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UJ(χ)=\\χ-.Abstract: This paper deals with Riesz potentials U Λ f ( x ) = \\x — y\*~"f(y)dy of

functions / satisfying Orlicz condition with weight ω in the form:

j ΦP(\f(y)\)<»(\y\)dy < oo.

We are mainly concerned with the case when Φp(r)/rp, p > 1, is nondecreasing and

ω(r) is of the form rβ, — n < β < cup — n. Letting έ be the integer such that

S < α — (n + β)/p <ί + 1, we examine when

x-*0,xeRn-E

holds for an exceptional set £, a weight function K and a polynomial P of degree at

most t.

1. Introduction

For 0 < α < n and a nonnegative measurable function /on Rn, we define

I/./by

UJ(χ)= ί \χ - yΓΛf(y)dy.
JR»

Here it is natural to assume that UΛfφ oo, which is equivalent to

(1.1) ί (i + \y\Γnf(y)dy<π.
JRn

To obtain general results, we treat functions / satisfying a condition of
the form:

(1.2) ί Φp(f(y))ω(\y\)dy «x>.
JRn
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Here Φp(r) and ω(r) are positive monotone functions on the interval (0, oo)
with the following properties:

(φ 1) Φp(r) is of the form rpφ(r), where 1 < p < oo and φ is a positive

nondecreasing function on the interval (0, oo); set φ(0) = limφ(r).

(φ2) φ is of logarithmic type, that is, there exists A^ > 0 such that

AΪ l φ(r) < φ(r2) < A1 φ(r) whenever r > 0.

(ω 1) ω satisfies the doubling condition that is, there exists A2 > 0 such that

^2 1 co(r) < ω(2r) < A2ω(r) whenever r > 0.

It is known (see [7]) that if p > 1 and

(1.3) ίJo

then UΛf is continuous everywhere on Rn possibly except at the origin; in
case oφ > n, (1.3) holds by condition (φ2) and the continuity also follows from
Sobolev's theorem. More precisely, we shall show (Theorem 4.2) that if
p = n/α > 1, ω(r) = 1 and (1.3) holds, then

(1.4) t/α/(x)-

as x->0, where

This gives an extension of Sobolev's theorem as far as we restrict ourselves
to the limiting case ap = n; for this, see also Maz'ya [2, Theorem 5.4]. Typical
examples of φ satisfying (1.3) in case αp = n are

for δ > p — 1.
If (1.3) does not hold, then the potential may not be continuous anywhere,

and the second author ([8]) studied the fine limits of C/α/, that is,

with an exceptional set E which is thin at 0 in a certain sense (see also
Adams-Meyers [1] and Meyers [5]). In this paper, we extend this result
and in fact show that
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with an exceptional set £, a weight function c and a polynomial P; we are
concerned mainly with the case κ(0) = 0.

For this purpose, let RΛ(x) = \x\*~n and consider the remainder term of
Taylor's expansion:

Kα,,(x, y) = RΛ(x - y) - £ - L(D»Ra)(- y)].

Then our aim is to investigate the behavior at the origin of the function:

_ Γ
» I «,

Here it is natural to assume that

(1.5) ί \yΓn-'f(y)dy < oo

and

ί
J Rn-B(0,l)

instead of (1.1), where β(0, 1) denotes the unit ball.
For simplicity, consider the case ω(r) = rfi

9 where — n < β < αp — n, and
let / be the nonnegative integer such that

/ < α - (n + j5)/p < / 4- 1.

We shall show (in Corollary 5.1 given later) that if / satisfies (1.1) and (1.2)
with p > 1, then there exist a set EeRn and a polynomial Pf such that

(L7) ^o5s-
and

(1.8) Σ 2«"-">[φ(2θ]- x €,,„>„(£,.; B,) < oo,
j=l

where Ej = {xeE: 2~j < \x\ < 2~J'+1}, B^ = {x: 2'-'-1 < |x |<2~^ 2 } and
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see Section 5 for the definition of Cα>φ . Note here that

CΛtΦp(Aj'9 Bj) ~ 2-J«*-">φ(2J)9 Aj = 5(0, 2~j+ί) - 5(0, 2~j)

(cf. [8, Lemma 7.3]), and our definition of thinness differs from that of
Adams-Meyers [1]. If in addition (1.3) holds, then the above fine limit is seen
to be replaced by the usual limit similar to (1.4); moreover, (1.7) implies that
UΛf is / times differentiable at the origin.

To derive the radial limit result, we modify this as follows (see Corollary
6.1): there exist a set E c Rn and a polynomial Pe such that

(1.9) lim \x\(n-*p+β)lpίUJ(x) - P,(x)] = 0
x->0,xeRn-E

and

(1.10) £ Cα,φp(2%;50)<oo;

note here that r

(n~Λp+β)/p < M[κ(r)Yl, and hence (1.9) is weaker than (1.7). It
will be seen that (1.10) is more convenient than (1.8) to our aim of deriving
the radial limit result.

