On the irreducible components of the solutions of Matsuo's differential equations

Dedicated to Professor Kiyosato Okamoto on his sixtieth birthday

Atsutaka Kowata and Ryoko Wada
(Received January 11, 1994)

0. Introduction

Studying the Knizhnik-Zamolodchikov equation in conformal field theory, Matsuo found a new system of differential equations of first order for a function taking values in the group algebra $\mathbf{C}[W]$ of the Weyl group W associated with an arbitrary root system in [4]. His system is equivalent to the system of the differential equations given by Heckman and Opdam which is a deformation of the system satisfied by the zonal spherical function of the Riemannian symmetric space G / K of non compact type ([4] Theorem 5.4.1).

Let Φ be a solution of Matsuo's equations (see (1.1)). \hat{W} denotes the set of the equivalence classes of the irreducible representations of W. For $\delta \in \hat{W}$ let E_{δ} be a representation space of δ and $n_{\delta}=\operatorname{dim} E_{\delta}$. Then $\mathbf{C}[W]=\sum_{\delta \in \hat{W}} \mathbf{C}[W]_{\delta}$, where $\mathbf{C}[W]_{\delta}=\bigoplus_{i=1}^{n_{\delta}} E_{\delta, i}$ and $E_{\delta, i}$ is equivalent to E_{δ} $\left(1 \leq i \leq n_{\delta}\right)$. Let δ_{0} be the trivial representation and Φ_{0} be the $\mathbf{C}[W]_{\delta_{0}}-$ component of Φ. The Correspondence $\Phi \rightarrow \Phi_{\delta_{0}}$ gives the equivalence of the above two systems.

For $\delta \in \hat{W}$ We consider the other $\mathbf{C}[W]_{\delta}$-components Φ_{δ} of Φ. In this paper we obtain a system of differential equations satisfied by Φ_{δ}.

1. Preliminaries

Let E be an n -Euclidean space with the inner product (,) and E^{*} be the dual space of E. For $\alpha \in E$ with $\alpha \neq 0$ put $\alpha^{\vee}=2(\alpha, \alpha)^{-1} \alpha$ and denote $s_{\alpha}(\lambda)=\lambda-\left(\lambda, \alpha^{\vee}\right) \alpha$ for the orthogonal reflection in the hyperplane perpendicular to $\alpha(\lambda \in E)$. Let $\Sigma \subset E$ be a root system with rank $(\Sigma)=\operatorname{dim} E=n$. Fix a system of positive roots Σ^{+}in Σ. Furthermore we put $\Sigma_{0}=\{\alpha \in \Sigma ; \alpha \notin 2 \Sigma\}$ and $\Sigma_{0}^{+}=\Sigma_{0} \cap \Sigma^{+}$. Let W be the Weyl group and $\mathbf{C}[W]$ be the group algebra of W. Put $\mathfrak{a}=E^{*}, \mathfrak{h}=E^{*} \oplus i E^{*}$. The inner product in E and the reflections can be extended to \mathfrak{b}^{*} naturally. We identify \mathfrak{b}^{*} with \mathfrak{h} via the inner product (,):

$$
\lambda(u)=(\lambda, u) \quad\left(\lambda \in \mathfrak{h}^{*}, u \in \mathfrak{h}\right) .
$$

We define the endomorphisms σ_{α} and ε_{α} of $\mathbf{C}[W]$ as follows:

$$
\sigma_{\alpha}(w)=s_{\alpha} w
$$

and

$$
\varepsilon_{\alpha}(w)= \begin{cases}w & \text { if } w^{-1} \alpha \in \Sigma^{+} \\ -w & \text { otherwise }\end{cases}
$$

where $w \in W, \alpha \in \Sigma$. Furthermore for any $\lambda \in \mathfrak{h}^{*}$ and $\xi \in \mathfrak{h}$ we define $e_{\xi}(\lambda) \in \operatorname{End}(\mathbf{C}[W])$ by

$$
e_{\xi}(\lambda)(w)=(w \lambda, \xi) w .
$$

Consider the following system of differential equations for a $\mathbf{C}[W]$-valued function Φ on \mathfrak{h} :

$$
\begin{align*}
& \partial_{\xi} \Phi(u) \tag{1.1}\\
& \\
& =\left\{\sum_{\alpha \in \mathfrak{\Sigma}^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi)\left(\left(e^{\alpha(u)}+1\right)\left(e^{\alpha(u)}-1\right)^{-1}\left(\sigma_{\alpha}-1\right)+\sigma_{\alpha} \varepsilon_{\alpha}\right)\right. \\
& \\
& \left.\quad+e_{\xi}(\lambda)\right\} \Phi(u) ; \quad \xi \in \mathfrak{h},
\end{align*}
$$

