## Taylor expansion of Riesz potentials

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his sixtieth birthday
Tetsu Shimomura and Yoshihiro Mizuta
(Received June 3, 1994)

Abstract: This paper deals with Riesz potentials $U_{\alpha} f(x)=\int|x-y|^{\alpha-n} f(y) d y$ of functions $f$ satisfying Orlicz condition with weight $\omega$ in the form:

$$
\int \Phi_{p}(|f(y)|) \omega(|y|) d y<\infty .
$$

We are mainly concerned with the case when $\Phi_{p}(r) / r^{p}, p>1$, is nondecreasing and $\omega(r)$ is of the form $r^{\beta},-n<\beta \leq \alpha p-n$. Letting $\ell$ be the integer such that $\ell \leq \alpha-(n+\beta) / p<\ell+1$, we examine when

$$
\lim _{x \rightarrow 0, x \in R^{n-E}}[\kappa(|x|)]^{-1}\left[U_{\alpha} f(x)-P(x)\right]=0
$$

holds for an exceptional set $E$, a weight function $\kappa$ and a polynomial $P$ of degree at most $\ell$.

## 1. Introduction

For $0<\alpha<n$ and a nonnegative measurable function $f$ on $R^{n}$, we define $U_{\alpha} f$ by

$$
U_{\alpha} f(x)=\int_{R^{n}}|x-y|^{\alpha-n} f(y) d y .
$$

Here it is natural to assume that $U_{\alpha} f \not \equiv \infty$, which is equivalent to

$$
\begin{equation*}
\int_{R^{n}}(1+|y|)^{\alpha-n} f(y) d y<\infty . \tag{1.1}
\end{equation*}
$$

To obtain general results, we treat functions $f$ satisfying a condition of the form:

$$
\begin{equation*}
\int_{R^{n}} \Phi_{p}(f(y)) \omega(|y|) d y<\infty . \tag{1.2}
\end{equation*}
$$

Here $\Phi_{p}(r)$ and $\omega(r)$ are positive monotone functions on the interval $(0, \infty)$ with the following properties:
$(\varphi 1) \quad \Phi_{p}(r)$ is of the form $r^{p} \varphi(r)$, where $1 \leq p<\infty$ and $\varphi$ is a positive nondecreasing function on the interval $(0, \infty)$; set $\varphi(0)=\lim _{r \rightarrow 0} \varphi(r)$.
$(\varphi 2) \quad \varphi$ is of logarithmic type, that is, there exists $A_{1}>0$ such that

$$
A_{1}^{-1} \varphi(r) \leq \varphi\left(r^{2}\right) \leq A_{1} \varphi(r) \quad \text { whenever } r>0
$$

$(\omega 1) \omega$ satisfies the doubling condition; that is, there exists $A_{2}>0$ such that

$$
A_{2}^{-1} \omega(r) \leq \omega(2 r) \leq A_{2} \omega(r) \quad \text { whenever } r>0 .
$$

It is known (see [7]) that if $p>1$ and

$$
\begin{equation*}
\int_{0}^{1}\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-1 /(p-1)} r^{-1} d r<\infty, \tag{1.3}
\end{equation*}
$$

then $U_{\alpha} f$ is continuous everywhere on $R^{n}$ possibly except at the origin; in case $\alpha p>n$, (1.3) holds by condition ( $\varphi 2$ ) and the continuity also follows from Sobolev's theorem. More precisely, we shall show (Theorem 4.2) that if $p=n / \alpha>1, \omega(r) \equiv 1$ and (1.3) holds, then

$$
\begin{equation*}
U_{\alpha} f(x)-U_{\alpha} f(0)=o\left(\varphi^{*}(|x|)\right) \tag{1.4}
\end{equation*}
$$

as $x \rightarrow 0$, where

$$
\varphi^{*}(r)=\left(\int_{0}^{r}\left[\varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} t^{-1} d t\right)^{1-1 / p} .
$$

This gives an extension of Sobolev's theorem as far as we restrict ourselves to the limiting case $\alpha p=n$; for this, see also Maz'ya [2, Theorem 5.4]. Typical examples of $\varphi$ satisfying (1.3) in case $\alpha p=n$ are

$$
[\log (1+r)]^{\delta},[\log (1+r)]^{p-1}[\log (1+\log (1+r))]^{\delta}, \cdots
$$

for $\delta>p-1$.
If (1.3) does not hold, then the potential may not be continuous anywhere, and the second author ([8]) studied the fine limits of $U_{\alpha} f$, that is,

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} U_{\alpha} f(x)=U_{\alpha} f(0)
$$

with an exceptional set $E$ which is thin at 0 in a certain sense (see also Adams-Meyers [1] and Meyers [5]). In this paper, we extend this result and in fact show that

$$
\lim _{x \rightarrow 0, x \in R^{n}-E}[\kappa(|x|)]^{-1}\left[U_{\alpha} f(x)-P(x)\right]=0
$$

with an exceptional set $E$, a weight function $\kappa$ and a polynomial $P$; we are concerned mainly with the case $\kappa(0)=0$.

For this purpose, let $R_{\alpha}(x)=|x|^{\alpha-n}$ and consider the remainder term of Taylor's expansion:

$$
R_{\alpha, \ell}(x, y)=R_{\alpha}(x-y)-\sum_{|\mu| \leq \ell} \frac{x^{\mu}}{\mu!}\left[\left(D^{\mu} R_{\alpha}\right)(-y)\right] .
$$

Then our aim is to investigate the behavior at the origin of the function:

$$
U_{\alpha, \ell} f(x)=\int_{R^{n}} R_{\alpha, \ell}(x, y) f(y) d y .
$$

Here it is natural to assume that

$$
\begin{equation*}
\int_{B(0,1)}|y|^{\alpha-n-\ell} f(y) d y<\infty \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R^{n}-B(0,1)}|y|^{\alpha-n-\ell-1} f(y) d y<\infty \tag{1.6}
\end{equation*}
$$

instead of (1.1), where $B(0,1)$ denotes the unit ball.
For simplicity, consider the case $\omega(r)=r^{\beta}$, where $-n<\beta \leq \alpha p-n$, and let $\ell$ be the nonnegative integer such that

$$
\ell \leq \alpha-(n+\beta) / p<\ell+1 .
$$

We shall show (in Corollary 5.1 given later) that if $f$ satisfies (1.1) and (1.2) with $p>1$, then there exist a set $E \in R^{n}$ and a polynomial $P_{\ell}$ such that

$$
\begin{equation*}
\lim _{x \rightarrow 0, x \in R^{n}-E}[\kappa(|x|)]^{-1}\left[U_{\alpha} f(x)-P_{\ell}(x)\right]=0 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} 2^{j(n-\alpha p)}\left[\varphi\left(2^{j}\right)\right]^{-1} C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty, \tag{1.8}
\end{equation*}
$$

where $E_{j}=\left\{x \in E: 2^{-j} \leq|x|<2^{-j+1}\right\}, B_{j}=\left\{x: 2^{-j-1}<|x|<2^{-j+2}\right\}$ and

$$
\kappa(r)=r^{\ell}\left(\int_{0}^{r}\left[t^{n-\alpha p+\beta+\ell p} \varphi\left(t^{-1}\right)\right]^{-1 /(p-1)} t^{-1} d t\right)^{1-1 / p} ;
$$

see Section 5 for the definition of $C_{\alpha, \Phi_{p}}$. Note here that

$$
C_{\alpha, \Phi_{p}}\left(A_{j} ; B_{j}\right) \sim 2^{-j(n-\alpha p)} \varphi\left(2^{j}\right), \quad A_{j}=B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right)
$$

(cf. [8, Lemma 7.3]), and our definition of thinness differs from that of Adams-Meyers [1]. If in addition (1.3) holds, then the above fine limit is seen to be replaced by the usual limit similar to (1.4); moreover, (1.7) implies that $U_{\alpha} f$ is $\ell$ times differentiable at the origin.

To derive the radial limit result, we modify this as follows (see Corollary 6.1): there exist a set $E \subset R^{n}$ and a polynomial $P_{\ell}$ such that

$$
\begin{equation*}
\lim _{x \rightarrow 0, x \in R^{n}-E}|x|^{(n-\alpha p+\beta) / p}\left[U_{\alpha} f(x)-P_{\ell}(x)\right]=0 \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} C_{\alpha, \Phi_{p}}\left(2^{j} E_{j} ; B_{0}\right)<\infty ; \tag{1.10}
\end{equation*}
$$

note here that $r^{(n-\alpha p+\beta) / p} \leq M[\kappa(r)]^{-1}$, and hence (1.9) is weaker than (1.7). It will be seen that (1.10) is more convenient than (1.8) to our aim of deriving the radial limit result.

## 2. Preliminary lemmas

Throughout this paper, let $M, M_{1}, M_{2}, \ldots$, denote various constants independent of the variables in question.

