional non-abelian. So, NL(CL(x)) is non-nilpotent. It is easy to verify

that x satisfies the remaining conditions in (1).

COROLLARY 1.6. Assume char (F) Φ2. Let xeL such that NL{CL(x)) is

almost-abelian. Then EL(x) is either almost-abelian, isomorphic to si (2, F) or

a form of an Albert-Zassenhaus algebra (in the latter two cases CL(x) = Fx).

PROOF. Let A denote the derived subalgebra of NL(CL(x)). Since

NL(CL(x)) is almost-abelian, we have that A is abelian, dim NL(CL(x))/A = 1

and that every proper ideal of NL(CL(x)) is contained in A. This yields,

A = CL(x). On the other hand, we have Z(EL(x)) < CL(x) and thus

Z{EL(x)) < Z(NL(CL(x)). Since NL(CL{x)) is centerless, so is EL{x). Then, by

Theorem 1.4 it follows that either EL(x) = NL{CL(x)), and then EL(x) is

almost-abelian, or EL(x) is simple and CL(x) = Fx. Now, the result follows

from Theorems 2.8, 7.1 and 8.1 of [4].

COROLLARY 1.7. Let L be simple. Then the following are equivalent:

1) L contains a self-centralizing ad-nilpotent element,

2) L contains an ad-nilpotent element x such that NL(CL(x)) is

almost-abelian.

Next, we prove that none of the Engel subalgebras of a simple Lie algebra

is almost-abelian or isomorphic to si (2). For this, we will need the following

lemma which will appear in [22]. We include it by completeness.

LEMMA 1.8. Let L be a simple Lie algebra of dimension greater than 3

over an arbitrary field F of characteristic p φ 2, 3. Assume xeL is

self-centralizing. Then one of the following holds:

1) EL(x) = Fx and L is a form of an Albert-Zassenhaus algebra,

2) EL(x) is a form of an Albert-Zassenhaus algebra and p | dim L.

PROOF. Let Γ denote the centroid of L. Since Γx is an abelian

subalgebra of L, we have that Γx < CL(x) = Fx. So Γ = F, thus L is

central-simple. Let LΩ= L(R)FΩ. We have that LΩ is simple over Ω.

By using [4, Theorems 2.8, 7.1 and 8.1], we obtain that FL(x) is either

1-dimensional, 2-dimensional non-abelian, isomorphic to si (2, F) or a form of

an Albert-Zassenhaus algebra. First suppose that dim EL(x) = 1. Then we

find that Ωx is a Cartan subalgebra of LΩ. So LΩ is an Albert-Zassenhaus

algebra by [6]. Therefore L is as in (i).

In the remaining cases we have that xeF L (x) ' . Then, we can write

x = Σ[ai9 bj where ai9 fet 6£L(x). Let L= EL{x) + V be the Fitting decom-
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position of L relative to ad x. By [14, p. 38], V is invariant under ad j ; for

every yeEL(x). Then, we obtain that a d x has trace zero on K So p divides

dim V whenever p > 0. Therefore, if EL(x) is a form of an Albert-Zassenhaus

algebra we obtain that p | dim L.

On the other hand, we have that (EL(x))Ω contains a Cartan subalgebra

C of LΩ by [3]. Now assume tht EL(x) is either 2-dimensional non-abelian

or isomorphic to si (2, F). Then, as C is also a Cartan subalgebra of (£ L (x)) β ,

we find dim C = 1. This yields that LΩ is an Albert-Zassenhaus algebra, by

[6] again. In particular, we find that dim L = pn for some n. But, from

p | d i m F and L=EL(x)+V it follows that d i m L = 2 , 3 (mod/?). This

contradiction completes the proof.

PROPOSITION 1.9. Let L be a simple Lie algebra of dimension > 3 over

a field of characteristic p φ 2, 3. Then, none of the Engel subalgebras of L

is almost-abelian or 3-dimensional simple.

PROOF. Let xeL. First we note that EL(x) cannot be isomorphic to

si (2, F), since otherwise we would have CL(x) = Fx which contradicts Lemma

1.8. Now assume that EL(x) is almost-abelian. Then CL(x) is an abelian

ideal of EL(x) and EL(x) = CL(x) + Fy where ad y acts as the identity map

on CL(x). Let Γ denote the centroid of L. We have that Γy is an abelian

F-subalgebra of L and ( a d x ) 2 ( / » = Γ [ [ y x ] x ] = 0. This yields, Γy < EL(x)

fiCL(j;) = Fy and so Γ = F. Therefore, LΩ = L(x)Fί2 is simple. As (EL(x))Ω

is the Engel subalgebra of LΩ relative to x, {EL(x))Ω contains a Cartan

subalgebra H of LΩ by Barnes [3]. We have dim H = 1 since (EL(x))Ω is

almost-abelian and H is also a Cartan subalgebra of (EL(x))Ω. Say

H = Ωh. We can decompose h = c 0 + ay where coe(CL{x))Ω, α e ί λ Let

ceCL(x). We have [ch] = α[cy] = <xc since (CL(x))Ω is abelian. So, CL(x) is

contained in a root space of LΩ relative to H. Then by Corollary 3.8 of [6]

it follows that CL(x) is 1-dimensional. This yields, CL(x) = Fx which

contradicts Lemma 1.8. The proof is now complete.

COROLLARY 1.10. Let L be a simple Lie algebra of dimension greater

than 3 over a field of characteristic p φ 2, 3. Let xeL such that NL(CL(x))

is almost-abelian. Then EL(x) is a form of an Albert-Zassenhaus algebra and

p I dim L.

PROOF. It follows from Corollary 1.6, Proposition 1.9 and Lemma 1.8.

