HIROSHIMA MATH. J. **25** (1995), 541–559

Invariant nuclear space of a second quantization operator

Hong Chul Chae, Kenji Handa, Itaru MITOMA and Yoshiaki Okazaki*

> (Received April 7, 1994) (Revised August 5, 1994)

Abstract. Let $S'(\mathbf{R})$ be the dual of the Schwartz space $S(\mathbf{R})$, A a self-adjoint operator in $L^2(\mathbf{R})$ and $d\Gamma(\mathbf{A})^*$ the adjoint operator of $d\Gamma(\mathbf{A})$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace S of a fundamental space S_A of Hida's type on $S'(\mathbf{R})$ such that $d\Gamma(\mathbf{A})S \subset S$ and $e^{-td\Gamma(\mathbf{A})}S \subset S$, which enables us to show that a stochastic differential equation arising from the central limit theorem for spatially extended neurons:

$$dX(t) = dW(t) - d\Gamma(\mathbf{A})^* X(t) dt,$$

has a unique solution on the dual space S' of S, where W(t) is an S'-valued Wiener process.

1. Introduction

Concerning with infinite dimensional geometry and analysis, several types of fundamental spaces on infinite dimensional topological vector spaces have attracted several authors ([1], [4], [9], [11], [13], [14]). As it has been known by [5], the nuclearity of the space gives us the regularization theorem which guarantees the existence of a strong solution of the stochastic differential equation. However, [7] tried to construct a unique weak solution of a Segal-Langevin type stochastic differential equation on a suitable space of infinite dimensional generalized functionals which is not nuclear, and the fundamental spaces used in the Malliavin calculus are known not to be nuclear [2]. With this background, we consider spaces of Hida's type which are nuclear.

Let (S_A) be a fundamental space of Hida's type and $d\Gamma(A)$ the second quantization operator. Inspired by the works [11], [12], we construct a fundamental space which is invariant under the semi-group $e^{-td\Gamma(A)}$ and is nuclear and smaller than (S_A) even if (S_A) is not nuclear. This enables us to obtain a unique strong solution of the stochastic differential equation

$$dX(t) = dW(t) - d\Gamma(\mathbf{A})^* X(t) dt, \qquad (1.1)$$

which is a special case of the types considered in [7].

First we begin with giving some notations and explanations. Let E be a real locally convex topological vector space and E' the topological dual space of E. We denote by \langle , \rangle the pairing of E and E', and by $|\cdot|_E$ the norm of E when E is a Hilbert space. Let \mathscr{H} be a separable real Hilbert space densely and continuously embedded in E. Then identifying \mathscr{H}' with \mathscr{H} , we have

$$E' \subset \mathscr{H} \subset E. \tag{1.2}$$

Let μ be the countably additive Gaussian measure on E whose characteristic functional is given by

$$\int_{E} \exp\left[i\langle x,\,\xi\rangle\right] d\mu(x) = \exp\left[-\frac{1}{2}\,|\xi|_{\mathscr{H}}^{2}\right], \quad \xi \in E'.$$
(1.3)

If we replace E by $S'(\mathbf{R})$, (E, μ) is called the white noise space [11].

Now we state our main result. Let A be a self-adjoint operator in Hilbert space \mathscr{H} and $L^2(E, \mu)$ the space of square integrable functions with respect to μ . Further we denote by (S_A) a fundamental space of Hida's type determined by A and denote by $d\Gamma(A)$ the second quantization operator of A, which will be precisely defined later. From now on we denote the domain of a linear operator T defined densely in \mathscr{H} by $\mathscr{D}(T)$ and set $C^{\infty}(T) = \bigcap_{n=1}^{\infty} \mathscr{D}(T^n)$. We always consider $\mathscr{D}(T^n)$ as a Hilbert space equipped with the inner product $(T^n \cdot, T^n \cdot)_{\mathscr{H}}$. We mean by $A \ge \lambda, \lambda \in \mathbb{R}$, that $(Af, f)_{\mathscr{H}} \ge \lambda(f, f)_{\mathscr{H}}$ for all $f \in \mathscr{D}(A)$.