2. Preliminary lemmas

Throughout this paper, let M, M1, M2,..., denote various constants
independent of the variables in question.

First we collect properties which follow from conditions (φl) and (φ2)
(cf. [8, Preliminary lemmas]).

LEMMA 2.1. φ satisfies the doubling condition, that is, there exists A > 1
such that

φ(r) < φ(2r) < Aφ(r) whenever r > 0.

LEMMA 2.2. For any y > 0, there exists A(y)> 1 such that

A(γ)~lφ(r) < φ(ry) < A(y)φ(r) whenever r > 0.

LEMMA 2.3. If y > 0, then

sγφ(s~ί)<MtYφ(t~1) whenever 0 < s < t.

PROOF. We know ([8, (φ5)])

sγφ(s~1) < A^tyφ(t~l) whenever 0 < s < t < Aϊi/y,

so that
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(2.1) svφ(s'1)^Mtyφ(t~l) whenever 0 < s < t < 1.

If we apply (2.1) with \l/(r) = IXr'1)]"1, then

sy ty

(2.2) < M whenever 0 < s < t < 1.
φ(s) φ(t)

In particular,

M~lφ(\) < s~yφ(s) whenever 0 < s < 1.

Hence, in case 0 < s < 1 < ί, we have by (2.1) and the last inequality

syφ(s~1) < Mφ(l) < M't

In case 1 < 5 < ί, we have by (2.2)

-^77<M —

Thus Lemma 2.3 is proved.

LEMMA 2.4. If a > 0 and b > 0, then for 0 < r < 1,

Γ1 -α -1 -b -1 -α -1 -b

J r

REMARK 2.1. The converse inequality also holds for 0 < r < 1/2. In fact,
by the doubling condition on φ,

Γ1 -α -1 -b -1 Γ2' -a -1 -b -1 -α -1 -b
} r

t φt t _ ^ t φ t φr

PROOF OF LEMMA 2.4. Letting 0 < y < a/b, we have by Lemma 2.3,

Γ1 -a -1 -b -1 - b -1 -b Γ

Jr - r φr ^ t

LEMMA 2.5. If a > 0 αwrf fc is a real number, then for r > 0,

ίJo

In fact, if b < 0, then the required inequality follows since [^(r"1)]"1 is
nondecreasing. The case b > 0 can be obtained by applying Lemma 2.3 and
the proof of Lemma 2.4.
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3. The estimates of UΛ^f

For an integer /, we consider the potential

l/α,,/(x) = ί RΛfAx9

JR"

in case / < — 1, UΛ^f(x) is nothing but UΛf(x)9 so that, in this paper, we
assume that f > 0.

Write UΛt,f(x) = U^x) + U2(x) + I73(x) for xεR" - {0}, where

£72(

(*)= f Λ../fe
JΛ"-B(0,2|x|)

x) = ί Λβf/(x,
Jβ(0,|x|/2)

t>3(χ) = ί Λ.f/(χ,
JjKO,2|x|)-B(0,|jc|/2)

, |x|/2),LEMMA 3.1.

PROOF. Since |j;| < |x|/2, we have

μ!

LEMMA 3.2. // yeB(0, 2|x |) - B(0, |x|/2),

PROOF. We have as above

\μ\<.(

<M\x-y\"-n.

LEMMA 3.3. If \y\ > 2\x\, then
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PROOF. By Taylor's theorem, we obtain

LEMMA 3.4 (cf. [8, Lemma 2.1]). Let p > 1 β«rf f be a nonnegative
measurable function on R". If 0 < 2r < a < 1 αwrf 0 < <5 < /?, then

ί \yΓ"f(y)dy < ί |y|*
JRn-B(0,r) JRn-B(Q,a)

ί Γ r n β, ,,-, '/ i jY 'Ύf+ M( [tn βpη(i)YPlpt~ldt\ I Φ
VJr / \Jβ(0,α)

if 0 < 2r < a < 1 α«rf δ>0> β, then

( β-n Γ

α \ l / p ' / f
[tn βpη(i)~\~p'lpt~ldt\ I Φp

/ \Jβ(0,α)

•e f|(r) = φ^-^ωίr) and 1/p + 1/p' = 1.