First we collect properties which follow from conditions ( $\varphi 1$ ) and ( $\varphi 2$ ) (cf. [8, Preliminary lemmas]).

Lemma 2.1. $\varphi$ satisfies the doubling condition, that is, there exists $A>1$ such that

$$
\varphi(r) \leq \varphi(2 r) \leq A \varphi(r) \quad \text { whenever } r>0
$$

Lemma 2.2. For any $\gamma>0$, there exists $A(\gamma)>1$ such that

$$
A(\gamma)^{-1} \varphi(r) \leq \varphi\left(r^{\gamma}\right) \leq A(\gamma) \varphi(r) \quad \text { whenever } r>0
$$

Lemma 2.3. If $\gamma>0$, then

$$
s^{\gamma} \varphi\left(s^{-1}\right) \leq M t^{\gamma} \varphi\left(t^{-1}\right) \quad \text { whenever } 0<s<t .
$$

Proof. We know ([8, ( $\varphi$ 5) ])

$$
s^{\gamma} \varphi\left(s^{-1}\right) \leq A_{1} t^{\nu} \varphi\left(t^{-1}\right) \quad \text { whenever } 0<s<t \leq A_{1}^{-1 / \gamma}
$$

so that

$$
\begin{equation*}
s^{\eta} \varphi\left(s^{-1}\right) \leq M t^{\gamma} \varphi\left(t^{-1}\right) \quad \text { whenever } 0<s<t \leq 1 . \tag{2.1}
\end{equation*}
$$

If we apply (2.1) with $\psi(r)=\left[\varphi\left(r^{-1}\right)\right]^{-1}$, then

$$
\begin{equation*}
\frac{s^{\gamma}}{\varphi(s)} \leq M \frac{t^{\gamma}}{\varphi(t)} \quad \text { whenever } 0<s<t \leq 1 \tag{2.2}
\end{equation*}
$$

In particular,

$$
M^{-1} \varphi(1) \leq s^{-\gamma} \varphi(s) \quad \text { whenever } 0<s \leq 1 .
$$

Hence, in case $0<s<1 \leq t$, we have by (2.1) and the last inequality

$$
s^{\gamma} \varphi\left(s^{-1}\right) \leq M \varphi(1) \leq M^{\prime} t^{\nu} \varphi\left(t^{-1}\right) .
$$

In case $1<s<t$, we have by (2.2)

$$
\frac{t^{-\gamma}}{\varphi\left(t^{-1}\right)} \leq M \frac{s^{-\gamma}}{\varphi\left(s^{-1}\right)}
$$

Thus Lemma 2.3 is proved.
Lemma 2.4. If $a>0$ and $b>0$, then for $0<r<1$,

$$
\int_{r}^{1} t^{-a}\left[\varphi\left(t^{-1}\right)\right]^{-b} t^{-1} d t \leq M r^{-a}\left[\varphi\left(r^{-1}\right)\right]^{-b} .
$$

Remark 2.1. The converse inequality also holds for $0<r<1 / 2$. In fact, by the doubling condition on $\varphi$,

$$
\int_{r}^{1} t^{-a}\left[\varphi\left(t^{-1}\right)\right]^{-b} t^{-1} d t \geq \int_{r}^{2 r} t^{-a}\left[\varphi\left(t^{-1}\right)\right]^{-b} t^{-1} d t \geq M r^{-a}\left[\varphi\left(r^{-1}\right)\right]^{-b}
$$

Proof of Lemma 2.4. Letting $0<\gamma<a / b$, we have by Lemma 2.3,

$$
\begin{aligned}
\int_{r}^{1} t^{-a}\left[\varphi\left(t^{-1}\right)\right]^{-b} t^{-1} d t & \leq M r^{-\gamma b}\left[\varphi\left(r^{-1}\right)\right]^{-b} \int_{r}^{1} t^{-a+\gamma b-1} d t \\
& \leq M r^{-a}\left[\varphi\left(r^{-1}\right)\right]^{-b} .
\end{aligned}
$$

Lemma 2.5. If $a>0$ and $b$ is a real number, then for $r>0$,

$$
\int_{0}^{r} t^{a}\left[\varphi\left(t^{-1}\right)\right]^{b} t^{-1} d t \leq M r^{a}\left[\varphi\left(r^{-1}\right)\right]^{b}
$$

In fact, if $b \leq 0$, then the required inequality follows since $\left[\varphi\left(r^{-1}\right)\right]^{-1}$ is nondecreasing. The case $b>0$ can be obtained by applying Lemma 2.3 and the proof of Lemma 2.4.

## 3. The estimates of $\boldsymbol{U}_{\alpha, \ell} \boldsymbol{f}$

For an integer $\ell$, we consider the potential

$$
U_{\alpha, \ell} f(x)=\int_{R^{n}} R_{\alpha, \ell}(x, y) f(y) d y
$$

in case $\ell \leq-1, U_{\alpha, \ell} f(x)$ is nothing but $U_{\alpha} f(x)$, so that, in this paper, we assume that $\ell \geq 0$.

Write $U_{\alpha, \ell} f(x)=U_{1}(x)+U_{2}(x)+U_{3}(x)$ for $x \in R^{n}-\{0\}$, where

$$
\begin{aligned}
& U_{1}(x)=\int_{R^{n}-B(0,2|x|)} R_{\alpha, \ell}(x, y) f(y) d y, \\
& U_{2}(x)=\int_{B(0,|x| / 2)} R_{\alpha, \ell}(x, y) f(y) d y \\
& U_{3}(x)=\int_{B(0,2|x|)-B(0,|x| / 2)} R_{\alpha, \ell}(x, y) f(y) d y .
\end{aligned}
$$

Lemma 3.1. If $y \in B(0,|x| / 2)$, then

$$
\left|R_{\alpha, \ell}(x, y)\right| \leq M|x|^{\ell}|y|^{\alpha-n-\ell} .
$$

Proof. Since $|y|<|x| / 2$, we have

$$
\begin{aligned}
\left|R_{\alpha, \ell}(x, y)\right| & \leq\left|R_{\alpha}(x-y)\right|+\sum_{|\mu| \leq \ell}\left|\frac{x^{\mu}}{\mu!}\left[\left(D^{\mu} R_{\alpha}\right)(-y)\right]\right| \\
& \leq(|x| / 2)^{\alpha-n}+M \sum_{|\mu| \leq \ell} \frac{|x|^{|\mu|}}{\mu!}|y|^{\alpha-n-|\mu|} \\
& \leq M|x|^{\ell}|y|^{\alpha-n-\ell} .
\end{aligned}
$$

Lemma 3.2. If $y \in B(0,2|x|)-B(0,|x| / 2)$, then

$$
\left|R_{\alpha, \ell}(x, y)\right| \leq M|x-y|^{\alpha-n} .
$$

Proof. We have as above

$$
\begin{aligned}
\left|R_{\alpha, \ell}(x, y)\right| & \leq\left|R_{\alpha}(x-y)\right|+\sum_{|\mu| \leq \ell}\left|\frac{x^{\mu}}{\mu!}\left[\left(D^{\mu} R_{\alpha}\right)(-y)\right]\right| \\
& \leq|x-y|^{\alpha-n}+M|x|^{\ell}|y|^{\alpha-n-\ell} \\
& \leq M|x-y|^{\alpha-n} .
\end{aligned}
$$

Lemma 3.3. If $|y| \geq 2|x|$, then

$$
\left|R_{\alpha, \ell}(x, y)\right| \leq M|x|^{\ell+1}|y|^{\alpha-n-\ell-1} .
$$

Proof. By Taylor's theorem, we obtain

$$
\begin{aligned}
\left|R_{\alpha, \ell}(x, y)\right| & \leq M \sum_{|\mu|=\ell+1} \frac{|x|^{|\mu|}}{\mu!}|\theta x-y|^{\alpha-n-|\mu|} \quad(0<\theta<1) \\
& \leq M\left(\sum_{|\mu|=\ell+1} \frac{1}{\mu!}\right)|x|^{\ell+1}\left(\frac{|y|}{2}\right)^{\alpha-n-\ell-1} \\
& =M|x|^{\ell+1}|y|^{\alpha-n-\ell-1} .
\end{aligned}
$$