where k_{α} are given complex numbers such that $k_{w \alpha}=k_{\alpha}$ for all $\alpha \in \Sigma$ and $w \in W$ (see Matsuo [4]).
\hat{W} denotes the set of the equivalence classes of the irreducible representations of W and v denotes the left regular representation of W. For $\delta \in \hat{W}$ let E_{δ} be a representation space of δ and $n_{\delta}=\operatorname{dim} E_{\delta}$. Then it is well known that $\mathbf{C}[W]=\sum_{\delta \in \hat{W}} \mathbf{C}[W]_{\delta}$, where $\mathbf{C}[W]_{\delta}=E_{\delta, 1} \oplus \cdots \oplus E_{\delta, n_{\delta}}$ and $E_{\delta, i}$ is equivalent to $E_{\delta}\left(i=1,2, \cdots, n_{\delta}\right)$. Since $E_{\delta, i}$ is an irreducible left ideal of $\mathbf{C}[W]$, there is some irreducible idempotent $\varepsilon_{\delta, i} \in \mathbf{C}[W]$ such that

$$
\begin{equation*}
E_{\delta, i}=\mathbf{C}[W] \varepsilon_{\delta, i} \quad\left(i=1,2, \cdots, n_{\delta}\right) \tag{1.2}
\end{equation*}
$$

χ_{δ} denotes the character of δ. We put

$$
\begin{equation*}
P_{\delta}=n_{\delta}|W|^{-1} \sum_{w \in W} \chi_{\delta}\left(w^{-1}\right) v(w) \tag{1.3}
\end{equation*}
$$

Then P_{δ} is the projection of $\mathbf{C}[W]$ onto $\mathbf{C}[W]_{\delta}$. We set

$$
\begin{equation*}
C_{\xi}=\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi) \sigma_{\alpha} \varepsilon_{\alpha}+e_{\xi}(\lambda) \tag{1.4}
\end{equation*}
$$

We have $v(w) C_{\xi} v(w)^{-1}=C_{w \xi}$ for any $w \in W$. Note that $\sum_{t \in W} C_{t \xi}^{d}$ commutes with the left regular representation of W for any natural number d. Let \mathscr{R} be the algebra of functions on $\left\{u \in \mathfrak{h}, e^{\alpha(u)} \neq 1\right.$ for any $\left.\alpha \in \Sigma_{0}^{+}\right\}$generated by $\left\{\left(1-e^{\alpha(u)}\right)^{-1} ; \alpha \in \Sigma^{+}\right\}$. $\mathfrak{H}(\mathfrak{h})$ denotes the set of all differential operators on \mathfrak{h} with constant coefficients. If P belongs to $\mathscr{R} \otimes \mathfrak{A}(\mathfrak{h}), P$ is expressed as

$$
\begin{equation*}
P=\sum_{\mu \in Q_{+}} e^{\mu} \partial\left(P^{\mu}\right), \tag{1.5}
\end{equation*}
$$

where P^{μ} is some element of the symmetric algebra of \mathfrak{h} and $Q_{+}=\left\{\sum_{\alpha \in \Sigma^{+}} n_{\alpha} \alpha\right.$; $\left.n_{\alpha}=0,1,2, \cdots\right\}$. We denote by $\mathbf{C}\left[\mathfrak{h}^{*}\right]$ the polynomial algebra on \mathfrak{h}^{*}. For $P=\sum_{\mu \in Q_{+}} e^{\mu} \partial\left(P^{(\mu)}\right) \in \mathscr{R} \otimes \mathfrak{U}(\mathfrak{h})$ the Harish-Chandra homomorphism $r: \mathscr{R} \otimes \mathfrak{A}(\mathfrak{h})$ $\rightarrow \mathbf{C}\left[\mathfrak{b}^{*}\right]$ is the algebra homomorphism defined by

$$
\begin{equation*}
r(P)(\lambda)=P^{(0)}(\lambda+\rho) \tag{1.6}
\end{equation*}
$$

where $\rho=\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right) \alpha, \quad \lambda \in \mathfrak{h}^{*}$. For $T \otimes P \in \operatorname{End}\left(\mathbf{C}[W]_{\delta}\right) \otimes(\mathscr{R} \otimes \mathfrak{A}(\mathfrak{h})) \quad$ we define

$$
\begin{equation*}
r_{\delta}(T \otimes P)(\lambda)=r(P)(\lambda) T \tag{1.7}
\end{equation*}
$$