PROOF. Let 0 < a < 1. We write

ί \y\β-*f(y)dy = I lyl^Vty)^

+ ί \y\β'nf(y)dy
J{j>eB(0,α)-B(0,r):0</(y)s|y|-«}

= t/11 + 1^12-

From Holder's inequality, we obtain

/ωx/ωjωdyi)^

α \ l / p '
\y\(β-n)p'lφ(f(y))ω(\y\)Tp'lpdy) .

vyeB(0,α)-B(0,r):/(y)>|y|-«5} /

In view of Lemma 2.2, we see that if f(y) > \y\ , then
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Hence it follows that

a " \1 / p '/ f V / p

[f-"η(t)Γ'f"t-1dt) *r(f(y))<o(\y\)dy\ .
/ \JB(0,a) /

On the other hand, we have

< f
Jβ(0,α)-B(0,r)r)

m j , (aβ-*9 incase β - δ > 0,
< M < Λ ,

(y- 5, incase 0 - 5 < 0,

and thus Lemma 3.4 is proved.

Setting η(r) = φ(r~l)ω(r) as above, we define

α i
in case p > 1,

sup ί"'^"1'"^^)]'1, incase p = 1,
r<ί<l

for 0 < r < 1/2; further, set fc^r) = Ml/2) when r > 1/2.

REMARK 3.1. In view of the doubling conditions on φ and ω, we see that

K^r) > M[rn-Λp+('+ί)pη(r)']-1/p whenever 0 < r < 1/2.

LEMMA 3.5. Let f be a nonnegative measurable function on Rn. If
0 < 2 \x\ < a < 1 and 0 < ί < α - / - 1,

1/P

and ί / 0 < 2 | x | < α < l

' f i*-'-
jRn-B(0,a)

a \l/P
ΦP(f(y))co(\y\)dy\ ,

where M is a positive constant independent of x and a.
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PROOF. By Lemma 3.3, we have

I
J R»-B(0,2\X\)

The case p> 1 follows readily from Lemma 3.4 with r = |x|, and the case
p = 1 is trivial.

In view of Lemma 3.5, we have the following results.

COROLLARY 3.1. Let f be a nonnegative measurable function on Rn

satisfying (1.2) and (1.6). 7 / " α - / - l > 0 and ^(0) = oo, then

PROOF. By Lemma 3.5, we have

U *P(f(y))<o(\y\)dy
B(0,α)

for any a > 0, which implies that the left hand side is equal to zero.

COROLLARY 3.2. Let f be a nonnegative measurable function on Rn

satisfying conditions (1.2) and (1.6). If a — f — 1 < 0 and

Jim r*~δ [/ + 1

 Kl (r)] ~ 1 = 0 for some δ > 0,

then

.

This can be proved in a way similar to the proof of Corollary 3.1.

In view of Lemmas 3.1 and 3.4, we can establish the following result.

LEMMA 3.6. 7 / Ό < < 5 < α — <f, then there exists a positive constant M such
that

\ ι / pα \ι
ΦP(f(y))ω(\y\)dy)

-3(0,|x|/2) /

for any xe£(0, 1/2) - {0}, where
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κ2(r) =
(l>*-**+'pη(t)y*'l*t-ldt\ , in case p > 1,

o

sup tΛ~'~n[η(i)Yl, in case p = 1.
0<ί<r

REMARK 3.2. As in Remark 3.1, we see that

With the aid of Lemma 3.6, we have the following result.

COROLLARY 3.3. Let f be a nonnegative measurable function on Rn

satisfying (1.2). If Q <δ <QL — t, κ2(l) < oo and

then

lim

REMARK 3.3. Let ω(r) = rβ. If α - (n + /?)//> < / + 1, then Lemma 2.4
implies that

' < ~ " p a s r

and thus

κί(0)= oo.

If in addition n -f /? > 0, then we see by Lemma 2.3 that

r->0 r->0

for 0 < δ < (n + β)/p.

REMARK 3.4. Let ω(r) = rβ. If / < α — (n + β)/p9 then Lemma 2.5 implies
that

κ2(r)~[f-*p+'p+βφ(r-l)Yllp as r->0.

If in addition n + β > 0, then we see by Lemma 2.3 that

limsuprα-<V/c2(r)]-1 < Mlim supr("+Λ/J'-*[φ(r-1)]1/l' = 0
r-O r-^0

for 0 < δ < (n + β)/p. If p > 1 and / = α - (n + β)/p, then /c2(l) < oo is
equivalent to
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Γ
J^

4. Taylor expansion

Throughout this section, let p > 1. Set

and

If φ*(l) < oo, then UΛf is continuous everywhere on Rn possibly except at the
origin when / satisfies (1.1) and (1.2) (see [7, Theorem 1]).

LEMMA 4.1. IfQ < δ < α, then there exists a positive constant M such that

>α P
H(0,2|x|)-B(0,|x|/2)

Φp(f(y))<*>(\y\)dy] + M|xΓ*

for any xeB(0, l/2)-{0}.