Lemma 3.4 (cf. [8, Lemma 2.1]). Let $p>1$ and $f$ be a nonnegative measurable function on $R^{n}$. If $0 \leq 2 r<a<1$ and $0<\delta<\beta$, then

$$
\begin{aligned}
& \int_{R^{n-B(0, r)}}|y|^{\beta-n} f(y) d y \leq \int_{R^{n}-B(0, a)}|y|^{\beta-n} f(y) d y+M a^{\beta-\delta} \\
& \quad+M\left(\int_{r}^{a}\left[t^{n-\beta p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
\end{aligned}
$$

and if $0 \leq 2 r<a<1$ and $\delta>0 \geq \beta$, then

$$
\begin{aligned}
& \int_{R^{n-B(0, r)}}|y|^{\beta-n} f(y) d y \leq \int_{R^{n-B(0, a)}}|y|^{\beta-n} f(y) d y+M r^{\beta-\delta} \\
& \quad+M\left(\int_{r}^{a}\left[t^{n-\beta p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p},
\end{aligned}
$$

where $\eta(r)=\varphi\left(r^{-1}\right) \omega(r)$ and $1 / p+1 / p^{\prime}=1$.
Proof. Let $0<a<1$. We write

$$
\begin{aligned}
\int_{B(0, a)-B(0, r)}|y|^{\beta-n} f(y) d y= & \int_{\left\{y \in B(0, a)-B(0, r): f(y)>|y|^{-\delta}\right\}}|y|^{\beta-n} f(y) d y \\
& +\int_{\left\{y \in B(0, a)-B(0, r): 0<f(y) \leq|y|^{-\delta}\right\}}|y|^{\beta-n} f(y) d y \\
= & U_{11}+U_{12} .
\end{aligned}
$$

From Hölder's inequality, we obtain

$$
\begin{aligned}
U_{11} \leq & \left(\int_{\left\{y \in B(0, a)-B(0, r): f(y)>|y|^{-\delta}\right\}} f(y)^{p} \varphi(f(y)) \omega(|y|) d y\right)^{1 / p} \\
& \times\left(\int_{\left\{y \in B(0, a)-B(0, r): f(y)>|y|^{-\delta}\right\}}|y|^{(\beta-n) p^{\prime}}[\varphi(f(y)) \omega(|y|)]^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} .
\end{aligned}
$$

In view of Lemma 2.2, we see that if $f(y)>|y|^{-\delta}$, then

$$
\varphi(f(y)) \geq \varphi\left(|y|^{-\delta}\right) \geq M \varphi\left(|y|^{-1}\right) .
$$

Hence it follows that

$$
U_{11} \leq M\left(\int_{r}^{a}\left[t^{n-\beta p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
$$

On the other hand, we have

$$
\begin{aligned}
U_{12} & \leq \int_{B(0, a)-B(0, r)}|y|^{\beta-\delta-n} d y \\
& \leq M \begin{cases}a^{\beta-\delta}, & \text { in case } \beta-\delta>0, \\
r^{\beta-\delta}, & \text { in case } \beta-\delta<0,\end{cases}
\end{aligned}
$$

and thus Lemma 3.4 is proved.
Setting $\eta(r)=\varphi\left(r^{-1}\right) \omega(r)$ as above, we define

$$
\kappa_{1}(r)= \begin{cases}\left(\int_{r}^{1}\left[t^{n-\alpha p+(\ell+1) p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, & \text { in case } p>1, \\ \sup _{r \leq t<1} t^{\alpha-\ell-1-n}[\eta(t)]^{-1}, & \text { in case } p=1,\end{cases}
$$

for $0<r \leq 1 / 2$; further, set $\kappa_{1}(r)=\kappa_{1}(1 / 2)$ when $r>1 / 2$.
Remark 3.1. In view of the doubling conditions on $\varphi$ and $\omega$, we see that

$$
\kappa_{1}(r) \geq M\left[r^{n-\alpha p+(\ell+1) p} \eta(r)\right]^{-1 / p} \quad \text { whenever } 0<r \leq 1 / 2 .
$$

Lemma 3.5. Let $f$ be a nonnegative measurable function on $R^{n}$. If $0<2|x|<a<1$ and $0<\delta<\alpha-\ell-1$, then

$$
\begin{aligned}
&\left|U_{1}(x)\right| \leq M|x|^{\ell+1}\left\{\int_{R^{n}-B(0, a)}|y|^{\alpha-\ell-1-n} f(y) d y+M a^{\alpha-\ell-1-\delta}\right\} \\
&+M|x|^{\ell+1} \kappa_{1}(|x|)\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p},
\end{aligned}
$$

and if $0<2|x|<a<1$ and $\delta>0 \geq \alpha-\ell-1$, then

$$
\begin{aligned}
\left|U_{1}(x)\right| \leq & M|x|^{\ell+1} \int_{R^{n-B(0, a)}}|y|^{\alpha-\ell-1-n} f(y) d y+M|x|^{\alpha-\delta} \\
& +M|x|^{\ell+1} \kappa_{1}(|x|)\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
\end{aligned}
$$

where $M$ is a positive constant independent of $x$ and $a$.

Proof. By Lemma 3.3, we have

$$
\left|U_{1}(x)\right| \leq M|x|^{\ell+1} \int_{R^{n-B(0,2|x|)}}|y|^{\alpha-\ell-1-n} f(y) d y .
$$

The case $p>1$ follows readily from Lemma 3.4 with $r=|x|$, and the case $p=1$ is trivial.

In view of Lemma 3.5, we have the following results.
Corollary 3.1. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.2) and (1.6). If $\alpha-\ell-1>0$ and $\kappa_{1}(0)=\infty$, then

$$
\lim _{x \rightarrow 0}\left[|x|^{\ell+1} \kappa_{1}(|x|)\right]^{-1} U_{1}(x)=0 .
$$

Proof. By Lemma 3.5, we have

$$
\limsup _{x \rightarrow 0}\left[|x|^{\ell+1} \kappa_{1}(|x|)\right]^{-1} U_{1}(x) \leq M\left(\int_{B(0, a)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}
$$

for any $a>0$, which implies that the left hand side is equal to zero.
Corollary 3.2. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying conditions (1.2) and (1.6). If $\alpha-\ell-1 \leq 0$ and

$$
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell+1} \kappa_{1}(r)\right]^{-1}=0 \quad \text { for some } \delta>0
$$

then

$$
\lim _{x \rightarrow 0}\left[|x|^{\ell+1} \kappa_{1}(|x|)\right]^{-1} U_{1}(x)=0
$$

This can be proved in a way similar to the proof of Corollary 3.1.
In view of Lemmas 3.1 and 3.4, we can establish the following result.
Lemma 3.6. If $0<\delta<\alpha-\ell$, then there exists a positive constant $M$ such that

$$
\left|U_{2}(x)\right| \leq M|x|^{\ell} \kappa_{2}(|x|)\left(\int_{B(0,|x| / 2)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}+M|x|^{\alpha-\delta}
$$

for any $x \in B(0,1 / 2)-\{0\}$, where

$$
\kappa_{2}(r)= \begin{cases}\left(\int_{0}^{r}\left[t^{n-\alpha p+\ell p} \eta(t)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}, & \text { in case } p>1, \\ \sup _{0<t \leq r} t^{\alpha-\ell-n}[\eta(t)]^{-1}, & \text { in case } p=1 .\end{cases}
$$

Remark 3.2. As in Remark 3.1, we see that

$$
\kappa_{2}(r) \geq M\left[r^{n-\alpha p+\ell p} \eta(r)\right]^{-1 / p} .
$$

With the aid of Lemma 3.6, we have the following result.
Corollary 3.3. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.2). If $0<\delta<\alpha-\ell, \kappa_{2}(1)<\infty$ and

$$
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell} \kappa_{2}(r)\right]^{-1}=0,
$$

then

$$
\lim _{x \rightarrow 0}\left[|x|^{\ell} \kappa_{2}(|x|)\right]^{-1} U_{2}(x)=0 .
$$

Remark 3.3. Let $\omega(r)=r^{\beta}$. If $\alpha-(n+\beta) / p<\ell+1$, then Lemma 2.4 implies that

$$
\kappa_{1}(r) \sim\left[r^{n-\alpha p+(\ell+1) p+\beta} \varphi\left(r^{-1}\right)\right]^{-1 / p} \quad \text { as } r \rightarrow 0
$$

and thus

$$
\kappa_{1}(0)=\infty .
$$

If in addition $n+\beta>0$, then we see by Lemma 2.3 that

$$
\limsup _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell+1} \kappa_{1}(r)\right]^{-1} \leq M \underset{r \rightarrow 0}{\lim \sup } r^{(n+\beta) / p-\delta}\left[\varphi\left(r^{-1}\right)\right]^{1 / p}=0
$$

for $0<\delta<(n+\beta) / p$.
Remark 3.4. Let $\omega(r)=r^{\beta}$. If $\ell<\alpha-(n+\beta) / p$, then Lemma 2.5 implies that

$$
\kappa_{2}(r) \sim\left[r^{n-\alpha p+\ell p+\beta} \varphi\left(r^{-1}\right)\right]^{-1 / p} \quad \text { as } r \rightarrow 0 .
$$

If in addition $n+\beta>0$, then we see by Lemma 2.3 that

$$
\limsup _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell} \kappa_{2}(r)\right]^{-1} \leq M \underset{r \rightarrow 0}{\limsup } r^{(n+\beta) / p-\delta}\left[\varphi\left(r^{-1}\right)\right]^{1 / p}=0
$$

for $0<\delta<(n+\beta) / p$. If $p>1$ and $\ell=\alpha-(n+\beta) / p$, then $\kappa_{2}(1)<\infty$ is equivalent to

$$
\int_{0}^{1}\left[\varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} r^{-1} d r<\infty
$$

## 4. Taylor expansion

Throughout this section, let $p>1$. Set

$$
\varphi^{*}(r)=\left(\int_{0}^{r}\left[t^{n-\alpha p} \varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}}
$$

and

$$
\kappa_{3}(r)=[\omega(r)]^{-1 / p} \varphi^{*}(r)
$$

If $\varphi^{*}(1)<\infty$, then $U_{\alpha} f$ is continuous everywhere on $R^{n}$ possibly except at the origin when $f$ satisfies (1.1) and (1.2) (see [7, Theorem 1]).