We define the differential operator $D_{\delta, \xi}^{(d)} \in \operatorname{End}\left(\mathbf{C}[W]_{\delta}\right) \otimes(\mathscr{R} \otimes \mathfrak{A}(\mathfrak{h}))$ for $\delta \in \hat{W}$, $\xi \in \mathfrak{h}$ and a nonnegative integer d inductively by

$$
\begin{align*}
D_{\delta, \xi}^{(d)} & =\left(1_{\delta} \otimes \partial_{\xi}\right) D_{\delta, \xi}^{(d-1)} \tag{1.8}\\
& -\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi)\left(e^{\alpha}+1\right)\left(e^{\alpha}-1\right)\left\{\left(v_{\delta}\left(s_{\alpha}\right) \otimes 1\right) D_{\delta, s_{\alpha} \xi^{(d)}}^{(d-1)}-D_{\delta, \xi}^{(d-1)}\right\},
\end{align*}
$$

$$
\begin{equation*}
D_{\delta, \xi}^{(0)}=1_{\delta} \otimes 1, \tag{1.9}
\end{equation*}
$$

where 1_{δ} is the identity mapping on $\mathbf{C}[W]_{\delta}$ and $v_{\delta}=\left.v\right|_{\mathbf{C}[W]_{\delta}}$. We set

$$
\begin{equation*}
\tilde{D}_{\delta, \xi}^{(d)}=\sum_{t \in W} D_{\delta, t \xi}^{(d)} . \tag{1.10}
\end{equation*}
$$

2. The differential equations for the irreducible components

Our main theorem in this paper is the following
Theorem 2.1. Suppose that Φ is a $\mathbf{C}[W]$-valued function and satisfies (1.1). Then $\Phi_{\delta}=P_{\delta} \circ \Phi$ satisfies the following formulas:

$$
\begin{equation*}
\tilde{D}_{\delta, \xi}^{(d)} \Phi_{\delta}=\left(\sum_{t \in W} C_{t \xi}^{d}\right) \Phi_{\delta} \quad(d=0,1,2, \cdots) \tag{2.1}
\end{equation*}
$$

In particular $\sum_{t \in W} C_{t \xi}^{2}$ is a scalar operator on $\mathbf{C}[W]_{\delta}$ and we have

$$
\begin{align*}
& \tilde{D}_{\delta, \xi}^{(2)} \Phi_{\delta}=r_{\delta}\left(\tilde{D}_{\delta, \xi}^{(2)}\right)(\lambda) \Phi_{\delta}, \tag{2.2}\\
& r_{\delta}\left(\widetilde{D}_{\delta, \xi}^{(2)}\right)(\lambda) \\
& \quad=\sum_{t \in W}(\lambda, t \xi)^{2}-n_{\delta}^{-1} \sum_{t \in W} \sum_{\alpha, \beta \in \Sigma^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) \chi_{\delta}\left(s_{\alpha} s_{\beta}\right) .
\end{align*}
$$

We need the following lemmas to prove Theorem 2.1.
Lemma 2.2 ([4] Lemma 4.1.1). If $\Phi(u)$ is a solution of (1.1), we have

$$
\begin{equation*}
D_{\delta, \xi}^{(d)} \Phi_{\delta}=P_{\delta}\left(C_{\xi}^{d} \Phi\right) . \tag{2.4}
\end{equation*}
$$

Proof. We obtain (2.4) in the same way as [4] Lemma 4.1.1.
Lemma 2.3. Let $A \in \operatorname{End}(\mathbf{C}[W])$. If A commutes with the left regular representation of W and $A(1)$ belongs to the center of $\mathbf{C}[W]$, then A is a scalar operator on $\mathbf{C}[W]$.

Proof. From the conditions on A

$$
\begin{equation*}
A(x)=x A(1)=A(1) x \tag{2.5}
\end{equation*}
$$

for any $x \in \mathbf{C}[W] .\left.A\right|_{E_{\delta, i}}$ is the endomorphism on $E_{\delta, i}$ from (2.5) and commutes with the left regular representation on W. So A is a scalar operator on $E_{\delta, i}$ by Schur's lemma. There exists $f_{i, j} \in \mathbf{C}[W]$ such that

$$
\begin{equation*}
\varepsilon_{\delta, i} f_{i, j} \varepsilon_{\delta, j} \neq 0 \tag{2.6}
\end{equation*}
$$

because $\varepsilon_{\delta, i}$ and $\varepsilon_{\delta, j}$ are equivalent $\left(i, j=1,2, \cdots, n_{\delta}\right)$. If $\left.A\right|_{E_{\delta, i}}=\lambda_{i} \cdot 1 \quad\left(\lambda_{i} \in \mathbf{C}\right.$, $\left.i=1,2, \cdots, n_{\delta}\right)$, we have

$$
\begin{align*}
& A \varepsilon_{\delta, i}=\lambda_{i} \varepsilon_{\delta, i} \tag{2.7}\\
& A \varepsilon_{\delta, j}=\lambda_{j} \varepsilon_{\delta, j} . \tag{2.8}
\end{align*}
$$