We finish this paragraph showing two criteria for an element x of a Lie

algebra to be ad-semisimple. We will need them in sections 2 and 3.

We will say that ad x is separable if its minimum polynomial is separable.

LEMMA 1.11. Let x be an element of a Lie algebra L over a field F.
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(1) If ad x is separable and CL(x) is a maximal subalgebra of L, then

ad x is either nilpotent or semisimple.

(2) Assume char (F) Φ 2, 3. If L is simple and EL(x) = Fx, then ad x is

semisimple and separable.

PROOF. (1): Suppose CL(x) is a maximal subalgebra of L. Since,

CL(x) < EL(x) < L it follows that either CL(x) = EL(x) or EL(x) = L. In the

latter case, we have that ad x is nilpotent. Then suppose CL(x) = EL(x). Let

X be a splitting field of the minimum polynomial of ad x over JF, and let

Lκ = L®FK. Let U denote the direct sum of all eigenspaces of Lκ relative

to ad x. As EL(x) φ L, x acts non-nilpotently on L. So, ad x is not nilpotent

on Lκ. Therefore, a d x has a nonzero eigenvalue on Lκ. This yields

U Φ (CL{x))κ.

Let G be the Galois group of K over F. Then, for each σeG the K-linear

map σ' = 1 (x) σ is a Lie-automorphism of Lκ. As K is a Galois extension

of F, an element of Lκ lies in L if and only if it is fixed by σ' for every

σeG. Let z be an eigenvector of Lκ relative to ad x, so [z, x] = αz for some

αeX. We find,

[(j'(z), x] = [σ'(z), σ'(x)] = σ'[z, x] = σ(α)σ'(z).

This yields, σ'(C7) < U for every σeG. Therefore, (Uf]L)κ=U (see [7, p.54]).

We have (CL(x))κ < U = (Uΐ)L)K9 whence CL(x) < L/flL. Since [/nL is

a subalgebra of L, from the maximality of CL(x) it follows either U f)L= CL{x)

or Uf]L=L. In the former case, we find U = (U (]L)K = {CL(x))κ which is

a contradiction. Consequently, Uf]L=L. This yields, U = Lκ. Therefore,

ad x is semisimple on L.

(2): Suppose L is simple and EL(x) = Fx. Let Γ denote the centroid of

L. Since [yx, x] = y[x, x] = 0, we have Γx < EL(x) = Fx. This yields Γ = F

and so LΩ is simple. Since EL(x)Ω is the Engel subalgebra of LΩ relative to

ad x, we have that Ωx is a Cartan subalgebra of LΩ. The result now follows

from Corollary 3.8 of [6].

2. Lie algebras all of whose proper subalgebras are either semisimple,
abelian or almost-abelian

PROPOSITION 2.1. Assume char (F) Φ 2. For a Lie algebra L the

following statements are equivalent:

1) Every subalgebra (including L itself) is either semisimple, abelian or
almost-abelian,

2) For every α e L - ( O ) , NL(a)) is either abelian or almost-abelian.
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PROOF. (1) implies (2): Let αeL - (0). Since Fa < Z(CL{a)) < NL(CL(a))9

we have that NL(CL(a)) is not semisimple. Therefore, NL(CL(a)) is either

abelian or almost-abelian.

(2) implies (1): Let S be a subalgebra of L of dimension > 1. Assume

that S is not semisimple. So that, S has an abelian minimal ideal A. Pick

aeA — (0). Then, ad a is nilpotent on S and so S < EL(a). Assume NL(CL(a))

is abelian. Then EL(a) = CL(a) by Proposition 1.2, and so S is abelian. Now

assume that NL(CL(a)) is almost-abelian. Then, by Corollary 2.6 we have

that either EL(a) is almost-abelian or CL(a) = Fa. In the former case, we have

that S is either abelian or almost-abelian. In the latter case, by using Theorem

2.8 of [4] we obtain that S is 2-dimensional nonabelian. The proof is

complete.

THEOREM 2.2. Let L be a nonsolvable Lie algebra over a field F with

char (F) φ 2, 3. Assume that every proper subalgebra of L is either semisimple,

abelian or almost-abelian. Then one of the following holds:

1) L^sl(2, F).

2) L= Fa® L', LJ is simple, and L is the only proper subalgebra of L

which is not abelian.

3) Z(L) Φ 0, L/Z(L) is simple, and Lhas only abelian proper subalgebras.

4) L is semisimple and the last term L(oo) in the derived series of L is

simple. If L(oo) φ L then L has no nonzero ad-nilpotent elements. If L(oo) = L,

then for every aeL — (0) either EL(a) is abelian or CL(a) = Fa and EL(a) is a

form of an Albert-Zassenhaus algebra (in particular, L contains no almost-

abelian subalgebra of dimension greater than two).

PROOF. Let us first suppose that L is not semisimple. Then there exists

a nonzero maximal abelian ideal A of L. Since A < Z(CL(A)), we have that

CL(A) is neither semisimple nor almost-abelian. So, CL(A) is abelian. By the

maximality of A, it follows CL(A) = A, or L. Assume CL(A) = A and let

x9 yeL — A. Then A + Fx and A + Fy are solvable but not abelian, so they

are almost-abelian. Thus, there exist λ, μ e F such that [αx] = λa, \_ay~\ = μa

for every aeA. We find,

λμa = λ[ay] = [_[ax]y] = [α[x)>]] + [[αj/]x] = [fl[xy]] + μλa,

whence [ α [ x y ] ] = 0 for every as A. This yields, L < CL(A) = A so L is

solvable, which is a contradiction. Therefore, CL(A) = L. Thus A = Z(L) and

then Z{L) is the unique maximal abelian ideal of L. This yields that L/Z(L)

is simple. Now suppose that there exists a nonabelian proper subalgebra S

of L. Then S must be either semisimple or almost-abelian. Choose

zeZ(L)-(0). Then S + Fz = L, since zeZ(S + Fz) Φ S + Fz. It follows that
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S = L', Z(L) = Fz and L/Z(L) ^ L\ We deduce that L is simple and that

it is the unique nonabelian proper subalgebra of L. Hence, L is either as in

(2) or (3).