Lemma 4.1. If $0<\delta<\alpha$, then there exists a positive constant $M$ such that

$$
\left|U_{3}(x)\right| \leq M \kappa_{3}(|x|)\left(\int_{B(0,2|x|)-B(0,|x| / 2)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}+M|x|^{\alpha-\delta}
$$

for any $x \in B(0,1 / 2)-\{0\}$.

## Proof. Let $0<\delta<\alpha$, and consider the function

$$
\tilde{f}(y)= \begin{cases}f(y), & \text { for } y \in B(0,2|x|)-B(0,|x| / 2) \\ 0, & \text { otherwise }\end{cases}
$$

Note by Lemma 3.2 that

$$
\begin{aligned}
\left|U_{3}(x)\right| & \leq M \int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y \\
& =M \int_{B(0,3|x|)}|z|^{\alpha-n} \tilde{f}(x+z) d z
\end{aligned}
$$

Hence it follows from Lemma 3.4 that

$$
\begin{aligned}
& \left|U_{3}(x)\right| \\
& \quad \leq M\left(\int_{0}^{3|x|}\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int \Phi_{p}(\tilde{f}(x+z)) d z\right)^{1 / p}+M|x|^{\alpha-\delta} \\
& \quad \leq M \varphi^{*}(|x|)\left(\int_{B(0,2|x|)-B(0,|x| / 2)} \Phi_{p}(f(y)) d y\right)^{1 / p}+M|x|^{\alpha-\delta}
\end{aligned}
$$

$$
\leq M \kappa_{3}(|x|)\left(\int_{B(0,2|x|)-B(0,|x| / 2)} \Phi_{p}(f(y)) \omega(|y|) d y\right)^{1 / p}+M|x|^{\alpha-\delta},
$$

as required.
We consider the function

$$
K(r)=r^{\ell+1} \kappa_{1}(r)+r^{\ell} \kappa_{2}(r)+\kappa_{3}(r) .
$$

Here note that

$$
\begin{equation*}
K(r) \geq M\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p} \tag{4.1}
\end{equation*}
$$

for $r>0$.
Theorem 4.1. Assume that $\ell<\alpha, \lim _{r \rightarrow 0} K(r)=0$ and

$$
\begin{array}{ll}
\kappa_{1}(0)=\infty & \text { in case } \alpha-\ell-1>0, \\
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell+1} \kappa_{1}(r)\right]^{-1}=0 & \text { for some } \delta>0 \text { in case } \alpha-\ell-1 \leq 0, \\
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell} \kappa_{2}(r)\right]^{-1}=0 & \text { for some } \delta \text { such that } 0<\delta<\alpha-\ell, \\
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[\kappa_{3}(r)\right]^{-1}=0 & \text { for some } \delta>0 .
\end{array}
$$

If $f$ is a nonnegative measurable function on $R^{n}$ satisfying conditions (1.2) and (1.6), then

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} U_{\alpha, \ell} f(x)=0 .
$$

Proof. We may assume that $0<\delta<\alpha$. Since $\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[\kappa_{3}(r)\right]^{-1}=0$, we see by Lemma 4.1 that

$$
\lim _{x \rightarrow 0}\left[\kappa_{3}(|x|)\right]^{-1} U_{3}(x)=0
$$

In view of Corollaries 3.1, 3.2 and 3.3, we have

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1}\left\{U_{1}(x)+U_{2}(x)\right\}=0,
$$

and hence

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1} U_{\alpha, \ell} f(x)=0 .
$$

Thus we complete the proof of Theorem 4.1.
Remark 4.1. Let $\omega(r)=r^{\beta}$. If $n+\beta>0$, then we see by Lemma 2.3 that

$$
\underset{r \rightarrow 0}{\limsup } r^{\alpha-\delta}\left[\kappa_{3}(r)\right]^{-1}=0
$$

for $0<\delta<(n+\beta) / p$.
Remark 4.2. Let $\omega(r)=r^{\beta}$, where $-n<\beta \leq \alpha p-n$. Let $\ell$ be the integer such that

$$
\ell \leq \alpha-(n+\beta) / p<\ell+1 .
$$

Then we see with the aid of Remarks 3.3, 3.4 and 4.1 that

$$
\begin{aligned}
& K(r) \sim\left[r^{n-\alpha p+\beta} \varphi\left(r^{-1}\right)\right]^{-1 / p} \quad \text { when } \ell<\alpha-(n+\beta) / p<\ell+1, n-\alpha p<0, \\
& K(r) \sim r^{-\beta / p}\left(\int_{0}^{r}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} \\
& \text { when } \ell<\alpha-(n+\beta) / p<\ell+1, n-\alpha p=0, \\
& K(r) \sim r^{\ell}\left(\int_{0}^{r}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t\right)^{1 / p^{\prime}} \\
& \text { when } \ell=\alpha-(n+\beta) / p .
\end{aligned}
$$

In all cases, if $K(1)<\infty$, then

$$
\lim _{r \rightarrow 0} K(r)=0 .
$$

Remark 4.3. Let $\omega(r)=r^{\beta}$, where $-n<\beta \leq \alpha p-n$. If $\alpha-(n+\beta) / p$ $<\ell+1$ and $f$ satisfies (1.2), then the proof of Lemma 3.4 shows that (1.6) is fulfilled.

Corollary 4.1. Let $\omega(r)=r^{\beta}$ with $-n<\beta \leq \alpha p-n$. Let $f$ be $a$ nonnegative measurable function on $R^{n}$ satisfying conditions (1.1) and (1.2). If $\ell \leq \alpha-(n+\beta) / p<\ell+1$ and $K(1)<\infty$, then there exists a polynomial $P_{\ell}$ of degree at most $\ell$ such that

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-1}\left[U_{\alpha} f(x)-P_{\ell}(x)\right]=0
$$

with $K$ as in Remark 4.2.
In fact, since $\kappa_{2}(1)<\infty$, (1.5) holds, and further (1.6) holds by Remark 4.3. Hence

$$
U_{\alpha, \ell} f(x)=U_{\alpha} f(x)-\sum_{|\mu| \leq \ell} \frac{x^{\mu}}{\mu!} \int_{R^{n}}\left[\left(D^{\mu} R_{\alpha}\right)(-y)\right] f(y) d y
$$

With the aid of Remarks 3.3, 3.4, 4.1 and 4.2, Theorem 4.1 gives the present corollary.

Since $\lim _{r \rightarrow 0} r^{-\ell} K(r)=0$, Corollary 4.1 implies that $U_{\alpha} f$ is $\ell$ times differentiable at the origin. On the other hand, Corollary 4.1 says that

$$
U_{\alpha} f(x)-P_{\ell}(x)=o(K(|x|)) \quad \text { as } x \rightarrow 0 .
$$

We next show that this holds locally uniformly in the following sense.
Theorem 4.2. Let $p=n / \alpha>1$, and $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and

$$
\begin{equation*}
\int_{R^{n}} \Phi_{p}(f(y)) d y<\infty \tag{4.2}
\end{equation*}
$$