Then we have

$$
\begin{align*}
& A\left(\varepsilon_{\delta, i}\right) f_{i, j} \varepsilon_{\delta, j}=\lambda_{i} \varepsilon_{\delta, i} f_{i, j} \varepsilon_{\delta, j}, \tag{2.9}\\
& \varepsilon_{\delta, i} f_{i, j} A\left(\varepsilon_{\delta, j}\right)=\lambda_{j} \varepsilon_{\delta, i} f_{i, j} \varepsilon_{\delta, j} . \tag{2.10}
\end{align*}
$$

(2.5) gives

$$
\begin{align*}
& A\left(\varepsilon_{\delta, i}\right) f_{i, j} \varepsilon_{\delta, j}=\varepsilon_{\delta, i} A(1) f_{i, j} \varepsilon_{\delta, j} \tag{2.11}\\
& \quad=\varepsilon_{\delta, i} f_{i, j} \varepsilon_{\delta, j} A(1)=\varepsilon_{\delta, i} f_{i, j} A\left(\varepsilon_{\delta, j}\right)
\end{align*}
$$

and we obtain $\lambda_{i}=\lambda_{j}$ from (2.9)-(2.11). Hence we can see that A is a scalar operator on $\mathbf{C}[W]_{\delta}$.
q.e.d.

Lemma 2.4. $\sum_{t \in W} C_{t \xi}^{2}(1)$ belongs to the center of $\mathbf{C}[W]$.
Proof. By the definition of C_{ξ}^{2} we get

$$
\begin{align*}
\sum_{t \in W} C_{t \xi}^{2}(1)= & \sum_{t \in W}(\lambda, t \xi)^{2} \cdot 1 \tag{2.12}\\
& \quad-\sum_{t \in W} \sum_{\alpha, \beta \in \Sigma^{+}}\left(k_{\alpha} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta} .
\end{align*}
$$

we set

$$
\begin{align*}
C_{0}= & \sum_{t \in W} \sum_{\alpha, \beta \in \Sigma_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta}, \tag{2.13}\\
C_{1}= & \sum_{t \in W} \sum_{\alpha \in \Sigma^{+} \backslash \Sigma_{0}^{+}, \beta \in \Sigma_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta} \tag{2.14}\\
& +\sum_{t \in W} \sum_{\alpha \in \Sigma_{0}^{+}, \beta \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta},
\end{align*}
$$

$$
\begin{equation*}
C_{2}=\sum_{t \in W} \sum_{\alpha, \beta \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta} \tag{2.15}
\end{equation*}
$$

Suppose $\gamma \in \Sigma_{0}^{+}$and $2 \gamma \notin \Sigma^{+}$. Then we see

$$
\begin{align*}
& s_{\gamma}\left(\Sigma^{+} \backslash \Sigma_{0}^{+}\right)=\Sigma^{+} \backslash \Sigma_{0}^{+}, \tag{2.16}\\
& s_{\gamma}\left(\Sigma_{0}^{+}\right)=\left(\Sigma_{0}^{+} \backslash\{\gamma\}\right) \cup\{-\gamma\} . \tag{2.17}
\end{align*}
$$

Since $s_{\gamma} s_{\alpha} s_{\gamma}^{-1}=s_{s_{\gamma}(\alpha)}(\alpha \in \Sigma)$, we get

$$
\begin{align*}
& s_{\gamma} C_{1} s_{\gamma}^{-1} \tag{2.18}\\
& \quad=\sum_{t \in W} \sum_{\alpha \in \Sigma^{+} \backslash \sum_{0_{0}^{+}}, \beta \in \Sigma_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{s_{\gamma(\alpha)}} s_{s_{\gamma(\beta)}} \\
& \quad+\sum_{t \in W} \sum_{\alpha \in \Sigma_{0}^{+}, \beta \in \Sigma^{+} \backslash \sum_{0}^{+}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{s_{\gamma}(\alpha)} s_{s_{\gamma}(\beta)}
\end{align*}
$$