PROOF. Let 0 < δ < α, and consider the function

(f(y), for yeB(0, 2|x|) - B(0, |x|/2),

[ 0, otherwise.

Note by Lemma 3.2 that

|L/ 3 (x) |<M| \x-y\'-*f(y)dy
JB(0,2|x|)-B(0,|x|/2)

= M I \z\ -f(x + z)dz.

JB(0,2|jc|)-B(0,|

Hence it follows from Lemma 3.4 that

|t/3(χ)|

[f'- 'φίΓ-^-^r-^Γ Φ p ( f ( xα3i*ι λ1^'/ Γ
[f'- 'φίΓ-^-^r-^ΓJ ί

U *
B(0,2|jc|)-B(0,|jc|/2)

-δ
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α ΦP(f(y))ω(\y\)dy
5(0,2|x|)-B(0,|x|/2)

as required.

We consider the function

•jf i \ ^ 4-1
/V \Γj — Γ

Here note that

(4.1) K(r)

for r > 0.

THEOREM 4.1. Assume that ^ < α, limr_0 K(r) = 0 and

κ1(0) = oo in case α — / — 1 > 0,

lim rΛ~δ [r/+1ic1(r)]~1 = 0 for some δ > 0 in case α - t - 1 < 0,

lim ra~δ[/κ2(r}]~1 = 0 for some δ such that 0 < δ < α — Λ
r-»0

lim r""* [κ:3(r)]~1 = 0 >r ^m^ δ > 0.

If f is a nonnegative measurable function on Rn satisfying conditions (1.2) and
(1.6), ώαi

x-^O

PROOF. We may assume that 0 < δ < α. Since limr_>0 r
Λ~δ[κ^(r)~\~l = 0,

we see by Lemma 4.1 that

χ-+0

In view of Corollaries 3.1, 3.2 and 3.3, we have

jc->0

and hence

x^ 0 '

Thus we complete the proof of Theorem 4.1.

REMARK 4.1. Let ω(r) = rβ. If n + β > 0, then we see by Lemma 2.3 that

''ΊΊcΛrVΓ1 =0
r-*0
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for 0 < δ < (n + β)/p.

REMARK 4.2. Let ω(r) = rβ, where - n < β < αp - n. Let S be the
integer such that

t < α - (n + β)/p < f + 1.

Then we see with the aid of Remarks 3.3, 3.4 and 4.1 that

X(r) - [r"-βj>+^φ(r-1)]-1/l> when t < α - (n + j3)/p < / + 1, n - αp < 0,

a l>(ί~1)]~p'"ί~1Λ
3 /

when / < α - (n + j3)/p < / + 1, n - αp = 0,

α \ l / p '
[pίί-1)]-"^-1*

0 /
when ( = α - (n + β)/p.

In all cases, if K(l) < oo, then

lim K(r) = 0.

REMARK 4.3. Let ω(r) = rβ, where — n < β < αp - n. If α — (n + /?)/p
< / + 1 and / satisfies (1.2), then the proof of Lemma 3.4 shows that (1.6)
is fulfilled.

COROLLARY 4.1. Let ω(r) = rβ with — n < β < αp — n. Let / be a
nonnegative measurable function on Rn satisfying conditions (1.1) and (1.2). If
t < α — (n + /?)/p < / + 1 #«ί/ K(l) < oo, then there exists a polynomial Pf of
degree at most t such that

lim lK(\x\)Γ^UJ(x) - P,(x)] = 0

with K as in Remark 4.2.

In fact, since κ2(l) < oo, (1.5) holds, and further (1.6) holds by Remark
4.3. Hence

tWM = 1/./M - Σ ̂
\μ\<t μl

With the aid of Remarks 3.3, 3.4, 4.1 and 4.2, Theorem 4.1 gives the present
corollary.

Since limr_0 r~*K(r) = 0, Corollary 4.1 implies that UΛf is / times
differentiate at the origin. On the other hand, Corollary 4.1 says that
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as x-»0.

We next show that this holds locally uniformly in the following sense.

THEOREM 4.2. Let p — n/ot, > 1, and f be a nonnegative measurable function
on Rn satisfying (1.1) and

(4.2) I Φp(f(y])dy «x>.
JR

If φ*(l) < oo, then

p

R"

when \x — z\ -»0 and x, z are in a compact set in Rn.

