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Abstract: This paper deals with Riesz potentials U, f(x)=J|x—— Y f(y)dy of

functions f satisfying Orlicz condition with weight @ in the form:

jd’p(lf(y)l)w(lyl)dy < .

We are mainly concerned with the case when &,(r)/r?, p > 1, is nondecreasing and
w(r) is of the form r*, —n<B<ap—n Letting ¢/ be the integer such that
{<a—(n+p)/p<¢+1, we examine when

lim  [x(xD)]"'[Vef(x) — P(x)] =0

x—0,xeR!

holds for an exceptional set E, a weight function x and a polynomial P of degree at
most 7.

1. Introduction

For 0 < a < n and a nonnegative measurable function f on R", we define
U,f by

USe)= [ Jx=yP )y,
Rn
Here it is natural to assume that U, f # oo, which is equivalent to
(1.1) 1+ 1y "f(dy < .
R'I

To obtain general results, we treat functions f satisfying a condition of
the form:

(12 [ oonaiyndy < o.
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Here @,(r) and w(r) are positive monotone functions on the interval (0, o)

with the following properties:

(p1) @D,(r) is of the form rPo(r), where 1 <p< oo and ¢ is a positive

nondecreasing function on the interval (0, o0); set ¢(0) = lin(} o(r).
r—

(p2) ¢ is of logarithmic type, that is, there exists 4, > 0 such that
A7'o(r) < p(r®) < A,@(r)  whenever r > 0.

(wl) o satisfies the doubling condition; that is, there exists 4, > 0 such that
A;'o(r) < w(2r) < A,o(r)  whenever r > 0.

It is known (see [7]) that if p > 1 and
1
(1.3) f [ *e@r~H] Y~ Vr 1dr < oo,
0

then U,f is continuous everywhere on R" possibly except at the origin; in
case ap > n, (1.3) holds by condition (¢2) and the continuity also follows from
Sobolev’s theorem. More precisely, we shall show (Theorem 4.2) that if
p=n/a>1, o(r)=1 and (1.3) holds, then

(1.4 U.f(x) = U f(0) = o(@*(1x]))

as x —» 0, where

() = q [<p(z-1)]"/(r%*m)l_”p.
0

This gives an extension of Sobolev’s theorem as far as we restrict ourselves
to the limiting case ap = n; for this, see also Maz’ya [2, Theorem 5.4]. Typical
examples of ¢ satisfying (1.3) in case ap = n are

[log (1 +7)7°, [log(1 + 777 *[log(1 + log(1 + r))1%, -

for 6>p—1.
If (1.3) does not hold, then the potential may not be continuous anywhere,

and the second author ([8]) studied the fine limits of U, f, that is,
Jim  Uf()=U.f0)
with an exceptional set E which is thin at 0 in a certain sense (see also

Adams-Meyers [1] and Meyers [5]). In this paper, we extend this result
and in fact show that
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lim  [x(1x)]7' [Uaf(x) = P(x)] =0

x—0,xeR"

with an exceptional set E, a weight function x and a polynomial P; we are
concerned mainly with the case x(0) = 0.

For this purpose, let R,(x) = |x|*™" and consider the remainder term of
Taylor’s expansion:

xl‘
Ry /(% y) =R, (x —y)— ) — [(D*R) (= y)].
lul<e K2
Then our aim is to investigate the behavior at the origin of the function:
Upe f(x) = J R (x, ) f(y)dy.
Rn

Here it is natural to assume that

L5) f Y 0Ny <
B(0,1)
and
(1.6) J lyl* "1 f (y)dy < oo,
R"-B(0,1)

instead of (1.1), where B(0, 1) denotes the unit ball.
For simplicity, consider the case w(r) =rf, where —n < f < ap —n, and
let £ be the nonnegative integer such that

{<a—(m+P)/p<f+1

We shall show (in Corollary 5.1 given later) that if f satisfies (1.1) and (1.2)
with p > 1, then there exist a set E€R" and a polynomial P, such that

w7 lim [(1x)] 7 (U, — Bet)] = 0
and
(18) ¥ 20D C, g, (Ej; B < o0,

where E; = {x€E: 27/ <|x| <27*!}, B;={x:27/"! <|x| <27/*?} and

r 1-1/p
() = r(f [t"‘“”*““’rp(t“)]“""‘“t‘ldt) :

0
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see Section 5 for the definition of C, 4,. Note here that
Ca,o, (Aj; B,-) ~ 2‘f(n—ap)(p(21)’ Aj = B(0, -t 1) — B(0, 2-1‘)

(cf. [8, Lemma 7.3]), and our definition of thinness differs from that of
Adams-Meyers [1]. If in addition (1.3) holds, then the above fine limit is seen
to be replaced by the usual limit similar to (1.4); moreover, (1.7) implies that
U,f is ¢ times differentiable at the origin.

To derive the radial limit result, we modify this as follows (see Corollary
6.1): there exist a set E = R" and a polynomial P, such that

(1.9) *Olin}p_E |x|®=*P*PIP[U, f(x) — P,(x)] =0
and
(1.10) C,,0P(2"Ej; By) < o0;

j=1

note here that r®~*?*A/P < M[x(r)]~?, and hence (1.9) is weaker than (1.7). It
will be seen that (1.10) is more convenient than (1.8) to our aim of deriving
the radial limit result.