If $\varphi^{*}(1)<\infty$, then

$$
U_{\alpha} f(x)-U_{\alpha} f(z)=o\left(\varphi^{*}(|x-z|)\right)
$$

when $|x-z| \rightarrow 0$ and $x, z$ are in a compact set in $R^{n}$.
Proof. First nore that $\omega(r)=1$ and $\ell=0$ in this case, and hence

$$
K(r) \sim \varphi^{*}(r)
$$

because of Remark 4.2. Moreover, if $0<\beta<\min \{1, \alpha\}$ and $2|x-z|<a<1$, then Lemmas 3.5, 3.6 and 4.1 establish

$$
\left|U_{\alpha} f(x)-U_{\alpha} f(z)\right| \leq M|x-z| G_{a}(x)+M|x-z|^{\beta}+M K(|x-z|) F_{a}(x),
$$

where

$$
G_{a}(x)=\int_{R^{n}-B(x, a)}|x-y|^{\alpha-n-1} f(y) d y
$$

and

$$
F_{a}(x)=\left(\int_{B(x, a)} \Phi_{p}(f(y)) d y\right)^{1 / p} .
$$

Since

$$
\lim _{r \rightarrow 0} \sup _{x \in R^{n}} \int_{B(x, r)}|g(y)| d y=0
$$

for any integrable function $g$ on $R^{n}$, for given $\varepsilon>0$ there exists $a_{0}>0$ such that $F_{a_{0}}(x)<\varepsilon$ for all $x$. On the other hand, since $G_{a_{0}}(x)$ is continuous on $R^{n}$, it is bounded on a compact set. Hence, noting that $\lim _{r \rightarrow 0} r^{\gamma}\left[\varphi^{*}(r)\right]^{-1}=0$ whenever $\gamma>0$, for any compact set $E$ in $R^{n}$ we can find $\delta>0$ so small that

$$
\left|U_{\alpha} f(x)-U_{\alpha} f(z)\right| \leq \varepsilon \varphi^{*}(|x-z|)
$$

whenever $x \in E$ and $|x-z|<\delta$. Thus the present theorem is obtained.

Remark 4.4. Maz'ya proved Theorem 4.2 for Sobolev functions $u$ for which (4.2) is satisfied with $f$ replaced by $|\operatorname{grad} u|$ (see [2, Theorem 5.4]).

Remark 4.5. Theorem 4.2 can be extended to higher differences of order $\ell$, in view of Corollary 4.1.

Here we discuss the best possibility of Corollary 4.1 (Theorem 4.2) as to the order of infinity in case $\alpha p=n$ and $\omega(r)=1$.

Proposition 4.1. Assume $\varphi^{*}(1)<\infty$. Then, for any $\varepsilon>0$, there exists a nonnegative measurable function $f$ on $R^{n}$ satisfying (4.2) with $p=n / \alpha$ such that $U_{\alpha} f(0)<\infty$ and

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-\varepsilon-1}\left\{U_{\alpha} f(x)-U_{\alpha} f(0)\right\}=-\infty
$$

Proof. Note that $K(r) \sim \varphi^{*}(r)$ in this case (cf. Remark 4.2). Let $0<\varepsilon<p^{\prime}-1$ and $p^{\prime}-1-\varepsilon<\delta<p^{\prime}-1$. We define

$$
f(y)=[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} \quad \text { for } y \in B=B(0,1) .
$$

In view of Lemma 2.3, for $\gamma>0$,

$$
\begin{equation*}
s^{\nu} K(s)^{-1}<M t^{\nu} K(t)^{-1} \quad \text { whenever } 0<s<t, \tag{4.3}
\end{equation*}
$$

so that we see that

$$
\varphi(f(y))=\varphi\left([K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p}\right) \leq \varphi\left(M|y|^{-(\gamma \delta+\alpha)}\right) \leq M \varphi\left(|y|^{-1}\right)
$$

for $y \in B$. Consequently we establish

$$
\begin{aligned}
\int_{B} \Phi_{p}(f(y)) d y= & \int_{B}\left([K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p}\right)^{p} \\
& \times \varphi\left([K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p}\right) d y \\
\leq & M \int_{B}[K(|y|)]^{-\delta p}|y|^{-\alpha p}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime}+1} d y \\
\leq & M \int_{B}\left[\varphi^{*}(|y|)\right]^{-\delta p}|y|^{-n}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
= & M \int_{0}^{1}\left\{\left[\varphi^{*}(r)\right]^{p^{\prime}}\right\}^{-\delta p / p^{\prime}}\left\{\left[\varphi^{*}(r)\right]^{p^{\prime}}\right\}^{\prime} d r \\
= & M \int_{0}^{t^{*}} t^{-\delta p / p^{\prime}} d t<\infty,
\end{aligned}
$$

with $t^{*}=\left[\varphi^{*}(1)\right]^{p^{\prime}} . \quad$ Thus it follows that $f$ satisfies (4.2). Similarly, we have

$$
\begin{aligned}
U_{\alpha} f(0) & =\int_{B}|y|^{\alpha-n} f(y) d y \\
& =\int_{B}|y|^{\alpha-n}[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& \leq \int_{B}\left[\varphi^{*}(|y|)\right]^{-\delta}|y|^{-n}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& =M \int_{0}^{1}\left\{\left[\varphi^{*}(t)\right]^{p^{\prime}}\right\}^{-\delta / p^{\prime}}\left\{\left[\varphi^{*}(t)\right]^{p^{\prime}}\right\}^{\prime} d t \\
& =M \int_{0}^{t^{*}} t^{-\delta / p^{\prime}} d t<\infty
\end{aligned}
$$

We write

$$
U_{2}(x)=-\int_{B(0,|x| / 2)}|y|^{\alpha-n} f(y) d y+\int_{B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y=-I+J
$$

Letting $r^{*}=\left[\varphi^{*}(|x| / 2)\right]^{p^{\prime}}$, we have as above

$$
I \geq M \int_{0}^{r^{*}} t^{-\delta / p^{\prime}} d t=M\left[\varphi^{*}(|x| / 2)\right]^{-\delta+p^{\prime}} \geq M[K(|x|)]^{-\delta+p^{\prime}},
$$

so that

$$
\begin{equation*}
\lim _{x \rightarrow 0}[K(|x|)]^{-\varepsilon-1} I=\infty \tag{4.4}
\end{equation*}
$$

On the other hand, letting $r=|x|<1$, we have

$$
\begin{aligned}
J & =\int_{B(0,|x| / 2)}|x-y|^{\alpha-n}[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& \leq M|x|^{\alpha-n} \int_{B(0,|x| / 2)}[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& =M r^{\alpha-n} \int_{0}^{r / 2}[K(t)]^{-\delta} t^{-\alpha+n}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t \\
& \leq M r^{\alpha-n} \int_{0}^{r}[K(t)]^{-\delta} t^{-\alpha+n}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t \\
& \leq M r^{\alpha-n}[K(r)]^{-\delta} r^{-\alpha+n}\left[\varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} \\
& =M[K(r)]^{-\delta}\left[\varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} .
\end{aligned}
$$

In view of Lemma 2.2, we have

$$
\begin{aligned}
{[K(r)]^{p^{\prime}} } & \geq \int_{r^{2}}^{r}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-1} d t \geq\left[\varphi\left(r^{-2}\right)\right]^{-p^{\prime} / p} \int_{r^{2}}^{r} t^{-1} d t \\
& \geq M\left[\varphi\left(r^{-1}\right)\right]^{-p^{\prime} / p} \log \frac{1}{r} \quad(M>0),
\end{aligned}
$$

so that

$$
J \leq M[K(|x|)]^{-\delta+p^{\prime}}[\log (1 /|x|)]^{-1} .
$$

Moreover, by Lemma 3.2, we have

$$
\begin{aligned}
\left|U_{3}(x)\right| & \leq M \int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y \\
& =M \int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n}[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& \leq M[K(|x|)]^{-\delta}|x|^{-\alpha}\left[\varphi\left(|x|^{-1}\right)\right]^{-p^{\prime} / p} \int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n} d y \\
& \leq M[K(|x|)]^{-\delta}\left[\varphi\left(|x|^{-1}\right)\right]^{-p^{\prime} \mid p} \\
& \leq M[K(|x|)]^{-\delta+p^{\prime}}[\log (1 /|x|)]^{-1} .
\end{aligned}
$$

Similarly, by Lemmas 3.3 and 2.4, we have

$$
\begin{aligned}
\left|U_{1}(x)\right| & \leq M|x| \int_{R^{n}-B(0,2|x|)}|y|^{\alpha-n-1} f(y) d y \\
& =M|x| \int_{B(0,1)-B(0,2|x|)}|y|^{\alpha-n-1}[K(|y|)]^{-\delta}|y|^{-\alpha}\left[\varphi\left(|y|^{-1}\right)\right]^{-p^{\prime} / p} d y \\
& =M|x| \int_{2|x|}^{1}[K(t)]^{-\delta}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-2} d t \\
& \leq M|x|[K(|x|)]^{-\delta} \int_{2|x|}^{1}\left[\varphi\left(t^{-1}\right)\right]^{-p^{\prime} / p} t^{-2} d t \\
& \leq M[K(|x|)]^{-\delta}\left[\varphi\left(|x|^{-1}\right)\right]^{-p^{\prime} / p} \\
& \leq M[K(|x|)]^{-\delta+p^{\prime}}[\log (1 /|x|)]^{-1} .
\end{aligned}
$$

Thus it follows that

$$
U_{\alpha} f(x)-U_{\alpha} f(0) \leq-[K(|x|)]^{-\delta+p^{\prime}}\left(1-M[\log (1 /|x|)]^{-1}\right),
$$

which together with (4.4) yields

$$
\lim _{x \rightarrow 0}[K(|x|)]^{-\varepsilon-1}\left\{U_{\alpha} f(x)-U_{\alpha} f(0)\right\}=-\infty
$$

Thus $f$ has all the required properties.