PROOF. First nore that ω(r) = 1 and t = 0 in this case, and hence

K(r) ~ φ*(r)

because of Remark 4.2. Moreover, if 0 < β < min {1, α} and 2 |x — z\ < a < I,
then Lemmas 3.5, 3.6 and 4.1 establish

\UJ(x) - UJ(z)\ <M\x-z\ Ga(x) + M|x - z|> + MK(\x - z\)Fa(x)9

where

Gβ(x)

and

= f I*-.
J Rn-B(x,a)

Since

α \ l / P
*,(/(y))<ίy

B(x,a) /

lim sup
r~*0 I

xeRn J β(x,r)

for any integrable function g on Rn, for given ε > 0 there exists a0 > 0 such
that FΛO(x) < ε for all x. On the other hand, since GΛo(x) is continuous on

Rn, it is bounded on a compact set. Hence, noting that limry[φ*(r)]~1 = 0

whenever y > 0, for any compact set E in Rn we can find δ > 0 so small that

\UJ(x)-UJ(z)\<εφ*(\x-z\)

whenever xeE and |x — z\ < δ. Thus the present theorem is obtained.
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REMARK 4.4. Maz'ya proved Theorem 4.2 for Sobolev functions u for
which (4.2) is satisfied with / replaced by |grad u\ (see [2, Theorem 5.4]).

REMARK 4.5. Theorem 4.2 can be extended to higher differences of order
t, in view of Corollary 4.1.

Here we discuss the best possibility of Corollary 4.1 (Theorem 4.2) as to
the order of infinity in case ocp = n and ω(r) = 1.

PROPOSITION 4.1. Assume φ*(l) < oo. Then, for any s > 0, there exists
a nonnegative measurable function f on Rn satisfying (4.2) with p = n/α such
that C/α/(0) < oo and

lim [KdxDΓ*-1 {UJ(x) - l/β/(0)} = - oo.

PROOF. Note that K(r) ~ φ*(r) in this case (cf. Remark 4.2). Let
0 < ε < p' — 1 and p' — 1 - ε < δ < p' — 1. We define

f(y) = LK(\y\)Tδ\yΓl<p(\y\-1)TpΊp for yeB = B(0, 1).

In view of Lemma 2.3, for γ > 0,

(4.3) syK(s)~ 1 < MtyK(tΓ 1 whenever 0 < s < ί,

so that we see that

φ(f(y)) = φ(\.K(\y\)Ti\yΓίφ(\y\-1)TpΊp}

for yeB. Consequently we establish

ί Φ,(f<y))dy= ί
JB J

*

<M ί ίK(\y\)Tip\yΓ«Ίφ(\y\-1)T'''+1dy
JB

<M ί Lφ*(\y\)Tίp\yΓnlφ(\yΓ1)Tp'"'dy
JB

= M Γ {[φ*(r)]' }-""'1 •{[φ*(r)]"'}' ̂ r
Jo

= M t~δp/p'dt< oo,
Jo

with ί* = [φ*(l)]p/. Thus it follows that / satisfies (4.2). Similarly, we have
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= f \yΓ"f(y)dy
JB

= I \yΓ"LK(\y\)Γi\y\~'[.φ(\y\~1)Γ''"dy
JB

< f l>*(lyl)ralyΓ"l>(l)'Γ1)rp'/p^
JB

= M Γ
Jo

t-'"Ά<oo.
Jo

We write

U2(χ) = - ί \yΓ"f(y)dy + f |χ - yrπ/(y)<ίy = - / + J.
Jβ(0,|x|/2) Jβ(0, |x |/2)

Letting r* = [<p*(|x|/2)]p, we have as above

/ > M rw A = Mlφ*(\x\/2)Yδ+p' > M[K(\x\)Yδ+p',
Jo

so that

I ' ^^o L ^1 l^-i ~

On the other hand, letting r = |x| < 1, we have

J

, |x | /2 )

r/2

Jβ(0,| jc |/2)

<M|xΓ" ί LK(\y\)Γs\y\-*ίφ(\yΓ1)ΓpΊpdy
Jβ(0,

-M ""l
„ α „ Γ

-M rΊoo

Mr"-"

In view of Lemma 2.2, we have
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LK(r)Y > I lφ(t-l)Γp'lpt-*dt > Lφ(r~2)ΓpΊp Γ t~l dt
Jr* Jr2

1)]-^log- (M > 0),
r

so that

Moreover, by Lemma 3.2, we have

Jβ(0,2|jc|)-5(0,| *1/2)

-1 -p'lP Γ

JB(0,

\x-y\-dy
2|*|)-Λ(0,|jc|/2)

Similarly, by Lemmas 3.3 and 2.4, we have

| lM*)l<M|x|

= M|x|
\x\

jR"-B(0,2|x

L,w

£
ί'J 2 |

Thus it follows that

which together with (4.4) yields
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lim [Kdxl)]-*'1 (U.f(x) - I7./(0)} = - oo.

Thus / has all the required properties.