We assume that L is semisimple and L φ s l ( 2 , F). Let α e L - ( O ) . By

Proposition 2.1, NL(CL{a)) is either abelian or almost-abelian. By using

Proposition 1.2 and Corollary 1.6 we obtain that EL(a) is either abelian,

almost-abelian, or simple with CL(a) = Fa. Assume that L is not simple an

let N be a minimal ideal of L. Pick b e N - (0). We have L= N + EL(b) since

AT contains the Fitting 1-component of L relative to ad b. Thus, L/ΛΓ =

EL(b)/EL(b)f]N. Since ί?e£ L (fc)nN<£ L (b), we have that £L(b) is not

simple. So, EL(b) is either abelian or almost-abelian. This yields that L/N

is solvable. Thus N = L(Q0) and N is the unique minimal ideal of

L. Moreover, we have that N cannot be abelian or almost-abelian, so N is

semisimple. From the minimality of N it follows that N is simple (see

[23, p.30]). Now suppose L=L{cc). Then by Proposition 1.9 none of the

Engel subalgebras of L is almost-abelian. Let S be an almost-abelian

subalgebra of L. Pick aeS', aφO. We have S < EL(a) and S' = CL{a). It

follows that EL{a) cannot be abelian and so CL{a) = Fa. Therefore dim 5 = 2.

This completes the proof.

A field F is said to be a field of type (Cx) if every homogeneous polynomial

f(λl9...,λn) over F of degree less than the number n of variables has a nontrivial

root in Fn.

COROLLARY 2.3. Let F be a perfect field of type (Cx) with char (F) Φ 2, 3.

Let L be a non-solvable Lie algebra whose proper subalgebras are either

semisimple, abelian or almost-abelian. Then, L ^ s l ( 2 , F).

PROOF. By Corollary 1.3 of [20], every Lie algebra over F contains

nonzero ad-nilpotent elements. Thus it is clear that (2) in Theorem 2.2 cannot

occur. Next suppose L is as in (3) in that theorem. Then, we have that

every element of L/Z(L) is ad-semisimple by Theorem 4.1 of [8]. This yields

that L/Z(L) contains no nonzero ad-nilpotent elements a contradiction

again. Now suppose that L is as (4) in Theorem 2.2. Then we have that L

must be simple and that every nonzero ad-nilpotent element must be self-

centralizing. But then, we find that L contains a solvable subalgebra which

is neither abelian or almost-abelian (see Theorem 7.1 of [4] and Theorem 3.1

of [5]), which is a contradiction. Therefore L ^ si (2, F) by Theorem 2.2.

The following example shows a simple Lie algebra in which every proper

subalgebra is either 3-dimensional simple, 2-dimensional nonabelian or

1-dimensional.
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EXAMPLE. Let λeF. We denote by WFΛ(λ) the derivation algebra of

F[X~]/{XP - λ). It is well known that WFΛ(λ) is simple. Clearly, WFΛ{λ)

contains self-centralizing ad-nilpotent elements, so that WFΛ(λ) has almost-

abelian subalgebras of dimension two.

Let F be non-perfect and let λeF — Fp. Then we prove that every proper

subalgebra of Wj7,i(A) is either 3-dimensional simple, 2-dimensional nonabelian

or 1-dimensional. Let L= WF Λ(λ). We have that LΩ is isomorphic to the

Witt algebra over Ω. So LΩ has a unique subalgebra (LΩ)0 of codimension

one, and every proper subalgebra of LΩ not contained in (LΩ)0 is either

2-dimensional nonabelian, 1-dimensional or isomorphic to si (2, Ω) (see

Corollary 3.10 of [4]). Let S be maximal among subalgebras of L with

SΩ < (LΩ)0. First assume that every element of S is ad-nilpotent on L. Then

by EngeΓs theorem NL(S) / S. By our choice of S, we have (NL(S))Ω ^ (LΩ)0.

Pick xe(NL(S))Ω, xφ(LΩ)0. Since no eigenvector of ad x lies in (LΩ)0 (see

Lemma 3.7 of [4]), we have S = 0. Next assume that S contains an element

y such that adj; is not nilpotent. By Proposition 1.9, EL(y) is neither

almost-abelian nor 3-dimensional simple. It follows that (EL{y))Ω <(LΩ)0.

Let EL(b) be the minimal Engel subalgebra of L contained in EL(y). By [3],

EL(b) is a Cartan subalgebra of L. So that (EL(b))Ω is a Cartan subalgebra

of LΩ. Thus, (EL(b))Ω = Ωb. Since Ωb < (L β ) 0 , we have that (LΩ)0 is a

direct sum of root spaces relaces relative to ad b. On the other hand, we

have that ad b is semisimple and separable over F (Lemma 1.11). Let K < Ω

be the splitting field of the minimal polynomial of ad b over F. Since every

root space of LΩ relative to ad b is 1-dimensional, we deduce that Lκ has a

subalgebra M such that MΩ ^ (LΩ)0. We have that M is invariant under all

automorphisms of Lκ since it is the unique subalgebra of Lκ of codimension

one. Since K is a Galois extension of F, it follows that there exists a

subalgebra N of L such that Nκ = M. We have dim LjN = 1. Then, since

L has a self-centralizing ad-nilpotent element, from Theorem 3.9 of [4] it follows

that L is isomorphic to the Witt algebra WFΛ(0). This yields λeFp, a

contradiction. We conclude that Ωx ^ (LΩ)0 for every xeL - (0). From this

it follows that every proper subalgebra of L of dimension greater than one is

either 2-dimensional nonabelian or 3-dimensional simple, as desired.