## 5. Fine limits

For a set $E \subset R^{n}$ and an open set $G \subset R^{n}$, we define

$$
C_{\alpha, \Phi_{p}}(E ; G)=\inf _{g} \int_{G} \Phi_{p}(g(y)) d y
$$

where the infimum is taken over all nonnegative measurable functions $g$ on $R^{n}$ such that $g$ vanishes outside $G$ and $U_{\alpha} g(x) \geq 1$ for every $x \in E$ (cf. Meyers [3]).

In what follows, we collect elementary properties of this capacity (cf. [8, Lemma 2.2]).

Lemma 5.1. $\quad C_{\alpha, \oplus_{p}}(\cdot ; G)$ is countably subadditive.
Lemma 5.2. Let $G$ and $G^{\prime}$ be bounded open sets in $R^{n}$. If $F$ is a compact subset of $G \cap G^{\prime}$, then there exists $M>0$ such that

$$
C_{\alpha, \Phi_{p}}(E ; G) \leq M C_{\alpha, \Phi_{p}}\left(E ; G^{\prime}\right) \quad \text { for any } E \subset F
$$

Lemma 5.3. Let $G$ and $G^{\prime}$ be bounded open sets in $R^{n}$. If $C_{\alpha, \Phi_{p}}(E ; G)=0$, then $C_{\alpha, \Phi_{p}}\left(E \cap G^{\prime} ; G^{\prime}\right)=0$.

Lemma 5.4. Let $G$ and $G^{\prime}$ be bounded open sets in $R^{n}$. If $C_{\alpha, \Phi_{p}}(E ; G)=0$, $E \subset G$, then, for any positive nonincreasing function $\omega$ on $(0, \infty)$, there exists a nonnegative measurable function $f$ on $G$ such that $U_{\alpha} f \not \equiv \infty, U_{\alpha} f=\infty$ on $E$ and $\int_{G} \Phi_{p}(f(y)) \omega(\rho(y)) d y<\infty$, where $\rho(y)$ denotes the distance of $y$ from the boundary $\partial G$.

For a nonnegative function $\chi$ on the interval $(0,1]$, consider the generalized doubling condition:

$$
\chi(r) \leq M \chi(s) \quad \text { whenever } 0<r / 2 \leq s \leq 2 r \leq 1
$$

For monotone functions, $(\chi)$ is just the doubling condition as mentioned before. For $r>0$ and $E \subset R^{n}$, set

$$
r E=\{r x: x \in E\}
$$

Lemma 5.5 (cf. [8, Lemma 2.3]). Let $\chi_{i}, i=1,2,3$, be positive functions on ( 0,1$]$ satisfying condition ( $\chi$ ). If $f$ is a nonnegative function satisfying

$$
\begin{equation*}
\int_{B(0,1)} \Phi_{p}\left(\chi_{1}(|y|)\left[\chi_{2}(|y|)\right]^{\alpha} f(y)\right)\left[\chi_{2}(|y|)\right]^{-n} \chi_{3}(|y|) d y<\infty \tag{5.1}
\end{equation*}
$$

then there exists a set $E \subset R^{n}$ such that
(i) $\lim _{x \rightarrow 0, x \in R^{n}-E} \chi_{1}(|x|) U(x)=0 ;$
(ii) $\sum_{j=1}^{\infty} \chi_{3}\left(2^{-j}\right) C_{\alpha, \Phi_{p}}\left(\left[\chi_{2}\left(2^{-j}\right)\right]^{-1} E_{j} ;\left[\chi_{2}\left(2^{-j}\right)\right]^{-1} B_{j}\right)<\infty$,
where $E_{j}=\left\{x \in E: 2^{-j} \leq|x|<2^{-j+1}\right\}, B_{j}=\left\{x \in R^{n}: 2^{-j-1}<|x|<2^{-j+2}\right\}$ and

$$
U(x)=\int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y
$$

Proof. For a sequence $\left\{a_{j}\right\}$ of positive numbers, consider

$$
E_{j}=\left\{x \in R^{n}: 2^{-j} \leq|x|<2^{-j+1}, U(x) \geq a_{j}^{-1}\left[\chi_{1}(|x|)\right]^{-1}\right\}
$$

and

$$
E=\bigcup_{j=1}^{\infty} E_{j}
$$

If $x \in E_{j}=\left\{x \in E: 2^{-j} \leq|x|<2^{-j+1}\right\}$, then

$$
\begin{aligned}
\chi_{1}(|x|) U(x) & \leq \chi_{1}(|x|) \int_{B_{j}}|x-y|^{\alpha-n} f(y) d y \\
& \leq M t_{j} \int_{r_{j} B_{j}}\left|r_{j} x-z\right|^{\alpha-n} f\left(r_{j}^{-1} z\right) d z
\end{aligned}
$$

where $r_{j}=\left[\chi_{2}\left(2^{-j}\right)\right]^{-1}$ and $t_{j}=\left[\chi_{1}\left(2^{-j}\right)\right] r_{j}^{-\alpha}$. Hence it follows from the definition of $C_{\alpha, \Phi_{p}}$ that

$$
\begin{aligned}
C_{\alpha, \Phi_{p}}\left(r_{j} E_{j} ; r_{j} B_{j}\right) & \leq \int_{r_{j} B_{j}} \Phi_{p}\left(M a_{j} t_{j} f\left(r_{j}^{-1} z\right)\right) d z \\
& =\int_{B_{j}} \Phi_{p}\left(M a_{j} t_{j} f(y)\right) r_{j}^{n} d y
\end{aligned}
$$

Now it suffices to choose $\left\{a_{j}\right\}$ so that $\lim _{j \rightarrow \infty} a_{j}=\infty$ but

$$
\sum_{j} \chi_{3}\left(2^{-j}\right) \int_{B_{j}} \Phi_{p}\left(M a_{j} t_{j} f(y)\right) r_{j}^{n} d y<\infty
$$

(see the proof of Lemma 2.3 in [8]).

Theorem 5.1. Set $\kappa(r)=r^{\ell+1} \kappa_{1}(r)+r^{\ell} \kappa_{2}(r)$. Assume that $\ell<\alpha, \lim _{r \rightarrow 0} \kappa(r)$ $=0$ and

$$
\kappa_{1}(0)=\infty \quad \text { in case } \alpha-\ell-1>0
$$

$$
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell+1} \kappa_{1}(r)\right]^{-1}=0 \quad \text { for some } \delta>0 \text { in case } \alpha-\ell-1 \leq 0
$$

$$
\lim _{r \rightarrow 0} r^{\alpha-\delta}\left[r^{\ell} \kappa_{2}(r)\right]^{-1}=0 \quad \text { for some } \delta \text { such that } 0<\delta<\alpha-\ell
$$

Further, let $\kappa_{4}(r)=\left[r^{n-\alpha p} \eta(r)\right]^{-1 / p}$. If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.2), (1.6) and

$$
\begin{equation*}
\int_{B(0,1)} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-1} f(y)\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y<\infty \tag{5.2}
\end{equation*}
$$

then there exists a set $E \subset R^{n}$ such that
(i) $\lim _{x \rightarrow 0, x \in R^{n}-E}[\kappa(|x|)]^{-1} U_{\alpha, \ell} f(x)=0 ;$
(ii) $\sum_{j=1}^{\infty} 2^{j(n-\alpha p)}\left[\varphi\left(2^{j}\right)\right]^{-1} C_{\alpha, \Phi_{p}}\left(E_{j} ; B_{j}\right)<\infty$.

Remark 5.1. In view of [8, Lemma 7.3], we see that

$$
C_{\alpha, \Phi_{p}}\left(A_{j} ; B_{j}\right) \sim 2^{-j(n-\alpha p)} \varphi\left(2^{j}\right),
$$

where $A_{j}=B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right)$.
Proof of Theorem 5.1. From Corollaries 3.1, 3.2 and 3.3, it follows that

$$
\begin{aligned}
& \lim _{x \rightarrow 0}[\kappa(|x|)]^{-1} U_{1}(x)=0, \\
& \lim _{x \rightarrow 0}[\kappa(|x|)]^{-1} U_{2}(x)=0 .
\end{aligned}
$$

In view of Lemma 3.2,

$$
\left|U_{3}(x)\right| \leq M \int_{B(0,2|x|)-B(0,|x| / 2)}|x-y|^{\alpha-n} f(y) d y=M U(x)
$$

Now let

$$
\chi_{1}(r)=\left[\kappa_{4}(r)\right]^{-1}, \quad \chi_{2}(r)=1
$$

and

$$
\chi_{3}(r)=\left[\kappa_{4}(r)\right]^{p} \omega(r)=\left[r^{n-\alpha p} \varphi\left(r^{-1}\right)\right]^{-1}
$$

We then apply Lemma 5.5 to find a set $E$ satisfying (ii) and

$$
\lim _{x \rightarrow 0, x \in R^{n}-E}\left[\kappa_{4}(|x|)\right]^{-1} U_{3}(x)=0 .
$$

Since $[\kappa(r)]^{-1} \leq M\left[\kappa_{4}(r)\right]^{-1}$ by Remark 3.1 or 3.2 , we obtain the required fine limit result.