5. Fine limits

For a set E c R" and an open set G c R", we define

ί ;G) = inf f
• J<

C,,- (£;G) = inf Φ,(β(y))dy,p\
G

where the infimum is taken over all nonnegative measurable functions g on
Rn such that g vanishes outside G and UΛg(x) > 1 for every xeE (cf. Meyers

[3])
In what follows, we collect elementary properties of this capacity (cf. [8,

Lemma 2.2]).

LEMMA 5.1. Cα>φp( ; G) is countably subadditive.

LEMMA 5.2. Let G and G' be bounded open sets in Rn. If F is a compact
subset of GnG', then there exists M > 0 such that

CΛ,ΦP (E;G)< MCΛtΦp (E G') for any E c F.

LEMMA 5.3. Let G and G' be bounded open sets in R". If CΛ,φp ( E ; G ) = 0,
then CΛ>φp(EnG'; G') = 0.

LEMMA 5.4. Let G and G' be bounded open sets in Rn. If CΛtΦp ( E ; G ) = 0,
E c= G, then, for any positive nonincreasing function ω on (0, oo), there exists
a nonnegative measurable function f on G such that UΛf φ oo, UΛf= oo on E

and Φp(f(y)}ω(p(y))dy < oo, where p(y) denotes the distance of y from the
JG

boundary dG.

For a nonnegative function χ on the interval (0, 1], consider the
generalized doubling condition:

(χ) χ(r) < Mχ(s) whenever 0 < r/2 < s < 2r < 1.

For monotone functions, (χ) is just the doubling condition as mentioned
before. For r > 0 and E c= Rn, set

r£= {rx: xeE}.

LEMMA 5.5 (cf. [8, Lemma 2.3]). Let χi9 i = 1, 2, 3, be positive functions
on (0, 1] satisfying condition (χ). If f is a nonnegative function satisfying
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(5.1)
f
I Φ

Jβ(0,l)

then there exists a set E c Rn such that

(i) lim
- n -

(ϋ) Σ X3(2-j)CΛtΦp(Lχ2(2-^ΓίEjι [χ2(2'^ylB^ < oo,
j=ι

J = {xeE: 2~j < \x\ < 2~j+ί}9 Bj = {xeRn: 2~j~l < \x\ < 2~j+2} and

u(χ)= f \*-yΓnf(y)dy.
JB(0,2\x\)-B(0,\X\/2)

PROOF. For a sequence {α,-} of positive numbers, consider

Ej = {xeRn: 2-J < \x\ < 2^+1, I7(x) > β/1 Dddxl)]-1}

and

If xεEj = {xεE: 2~j < \x\ < 2~ /+1}, then

v Bj

f α-n -1
J I J J

where rJ = [χ2(2~J)T1 and t, = [χι(2~/)]r7«. Hence it follows from the
definition of CXtΦp that

Ca,φp(/-,-£,.; rjBj) < \ Φp(Majtjf(r^z))dz

- f
I P J J J

v Bj

Now it suffices to choose {α,} so that lim α,- = oo but

J JBj

(see the proof of Lemma 2.3 in [8]).

< oo
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THEOREM 5.1. Set κ(r) = /+iκ1 (r) + r/κ2(r). Assume that f < α, limr^0 κ(r)
= 0 and

/^(O) = oo in case α — / — 1 > 0,

lim rΛ~ό[τ/+1κ1(r)y1 = 0 for some δ > 0 in case α - < - 1 < 0,

lim r*~0[r'κ2(r)Yl = 0 for some δ such that 0 < δ < α - t.

Further, let κ4(r) = {jrn~Λpη(r)~\~llp. If f is a nonnegative measurable function
on Rn satisfying (1.2), (1.6) and

(5.2) I ΦP(lκ4(\y\)Ylf(y))[κ4(\y\}γω(\y\)dy < oo,

then there exists a set E a Rn such that

(i) to* J

(ii) 2^-^[φ(2^)]-1Cα,φp(£,; ̂  ) < oo.
7=1

REMARK 5.1. In view of [8, Lemma 7.3], we see that

where A} = B(0, 2~j+1) - B(Q, 2~j).

PROOF OF THEOREM 5.1. From Corollaries 3.1, 3.2 and 3.3, it follows that

jc-^0

x->0

In view of Lemma 3.2,

\U3(x)\ < M I |x - y\Λ~nf(y)dy = MU(x).

Now let

Jβ(0,2|x|)-

and

ZsM = Lκ4(r)γω(r) = [r-^Mr-1)]'1.

We then apply Lemma 5.5 to find a set E satisfying (ii) and
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lim Γκ4(|x|)]-1C/3(x) = 0.
x->0,xeRn-E

Since [/c(r)]"1 <M[κ4(r)~\~^ by Remark 3.1 or 3.2, we obtain the required
fine limit result.