THEOREM 1.1. Let **A** be a self-adjoint operator in \mathcal{H} . Suppose that $\mathbf{A} \ge 1 + \varepsilon$, for some $\varepsilon > 0$ and there exist a self-adjoint operator **B** in \mathcal{H} and natural numbers p and q, satisfying the following conditions;

- (1) $\mathscr{D}(\mathbf{B}^p) \subset \mathscr{D}(\mathbf{A}),$
- (2) the identity map of $\mathscr{D}(\mathbf{B}^q)$ into \mathscr{H} is a Hilbert Schmidt operator,
- (3) $\mathbf{A}C^{\infty}(\mathbf{B}) \subset C^{\infty}(\mathbf{B}).$

Then there exists a nuclear subspace S of $L^2(E, \mu)$ such that

$$d\Gamma(\mathbf{A})S \subset S.$$

Further, suppose that

(4) $e^{-t\mathbf{A}}C^{\infty}(\mathbf{B}) \subset C^{\infty}(\mathbf{B})$. Then

$$e^{-td\Gamma(\mathbf{A})}S \subset S.$$

If there exists a positive self-adjoint operator **B** and $p, q \in \mathbb{N}$ satisfying the

conditions (1) ~ (4) of Theorem 1.1, those conditions (1) ~ (4) still hold when we replace **B** by **B** + 2**I**. Then, since **B** + 2**I** \ge 1 + ε for some $\varepsilon > 0$, the desired space S in Theorem 1.1 will be given by $(S_{\mathbf{B}+2\mathbf{I}})$.

2. Fundamental space of Hida's type

Before defining a fundamental space of Hida's type, we introduce the following notation. Let \mathscr{H} be a separable Hilbert space. For $f_i \in \mathscr{H}$, $i = 1, 2, \dots, n$, we denote the tensor product of them by

$$f_1 \otimes f_2 \otimes \dots \otimes f_n, \tag{2.1}$$

and define the symmetric tensor product of them by

$$f_1 \,\hat{\otimes} \, f_2 \,\hat{\otimes} \, \cdots \,\hat{\otimes} \, f_n = \frac{1}{n!} \sum_{\sigma \in \mathcal{E}_n} f_{\sigma(1)} \otimes f_{\sigma(2)} \otimes \cdots \otimes f_{\sigma(n)}, \tag{2.2}$$

where Ξ_n is the symmetric group of degree *n*.

Let \mathscr{G} and \mathscr{F} be the sets of finite linear combinations of terms of (2.1) and (2.2) types, respectively. For $f_i, g_i \in \mathscr{H}, i = 1, 2, \dots, n$, we first set

$$(f_1 \otimes f_2 \otimes \cdots \otimes f_n, g_1 \otimes g_2 \otimes \cdots \otimes g_n)_{\mathscr{H}^{\otimes n}} = (f_1, g_1)_{\mathscr{H}} (f_2, g_2)_{\mathscr{H}} \cdots (f_n, g_n)_{\mathscr{H}},$$
(2.3)

and

$$(f_1 \otimes f_2 \otimes \cdots \otimes f_n, g_1 \otimes g_2 \otimes \cdots \otimes g_n)_{\mathscr{H}^{\otimes n}} = \left(\frac{1}{n!}\right)^2 \sum_{\sigma, \tau \in \mathcal{E}_n} (f_{\sigma(1)}, g_{\tau(1)})_{\mathscr{H}} (f_{\sigma(2)}, g_{\tau(2)})_{\mathscr{H}} \cdots (f_{\sigma(n)}, g_{\tau(n)})_{\mathscr{H}}.$$
 (2.4)