For perfect fields F of characteristic p Φ 2, 3, Gein [12, Proposition 3]

has proved that a semisimple Lie algebra L, not isomorphic to si (2, F), whose

proper subalgebras are either abelian, almost-abelian or 3-dimensional non-split

simple is simple ad-semisimple (that is, ad x is semisimple for every

xeL). From this it follows that L contains no almost-abelian subalgebras

(see Proposition 1.2 of [8]). Next, we give a proof of this last result which

works for any field of characteristic neither 2 nor 3. More generally, we
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obtain the following

COROLLARY 2.4. Let L be a semisimple Lie algebra over an arbitrary

field F with char (F) Φ 2, 3. Assume that every proper subalgebra of L is

either abelian, almostabelian or 3-dimensional simple. Then one of the

following holds:

1) L s s l ( 2 , F ) .

2) L^ WFΛ{λ) for some λeF - Fp.

3) L is simple having no nonzero ad-nilpotent elements and every proper

subalgebra of L is either abelian or 3-dimensional non-split simple. If F is

perfect, then L is ad-semisimple.

PROOF. If L φ L, then by our hypothesis L is 3-dimensional simple.

Thus every derivation of L is inner. By [14, p. 11], L=L®K for some

ideal K. But since K ^ L/L, we have that K is abelian which contradicts

the semisimplicity of L. Therefore L = L. Then, by Theorem 2.2, we get

that L is simple. Now suppose that L contains no nonzero ad-nilpotent

elements. Then, for every αeL-(O) the Engel subalgebra EL(a) is abelian.

This yields that L contains no almost-abelian subalgebras. Since si (2, F) does

contain almost-abelian subalgebras, it follows that every proper subalgebra of

Lis either abelian or 3-dimensional non-split simple. So, L is an in (3). The

last assertion in (3) follows from Lemma 1.11.

Next suppose that L has a nonzero ad-nilpotent element x. Then

EL(x) = L and CL(x) = Fx by Theorem 2.2. If dim L = 3 , then we have

L ^ si (2, F). Suppose dimL> 3. Let S denote the kernel of the derivation

(ad x)p. We have that S is a simple subalgebra of L of dimension p, by

Theorem 2.8 of [4]. This yields S = L and so (ad x)p = 0. Thus L is a form

of the Witt algebra WΩΛ(O). Let yeL such that ady is not nilpotent. Since

EL(y) cannot be either almost-abelian or 3-dimensional simple (Proposition

1.9), it follows that EL(y) is abelian. Thus EL(y) is a Cartan subalgebra of

L. This yields, dim EL(y) = 1 and so EL(y) = Fy. Let LΩ = Ωy © (Lβ)α

© ••• ®(LΩ\p-ί)a be the decomposition of LΩ into its root spaces relative to

the Cartan subalgebra Ωy. Since every root space has dimension one, it

follows that the minimal polynomial of ad y has the form Xp — βX where

βeF — (0). So, the derivation (ad y)p is inner. We conclude that L is

restricted. Therefore, Lis isomorphic to WF1(λ) for some λeF (see [1]). If

λsFp, then Lis isomorphic to the Witt algebra WF?1(0). But then, L contains

a subalgebra of codimension 1 which is neither abelian, almost-abelian nor

simple. Therefore, λφFp. The proof is complete.

For perfect fields of characteristic p φ 2, 3, we shall give in section 4 more

information on the structure of a Lie algebra satisfying conditions in Corollary

2.4.
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3. Modular and relatively complemented Lie algebras

A Lie algebra L is called modular, upper semi-modular or relatively

complemented if its lattice of all subalgebras has the corresponding

property. The study of these classes of Lie algebras was begun by Kolman

in [15]. Of course, every modular Lie algebra is upper semimodular; and

by Maeda [17], every upper semi-modular Lie algebra is relatively

complemented. For perfect fields of characterisric not 2 or 3, these three

concepts are equivalent (Gein [12]).

For arbitrary fields, Gein [9] has proved that an upper semi-modular Lie

algebra is either abelian, almost-abelian, or a Lie algebra in which any two

linearly independent elements generate a simple subalgebra. Here, we obtain

this same result for relatively complemented Lie algebras over arbitrary fields

of characteristic φ 2, 3.

First we note that the Lie algebras in which any two linearly independent

elements generate a simple subalgebra are precisely those in which every

subalgebra of dimension greater than one is simple (called supersimple Lie

algebras). Particular cases of supersimple Lie algebras are the Lie algebras

of dimension > 2 whose non-trivial subalgebras are 1-dimensional (in [12],

these algebras are called μ-algebras).

In [19] it is proved that for a Lie algebra L over an arbitrary field F,

the following are equivalent: (i) L is supersimple, (ii) dim L > 2 and L contains

no 2-dimensional subalgebras, (iii) EL(a) = Fa for every a eh — (0) and

d i m L > l . By Lemma 1.11, it follows that a supersimple Lie algebra is

ad-semisimple. For perfect fields of characteristic Φ 2, 3, a supersimple Lie

algebra must be 3-dimensional non-split simple (Lemma 1.1 of [21]). An

example of a supersimple Lie algebra of dimension 7 over a perfect field of

characteristic 3 is given in [12, Example 2], in this algebra any two linearly

independent elements generate a 3-dimensional non-split subalgebra.