LEMMA 5.6. If

(5.3) ί Φp(Lκ4(\y\)ry)Lκ4(\y\)γω(\y\)dy < oo

for some y > 1, then (5.2) holds for any nonnegative measurable function f on
Rn satisfying (1.2).

PROOF. To show this fact, consider the sets

0, 1):[*4(

E2 = {yeB(09 1): [κ4(\y\)Γlf(y)<f(y)ll+έ

for δ > 0 such that 7 = 1 + l/<5. Then

ί,
•I

JE,

φp([Mlyl)rv)[Mlyl)]pω(M)d)>
i

On the other hand, we have

^P
JE2
I

•ί.
4
< M f Φp(

JB(0,1)

LEMMA 5.7. Let ω(r) = rβ. If — n < β < ap — n, then (5.3) holds for some

PROOF. We see from Lemma 2.3 that

for δ > 0. Hence we find that
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for γ > 1 and δ' > 0. Consequently it follows that

IJB(0,1)

<M\ \y\(y-ί}(n-ap+β)\y\-ό'\y\βdy
Jfl(O.l)

Γ1

 (y-i}(H-Λp + β)-δ,+β+H _!
= M J^ r (v DO. * + Λ Wr ιd r < 0 0

for some γ > 1 and <5' > 0, because limy_ l t^0 {(7 - l)(n - αp + β) — δf + /? + n}
= /? -f n > 0. Thus the present lemma is obtained.

COROLLARY 5.1. Let f be a nonnegatiυe measurable function on Rn

satisfying (1.1) and

\ ΦP(f(y))\y\fdy<ao
J Rn

for —n<β<ap — n. If £ is the nonnegative integer such that (<α — (n + β)/p
< £ + 1 tf«rf κ (l) < oo, then there exist a set E c= Rn and a polynomial P^ of
degree at most t for which (ii) of Theorem 5.1 holds and

REMARK 5.2. Meyers [4] dealt with IΛmean limits for Taylor expansion
of Bessel potentials of LP-functions. In this connection, it will be expected that

ι / Γ Ylq

lim Dc(r)] "Mr-" | UJ(x) - P,(*)\q dx) =0
Γ~" \ Jfl(0,r) /

holds in our case.

The following is a special case of Lemma 5.5.

LEMMA 5.8. Let χ be a positive function on (0, 1] satisfying (χ). If f is
a nonnegatiυe function satisfying

(5.4) ί Φp(χ(|y|)|ylβ/(y))lyΓ"^<oo,ί ••J 5(0,1)

then there exists a set E a Rn such that

(i) lim
x->0,xeRn-E
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(ϋ') Σ <W2'E,;H0)<oo.
7=1

With the aid of Lemma 5.8, we can establish the following result which
is useful for the study of radial limits.

THEOREM 5.2. Let K be as in Theorem 5.1, and χ be a positive function
on (0, 1] satisfying condition (χ) and

(5.5) l(r)<M[κ(r)γi.

If f is a nonnegative measurable function on Rn satisfying (1.2), (1.6) and (5.4),
then there exists a set E ̂  Rn for which (ii') of Lemma 5.8 is satisfied and

lim χ(|x|)l/β.,/(x) = 0.
x->Q,xeRn-E

6. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we
prepare two lemmas concerning the capacity CΛφ .

A mapping T: G -»G' is said to be bi-Lipschitzian if there exists A > 1
such that

A~1\x-y\ <\Tx- Ty\ < A\x - y\ for all x, yεG.

The following result can be proved easily by the definition of CΛtΦp.

LEMMA 6.1. Let T be a bi-Lipschitzian mapping from G onto TG. Then

Ca,Φp(TE'9 TG) < MCα,φp(E; G) for any E c G,

where M is a positive constant which may depend on A (the Lipschitz constant
o f T ) .

For a set E<=Rn, we denote by E the set of all ξedB(Q, 1) such that
rξeE for some r > 0. By using Lemma 5.8 and applying the methods in the
proof of Lemma 5 in [6], we can prove the following lemma.

LEMMA 6.2. There exists a positive constant M such that

CΛ,φp(E; B(0, 4)) < MCα,φp(£; B(0, 4))

whenever E c β(0, 2) - β(0, 1).

LEMMA 6.3. Let χ be a positive function on (0, 1] satisfying (χ). If f is
a non-negative function satisfying (5.4), then there exists a set E* <= δ£(0, 1)
such that Cα,φp(E*; B(0, 2)) = 0 and
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lim χ(r)U(rξ) = 0 for any ξedB(Q, 1) - £*,

where U is as in Lemma 5.5.