Then the inner products $(\cdot, \cdot)_{\mathscr{H}^{\otimes n}}$ on \mathscr{G} and $(\cdot, \cdot)_{\mathscr{H}^{\otimes n}}$ on \mathscr{F} are naturally extended for the linear combinations. Let $\mathscr{H}^{\otimes n}$ and $\mathscr{H}^{\otimes n}$ be the completions of \mathscr{G} and \mathscr{F} with respect to the inner products $(\cdot, \cdot)_{\mathscr{H}^{\otimes n}}$ and $(\cdot, \cdot)_{\mathscr{H}^{\otimes n}}$. Clearly

$$\mathscr{H}^{\hat{\otimes}n} \subset \mathscr{H}^{\otimes n}, \tag{2.5}$$

and

$$(f_1 \otimes f_2 \otimes \cdots \otimes f_n, g_1 \otimes g_2 \otimes \cdots \otimes g_n)_{\mathscr{H}^{\otimes n}} = (f_1 \otimes f_2 \otimes \cdots \otimes f_n, g_1 \otimes g_2 \otimes \cdots \otimes g_n)_{\mathscr{H}^{\otimes n}}.$$
(2.6)

We define the Wick ordering, denoted by $:x^{\otimes n}$:, for $x \in E$, according to the case where $E = S'(\mathbf{R})$. First the Wick product $:\langle x, \xi_1 \rangle \langle x, \xi_2 \rangle \cdots \langle x, \xi_n \rangle$: of random variables $\langle x, \xi_k \rangle$, $x \in E$, $\xi_k \in E'$, $k = 1, 2, \cdots, n$, with respect to the probability space (E, μ) is defined by the following recursion relation [6];

$$:\langle x, \xi_1 \rangle := \langle x, \xi_1 \rangle,$$
$$:\langle x, \xi_1 \rangle \langle x, \xi_2 \rangle \cdots \langle x, \xi_n \rangle := \langle x, \xi_1 \rangle : \langle x, \xi_2 \rangle \cdots \langle x, \xi_n \rangle :$$
$$- \sum_{k=2}^n \int_E \langle x, \xi_1 \rangle \langle x, \xi_k \rangle d\mu(x) : \langle x, \xi_2 \rangle \cdots \langle x, \xi_k \rangle \cdots \langle x, \xi_n \rangle :, \qquad n \ge 2,$$

where $\langle x, \xi_k \rangle$ means that the term $\langle x, \xi_k \rangle$ is excluded in the product. Using the Wick product, we define the Wick ordering $:x^{\otimes n}$: by

$$\langle : x^{\otimes n} :, \, \xi_1 \, \widehat{\otimes} \, \xi_2 \, \widehat{\otimes} \, \cdots \, \widehat{\otimes} \, \xi_n \rangle \equiv : \langle x, \, \xi_1 \rangle \langle x, \, \xi_2 \rangle \cdots \langle x, \, \xi_n \rangle :. \tag{2.7}$$

Let $\{e_i: i = 0, 1, 2, \cdots\}$ be a complete orthonormal system in \mathscr{H} taken from E'. The well known Wiener-Ito theorem states that the space $L^2(E, \mu)$ has the following orthogonal decomposition

$$L^2(E,\,\mu)=\bigoplus_{n=0}^{\infty}\mathbf{K}_n,$$

where \mathbf{K}_n consists of *n*-homogeneous chaos, i.e. each φ in \mathbf{K}_n has the formal expression

$$\varphi(x) = \langle : x^{\otimes n} :, \hat{f}_n \rangle, \qquad \hat{f}_n \in \mathscr{H}^{\hat{\otimes} n}.$$

In fact if \hat{f}_n is represented by $\sum_{i_1,i_2,\ldots,i_n=0}^{\infty} a_{i_1,i_2,\ldots,i_n} e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_n}$, then the right hand side of the above expression is given by

$$\sum_{i_1,\ldots,i_n=0}^{\infty} a_{i_1,i_2,\ldots,i_n} \langle : x^{\otimes n} :, e_{i_1} \hat{\otimes} e_{i_2} \hat{\otimes} \cdots \hat{\otimes} e_{i_n} \rangle.$$

Thus each $\psi \in L^2(E, \mu)$ can be represented uniquely in the following way;

$$\psi(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \hat{f}_n \rangle, \qquad \mu - a.e. \ x \in E.$$
(2.8)

Moreover, we have [11]

*i*1

$$|\psi|_{L^{2}(E,\mu)}^{2} = \sum_{n=0}^{\infty} n! |\hat{f}_{n}|_{\mathscr{H}^{\otimes n}}^{2}.$$
(2.9)