Lemma 5.6. If

$$
\begin{equation*}
\int_{B(0,1)} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-\gamma}\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y<\infty \tag{5.3}
\end{equation*}
$$

for some $\gamma>1$, then (5.2) holds for any nonnegative measurable function $f$ on $R^{n}$ satisfying (1.2).

Proof. To show this fact, consider the sets

$$
\begin{aligned}
& E_{1}=\left\{y \in B(0,1):\left[\kappa_{4}(|y|)\right]^{-1} f(y) \geq f(y)^{1+\delta}\right\}, \\
& E_{2}=\left\{y \in B(0,1):\left[\kappa_{4}(|y|)\right]^{-1} f(y)<f(y)^{1+\delta}\right\}
\end{aligned}
$$

for $\delta>0$ such that $\gamma=1+1 / \delta$. Then

$$
\begin{aligned}
& \int_{E_{1}} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-1} f(y)\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y \\
\leq & \int_{E_{1}} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-\gamma}\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y<\infty .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \int_{E_{2}} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-1} f(y)\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y \\
= & \int_{E_{2}} \varphi\left(\left[\kappa_{4}(|y|)\right]^{-1} f(y)\right) f(y)^{p} \omega(|y|) d y \\
\leq & \int_{E_{2}} \varphi\left(f(y)^{1+\delta}\right) f(y)^{p} \omega(|y|) d y \\
\leq & M \int_{B(0,1)} \Phi_{p}(f(y)) \omega(|y|) d y<\infty .
\end{aligned}
$$

Lemma 5.7. Let $\omega(r)=r^{\beta}$. If $-n<\beta \leq \alpha p-n$, then (5.3) holds for some $\gamma>1$.

Proof. We see from Lemma 2.3 that

$$
M^{-1} r^{-(n-\alpha p+\beta) / p} r^{\delta} \leq \kappa_{4}(r) \leq M r^{-(n-\alpha p+\beta) / p}, \quad 0<r<1,
$$

for $\delta>0$. Hence we find that

$$
\Phi_{p}\left(\left[\kappa_{4}(r)\right]^{-\gamma}\right) \leq M r^{\gamma(n-\alpha p+\beta)} r^{-\delta^{\prime}}
$$

for $\gamma>1$ and $\delta^{\prime}>0$. Consequently it follows that

$$
\begin{aligned}
& \int_{B(0,1)} \Phi_{p}\left(\left[\kappa_{4}(|y|)\right]^{-\gamma}\right)\left[\kappa_{4}(|y|)\right]^{p} \omega(|y|) d y \\
\leq & M \int_{B(0,1)}|y|^{(\gamma-1)(n-\alpha p+\beta)}|y|^{-\delta^{\prime}}|y|^{\beta} d y \\
= & M \int_{0}^{1} r^{(\gamma-1)(n-\alpha p+\beta)-\delta^{\prime}+\beta+n} r^{-1} d r<\infty
\end{aligned}
$$

for some $\gamma>1$ and $\delta^{\prime}>0$, because $\lim _{\gamma \rightarrow 1, \delta^{\prime} \rightarrow 0}\left\{(\gamma-1)(n-\alpha p+\beta)-\delta^{\prime}+\beta+n\right\}$ $=\beta+n>0$. Thus the present lemma is obtained.

Corollary 5.1. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and

$$
\int_{R^{n}} \Phi_{p}(f(y))|y|^{\beta} d y<\infty
$$

for $-n<\beta \leq \alpha p-n$. If $\ell$ is the nonnegative integer such that $\ell \leq \alpha-(n+\beta) / p$ $<\ell+1$ and $\kappa(1)<\infty$, then there exist a set $E \subset R^{n}$ and a polynomial $P_{\ell}$ of degree at most $\ell$ for which (ii) of Theorem 5.1 holds and

$$
\lim _{x \rightarrow 0, x \in \mathbb{R}^{n}-E}[\kappa(|x|)]^{-1}\left[U_{\alpha} f(x)-P_{\ell}(x)\right]=0 .
$$

Remark 5.2. Meyers [4] dealt with $L^{q}$-mean limits for Taylor expansion of Bessel potentials of $L^{p}$-functions. In this connection, it will be expected that

$$
\lim _{r \rightarrow 0}[\kappa(r)]^{-1}\left(r^{-n} \int_{B(0, r)}\left|U_{\alpha} f(x)-P_{\ell}(x)\right|^{q} d x\right)^{1 / q}=0
$$

holds in our case.
The following is a special case of Lemma 5.5.
Lemma 5.8. Let $\chi$ be a positive function on $(0,1]$ satisfying $(\chi)$. If $f$ is a nonnegative function satisfying

$$
\begin{equation*}
\int_{B(0,1)} \Phi_{p}\left(\chi(|y|)|y|^{\alpha} f(y)\right)|y|^{-n} d y<\infty \tag{5.4}
\end{equation*}
$$

then there exists a set $E \subset R^{n}$ such that
(i) $\lim _{x \rightarrow 0, x \in \mathbb{R}^{n}-E} \chi(|x|) U(x)=0$;
(ii') $\sum_{j=1}^{\infty} C_{\alpha, \Phi_{p}}\left(2^{j} E_{j} ; B_{0}\right)<\infty$.
With the aid of Lemma 5.8, we can establish the following result which is useful for the study of radial limits.

Theorem 5.2. Let $\kappa$ be as in Theorem 5.1, and $\chi$ be a positive function on ( 0,1 ] satisfying condition ( $\chi$ ) and

$$
\begin{equation*}
\chi(r) \leq M[\kappa(r)]^{-1} . \tag{5.5}
\end{equation*}
$$

If $f$ is a nonnegative measurable function on $R^{n}$ satisfying (1.2), (1.6) and (5.4), then there exists a set $E \subset R^{n}$ for which (ii') of Lemma 5.8 is satisfied and

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} \chi(|x|) U_{\alpha, \ell} f(x)=0 .
$$

## 6. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we prepare two lemmas concerning the capacity $C_{\alpha, \Phi_{p}}$.

A mapping $T: G \rightarrow G^{\prime}$ is said to be bi-Lipschitzian if there exists $A>1$ such that

$$
A^{-1}|x-y| \leq|T x-T y| \leq A|x-y| \quad \text { for all } x, y \in G .
$$

The following result can be proved easily by the definition of $C_{\alpha, \Phi_{p}}$.
Lemma 6.1. Let The a bi-Lipschitzian mapping from G onto TG. Then

$$
C_{\alpha, \Phi_{p}}(T E ; T G) \leq M C_{\alpha, \Phi_{p}}(E ; G) \quad \text { for any } E \subset G,
$$

where $M$ is a positive constant which may depend on $A$ (the Lipschitz constant of $T$ ).

For a set $E \subset R^{n}$, we denote by $\tilde{E}$ the set of all $\xi \in \partial B(0,1)$ such that $r \xi \in E$ for some $r>0$. By using Lemma 5.8 and applying the methods in the proof of Lemma 5 in [6], we can prove the following lemma.