2. Preliminary lemmas

Throughout this paper, let M, M,, M,,..., denote various constants
independent of the variables in question.
First we collect properties which follow from conditions (@1) and (¢2)

(cf. [8, Preliminary lemmas]).

LeMMA 2.1. ¢ satisfies the doubling condition, that is, there exists A > 1
such that

or) < e(2r) < Ap(r) whenever r > 0.
LEMMA 2.2. For any y > 0, there exists A(y) > 1 such that
A o) < o(r") < A(Y)o(r) whenever r > 0.
LEmMA 2.3. If y >0, then
se(s™H) < Mt'o(t™')  whenever 0 <s <t.
Proor. We know ([8, (¢5)])
S'e(s™) < A t"p(t™!)  whenever 0 <s<t< A7,

so that
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1) s'e(s™ ) < Mt'o(t™')  whenever 0 <s<t<1.
If we apply (2.1) with ¥(r) = [o(r~!)]!, then

SY Y
2.2) whenever 0 <s<t<1.

00 =" o0
In particular,
M~ 'p(l)<s ?¢p(s)  whenever 0 <s< 1.
Hence, in case 0 <s <1<t we have by (2.1) and the last inequality
se(s™ ) < Mo(l) S M't"o(t™1).
In case 1 <s <t, we have by (2.2)

t‘)‘ S—Y
S <M———.
ot™) o(s™7)

Thus Lemma 2.3 is proved.

LEMMA 24. If a>0 and b >0, then for 0<r< 1,
1
f t™ Lot~ 17"t~ dt < Mr~°[o(r™")]".

REMARK 2.1. The converse inequality also holds for 0 <r < 1/2. In fact,
by the doubling condition on ¢,

2r

f PR R f to Lo ™10 e > My [ )],

r

ProoF OF LEMMA 2.4. Letting 0 <y < a/b, we have by Lemma 2.3,
1 1
j t’”[<p(t‘1)]"’t“dtsMr‘V"[q;(r")]"’J tetrh iy

<Mr o~ Y]

LEMMA 2.5. If a> 0 and b is a real number, then for r > 0,

f Lo~ )1t~ Ydt < Mr[o(r~Y)1°.
0

In fact, if b <0, then the required inequality follows since [¢@(r~)] ! is
nondecreasing. The case b > 0 can be obtained by applying Lemma 2.3 and
the proof of Lemma 2.4.
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3. The estimates of U, ,f

For an integer ¢, we consider the potential

Upef (x) = f R, (x, ) f(y)dy;

R"

in case £/ < —1, U,,f(x) is nothing but U,f(x), so that, in this paper, we
assume that ¢ > 0.
Write U, ,f(x) = Uy(x) + U,(x) + Us(x) for xe R* — {0}, where

r»

Uy(x) = R, /(x, y)f(y)dy,
J R"-B(0,2|x]|)
U,(x) = R, ((x, y) f(y)dy,
J B(0,]x|/2)
Us(x) = R, /(x, y) f(y)dy.

J B(0,2x))-B(0,]x1/2)
LemMa 3.1. If yeB(0, [x|/2), then
[Ra.c(% y)| < Mx[|y|*~" .

Proor. Since |y| < |x|/2, we have

[Rec(x, NI < R (x =y + X x—‘:[(D”Ra)(_ y)]}

lul<e | U

_ x|t
<(x|/2 "+ M Y —'—IYI“ nlul
lul<e H:

< Mix| |yl .
LemMa 32. If yeB(0, 2|x|) — B(O, |x|/2), then
[Ry (X, )| < M|x — y|*™".

ProorF. We have as above

20 R)(- y)]l

|Ra,l(x’ y)l < IRa(x - .V)l + Z

lul<e
<lx—yF"+ M|xl|yl*"¢
< MIX — y|"“”.
Lemma 3.3. If |yl > 2|x|, then
IR, ,(x, )| < M|x[¢*t|ylm=e-1,
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Proor. By Taylor’s theorem, we obtain

|x||ul

‘Ra,[(x9 y)l < M Z 'u'

lul=¢+1

a—n—¢—1
(2, 2 ()
lul=c+1 p! 2

= M|x|t+1 lyla—n—l—l.

|0x —y~"~lt - 0<6<1)

LEMMA 34 (cf [8, Lemma 2.11). Let p>1 and f be a nonnegative
measurable function on R*. If 0<2r<a<1 and 0 <6 < f, then

J lyIP~"f(n)dy < J lyf="f (y)dy + MaPf~?
R"~-B(0,r)

R"—B(0,a)
1/p

a 1p
+ M(I [t"_”ﬂ(t)]_"'”’t—ldt> (f ¢p(f(Y))w(|Y|)dY> ,
r B(0.a)

and if 0<2r<a<1 and 6 >0 > B, then

'[ lylP~"f(y)dy < J [yIP="f (y)dy + Mrf~?
R"—B(0,r)

R"—B(0,a)

a 1/p’ 1/p
+ M(J [t PPy(e)] =7 /Pe~ ‘dt> (J ¢,(f(y))w(lyl)dy) ,
B(0,a)

r

where n(r) = o(r Yo(r) and 1/p + 1/p = 1.