Let A be a positive self-adjoint operator in \mathscr{H} . Then there exists a unique positive self-adjoint operator $\Gamma(\mathbf{A})$ in $L^2(E, \mu)$ such that (see [12])

$$\Gamma(\mathbf{A}) \mathbf{1} = \mathbf{1}$$

and for $\xi_i \in \mathcal{D}(\mathbf{A}), i = 1, 2, \dots, n$,

$$\Gamma(\mathbf{A}): \langle x, \xi_1 \rangle \langle x, \xi_2 \rangle \cdots \langle x, \xi_n \rangle:$$

=: $\langle x, \mathbf{A}\xi_1 \rangle \langle x, \mathbf{A}\xi_2 \rangle \cdots \langle x, \mathbf{A}\xi_n \rangle:.$ (2.10)

We denote by \mathcal{P}_{A} the collection of all polynomials of the form

$$\omega(x) = P(\langle x, \xi_1 \rangle, \langle x, \xi_2 \rangle, \cdots, \langle x, \xi_m \rangle), \qquad \xi_i \in C^{\infty}(\mathbf{A}),$$

where $P(t_1, \dots, t_m)$ is a polynomial of (t_1, \dots, t_m) . For each $p \in \mathbb{R}$ we define a semi-norm $A \parallel \cdot \parallel_{2,p}$ by

$${}_{\mathbf{A}} \| \omega \|_{2,p}^{2} = \int_{E} |\Gamma(\mathbf{A})^{p} \omega(x)|^{2} d\mu(x).$$
(2.11)

It is not difficult to see that $\Gamma(\mathbf{A})^p = \Gamma(\mathbf{A}^p)$. By (2.7), each ω in $\mathscr{P}_{\mathbf{A}}$ has the following expression;

$$\omega(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \hat{g}_n \rangle, \qquad \hat{g}_n \in C^{\infty}(\mathbf{A})^{\widehat{\otimes}n},$$

where $C^{\infty}(\mathbf{A})^{\hat{\otimes}n} = C^{\infty}(\mathbf{A}) \hat{\otimes} C^{\infty}(\mathbf{A}) \hat{\otimes} \cdots \hat{\otimes} C^{\infty}(\mathbf{A})$ is the set of finite linear combinations of the form $\xi_1 \hat{\otimes} \xi_2 \hat{\otimes} \cdots \hat{\otimes} \xi_n$ with $\xi_i \in C^{\infty}(\mathbf{A}), i = 1, 2, \dots, n$. We note that there exists a natural number $k(\omega)$ such that $\hat{g}_n = 0$ for $n \geq k(\omega)$. Since

$$\hat{g}_n = \sum_{i=1}^{m(n)} a_i(n) \xi_{i_1} \hat{\otimes} \xi_{i_2} \hat{\otimes} \cdots \hat{\otimes} \xi_{i_n}, \quad \xi_{i_k} \in C^{\infty}(\mathbf{A}), \ k = 1, 2, \cdots, n,$$

by (2.9), $\|\cdot\|_{2,p}^2$ can be also represented as

$$_{\mathbf{A}} \|\omega\|_{2,p}^{2} = \sum_{n=0}^{\infty} n! |(\mathbf{A}^{p})^{\otimes n} \hat{g}_{n}|_{\mathscr{H}^{\otimes n}}^{2}, \qquad (2.12)$$

where

$$(\mathbf{A}^p)^{\otimes n} = \mathbf{A}^p \otimes \mathbf{A}^p \otimes \cdots \otimes \mathbf{A}^p.$$

For $p \ge 0$, $(S_A)_p$ is the completion of \mathscr{P}_A with respect to the semi-norm ${}_{A} \| \cdot \|_{2,p}$. We define the fundamental space (S_A) of the Hida distributions on E by

$$(S_{\mathbf{A}}) = \bigcap_{p \ge 0} (S_{\mathbf{A}})_p.$$
(2.13)

Let $(S_A)_{-p}$ be the topological dual space of $(S_A)_p$. Then we have

$$(S_{\mathbf{A}})' = \bigcup_{p \ge 0} (S_{\mathbf{A}})_{-p}.$$
(2.14)

There are several criteria for nuclearity of a fundamental space of Hida's type, such as ([2], [10]). Here we show a sufficient condition.