If we replace $s_{\gamma}(\alpha)$ and $s_{\gamma}(\beta)$ with α and β, (2.15)-(2.17) imply

$$
\begin{align*}
& s_{\gamma} C_{1} s_{\gamma}^{-1}=\sum_{t \in W} \sum_{\substack{\alpha \in \Sigma^{+}+\Sigma^{+} \\
\beta \in\left(\mathbb{L}_{o}^{+} \backslash\{\gamma\} \cup \cup\right\}}}\left(k_{\alpha} k_{\beta} / 4\right)(\alpha, t \xi)(\beta, t \xi) s_{\alpha} s_{\beta} \tag{2.19}
\end{align*}
$$

(2.19) gives

$$
\begin{align*}
s_{\gamma} C_{1} s_{\gamma}^{-1} & -C_{1} \tag{2.20}\\
= & -2 \sum_{t \in W} \sum_{\beta \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\gamma} k_{\beta} / 4\right)(\gamma, t \xi)(\beta, t \xi) s_{\gamma} s_{\beta} \\
& -2 \sum_{t \in W} \sum_{\alpha \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\alpha} k_{\gamma} / 4\right)(\alpha, t \xi)(\gamma, t \xi) s_{\alpha} s_{\gamma} .
\end{align*}
$$

If we put $\alpha=s_{\gamma}(\beta)$, we have $s_{\gamma} s_{\beta}=s_{\alpha} s_{\gamma}, k_{\alpha}=k_{s_{\gamma}(\beta)}=k_{\beta}$ and the second term of the right hand side of (2.20) is

$$
\begin{align*}
& \sum_{t \in W} \sum_{\alpha \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\alpha} k_{\gamma} / 4\right)(\alpha, t \xi)(\gamma, t \xi) s_{\alpha} s_{\gamma} \tag{2.21}\\
= & \sum_{t \in W} \sum_{\beta \in \Sigma^{+} \backslash \Sigma_{0}^{+}}\left(k_{\beta} k_{\gamma} / 4\right)(\beta, t \xi)(-\gamma, t \xi) s_{\gamma} s_{\beta} .
\end{align*}
$$

(2.20) and (2.21) imply $s_{\gamma} C_{1} s_{\gamma}^{-1}=C_{1}$. we can see that $s_{\gamma} C_{0} s_{\gamma}^{-1}=C_{0}$ and $s_{\gamma} C_{2} s_{\gamma}^{-1}=C_{2}$ similarly.

Next suppose $\gamma \in \Sigma_{0}^{+}$and $2 \gamma \in \Sigma^{+}$. In this case we have

$$
\begin{align*}
& s_{\gamma}\left(\Sigma^{+} \backslash \Sigma_{0}^{+} \cup\{2 \gamma\}\right)=\Sigma_{0}^{+} \cup\{2 \gamma\}, \tag{2.22}\\
& s_{\gamma}(2 \gamma)=-2 \gamma . \tag{2.23}
\end{align*}
$$

By using (2.22) and (2.23) we can prove $s_{\gamma} C_{1} s_{\gamma}^{-1}=C_{1}$ similarly. Hence C_{1} belongs to the center of $\mathbf{C}[W]$. In the same way we can see that C_{0} and C_{2} belongs to the center of $\mathbf{C}[W]$ and this proves the lemma. q.e.d.

Lemma 2.5 (cf. [4] Lemma 4.1.2). For any $x \in \mathbf{C}[W]_{\delta}$ we have

$$
\begin{equation*}
r_{\delta}\left(D_{\delta, \xi}^{(d)}\right)(\lambda) x=C_{\xi}^{d}(1) x . \tag{2.24}
\end{equation*}
$$

Proof. When $d=0,(2.24)$ is valid. We assume that (2.24) holds for $d-1$. By using $v\left(s_{\alpha}\right) C_{s_{\alpha}}^{d-1}(1)=C_{\xi}^{d-1}\left(s_{\alpha}\right)$ we have

$$
\begin{align*}
& r_{\delta}\left(D_{\delta, \xi}^{(d)}\right)(\lambda) x= \tag{2.25}\\
- & r_{\delta}\left(\left(1_{\delta} \otimes \partial_{\delta}\right) D_{\delta, \xi}^{(d-1)}\right. \\
& \left.\left(k_{\alpha} / 2\right)\left(e^{\alpha}+1\right)\left(e^{\alpha}+1\right)\left(e^{\alpha}-1\right)^{-1}\left\{\left(v\left(s_{\alpha}\right) \otimes 1\right) D_{\delta, s_{\alpha} \beta}^{(d-1)}-D_{\delta, \xi}^{(d-1)}\right\}\right)(\lambda) x
\end{align*}
$$

$$
\begin{aligned}
& =(\lambda, \xi) r_{\delta}\left(D_{\delta, \xi}^{(d-1)}\right)(\lambda) x+\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi) v\left(s_{\alpha}\right) r_{\delta}\left(D_{\delta, s_{\alpha} \xi}^{(d-1)}\right)(\lambda) x \\
& =(\lambda, \xi) C_{\xi}^{d-1}(1) x+\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, t \xi) v\left(s_{\alpha}\right) C_{s_{\alpha} \xi}^{d-1}(1) x \\
& =\left\{(\lambda, \xi) C_{\xi}^{d-1}(1)+\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi) C_{\xi}^{d-1}\left(s_{\alpha}\right)\right\} x \\
& =C_{\xi}^{d-1}\left(C_{\xi}(1)\right) x .
\end{aligned}
$$