Proor. Let 0 <a<1. We write

f lylP~"f (y)dy = j lyl#="f (y)dy
B(0,a)—B(0,r)

{yeB(0,a)—B(0,r): f(»)>|y| %}

+ J IyP="f (v)dy
{yeB(0,a)—B(0,r):0< f(y)<|y|~ %}
= Ull + U12'

From Holder’s inequality, we obtain

1/p
U < (J f(y)”tp(f(y))w(IyI)dy>
{veB(0,a)— B(0,r): f(y)>|y| =%}

1/p’
X (f |y|@-me [(p(f(y))w(lyl)]"’“’dY> .
(yeB(0,a)— B(0,r): f(»)>|y|~ %}

In view of Lemma 2.2, we see that if f(y) > |y|~%, then
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o(f)) = o(lyl™%) = Mo(ly|™h).

Hence it follows that

a 1/p’
U115M< J [t"—ﬂvn(t)]-"'“’f*dt> ( J ¢,,(f(y))w(|yl)dy)
r B(0,a)

1/p

On the other hand, we have

Uiz Sf [ylf=2~"dy
B(0,a)—B(0,r)

Y af?, incase f—6>0,
- rf-e in case B— 5 <0,

b

and thus Lemma 3.4 is proved.

Setting #(r) = ¢(r~)w(r) as above, we define

1 1/p’
' <J [t"‘“”*‘“‘)Pn(t)]"”“’t“dt> , in case p>1,
ACER T

sup t*~ /71" [p()]7 Y, in case p =1,

r<t<i
for 0 <r <1/2; further, set x,(r) = x,(1/2) when r > 1/2.
REMARK 3.1. In view of the doubling conditions on ¢ and w, we see that
K, (r) > M[r"~?*C¢*Dppr)]~1/P  whenever 0 <r < 1/2.

LeMMA 3.5. Let f be a nonnegative measurable function on R". If
0<2lx|<a<land 0<d<a—¢—1, then

U ()] SMIxI’“{f

R"—-B(0,a)

+MIXI’“K1(IxI)<J

B(0,a)

Iyl ==t ()dy + Ma"‘““"}

1/p
¢p(f(y))w(|y|)dY> ,
and if 0<2|x|<a<land 6>0>a—¢—1, then

U (x)| SMIXI‘“j Y= = 17" ()dy + M| x|*~°

R"-B(0,a)

1/p
+ Mlxl’“xl(lxl)q ¢,(f(y))w(lyl)dy> ;

B(0,a)

where M is a positive constant independent of x and a.
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Proor. By Lemma 3.3, we have

U (x)] < MIXI“‘J IyI*= 17 () dy.

Rn—B(0,2]x])

The case p > 1 follows readily from Lemma 3.4 with r =|x|, and the case
p =1 is trivial.

In view of Lemma 3.5, we have the following results.

CorOLLARY 3.1. Let f be a nonnegative measurable function on R"
satisfying (1.2) and (1.6). If a —¢ — 1> 0 and x,(0) = oo, then

lim Clxl*xy(1xD]1 ™1 Uy (x) = 0.
Proor. By Lemma 3.5, we have

lim sup [|x]"* s, (Ix)] 71U (0) < M(f

B(0,a)

1/p
D,(f (y))co(lyl)dy>

for any a > 0, which implies that the left hand side is equal to zero.

COROLLARY 3.2. Let f be a nonnegative measurable function on R"
satisfying conditions (1.2) and (1.6). If «a —¢ —1<0 and

lim it k()17 =0  for some &> 0,
then
lim [lxl** trey(1x1)] 71Uy (x) = 0.

This can be proved in a way similar to the proof of Corollary 3.1.
In view of Lemmas 3.1 and 3.4, we can establish the following result.

LEMMA 3.6. If 0 <6 < a — ¢, then there exists a positive constant M such
that

U, ()] < MI>C|’K:(IXI)<J

B(0,|x]/2)

1/
sb,,(f(y))w(lyndy) ’ M

for any xeB(0, 1/2) — {0}, where
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r 1/p
(f [t""”””n(t)]_”'/”t'ldt> , in case p>1,
0
Ky(r) =

sup t*~‘7"[n(t)]" L, in case p = 1.

o<t<r
REMARK 3.2. As in Remark 3.1, we see that
Ky(r) = M [r" =2 *%Py(r)]~ 17,
With the aid of Lemma 3.6, we have the following result.

COROLLARY 3.3. Let f be a nonnegative measurable function on R"
satisfying (1.2). If 0<d<a—¢, k,(1) < o0 and

lim 7~ [ 1,(7)] " = 0,

then
lim [[xlx;(1x1)] 7 U, () = 0.
REMARK 3.3. Let w(r)=rf. If a —(n+ B)/p <¢ + 1, then Lemma 2.4
implies that
Ky(r) ~ [P"7oPH Pt B~ 1]1P a5 r 0
and thus
K,(0) = oo.
If in addition n + f > 0, then we see by Lemma 2.3 that

lim sup 7 [F** 1k, (r)]"! < M lim sup r®"*P/P=4[p(r~1)]/P = 0
r=0 r—0

for 0 <é <(n+ B)/p.