PROPOSITION 2.1. Let **Z** be a positive self-adjoint operator in \mathscr{H} with eigenvalues $\lambda_k > 1$, $k = 0, 1, \cdots$, such that $\sum_{k=0}^{\infty} \lambda_k^{-\gamma} < +\infty$ for some $\gamma > 0$. Then $(S_{\mathbf{Z}})$ is a nuclear space.

Proof. Here we mimic a proof from [11]. It is sufficient to show that for any $p \ge 0$, there exist an s > 0 such that the inclusion map $\iota: (S_{\mathbb{Z}})_{p+2s} \rightarrow (S_{\mathbb{Z}})_p$ is a nuclear operator. For the notational simplicity, we prove the assertion in the case where p = 0. This is equivalent to show that the inclusion map $\iota: L^2(E, \mu) \rightarrow (S_{\mathbb{Z}})_{-s}$ is a Hilbert-Schmidt operator. Let $\mathbb{N}_0 = \{0, 1, 2, \cdots\}$ and let \mathbb{I}_n be the set of all ordered *n*-tuples $\alpha = (\alpha_1, \ldots, \alpha_n), \alpha_1 \le \cdots \le \alpha_n$ in \mathbb{N}_0^n . For $\alpha \in \mathbb{I}_n$, define

$$n_k(\alpha) = \#\{j : \alpha_j = k\}, \qquad n(\alpha)! = \prod_{k=0}^{\infty} n_k(\alpha)!.$$

Let $\{e_k: k = 0, 1, 2, \dots\}$ be a complete orthonormal system associated with eigenfunctions of Z such that $\mathbb{Z}e_k = \lambda_k e_k$, $k = 0, 1, 2, \dots$. For each $\alpha \in \mathbf{I}_n$ we set

$$\begin{aligned} H_{\alpha}(x) &= 1 \quad \text{for } n = 0, \\ H_{\alpha}(x) &= (n(\alpha)!)^{-\frac{1}{2}} \prod_{k=0}^{\infty} :\langle x, e_k \rangle^{n_k(\alpha)} : \quad \text{for } n \neq 0 \\ &= (n(\alpha)!)^{-\frac{1}{2}} \prod_{k=0}^{\infty} \langle : x^{\otimes n_k(\alpha)} :, e_k^{\hat{\otimes} n_k(\alpha)} \rangle. \end{aligned}$$

Moreover we have

$$\Gamma(\mathbf{Z})^{\mathbf{r}}\mathbf{H}_{\alpha}(x) = (n(\alpha)!)^{-\frac{1}{2}} \prod_{k=0}^{\infty} \langle :x^{\otimes n_{k}(\alpha)}:, (\mathbf{Z}^{\mathbf{r}})^{\otimes n_{k}(\alpha)} e_{k}^{\hat{\otimes} n_{k}(\alpha)} \rangle$$
$$= \prod_{k=0}^{\infty} (\lambda_{k}^{\mathbf{r}})^{n_{k}(\alpha)} \mathbf{H}_{\alpha}(x), \quad \text{for } \mathbf{r} \in \mathbf{R}$$

and hence

$$\begin{split} \sum_{\alpha} \sum_{\alpha} \| \iota \mathbf{H}_{\alpha} \|_{2, -s}^{2} &= \sum_{\alpha} | \Gamma(\mathbf{Z})^{-s} \mathbf{H}_{\alpha} |_{L^{2}(E, \mu)}^{2} \\ &= \sum_{\alpha} \left\{ \frac{1}{\prod_{k=0}^{\infty} \lambda_{k}^{n_{k}(\alpha)}} \right\}^{2s} \\ &\leq \sum_{n=0}^{\infty} \left[\sum_{k_{1}, \dots, k_{n}=0}^{\infty} \left\{ \frac{1}{\lambda_{k_{1}} \cdots \lambda_{k_{n}}} \right\}^{2s} \right] \\ &= \sum_{n=0}^{\infty} \left\{ \sum_{k=0}^{\infty} \lambda_{k}^{-2s} \right\}^{n} < \infty, \end{split}$$