The existence of supersimple Lie algebras over a field F of characteristic

> 3, other than the 3-dimensional non-split simple Lie algebras, is an

interesting open problem. We prove that such Lie algebras cannot contain

3-dimensional non-split simple subalgebras. Therefore, there exists such a Lie

algebra if and only if there is a μ-algebra over F of dimension greater than

three.

PROPOSITION 3.1. Let L be supersimple of dimension greater than 3 over

a field F of characteristic p > 3. Then L contains no 3-dimensional non-split

simple subalgebras.

PROOF. Assume on the contrary that L contains a 3-dimensional non-split

simple subalgebra S. Pick aeS — (0). Let K be a splitting field of the
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minimum polynomial of ad a over F. Let Lκ:= L0FK. By [19] Ka is a

Cartan subalgebra of Lκ, and by [6, Corollary 3.8] each root space Va of Lκ

relative to Ka is one-dimensional. Since Sκ ^ si (2, K), we have Sκ = Ka® Va

φ F . α for some root α. Let G denote the Galois group of K over F. Let

σ e G and σ' be the Lie automorphism of L defined by σ. Say Va = Kea.

Since every element of L is fixed by σ', we have

I » J , a] = σ'[ea9 a] = σ(oc)σ'(ea).

Moreover, σ'{ea)eSκ. We deduce that σ(α) = ± α. Let {Lκ)
{a) be the 1-section

of Lκ corresponding to α, that is

We have that (LK)(a) is a subalgebra of Lκ invariant under the action of σ'

for every σeG. As K is a Galois extension of F9 it follows that (Lx)
( α ) = Uκ

for some subalgebra U of L (see [7, p. 54]). We deduce that U is a form of

the Witt algebra Wί(β). On the other hand, we have that U is ad-semisimple

since so is L. However, the forms of W^Ω) are known not to be ad-semisimple

(c.f. [1]). This contradiction shows that Lcontains no 3-dimensional non-split

simple subalgebra, as desired.

THEOREM 3.2. Let L be a relatively complemented Lie algebra over an

arbitrary field F of characteristc φ 2, 3. Then L is either abelian, almost-

abelian or supersimple.

PROOF. By Theorem 9 of Gein and Muhin [10], it follows that L is

either abelian, almost-abelian or semisimple. Note that every subalgebra of

L is also a relatively complemented Lie algebra, so L is an X-algebra.

Let us first suppose that L is simple. Let aeL- (0). Then by Theorem

2.2 either EL(a) is abelian or CL(a) = Fa and dim EL(a) > 3. In the latter

case, from the Jordan canonical form for the transformation ad α, it follows

t h a t EL(a) h a s a b a s i s y _ l 9 y o , . . . , y m w i t h [ y i 9 ά ] = y i . 1 a n d y - x = a . W e

see that Fy0 + Fy_ 1 is the only two-dimensional subspace of EL(a) which is

invariant under a d j ^ . Now we take a complement K of the subalgebra

Fyo + Fy-i m t h e interval \_Fy_λ\ EL(a)~\\ so that

Kv(Fyo + Fy.1) = EL(a) and Kf)(Fy0 + Fy_x) = Fy_x.

Since K contains y_l9 K is invariant under a d y _ x . Nilpotency of a d j _ x

implies that K contains a two-dimensional subspace which is invariant under

sidy_1. This yields yosK, which is a contradiction. Therefore, EL(a) is

abelian for every aeL- (0). From this it follows that every subalgebra of L

which contains nonzero ad-nilpotent elements is abelian. So that, L contains



234 Vicente R. VAREA

no almost-abelian subalgebras. Hence, every subalgebra of L is either abelian

or semisimple. Moreover, the field F must be infinite since otherwise L itself

would contain a nonzero ad-nilpotent element (see [20]). Next we claim that

every semisimple subalgebra of L is simple. To prove this assume that S is

a nonsimple, semisimple subalgebra of L of minimal dimension. Then by

Theorem 2.2 it follows that dim S/S' = 1 and Sf is simple. Pick foeO. We

have Es(b) < EL(b), so Es(b) is abelian. Since every proper subalgebra of S

containing the Engel subalgebra Es(b) is self-normalizing (see [3]), we have

Es(b)^S'. So, Es(b) = Es(b)f)Sf + Fc for some nonzero element c. Take a

complement C of Es(b) in [Fc: S] . We have OφCf]S\ so that C is not

simple. Assume that C is abelian. Then, since S = Es(b) v C we have Fc < S

which is a contradiction. It follows that C is nonsimple and semisimple,

which contradicts the minimality of S. The claim is proved. Now we prove

that L contains no abelian subalgebras of dimension greater than one. Assume

on the contrary that A is a maximal abelian subalgebra of L of dimension

> 1. If NL(A) φ A, then as NL(A) is not simple, NL(A) is abelian. Therefore,

A = NL(A) by the maximality of A. Thus, A is a Cartan subalgebra of L. Let

aeA — (0). Pick a complement U of EL(a) in [Fa: L ] . Since L= EL(a) v U

we have that U is simple otherwise we would have Fa <\ L, which is a

contradiction. Since Eυ(ά) = EL(a)f]U = Fa, by Lemma 1.1 it follows that

ad a is diagonalizable on UΩ. Let V be the sum of the eigenspaces of LΩ

relative to ad a. We have UΩ + (EL(a))Ω c J/ and since K is a subalgebra of

LΩ, V = L β . We deduce that ad a is diagonalizable over L β for every

aeA. Let Φ be the root system of LΩ relative to the Cartan subalgebra

AΩ. Every root in Φ is linear since AΩ is abelian. Then, as F is infinite,

there exists an element a0 in A such that <x(a0) Φ 0 and oc(ao) φ β(a0) for every

α, jβeΦ, oc Φ β. Take a complement 1/ of EL(a0) in [ F α 0 : L] . We have that

U is simple. Let ueUΩ be an eigenvector relative to ad a0 corresponding to a

nonzero eigenvalue λ. By our choice of α 0, there exists a unique root oceΦ

such that α(fl0) = λ. It follows that u lies in the corresponding root space

(LΩ)a of L β . As every element of A is diagonalizable on L β , we deduce that

[A, u]^Ωu. Therefore, [A, [/] < U. We get that A + 1/ is a subalgebra of

L and that 1/ is an ideal of A + [/, which is a contradiction. We conclude

that every subalgebra of L is either 1-dimensional or simple, which means that

L is supersimple.