REMARK 34. Let w(r)=rf. If£ <a — (n+ B)/p, then Lemma 2.5 implies
that

Ko(r) ~ [P~ PPt B p(r= )] /P as r—0.
If in addition n + f > 0, then we see by Lemma 2.3 that
lim sup r* " [ x,(r)]~* < M lim sup r**P/P=3[o(r~1)]1/? = 0
r-=0 r—0

for 0<d<@m+p)/p. f p>1 and £/ =a— (n+ B)/p, then k,(1) < oo is
equivalent to
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1
f [e(r~Y)]7?/Pr~‘dr < .
0

4. Taylor expansion

Throughout this section, let p > 1. Set
r ) 1/p’
<p*(r)=<J [t"ﬁ“"fp(t"l)]_”“’t”dt)
0

and

K3(r) = [0(r)] ™17 o* ().

If ¢*(1) < oo, then U, f is continuous everywhere on R" possibly except at the
origin when f satisfies (1.1) and (1.2) (see [7, Theorem 1]).

Lemma 4.1. If 0 < 6 < a, then there exists a positive constant M such that

|Us(x)| < Mx3(|x|)<f

1/p
¢p(f(y))w(|yl)dy) + M|x|*~?
B(0,2]x|)—B(0,|x|/2)

for any xe€B(0, 1/2) — {0}.
Proor. Let 0 <6 < a, and consider the function

f), for yeB(0,2|x|) — B(, |x|/2),
0, otherwise.

fm={
Note by Lemma 3.2 that

Us(x)| < Mf lx — yI*"f (»)dy

B(0,2|x|)-B(0,]x|/2)

=M 1z|*"*f (x + z)dz.
B(0,3|x|)

Hence it follows from Lemma 3.4 that
|U;(x)]

3|x| 1/p’ - 1/p
< M(J~ [r"'“"(p(r“)]""”’r"dr) (fdip(f(x + z))dz) + M|x]*~?

0

1/p
< M¢*(IXI)<J ¢p(f(y))dy> + M|x|*~?
B(0,2|x])-B(0,|x|/2)
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Y
< Mka(lxl)(f d’p(f(Y))w(lyl)dy) T4 M|x|*7%,
B(0,21x1)- B0, x1/2)

as required.

We consider the function

K@) =r*ti,(r) + Fry(r) + k5(r).

Here note that
4.1 K(r) > M[r"~*Py(r)]~/?
for r > 0.

THEOREM 4.1. Assume that £ < a, lim,_, K(r) =0 and

K,(0) = © in case a—¢—1>0,

!i_{% 0t k()] =0  for some 6 >0 in case a — ¢ — 1 <0,

!i_{% rrk,r] =0 for some & such that 0 < <a—¢,

}i_{rg r* k(] =0 for some &> 0.
If f is a nonnegative measurable function on R" satisfying - conditions (1.2) and
(1.6), then

lim [K(1x])] ™ Uy, f () = 0.

ProOF. We may assume that 0 < & < a. Since lim,_ o °[k3(r)] ' =0,

we see by Lemma 4.1 that

lim [xc3(1x)]7 " Us(x) = 0.

In view of Corollaries 3.1, 3.2 and 3.3, we have

lim [K(1x)] ™ {Uy () + Uy ()} =0,
and hence
lim [K(1x1)] ™ Uy S () = 0.

Thus we complete the proof of Theorem 4.1.

ReMARK 4.1. Let w(r) =rf. If n + B > 0, then we see by Lemma 2.3 that

lim sup r* % [k5(r)] =0
r-0
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for 0 <d<(n+ p)/p.

REMARK 4.2. Let w(r)=rf, where —n<f<ap—n. Let ¢ be the
integer such that

{<a—(n+PB)/p<¢+ 1
Then we see with the aid of Remarks 3.3, 3.4 and 4.1 that
K@) ~[r"**pr 1] ' when f<a—(n+p)/p<f+1,n—ap<0,

K() ~ r-ﬂ/v( f ' [<p(t-1)]-v'/vr1dt)w
0

when /<a—-—(m+B)/p<f+1,n—ap=0,

K(r) ~ r’(f [(p(t—l)]_"'“’t—ldt>1/p’
V]
when ¢ =a— (n+ B)/p.

In all cases, if K(1) < oo, then

lim K(r) = 0.

REMARK 4.3. Let w(r)=rf, where —n<f<ap—n. If a —(n+ B)/p
<+ 1 and f satisfies (1.2), then the proof of Lemma 3.4 shows that (1.6)
is fulfilled.

COROLLARY 4.1. Let w(r)=r? with —n<B<ap—n Let f be a
nonnegative measurable function on R" satisfying conditions (1.1) and (1.2). If
{<a—(m+P)/p<¢+ 1 and K(1) < 00, then there exists a polynomial P, of
degree at most { such that

lim [K(1x))]7'[Uf(x) = P(x)] =0

with K as in Remark 4.2.