PROOF. Take a set E a Rn as in Lemma 5.8, and set

oo oo

E* = n ( u EJ).
fc=l j=k

Then we have by the countable subadditivity (Lemma 5.1) and Lemma 6.2

If ξedB(Q, 1) - £*, then there exists k such that ξφ\JJLkEj9 so that rξφ\JJLkEj
for 0 < r < 2~ f c + 1. Hence we see that

Thus the proof of Lemma 6.3 is completed.

THEOREM 6.1. If κ9 χ and f are as in Theorem 5.2, then there exists a set
E* c 55(0, 1) such that

and

lim χ(r) I7β.,/(r{) = 0 /or «wy { e dB(0, !)-£*.

PROOF. As in the proof of Theorem 5.1, we see that

lim[fc(|x|)]-1{L/1(x)+l/2(x)}=0.

On the other hand, in view of Lemma 6.3, we can find a set E* c ββ(0, 1)
such that CΛ,φp(E*; 5(0, 2)) = 0 and

lim χ(r)U3(rξ) = 0 for any ξedB(Q, 1) - E*.

Hence it follows from (5.5) that

lim χ(r) U Λ t / f ( r ξ ) = 0 for any ξ e dB(0, !)-£*.

Thus the proof of Theorem 6.1 is completed.

LEMMA 6.4. If — n < β <ap — n, then (1.2) with ω(r) = rβ implies (5.4)
with χ(r) = r

(n-*p+β)lp.
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PROOF. First note that

ί ΦP(\y\ax(\y\)m)\yΓmdy^(

We show that the second integral is finite. For this purpose, consider the sets

E, = {yeB(Q, 1): χ ( \ y \ ) f ( y ) > f ( y ) l + δ } ,

E2 = {yeB(09l):χ(\y\)f(y)<f(yf+'}

for δ > 0. Then we see that

ί ΦP(x(\y\)f(y))\y\*p-Hdyz ί
JEi JEi

"dy < oo,

since lima_ ̂  {(n — αp + /?) (1 + 1 /δ) + (αp — n) + n} = β + n > 0. On the other
hand, we have

ί ΦP(x(\y\)f(y))\y\Λp~ndy=\ <p(x(\y\)f(y))fW\y\βdy
Jε2 J E2

ί
j£2

so that Lemma 6.4 is obtained.

COROLLARY 6.1. Let f be a nonnegative measurable function on Rn

satisfying (1.1) and

φp(f(y))\y\βdy<™

for — n < β < αp — n. If / is the nonnegative integer such that / < α — (n + β)/
p < £ + 1 and κ(l) < oo, then there exist a set E* c 35(0, 1) and a polynomial
Pf of degree at most t such that Cα>φp(E*; β(0, 2)) = 0 and

lim r(n-Λp+β)lPίUJ(rξ) - P,(r{)] = 0 for any ξedB(0, !)-£*.
r-*0

REMARK 6.1. We show the sharpness of Lemma 6.3 as to the order
χ(r). In fact, for a nonincreasing positive function a(r) on (0, oo) such that
limr_0 α(r) = oo, we find a nonnegative function / satisfying (5.4) such that

limsupα(r)χ(r)l/(rz) = oo for all zed£(0, 1).
r->0
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To show this, let Aj = B(Q, 2rj) - B(Q, r,.), 2rj+i < rj and define

[ 0 otherwise.

Then we see that

β(l*l)*(W)tf(x) ^ Mα(2rJ )
1/p/, xeAj

and

ί φp(\y\*%(\y\)f(y))\y\~ndy < M £ Φp(α(2r7 )~1/p).
5(0,1) 7

Now it suffices to choose {r,-} so that the last sum is convergent.

REMARK 6.2. If limr^0 r
aχ(r) = oo, then (5.4) implies the following

condition of type (1.2):

(6.1) (*p(f(y))[x(\ymp\y\*p-*dy < oo.

If in addition limr_0 φ(r) = 0, then we can find a nonnegative measurable
function / satisfying (6.1) and

(6.2) limsuρχ(r)ί/(rz)= oo for any ze<3£(0, 1).
r-*0

For this purpose, take a sequence {r,-} of positive numbers for which
2rj+i < Γj and

00

Σ φ(bj) < oo,

where bj = [rjxirj)]"1. Next find a sequence {α,-} of positive numbers such
that liniy^^ α,- = oo and

00

X ap

jφ(ajbj) < oo.
7=1

Now consider the function

f(y) = {aJbJ for ye B& 2rϊ - B(°' rϊ>
\ 0 otherwise.

Then we note that

lφp(f(y))\:χ(\y\)Y\y\°p-ndy < M £ afφ(ajbj) < oo.
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Moreover,

χ ( \ x \ ) U ( x ) > M χ ( r J ) a j b j r
Λ

j =

for xeB(0, 2Γj) - £(0, r,-), from which (6.2) follows readily.
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