What remains is to prove that every semisimple Lie algebra which is

relatively complemented is simple. Let L be a counterexample of minimal

dimension. Then, by Theorem 2.2 we have dim L/L = 1 and L is simple. By

the preceding paragraph, L is supersimple. Pick aeL— (0). We have

EL,(a) = Fa. Since EL(a) £ L', it follows dim EL(a) = 2. Let beEL(a), bφFa.

Then \_ab] = ta for some teF. Assume t φ 0 and let L1(a) denote the Fitting
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1-component of ad a. Since ad b stabilizes Lx(α) (see [14, p. 38]) and

[ad α, ad b~] = t (ad α), we have that the trace of (ad a) | L l ( α ) is zero. This yields

that p φ 0 and p divides dim L^α). As Lx(α) ^ L'/Fa, it follows that p divides

dim LI Fa. On the other hand, since L is supersimple, we have that (L)Ω is

either isomorphic to si (2, Ω) or an Albert-Zassenhaus algebra. So, dim L = 3

or a power of p. This yields p = 2, which is a contradiction. Therefore EL(a)

is abelian. Now take a complement ί/ of £L(α) in [Fb\ L ] . We see that U

cannot be abelian, since otherwise we would have Fa < L a contradiction.

Since 0 # S' n £/, it folows that U is not simple. Thus U is not semisimple

because of the minimality of L. Therefore U is almost-abelian. Let xeL'ftU,

x φ 0. By above, we have that £L(x) is abelian. Moreover, we have

U < EL(x) since U is almost-abelian and xeU'. This yields that U is abelian,

which is a contradiction. Now the proof is complete.

As a direct consequence of Theorem 3.2 and Lemma 1.1 of [21], we

obtain the following result due to Gein [12].

COROLLARY 3.3 (Gein [12]). For a Lie algebra L over a perfect field F

with char (F) Φ 2, 3, the following are equivalent: (i) L is modular, (ii) L is

upper semi-modular, (iii) L is relatively complemented, and (iv) L is either

abelian, almost-abelian or 3-dimensional non-split simple.

4. Minimal non-modular Lie algebras

A Lie algebra L is called minimal non-modular if every proper subalgebra

of L is a modular Lie algebra but L is not. Assume F is perfect with char

(F) Φ 2, 3. Then, a Lie algebra L over F is minimal non-modular if and only

if every proper subalgebra of L is either abelian, almost-abelian or

3-dimensional non-split simple but L is not.

By Corollary 2.4, we have that if L is semisimple and minimal non-modular

then either L ^ si (2, F) or L is simple and ad-semisimple. This result was

first proved by Gein in [12]. The following result gives us more information

on the structure of a simple and minimal non-modular Lie algebra.

THEOREM 4.1. Let Lbe a minimal non-modular Lie algebra over a perfect

field F with char (F) φ 2, 3. Assume L is simple and L ^ si (2, F). Then the

following holds:

(1) L, regarded as a Lie algebra over its centroid, has only abelian

subalgebras and is a form of a classical simple Lie algebra.

(2) If L contains a nonabelian proper F-subalgebra, then L is

3-dimensional non-split simple over its centroid.
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PROOF. (1): Let us first suppose L is central-simple. Since a d x is

semisimple for every xeL (Corollary 2.4), it follows from [18, Corollary in

p. 869] that L is a form of a classical simple Lie algebra. Assume L has a

proper nonabelian subalgebra S. Then, by Corollary 2.4, S is 3-dimensional

non-split simple. Moreover, L has rank > 1 since otherwise we would have

dim L = 3 a contradiction. We can take a basis eί9 e2, e3 for S with product

0 2 , e 3] = el9 |>3, e j = ote2, [eu e2~\ = βe3 where α, βeF - (0), see [14, p. 13].

Let x = e1. The characteristic polynomial of a d x on S has the form

λ(λ2 + aβ). Let /(Λ,) denote the minimum polynomial of ad x on L. Since

ad x is semisimple we can write f(λ) = πo(λ)πί(λ) ~πr(λ) where πo(A) = λ,

πί(λ) = λ2 + aβ, π^λ) is an irreducible polynomial on F of degree > 1 for

ί > 1, and πf # π, for i / ; . Let μeί2 be a root of π^λ). Then there exists

a maximal number rc such that 2nμ is an eigenvalue of LΩ relative to ad x. By

Corollary 2.4, the subalgebra EL(x) is abelian and so it is a Cartan subalgebra

of L. So, {EL(x))Ω is a Cartan subalgebra of LΩ. Let Φ be the root system

of LΩ relative to (EL(x))Ω. We have that there exists σeΦ such that

σ(x) = 2nμ. Since LΩ is classical, — σ is a root too. Thus, — 2nμ is also an

eigenvalue of LΩ relative to ad x. This yields that the polynomial λ2 + 22nocβ

divides f(λ). So, π^λ) = λ2 + 22nocβ for some 1 < i < r. Let V denote the

kernel of π^adx). Since ad x is dίagonalizable on LΩ and 2n + ίμ is not an

eigenvalue of adx, we have [K V] < EL(x). This yields that the subspace

EL{x) + V is a nonabelian subalgebra of L. If EL{x) +VΦU then £L(x) + V

is 3-dimensional non-split simple. This yields, EL(x) = Fx and so L is rank

one which is a contradiction. Therefore, EL(x) + V = L and then /(A) =

λ(λ2 + αβ). We deduce that μ and — μ are the only nonzero eigenvalues of

a d x on LΩ. Therefore, σ(x) = ±μ for every σeΦ. Since LΩ is classical

simple of rank greater than 1, there exist σ 1 , σ 2 e Φ such that σλ + σ 2 e Φ .