In fact, since k,(1) < oo, (1.5) holds, and further (1.6) holds by Remark
43. Hence

¥/
Uef ) = Uuf ) — T =
lul<s¢ H* JR
With the aid of Remarks 3.3, 34, 4.1 and 4.2, Theorem 4.1 gives the present
corollary.
Since lim,.,r ‘K(r) =0, Corollary 4.1 implies that U,f is ¢ times
differentiable at the origin. On the other hand, Corollary 4.1 says that

[(D“R) (= »)1f () dy.
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U.f(x) — P,(x) = o(K(|x]))  as x—0.
We next show that this holds locally uniformly in the following sense.
THEOREM 4.2. Let p =n/a > 1, and f be a nonnegative measurable function
on R" satisfying (1.1) and
(4.2) f D,(f(»)dy < c0.
Rn

If o*(1) < oo, then
U f(x) — Uy f(2) = o(o*(Ix — z))
when |x — z| >0 and x, z are in a compact set in R".
Proor. First nore that w(r) =1 and ¢ =0 in this case, and hence
K(r) ~ ¢*(r)

because of Remark 4.2. Moreover, if 0 < f <min {1, a} and 2|x —z|<a <1,
then Lemmas 3.5, 3.6 and 4.1 establish

U f(x) = U f ()] < M|x — 2| Go(x) + M |x — 2|’ + MK (|x — z|)F,(x),

where
Ga(X)=j |x — yI* "~ f (y)dy
R"—B(x,a)
and
1/p
F,(x) = ( I D,(f (y))dy> .
B(x,a)
Since

lim sup j lg(»)|dy =0
r B(x,r)

xeRn

for any integrable function g on R", for given ¢ > 0 there exists a, > 0 such

that F, (x) <e for all x. On the other hand, since G, (x) is continuous on

R", it is bounded on a compact set. Hence, noting that ling rlo*(N] '=0
r—

whenever y > 0, for any compact set E in R" we can find > 0 so small that
|Upf (%) — Uy f(2)] < 89*(|x — zI)

whenever xeE and |x — z| < d. Thus the present theorem is obtained.
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REMARK 4.4. Maz’ya proved Theorem 4.2 for Sobolev functions u for
which (4.2) is satisfied with f replaced by |grad u| (see [2, Theorem 5.4]).

REMARK 4.5. Theorem 4.2 can be extended to higher differences of order
Z, in view of Corollary 4.1.

Here we discuss the best possibility of Corollary 4.1 (Theorem 4.2) as to
the order of infinity in case ap =n and w(r) = 1.

PROPOSITION 4.1. Assume @*(1) < co. Then, for any & > 0, there exists
a nonnegative measurable function f on R" satisfying (4.2) with p = n/a such
that U, f(0) < oo and

lim CK(1XD)17* {Unf (9) — U f(O)} = — 0.

Proor. Note that K(r) ~ ¢*(r) in this case (cf. Remark 4.2). Let
O<e<p—land pP—1—e<d<p —1. We define

fO) =KD’y [e(lyI™H17"/»  for yeB = B(, ).

In view of Lemma 2.3, for y > 0,
4.3) s'K(s)"' < Mt'K(t)™?! whenever 0 < s < t,

so that we see that

(f() = o(LK(yDI*IyI*Lo(yI"H1777?) < oM |y|=*¥) < Mo(ly|™")

for ye B. Consequently we establish

f D,(f()dy = f ([K(yDI~21y1 ™= Lo (lyl= )1~ 7y
B B

x o([K(yD1~ %Iyl *[e(lyl~ Y1~ 7/?)dy
<M | [K(yDI~%lyl" " [e(yl" Y177 * dy
JB

~

<M | [e*(lyD] %1yl [e(ly|~ )] 7/*dy

JB
1

=M | {[e*(T"} """ {[o*() )"} dr
0

Pt*

=M| t7%" 4t < o0,
Jo

with t* = [¢*(1)]”. Thus it follows that f satisfies (4.2). Similarly, we have
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r

U fO) = | IyIF"f ()dy

r

= | YPFIK(yDI~?IyI™* Loyl )17 " dy
vB

< | Le*(yDI72IyI7" Loy~ 1~ " /2 dy

JB

=M I {[o*®17} " {[p*()1"} dt
0

t*
= Mj 17 dt < 0.
0
We write

Uy(x) = —f Iyl“'”f(y)dy+J‘ lx —yI* " f(dy=—1+J.
B(0,x1/2) B

(0,[x]/2)

Letting r* = [¢*(|x|/2)]”', we have as above
1> Mr 707 dt = M [9*(Ix|/2)17°*% = M[K(Jx])]=°*7,
0
so that
(@4) lim [K (%)) ™71 = oo.
On the other hand, letting r = |x| < 1, we have

7= _[ lx — yI* " [K(lyDI1~ %Iy * [o(ly| =]~ *Pdy
B(0,|x]/2)

.<_Mlxl‘""f [K(UyDI~2IyI~*[e(lyl~ 1~ "/?dy

B(0,|x(/2)

= MWJ " KO Lo ] e e

0
< Mr“"‘Jr [K(®)] %t "[p(t™ )] ?/Pt ™t dt
V]

< MPTU K] o]
= MIK()] ™ [o(™ 17",

In view of Lemma 2.2, we have
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(KN > J lo@e™)177/Pe~tdr > [fp(r’z)]""“’J" t~ldt

r2

> MIp(-)]"""logL (M >0),
r

so that

J<MIK(Ix)]17°* % [log (1/1x))1*.

Moreover, by Lemma 3.2, we have

|Us(x)| < M lx — yI*~"f (v)dy
B(0,2|x) - B(0,]x1/2)

=M lx — yP"[K(IyD1 % 1y1~* [e(ly|~ )17 /7 dy
B(0,2|x)-B(0, |x/2)

< M[K(IXI)]"’lxI‘“[(P(IXI_I)]”’""I |x —y[*~"dy

B(0,2]x]) - B(0,]x1/2)
< MIK(Ix)1™°[e(IxI~ )]~/
< M[K(Ix])]°*" [log (1/1x)]~*.