Therefore we get (2.25).
q.e.d.

Proof of Theorem 2.1. Suppose that $\Phi(u)$ is a solution of (1.1). Since $\sum_{t \in W} C_{t \xi}^{2}$ is a linear mapping and commutes with $v(w)$ for any $w \in W$, we have

$$
\begin{equation*}
P_{\delta}\left(\sum_{t \in W} C_{t \xi}^{2}\right)=\left(\sum_{t \in W} C_{t \xi}^{2}\right) P_{\delta} \tag{2.26}
\end{equation*}
$$

from (1.3). (2.1) follows from (2.4) and (2.26). By Lemmas 2.3 and 2.4 we see that $\sum_{t \in W} C_{t \xi}^{2}$ is a scalar operator on $\mathbf{C}[W]_{\delta}$. Since $\sum_{t \in W} C_{t \xi}^{2}(1)$ belongs to the center of $\mathbf{C}[W]$ we get (2.2) from (2.1) and (2.25). We obtain (2.3) by calculations. q.e.d.

Remark. Let δ_{0} and δ_{1} be the trivial representation and the alternative representation, respectively. Since $\mathbf{C}[W]_{\delta_{0}}$ and $\mathbf{C}[W]_{\delta_{1}}$ are 1-dimensional spaces, $\widetilde{D}_{\delta_{0}, \xi}^{(d)}$ and $\widetilde{D}_{\delta_{1}, \xi}^{(d)}$ belong to $\mathscr{R} \otimes \mathfrak{H}(\mathfrak{h})$. If Φ is a solution of (1.1), the following formulas are valid for $d=0,1,2, \cdots$:

$$
\begin{align*}
& \tilde{D}_{\delta_{0}, \xi}^{(d)} \Phi_{\delta_{0}}=r\left(\tilde{D}_{\delta_{0}, \xi}^{(d)}\right)(\lambda) \Phi_{\delta_{0}}, \tag{2.27}\\
& \widetilde{D}_{\delta_{1}, \xi}^{(d)} \Phi_{\delta_{1}}=r\left(\widetilde{D}_{\left.\delta_{1}, \xi\right)}^{(d)}\right)(\lambda) \Phi_{\delta_{1}} . \tag{2.28}
\end{align*}
$$

(2.27) is proved in Matsuo [4]. Since $\sum_{t \in W} C_{t \xi}^{d}(1)$ belongs to the center of $\mathbf{C}[W]_{\delta_{1}}$ we have (2.28) by (2.24).

3. An example of type $\boldsymbol{A}_{\mathbf{3}}$

In this section let Σ be the A_{3} type root ststem. We put $\mathfrak{a}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in\right.$ $\left.R^{3} ; t_{1}+t_{2}+t_{3}=0\right\}$ and $\mathfrak{h}=\mathfrak{a}+i \mathfrak{a}$. For $h=\left(h_{1}, h_{2}, h_{3}\right) \in \mathfrak{h}$ we define $\alpha_{i} \in \Sigma^{+}$ ($i=1,2,3$) as follows:

$$
\begin{align*}
& \alpha_{1}(h)=h_{1}-h_{2}, \\
& \alpha_{2}(h)=h_{2}-h_{3} \tag{3.1}\\
& \alpha_{3}(h)=\alpha_{1}(h)+\alpha_{2}(h) .
\end{align*}
$$

Let s_{i} be the reflection along α_{i}. We set

$$
\begin{align*}
& \varepsilon_{0}=\left(1+s_{1}+s_{2}+s_{1} s_{2}+s_{2} s_{1}+s_{1} s_{2} s_{1}\right) / 6, \\
& \varepsilon_{1}=\left(1+s_{1}-s_{2} s_{1}-s_{1} s_{2} s_{1}\right) / 3, \tag{3.2}\\
& \varepsilon_{2}=\left(1-s_{1}-s_{1} s_{2}+s_{1} s_{2} s_{1}\right) / 3, \\
& \varepsilon_{3}=\left(1-s_{1}-s_{2}+s_{1} s_{2}+s_{2} s_{1}-s_{1} s_{2} s_{1}\right) / 6
\end{align*}
$$