Then, either (σ1 + σ2)(x) = σ1(x) or (σx + σ2)(x) = — σ^x). In the former case

we get σ2(x) = 0. This yields, (LΩ)σ2 < CL(x) = EL(x) a contradiction. In the

latter case, we get σ2(x) = — 2σί(x). But since σ2(x) = ±σx{x), we have

σ1(x) = 0 a contradiction again. We conclude that every proper subalgebra

of L is abelian.

Now suppose that L is not central-simple and let Γ denote the centroid

of L. Let S be a nonabelian proper Γ-subalgebra of L. Then, S regarded

as a F-subalgebra of L is 3-dimensional non-split simple by Corollary

2.4. Then, since dim F S = \Γ: F\ dimΓS and ΓΦF, we get dim Γ S = 1 . So,

S is abelian which is a contradiction. We conclude that L regarded as a Lie

algebra over Γ has only abelian subalgebras. The proof of (1) is now complete.

(2): Assume 5 is a nonabelian proper F-subalgebra of L. Then, by (1)

the centroid Γ of L is a proper extension of F. Let T be the Γ-subspace of

L generated by S. Clearly, T is closed under the Lie bracket, so that T is a
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subalgebra of L. Moreover, T is nonabelian since S is. Now, by (1) again

we get Ύ — L. On the other hand, we have that S is 3-dimensional non-split

simple over F by Corollary 2.4. This yields, dimΓ T < 3. Since L is simple

over Γ we get d i m r L = 3. What remains is to show that L is non-split over

Γ. If not, then L is isomorphic to si (2, Γ). Thus the constants of

multiplication of L, relative to a standard basis B of L over Γ, lie in F. But

then, the F-span of B is an F-subalgebra of L isomorphic to si (2, F), which

contradicts Corollary 2.4. The proof is now complete.

5. Lie Algebras of length 3 and their Subalgebra Lattices

In this section we describe the Lie algebras L with a subalgebra lattice

<£(L) of length 3 as well as their corresponding lattices of subalgebras. In

particular, we show that the algebra si (2, F) is determined by its subalgebra

lattice.

Throughout this section F denotes a perfect field F of characteristic

p Φ 2, 3.

LEMMA 5.1. Assume L has length 3. Then, every proper subalgebra of

L of dimension greater than 1 is either 2-dimensional or 3-dimensional non-split

simple.

PROOF. Let S be a proper subalgebra of L of dimension greater than

1. The lattice if (S) has length 2, since it is isomorphic to the interval [0: S]

of i?(L). So, the result follows from Proposition 1 of [12].

THEOREM 5.2. The lattice J^(L) have length 3 if and only if one of the

following holds:

1) L is 3-dimensional solvable.

2) Lssl(2,F).

3) L is a direct sum of a 3-dimensional non-split simple Lie algebra and

a 1-dimensional Lie algebra.

4) L is 3-dimensional non-split simple over a quadratic extension Γ of F.

5) L is central-simple having only abelian subalgebras and it is a form of

a classical simple Lie algebra of type A29 B2 or G2.

PROOF. First suppose that J^(L) has length 3. If L is solvable, then

clearly d i m L = 3 . Thus L is as in (1). Then assume L is not solvable.

Suppose Z(L) φ 0. Then L/Z(L) must be nonsolvable with length 2 and

dim Z(L)= 1. By Proposition 1 of [12], we have L/Z(L) is 3-dimensional

non-split simple. Then, it is easy to see that L= L ®Z{L) (see the proof of

Theorem 3.1 of [21]). Thus, L is as in (3). Now suppose Z(L) = 0. Then
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by using Lemma 5.1, Theorem 2.2 and Corollary 2.4, we obtain that L is
simple. Let Γ be the centroid of L. If Γ = F, then L is as in (2) or (5) by
Theorem 4.1. Then assume Γ φ F. Let xeL —(0). Since Γx is an abelian
F-subalgebra of L and Γx Φ Fx, we have dimF Γx = 2. This yields,
\Γ: F\ = 2. If L contains a nonabelian proper F-subalgebra, then we get that
L is as in (4) by Theorem 4.1. Suppose then that every proper F-subalgebra
of L is abelian. Let 5 be a proper Γ-subalgebra of L. Then we have that
5 is abelian and dimf 5 = 2. Since dimF S = \Γ\ F\ dim r 5, it follows
dimΓ5 = 1. We conclude that L, regarded as a Lie algebra over Γ, has only
1-dimensional subalgebras. So, by Proposition 1 of [12] it follows that L is
as in (4). This completes the proof in one direction.