Similarly, by Lemmas 3.3 and 2.4, we have

|U;(x)] < M |x| lyl*=""f () dy
J R"—B(0,2|x])

r
= M|x| lyI* " IK (YD1 72y~ Loyl =] "7 /P dy
J B(0,1)-B(0,2|x|)

r1

= M |x| [K®O1 Lo )] 7/t~ 2dt

LY 2|x|

< M|x|[K(]x])]° : Lo~ Y] ?/Pt~ 24t
2|x|

<M[K(Ix)1°Le(lx|~H]77/®
< M[K(|x|)]™**% [log (1/|x])]~*.
Thus it follows that
U, f(x) = U, f(0) < — [K(Ix)] "% (1 — M [log (1/|x)]™Y),

which together with (4.4) yields
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lim [K(1x)]7*" {Upf (0) — U, f(0)} = — 0.

Thus f has all the required properties.

5. Fine limits

For a set Ec R" and an open set G — R", we define
q%ww»ﬂyf¢wmm%
G

where the infimum is taken over all nonnegative measurable functions g on
R" such that g vanishes outside G and U,g(x) > 1 for every xeE (cf. Meyers

B3D.

In what follows, we collect elementary properties of this capacity (cf. [8,
Lemma 2.2]).

LemMma 5.1. C, o,(-; G) is countably subadditive.

LEMMA 5.2. Let G and G' be bounded open sets in R". If F is a compact
subset of GNG’', then there exists M > 0 such that

Coo,(E;G)<MC,o,(E;G)  for any EcF.

LeEMMA 5.3. Let G and G’ be bounded open sets in R". If C, o,(E; G) =0,
then C, o,(ENG’; G') =0.

LeMMA 5.4. Let G and G' be bounded open sets in R". If C, o,(E; G) =0,
E < G, then, for any positive nonincreasing function ® on (0, ), there exists
a nonnegative measurable function f on G such that U,f # oo, U,f= o0 on E

and J D,(f(y)w(p(y))dy < 0o, where p(y) denotes the distance of y from the
G
boundary 0G.

For a nonnegative function y on the interval (0, 1], consider the
generalized doubling condition:

0 x(r) < My(s) whenever 0 <r/2<s<2r<1.

For monotone functions, (x) is just the doubling condition as mentioned
before. For r >0 and E < R", set

rE = {rx: xeE}.

LemMMA 5.5 (cf. [8, Lemma 2.3]). Let y;, i =1, 2, 3, be positive functions
on (0, 1] satisfying condition (x). If f is a nonnegative function satisfying
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5.1 f @, (IyD D (1yDIF ) Dx2(1yDI ™" 231y D dy < oo,
B(0,1)

then there exists a set E = R" such that

(i) _lim  n(x)U@=0;

x—0,xeR

(ii) i X3(2_j)ca,o,([X2(2_j)]_1Ej; [X2(2_j)]_lBj) < o,

j=1

where E;= {xeE: 27/ <|x| <27/*!}, B;= {xeR": 277" < |x| <27/*?} and

Ulx)= f [x — yI*~"f(y)dy.
B(0,2|x|)-B(0,|x|/2)

Proor. For a sequence {a;} of positive numbers, consider
E;={xeR":277<|x|<27/*, U(x) > a; ' [x,(Ix)]" "}

and

E =

i

If xeE; = {xeE: 277 <|x| <27/*}, then

E.

j*
1

8

x1(IxDU(x) < xl(lxl)j Ix — yI*""f(y)dy

< Mth‘ |rjx — z|*"f(rj 'z) dz,
riBj

where r;=[x,(27)]1""' and t;=[x,(27)]rj*. Hence it follows from the
definition of C, o, that

C.o0,(rE;;1;B) < I &, (Ma;t;f(r; 'z))dz

r;jB;
= j D,(Ma;t; f (y))r; dy.
B;

Now it suffices to choose {a;} so that lim a; = co but
J=*©

ZXs(Z")J @,(Ma;t;f(y)rjdy <
J B;

(see the proof of Lemma 2.3 in [8]).
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THEOREM 5.1.  Set k(r)=r*'k,(r)+ 1 x,(r). Assume that £ < a, lim,_ ¢ x(r)
=0 and

K,(0) = 0 in case oo —¢ —1>0,
li_{% 0tk (1 =0  for some >0 in case a —¢ — 1 <0,
li_{% o rk,r)] =0 for some & such that 0 <6 <o —¢.

Further, let k,(r) = [r""*n(r)]~ /. If f is a nonnegative measurable function
on R" satisfying (1.2), (1.6) and

(-2) f ®,([ra(IyNI™ 1 0)) [ra(lyD P (I yl) dy < oo,
B(0,1)

then there exists a set E = R" such that

(1) lim  [x(1x))]™ U, f(x) = 0;

x—+0,xeR"—

(i) 210w [(2)]71C, .0, (E;; B)) < 0.
j=1

J

REMARK 5.1. In view of [8, Lemma 7.3], we see that
Ce0,(4;; B) ~ 277072 p(2)),
where 4; = B(0,27/*!) — B(0, 27).
PRrOOF OF THEOREM 5.1. From Corollaries 3.1, 3.2 and 3.3, it follows that
lim [x(|x)] "' Uy () = 0,
lim [xe(]x[)] 7 U,(x) = 0.