Lemma 6.2. There exists a positive constant $M$ such that

$$
C_{\alpha, \Phi_{p}}(\tilde{E} ; B(0,4)) \leq M C_{\alpha, \Phi_{p}}(E ; B(0,4))
$$

whenever $E \subset B(0,2)-B(0,1)$.
Lemma 6.3. Let $\chi$ be a positive function on $(0,1]$ satisfying $(\chi)$. If $f$ is a non-negative function satisfying (5.4), then there exists a set $E^{*} \subset \partial B(0,1)$ such that $C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0$ and

$$
\lim _{r \rightarrow 0} \chi(r) U(r \xi)=0 \quad \text { for any } \xi \in \partial B(0,1)-E^{*},
$$

where $U$ is as in Lemma 5.5.
Proof. Take a set $E \subset R^{n}$ as in Lemma 5.8, and set

$$
E^{*}=\bigcap_{k=1}^{\infty}\left(\bigcup_{j=k}^{\infty} \tilde{E}_{j}\right) .
$$

Then we have by the countable subadditivity (Lemma 5.1) and Lemma 6.2

$$
C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0 .
$$

If $\xi \in \partial B(0,1)-E^{*}$, then there exists $k$ such that $\xi \notin \bigcup_{j=k}^{\infty} \tilde{E}_{j}$, so that $r \xi \notin \bigcup_{j=k}^{\infty} E_{j}$ for $0<r<2^{-k+1}$. Hence we see that

$$
\lim _{r \rightarrow 0} \chi(r) U(r \xi)=0
$$

Thus the proof of Lemma 6.3 is completed.
Theorem 6.1. If $\kappa$, $\chi$ and $f$ are as in Theorem 5.2, then there exists a set $E^{*} \subset \partial B(0,1)$ such that

$$
C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0
$$

and

$$
\lim _{r \rightarrow 0} \chi(r) U_{\alpha, \ell} f(r \xi)=0 \quad \text { for every } \xi \in \partial B(0,1)-E^{*}
$$

Proof. As in the proof of Theorem 5.1, we see that

$$
\lim _{x \rightarrow 0}[\kappa(|x|)]^{-1}\left\{U_{1}(x)+U_{2}(x)\right\}=0 .
$$

On the other hand, in view of Lemma 6.3, we can find a set $E^{*} \subset \partial B(0,1)$ such that $C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0$ and

$$
\lim _{r \rightarrow 0} \chi(r) U_{3}(r \xi)=0 \quad \text { for any } \xi \in \partial B(0,1)-E^{*}
$$

Hence it follows from (5.5) that

$$
\lim _{r \rightarrow 0} \chi(r) U_{\alpha, \ell} f(r \xi)=0 \quad \text { for any } \xi \in \partial B(0,1)-E^{*}
$$

Thus the proof of Theorem 6.1 is completed.
Lemma 6.4. If $-n<\beta \leq \alpha p-n$, then (1.2) with $\omega(r)=r^{\beta}$ implies (5.4) with $\chi(r)=r^{(n-\alpha p+\beta) / p}$.

Proof. First note that

$$
\int_{B(0,1)} \Phi_{p}\left(|y|^{\alpha} \chi(|y|) f(y)\right)|y|^{-n} d y \leq \int_{B(0,1)} \Phi_{p}(\chi(|y|) f(y))|y|^{\alpha p-n} d y
$$

We show that the second integral is finite. For this purpose, consider the sets

$$
\begin{aligned}
& E_{1}=\left\{y \in B(0,1): \chi(|y|) f(y) \geq f(y)^{1+\delta}\right\}, \\
& E_{2}=\left\{y \in B(0,1): \chi(|y|) f(y)<f(y)^{1+\delta}\right\}
\end{aligned}
$$

for $\delta>0$. Then we see that

$$
\int_{E_{1}} \Phi_{p}(\chi(|y|) f(y))|y|^{\alpha p-n} d y \leq \int_{E_{1}} \Phi_{p}\left([\chi(|y|)]^{1+1 / \delta}\right)|y|^{\alpha p-n} d y<\infty
$$

since $\lim _{\delta \rightarrow \infty}\{(n-\alpha p+\beta)(1+1 / \delta)+(\alpha p-n)+n\}=\beta+n>0$. On the other hand, we have

$$
\begin{aligned}
\int_{E_{2}} \Phi_{p}(\chi(|y|) f(y))|y|^{\alpha p-n} d y & =\int_{E_{2}} \varphi(\chi(|y|) f(y)) f(y)^{p}|y|^{\beta} d y \\
& \leq \int_{E_{2}} \varphi\left(f(y)^{1+\delta}\right) f(y)^{p}|y|^{\beta} d y \\
& \leq M \int_{B(0,1)} \Phi_{p}(f(y))|y|^{\beta} d y<\infty
\end{aligned}
$$

so that Lemma 6.4 is obtained.
Corollary 6.1. Let $f$ be a nonnegative measurable function on $R^{n}$ satisfying (1.1) and

$$
\int_{R^{n}} \Phi_{p}(f(y))|y|^{\beta} d y<\infty
$$

for $-n<\beta \leq \alpha p-n$. If $\ell$ is the nonnegative integer such that $\ell \leq \alpha-(n+\beta) /$ $p<\ell+1$ and $\kappa(1)<\infty$, then there exist a set $E^{*} \subset \partial B(0,1)$ and a polynomial $P_{\ell}$ of degree at most $\ell$ such that $C_{\alpha, \Phi_{p}}\left(E^{*} ; B(0,2)\right)=0$ and

$$
\lim _{r \rightarrow 0} r^{(n-\alpha p+\beta) / p}\left[U_{\alpha} f(r \xi)-P_{\ell}(r \xi)\right]=0 \quad \text { for any } \xi \in \partial B(0,1)-E^{*}
$$

Remark 6.1. We show the sharpness of Lemma 6.3 as to the order $\chi(r)$. In fact, for a nonincreasing positive function $a(r)$ on $(0, \infty)$ such that $\lim _{r \rightarrow 0} a(r)=\infty$, we find a nonnegative function $f$ satisfying (5.4) such that

$$
\limsup _{r \rightarrow 0} a(r) \chi(r) U(r z)=\infty \quad \text { for all } z \in \partial B(0,1)
$$

To show this, let $A_{j}=B\left(0,2 r_{j}\right)-B\left(0, r_{j}\right), 2 r_{j+1}<r_{j}$ and define

$$
f(y)= \begin{cases}a\left(2 r_{j}\right)^{-1 / p} r_{j}^{-\alpha}\left[\chi\left(r_{j}\right)\right]^{-1} & y \in A_{j} \\ 0 & \text { otherwise } .\end{cases}
$$

Then we see that

$$
a(|x|) \chi(|x|) U(x) \geq M a\left(2 r_{j}\right)^{1 / p^{\prime}}, \quad x \in A_{j}
$$

and

$$
\int_{B(0,1)} \Phi_{p}\left(|y|^{\alpha} \chi(|y|) f(y)\right)|y|^{-n} d y \leq M \sum_{j} \Phi_{p}\left(a\left(2 r_{j}\right)^{-1 / p}\right)
$$

Now it suffices to choose $\left\{r_{j}\right\}$ so that the last sum is convergent.
Remark 6.2. If $\lim _{r \rightarrow 0} r^{\alpha} \chi(r)=\infty$, then (5.4) implies the following condition of type (1.2):

$$
\begin{equation*}
\int \Phi_{p}(f(y))[\chi(|y|)]^{p}|y|^{\alpha p-n} d y<\infty . \tag{6.1}
\end{equation*}
$$

If in addition $\lim _{r \rightarrow 0} \varphi(r)=0$, then we can find a nonnegative measurable function $f$ satisfying (6.1) and

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \chi(r) U(r z)=\infty \quad \text { for any } z \in \partial B(0,1) \tag{6.2}
\end{equation*}
$$

For this purpose, take a sequence $\left\{r_{j}\right\}$ of positive numbers for which $2 r_{j+1}<r_{j}$ and

$$
\sum_{j=1}^{\infty} \varphi\left(b_{j}\right)<\infty
$$

where $b_{j}=\left[r_{j}^{\alpha} \chi\left(r_{j}\right)\right]^{-1}$. Next find a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty$ and

$$
\sum_{j=1}^{\infty} a_{j}^{p} \varphi\left(a_{j} b_{j}\right)<\infty
$$

Now consider the function

$$
f(y)= \begin{cases}a_{j} b_{j} & \text { for } y \in B\left(0,2 r_{j}\right)-B\left(0, r_{j}\right), \\ 0 & \text { otherwise }\end{cases}
$$

Then we note that

$$
\int \Phi_{p}(f(y))[\chi(|y|)]^{p}|y|^{\alpha p-n} d y \leq M \sum_{j=1}^{\infty} a_{j}^{p} \varphi\left(a_{j} b_{j}\right)<\infty .
$$

Moreover,

$$
\chi(|x|) U(x) \geq M \chi\left(r_{j}\right) a_{j} b_{j} r_{j}^{\alpha}=M a_{j}
$$

for $x \in B\left(0,2 r_{j}\right)-B\left(0, r_{j}\right)$, from which (6.2) follows readily.

## References

[1] D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197.
[2] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, 1985.
[3] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 8 (1970), 255-292.
[4] N. G. Meyers, Taylor expansion of Bessel potentials, Indiana Univ. Math. J., 23 (1974), 1043-1049.
[5] N. G. Meyers, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166.
[6] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J., 8 (1978), 415-437.
[7] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand., 63 (1988), 238-260.
[8] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J., 23 (1993), 79-153.

The Division of Mathematical and Information Sciences<br>Faculty of Integrated Arts and Sciences<br>Hiroshima University<br>Higashi-Hiroshima 739, Japan