$\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$, and ε_{3} are irreducible idempotent elements of $\mathbf{C}[W]_{\delta}$ and $\mathbf{C}[W]=\underset{i=0}{3} \mathbf{C}[W] \varepsilon_{i}$ is the irreducible decomposition of $\mathbf{C}[W] . v$ acts trivially on $\mathbf{C}[W] \varepsilon_{0}$ and alternatively on $\mathbf{C}[W] \varepsilon_{3} . \quad \mathbf{C}[W] \varepsilon_{1}$ and $\mathbf{C}[W] \varepsilon_{2}$ are equivalent. Furthermore we have

$$
\begin{equation*}
\sum_{i=0}^{3} \varepsilon_{i}=1 \tag{3.3}
\end{equation*}
$$

$$
\varepsilon_{i} \varepsilon_{j}=\delta_{i, j} \varepsilon_{i}(i, j=0,1,2,3)
$$

If we put

$$
\begin{equation*}
P_{i} x=x \varepsilon_{i}(i=0,1,2,3, x \in \mathbf{C}[W]), \tag{3.4}
\end{equation*}
$$

then P_{i} is the projection onto $\mathbf{C}[W] \varepsilon_{i}$.
For $\sum_{w \in W} a(w) w$ and $\sum_{w \in W} b(w) w \in \mathbf{C}[W]$ we define

$$
\begin{equation*}
\left(\sum_{w \in W} a(w) w, \sum_{w \in W} b(w) w\right)=\sum_{w \in W} a(w) b(w), \tag{3.5}
\end{equation*}
$$

$(a(w), b(w) \in \mathbf{C}) . \quad($,$) is a non-degenerate bilinear form and for any w \in W$ and $u, v \in \mathbf{C}[W]$ we have

$$
\begin{equation*}
(w v, u)=\left(v, w^{-1} u\right) . \tag{3.6}
\end{equation*}
$$

If T is a linear mapping on $\mathbf{C}[W]$ and satisfies the formula $(T x, y)=(x, T y)$ (resp. ($T x, y$) $=(x,-T y)$), we call T is symmetric (resp. anti symmetric) with respect to the bilinear form (,).

We put $v_{i}=\left.v\right|_{C_{[W] \varepsilon_{i}}}$ and

$$
\begin{align*}
D_{i, \xi}^{(d)} & =\left(1 \otimes \partial_{\xi}\right) D_{i, \xi}^{(d-1)} \tag{3.7}\\
& -\sum_{\alpha \in \Sigma^{+}}\left(k_{\alpha} / 2\right)(\alpha, \xi)\left(e^{\alpha}+1\right)\left(e^{\alpha}-1\right)\left\{\left(v_{i}\left(s_{\alpha}\right) \otimes 1\right) D_{i, s_{\alpha} \xi^{(d-1}}^{(d-1)}-D_{i, \xi}^{(d-1)}\right\},
\end{align*}
$$

$$
\begin{equation*}
D_{i, \xi}^{(0)}=1 \otimes 1, \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{D}_{i, \xi}^{(d)}=\sum_{t \in W} D_{i, \xi}^{(d)} \tag{3.9}
\end{equation*}
$$

For $T \otimes P \in \operatorname{End}\left(\mathbf{C}[W] \varepsilon_{i}\right) \otimes(\mathscr{R} \otimes \mathscr{A}(\mathfrak{h}))$ we define $r_{i}(T \otimes P)$ in the same way as (1.7).

We shall prove the following theorem in this section.
Theorem 3.1. If Φ is a solution of (1.1), we have

$$
\begin{equation*}
\widetilde{D}_{i, \xi}^{(d)} \Phi_{i}=r_{i}\left(\tilde{D}_{i, \xi}\right)(\lambda) \Phi_{i} \quad(d=0,1,2, \cdots), \tag{3.9}
\end{equation*}
$$

where we put $\Phi_{i}=P_{i} \Phi$.
We need the following lemma to prove Theorem 3.1.
Lemma 3.2. $\sum_{t \in W} C_{t \xi}^{d}(1)$ belongs to the center of $\mathbf{C}[W](d=0,1,2, \cdots)$.
Proof. Since $\sigma_{\alpha} \varepsilon_{\alpha}$ is anti symmetric and $e_{\xi}(\lambda)$ is symmetric with respect to the bilinear form (,), $\sum_{t \in W} C_{t \xi}^{d}$ is expressed as follows:

$$
\begin{equation*}
\sum_{t \in W} C_{t \xi}^{d}=A_{\xi, d}+B_{\xi, d}, \tag{3.10}
\end{equation*}
$$

where $A_{\xi, d}$ is symmetric and $B_{\xi, d}$ is anti symmetric with respect to the bilinear form (,) and $A_{\xi, d}(1)$ is a linear combination of even products of reflections and $B_{\xi, d}(1)$ is a linear combination of odd products of reflections. For any $w \in W$ we see that $v(w) A_{\xi, d} v(w)^{-1}$ is symmetric and $v(w) B_{\xi, d} v(w)^{-1}$ is anti symmetric by (3.6). Therefore $v(w) A_{\xi, d} v(w)^{-1}=A_{\xi, d}$ and $v(w) B_{\xi, d} v(w)^{-1}=B_{\xi, d}$ because $v(w)\left(\sum_{t \in W} C_{t \xi}^{d}\right) v(w)^{-1}=\sum_{t \in W} C_{t \xi}^{d}$ for any $w \in W$. Then we have for any $w \in W$

$$
\begin{equation*}
\left(A_{\xi, d}(1), w-w^{-1}\right)=0 \tag{3.11}
\end{equation*}
$$

because $\left(A_{\xi, d}(w), 1\right)=\left(w A_{\xi, d}(1), 1\right)=\left(A_{\xi, d}(1), w^{-1}\right)$ and $\left(A_{\xi, d}(w), 1\right)=\left(w, A_{\xi, d}(1)\right)$ $=\left(A_{\xi, d}(1), w\right)$. Similarly we have for any $w \in W$

$$
\begin{equation*}
\left(B_{\xi, d}(1), w+w^{-1}\right)=0 . \tag{3.12}
\end{equation*}
$$

Since $\left\{1, s_{1}, s_{2}, s_{1} s_{2} s_{1}, s_{1} s_{2}+s_{2} s_{1}, s_{1} s_{2}-s_{2} s_{1}\right\}$ is a basis of $\mathbf{C}[W], A_{\xi, d}(1)$ and $B_{\xi, d}(1)$ are expressed as follows:

$$
\begin{align*}
A_{\xi, d}(1)= & a_{0} \cdot 1+a_{1} s_{1}+a_{2} s_{2}+a_{3} s_{1} s_{2} s_{1} \tag{3.13}\\
& +a_{4}\left(s_{1} s_{2}+s_{2} s_{1}\right), \\
B_{\xi, d}(1)= & a_{5}\left(s_{1} s_{2}-s_{2} s_{1}\right), \tag{3.14}
\end{align*}
$$

where $a_{0}, \cdots, a_{5} \in \mathbf{C}$. Hence we get $B_{\xi, d}(1)=0$ and $A_{\xi, d}(1)=a_{0} \cdot 1+a_{4}\left(s_{1} s_{2}+\right.$ $s_{2} s_{1}$). This shows that $\sum_{t \in W} C_{t \xi}^{d}(1)$ belongs to the center of $\mathbf{C}[W]$. q.e.d.

Proof of Theorem 3.1. In the same way as Lemma 2.2 and Lemma 2.5 we have for $i=0,1,2,3$

$$
\begin{align*}
& \tilde{D}_{i, \xi}^{(d)} \Phi_{i}=\sum_{t \in W} C_{t \xi}^{d} \Phi_{i}, \tag{3.15}\\
& r_{i}\left(D_{i, \xi}^{(d)}\right)(\lambda) x=C_{\xi}^{d}(1) x \quad\left({ }^{\forall} x \in \mathbf{C}[W] \varepsilon_{i}\right) . \tag{3.16}
\end{align*}
$$

From (3.15), (3.16) and Lemma 3.2 we can prove (3.9) in the same way as the proof of Theorem 2.1.
q.e.d.

References

[1] I. V. Cherednik, Integration of quantum many-body problems by affine KZ equations. Preprint of RIMS, Kyoto, 1991.
[2] G. J. Heckman, Root systems and hypergeometric functions II, Comp. Math., 64 (1987), 353-373.
[3] G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math., 64 (1987), 329-352.
[4] A. Matsuo, Integrable connections related to zonal spherical functions, Invent. Math., 110 (1992), 95-121.
[5] E. M. Opdam, Root systems and hypergeometric functions III, Comp. Math., 67 (1988), 21-49.
[6] E. M. Opdam, Root systems and Hypergeometric functions IV, Comp. Math., 67 (1988), 191-207.

Department of Mathematics
Faculty of Science
Hiroshima University and
Department of Mathematics
Faculty of Integrated Arts and Sciences
Hiroshima University