In view of Lemma 3.2,

[Us(x)| < M lx — yI*7"f(y)dy = MU (x).
B(0,2]x])- B(0,]x1/2)

Now let
10 =[xk N1™" ra)=1
and
130) = [Ka( P (r) = [ Po(r~ )]

We then apply Lemma 5.5 to find a set E satisfying (ii) and
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lim  [x,(1x)]7! Us(x) = 0.

x—0,xeR"—E

Since [k(r)]~! < M[x,(r)]~*' by Remark 3.1 or 3.2, we obtain the required
fine limit resuit.

LemMMA 5.6. If

(5.3) f D,([xa(1yD]1™ ) [eally) P oo(lyl)dy < 0
B(0,1)

for some y > 1, then (5.2) holds for any nonnegative measurable function f on
R" satisfying (1.2).

Proofr. To show this fact, consider the sets

E; = {yeB(0, 1): [k, (IlyDI" () = f(»)' "%},
E;, = {yeB(0, 1): [k, (IyN]1"'f () < F(»)**%}
for 6 >0 such that y=1+1/6. Then

f @,([ra(lyDI ™ f W) [kally) P 0(Iy]) dy
E,

< f D,([xa(1¥yNI ) [kallyDTP(]y])dy < co.
E;

On the other hand, we have

@,([ra(lyDI1™"f W) [eally) PP eo(ly]) dy

=| o[k (IlyDI" SN S P(lyl)dy
JE;

»

(SO fPllyl)dy

IA

JE>
< Mf D,(f(M)a(lyl)dy < co.
B(0,1)

LEMMA 5.7. Let w(r)=7r?. If —n < B < ap — n, then (5.3) holds for some
y> 1.
Proor. We see from Lemma 2.3 that
My OmetBIPgd < ge, (r) < Mr~®mp*PIP L 0 <r <,

for 6 > 0. Hence we find that
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&, ([, ()] 77) < My"n=e0+D)p=5

for y>1 and é' > 0. Consequently it follows that

f D,([x4(lyN] ™) [ka(lyDIP(lyl) dy
B(0,1)

<M |y|0= De=arthy| =8|y dy
B(0,1)

1
— MJ‘ r(y—l)(n—ap+ﬂ)—6'+ﬂ+nr—1dr < 00
0

for some y>1 and ¢’ >0, because lim,_; 5.0 {(y —1)(n—ap+ p)— 6"+ f+n}
= f +n>0. Thus the present lemma is obtained.

COROLLARY 5.1. Let f be a nonnegative measurable function on R"
satisfying (1.1) and
f @,(f))ylfdy < o
R'I

for —n<pB<ap—n. If ¢ is the nonnegative integer such that { <o —(n+ B)/p
<¢ + 1 and k(1) < oo, then there exist a set E —c R" and a polynomial P, of
degree at most ¢ for which (ii) of Theorem 5.1 holds and

lim  [x(1x))]17" [Uf(x) — P(x)]1=0.

x—0,xeR*"—E
REMARK 5.2. Meyers [4] dealt with L?-mean limits for Taylor expansion
of Bessel potentials of L?-functions. In this connection, it will be expected that

i o) (7 [ (s - Parax) =0
r B(0,r)

holds in our case.

The following is a special case of Lemma 5.5.

LemMa 5.8. Let y be a positive function on (0, 1] satisfying (y). If f is
a nonnegative function satisfying

(5.4) f D,(x(1yDIYFf NIyl "dy < oo,
B(0,1)

then there exists a set E = R" such that

(1) lim  x(Ix)U(x) = 0;

x—0,xeR*"—E
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(ii") Cuo,(P'E;; By) < 0.
j=1

J

With the aid of Lemma 5.8, we can establish the following result which
is useful for the study of radial limits.

THEOREM 5.2. Let k be as in Theorem 5.1, and y be a positive function
on (0, 1] satisfying condition (x) and

(5.5) ) <M[x@r]™"

If f is a nonnegative measurable function on R" satisfying (1.2), (1.6) and (5.4),
then there exists a set E — R" for which (i) of Lemma 5.8 is satisfied and

Jlim o (IxDU, ) = 0.
6. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we
prepare two lemmas concerning the capacity C, o,

A mapping T: G- G’ is said to be bi-Lipschitzian if there exists A > 1
such that

A7 x—y|<|Tx—Ty| < A|x — y| for all x, yeG.
The following result can be proved easily by the definition of C, o, .
LEMMA 6.1. Let T be a bi-Lipschitzian mapping from G onto TG. Then
C,,0,(TE; TG) < MC, o,(E; G)  for any E <G,

where M is a positive constant which may depend on A (the Lipschitz constant

of T).

For a set E  R", we denote by E the set of all £€dB(0, 1) such that
réeE for some r > 0. By using Lemma 5.8 and applying the methods in the
proof of Lemma 5 in [6], we can prove the following lemma.