Clearly, Lie algebras as in (1), (2), (3) and (5) have length 3. Now suppose
that L is as in (4). Then we need to prove that every proper F-subalgebra
of L of dimension greater than 2 is 3-dimensional non-split simple. Let
xeL — (0). Since Lhas no proper Γ-subalgebras of dimension greater than 1,
we have CL(x) = Γx. So, dimF CL(x) = \Γ: F\ = 2. Moreover, we have that
if [xy] = tx for some yeL — (0) and teF, then [xy] = 0 since x and y must
be linearly dependent over Γ. We deduce that every 2-dimensional F-
subalgebra of L is abelian and that L has no abelian F-subalgebras of dimension
greater than 2. On the other hand, we have that the linear transformation
ad x is semisimple over F since so is over Γ. Then, according to Proposition
1.2 of [8], every solvable F-subalgebra of L is abelian. We conclude that L
has no solvable F-subalgebras of dimension greater than 2. Now let 5 be a
proper F-subalgebra of L of dimension r > 2. Let us suppose first
r = 3. Then 5' = 5; otherwise we would have that 5 is solvable which is a
contradiction. It follows that 5 is non-split simple. Therefore, we may assume
r > 3. Since dimFL= \Γ: F\ dim Γ L= 6, we have r < 6. Choose xe5 — (0).
If x acts nilpotently on 5, then xeZ(5) since ad x is semisimple. So, 5 < CL(x)
which contradicts the fact that dim CL(x) = 2. Therefore, 5 has no nonzero
ad-nilpotent element. Next suppose r = 4. Let N be a proper ideal of 5. If
dim N < 2, then N is abelian and hence every nonzero element of N acts
nilpotently on 5 which is a contradiction. Therefore, dim N = 3. Then, we
have that N is 3-dimensional non-split simple. Thus, every derivation of N
is inner. By [14, p. 11], it follows 5 = N Θ Fa for some aeS - (0). But then,
we find ad5 α = 0 a contradiction again. We deduce that 5 is simple. Now,
as adx is semisimple for every xe5, the corollary in page 869 of [18] applies
and 5 is a form of a classical simple Lie algebra, which contradicts the fact
that dim 5 = 4. Consequently, L contains no F-subalgebras of dimension
4. Finally, suppose r = 5. Then, by Theorem 2.2 of [20] it follows that L
contains a nonzero ad-nilpotent element, which is a contradiction again. Now
the proof is complete.
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COROLLARY 5.3. Let F be a perfect field of type (CJ with char

(F) Φ 2, 3. Then the lattice &{L) has length 3 if and only if d i m L = 3.

PROOF. Assume ££(L) has length 3 and that d i m L > 3. Then we have

that L is as in (3), (4) or (5) in Theorem 5.2. In either case, L contains no

nonzero ad-nilpotent element, which contradicts Corollary 1.3 of [20].

THEOREM 5.4. Let i f be a lattice of length 3 and L a Lie algebra over

F such that jSf (L) ^ Jίf. Then,

1) $£ has no proper modular elements if and only if L is as in (4) or

(5) in Theorem 5.2.

2) <£ has just one modular atom which is complemented if and only if

L is as in (3) in Theorem 5.2.

3) !£ has just one modular atom which is not complemented if and

only if L has a basis α, b, c with one of the following products:

(i) lab] = c, [αc] = [be] = 0.

(ii) lab'] = 0, lac] = a + b, Ibc] = b.

4) J£? has just two modular atoms if and only if L has a basis a, b, c

with one of the following products:

(i) [ab] = α,[αc] = [be] = 0.

(ii) lab] = 0, lac] = a, Ibc] = (xb where 1 Φ oceF

5) i f is modular if and only if L is either abelian or almost-abelian.

6) L ^ si (2, F) if and only if if satisfies:

( i ) for each atom A there is another atom B such that AvB = L,

(ii) there exists a modular co-atom, and

(iii) there exist A, Be<$? such that AnB Φ 0.

7) L has a basis a, b, c with product lab] = 0, lac] = b9 Ibc] = βa + ocb

where α, βeF and the polynomial λ2 — aλ — β is irreducible on F if and only if

i f satisfies:

( i ) for each atom A there is another atom B such that AvB = L,

(ii) there exists a modular co-atom, and

(iii) Af]B = 0 for every co-atoms A, B with ,4 Φ B.

PROOF. (1): Let us first suppose Lis as in (4) or (5) in Theorem 5.2. Let

xeL — (0). We have CL(x) φ Fx, since otherwise we would have that L is

central simple of rank one which is a contradiction. By Lemma 1.5 of [2]

it follows that Fx is not a modular element in Ϊ£(L). Now assume S is a

modular proper subalgebra of L (that is, S is a modular element of ^(L) and

S φ L). We have dim S > 1 and so S is maximal since L has /βnaίh 3. Pick

xeL- S. Since CL(x) # Fx, from the modularity of S it follows SΠCL(x) φ 0.

If 5 is abelian, then we have Sf]CL(x) <\ L which contradicts the simplicity of

L. Therefore, S is 3-dimensional non-split simple and L is as in (4) in Theorem
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5.2. Take a basis e u e2, e3 for S with product [e 2, £3] = eί9 [e 3 , e x] = ote2,

l>i, e2~] = βe3 where α, 0 GF - (0). Let y e Γ - F. We find S n Q ^ + ye2) =

0 a contradiction.

To prove the converse, suppose that 3? has no proper modular

elements. Then L must be simple. Since every 2-dimensional subalgebra of

si (2, F) is modular, the result follows by Theorem 5.2.

The remaining statements can be easily proved by inspection of the

3-dimensional solvable Lie algebras and by using (1), Theorem 5.2 and the

following facts:

i) the algebra si (2, F) has no modular atoms.

ii) every maximal subalgebra of si (2, F) of dimension greater than 1 is

modular

iii) Lie algebras as in (3) in Theorem 5.2 have only one modular atom

which is complemented.

DEFINITION 5.5. (Gein [11]). A lattice <£ is called an sl-lattice if it

satisfies: (1) for each atom A there is another atom B such that A v B = 1,

(2) there exists a modular co-atom, and (3) there exist A, B e & such that

COROLLARY 5.6. Let L be a Lie algebra over a perfect field of

characteristic not 2 or 3. Then, L ^ si (2, F) if and only if J£?(L) is an sl-lattice.
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