LEMMA 6.2. There exists a positive constant M such that
Ca,d’p (E’ B(O’ 4)) S Mca,OP(E; B(Oa 4))
whenever E < B(0, 2) — B(0, 1).

LEMMA 6.3. Let x be a positive function on (0, 1] satisfying (x). If f is
a non-negative function satisfying (5.4), then there exists a set E* < 0B(0, 1)
such that C, q,(E*; B(0, 2)) =0 and
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li_{r& xU@EE)=0  for any £€0B(0, 1) — E*,

where U is as in Lemma 5.5.
Proor. Take a set E — R" as in Lemma 5.8, and set
E*= (0 (U E).
k=1 j=k
Then we have by the countable subadditivity (Lemma 5.1) and Lemma 6.2
Cs0,(E*; B(0, 2)) = 0.

If £€0B(0, 1) — E*, then there exists k such that £¢ U;?°=kEj, so that ré¢ 52 E;
for 0 <r<27%*!, Hence we see that

lim x(n)U(r¢) = 0.

Thus the proof of Lemma 6.3 is completed.

THEOREM 6.1. If k, x and f are as in Theorem 5.2, then there exists a set
E* < 0B(0, 1) such that

C.0,(E*; B(0,2)=0
and

!i_{% XU, frE)=0  for every £€0B(0, 1) — E*.

Proor. As in the proof of Theorem 5.1, we see that
lim [x(1x)17* {U, () + U (9)} = 0.
On the other hand, in view of Lemma 6.3, we can find a set E* < dB(0, 1)
such that C, o (E*; B(0, 2)) = 0 and
li_{% x()U3ré) =0 for any £€0B(0, 1) — E*.

Hence it follows from (5.5) that

li_%l 1NU,  f(rE) =0 for any £€dB(0, 1) — E*.

Thus the proof of Theorem 6.1 is completed.

LEMMA 64. If —n<pB <oap—n, then (1.2) with w(r)=rf implies (5.4)
with y(r) = r®*-op*Pip,
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Proor. First note that

f D,(lylx(yDfON Iy~ "dy sf D,y fONIylP~"dy.
B(0,1) B(0,1)
We show that the second integral is finite. For this purpose, consider the sets
E, ={yeBO, 1): x(IyDf») = f(»' %,
E, ={yeBO, 1): x(IyDf) < f(»' "%

for 6 > 0. Then we see that

‘[ ¢,,(x(|yl)f(y))|yl“”"'dysJ @,([x(lyNI** 119 |yI*~"dy < oo,
E; E;

since limy,, {(n—oap+p)(1+1/8)+(@p—n)+n}=Bf+n>0. On the other
hand, we have

f ¢p(x(|yl)f(y))|yl“""’dy=J eyDfONS Y1yl dy
E>

E>

< f 0O SO |y dy
E;

SM|  S,(fO)Iylfdy < oo,
B(0,1)

so that Lemma 6.4 is obtained.
COROLLARY 6.1. Let f be a nonnegative measurable function on R"
satisfying (1.1) and
f ?,(f()Iylfdy < oo
R'l

for —n< B <ap—n. If ¢ is the nonnegative integer such that { < o — (n + B)/
p<{+ 1 and k(1) < co, then there exist a set E* = 0B(0, 1) and a polynomial
P, of degree at most ¢ such that C, o, (E*; B(0, 2)) =0 and

lim r=*** PP (U, f(r8) — PAr§)1=0  for any {edB(0, 1) — E*.
ReMARk 6.1. We show the sharpness of Lemma 6.3 as to the order

%(r). In fact, for a nonincreasing positive function a(r) on (0, o0) such that
lim,_,, a(r) = oo, we find a nonnegative function f satisfying (5.4) such that

lim S(}lp a(r)x(r)U(rz) = o for all zedB(0, 1).
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To show this, let 4; = B(0, 2r) — B(0, r;), 2r;,, <r; and define
f0) = ‘{ a@r)T )1 yed,,

0 otherwise.
Then we see that
a(IxN)x(Ix)U(x) = Ma2r)''"",  xeA;

and

f D,(1yI*x(IyDf W) Iyl~"dy < MY & ,(a(2r)~ 7).
B(0,1) 7

Now it suffices to choose {r;} so that the last sum is convergent.

REMARK 6.2. If lim,.,r*y(r) = oo, then (5.4) implies the following
condition of type (1.2):

(6.1) f‘ﬁp(f(y)) [x(lyD 1?1yl ™" dy < co.

If in addition lim,., ¢(r) =0, then we can find a nonnegative measurable
function f satisfying (6.1) and

6.2) lim sup (M U(rz) = © for any zedB(0, 1).

For this purpose, take a sequence {r;} of positive numbers for which
2rjyy <r; and

2 ¢b) < o,
j=1

where b; = [r}x(rj)]'l. Next find a sequence {a;} of positive numbers such
that lim;_, ., a; = o0 and

afo(a;b;) < .
j=1

J
Now consider the function
a}bj fOI‘ yEB(O, 27‘1) - B(O, rl),
0 otherwise.

fo) = {
Then we note that

f ,(f0) x(1yDI? 1y " dy < M fl @ p(a;hy) < oo.

j=
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Moreover,

2(IxDU(x) = My(rj)a;b;r; = Ma;

J=JJ

for xe B(0, 2r;) — B(0, rj), from which (6.2) follows readily.
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