provided that $\sum_{k=0}^{\infty} \lambda_k^{-2s} < 1$, which is valid for sufficiently large s by the assumptions $\sum_{k=0}^{\infty} \lambda_k^{-\gamma} < +\infty$ and $\lambda_k > 1$. This, together with the fact that $\{H_{\alpha}(x): \alpha \in I_n, n = 0, 1, 2, \cdots\}$ forms a complete orthonormal system of $L^2(E, \mu)$, implies the inclusion map $\iota: (S_{\mathbf{Z}})_{p+2s} \to (S_{\mathbf{Z}})_p$ is a Hilbert-Schmidt operator.

EXAMPLE 2.1 ([4], [11]). Let \mathbf{Z} be the operator

$$\mathbf{Z} = -\left(\frac{d}{dx}\right)^2 + x^2 + 1.$$
 (2.15)

Then

$$\mathbb{Z}e_n = (2n+2)e_n, n = 0, 1, 2, \cdots$$

where $\{e_n: n = 0, 1, 2, \cdots\}$ is the complete orthonormal system consisting of Hermite functions in $L^2(\mathbf{R})$. If we take $E = S'(\mathbf{R})$, then $(S_{\mathbf{Z}})$ becomes a nuclear space by Proposition 2.1 and originally it is called the fundamental space of the Hida distributions.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we define the second quantization operator $d\Gamma(\mathbf{A})$ of a self-adjoint operator A as

$$d\Gamma(\mathbf{A}): \langle x, \xi_1 \rangle \cdots \langle x, \xi_n \rangle:$$

= $\sum_{i=1}^{n}: \langle x, \xi_1 \rangle \cdots \langle x, \mathbf{A}\xi_i \rangle \cdots \langle x, \xi_n \rangle:$
= $\langle: x^{\otimes n}:, \mathbf{N}_{\mathbf{A}}(\xi_1 \otimes \cdots \otimes \xi_n) \rangle,$ (3.1)

where

$$\mathbf{N}_{\mathbf{A}} = \mathbf{A} \otimes I \otimes \cdots \otimes I + I \otimes \mathbf{A} \otimes I \otimes \cdots \otimes I + \cdots + I \otimes \cdots \otimes I \otimes \mathbf{A}.$$

Let **B** be a self-adjoint operator which satisfies the conditions in Theorem 1.1 and set $\tilde{\mathbf{B}} = \mathbf{B} + 2\mathbf{I}$. Consider the fundamental space $S = (S_{\tilde{\mathbf{B}}})$ of the Hida distributions on *E*. Take any $\omega(x) \in \mathscr{P}_{\tilde{\mathbf{B}}}$ then the following expression holds,

$$\omega(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \hat{h}_n \rangle, \qquad \hat{h}_n \in C^{\infty}(\tilde{\mathbf{B}})^{\hat{\otimes}n}.$$
(3.2)

By the assumption (1) of Theorem 1.1, $\omega(x) \in \mathcal{D}(d\Gamma(\mathbf{A}))$, so that

$$d\Gamma(\mathbf{A})\omega(x) = \sum_{n=0}^{\infty} \langle : x^{\otimes n} :, \mathbf{N}_{\mathbf{A}}\hat{h}_n \rangle.$$
(3.3)

Define the Hilbert space $\mathscr{H}_{\tilde{\mathbf{B}}^l}$ for any natural number l by

$$\mathscr{H}_{\widetilde{\mathbf{B}}^l} = \mathscr{D}(\widetilde{\mathbf{B}}^l) \equiv \{h \in \mathscr{H} : |\widetilde{B}^l h|_{\mathscr{H}} < \infty\},\$$

where the inner product of the Hilbert space $\mathscr{H}_{\tilde{\mathbf{B}}^{l}}$ is given by $(\cdot, \cdot)_{\mathscr{H}\tilde{\mathbf{B}}^{l}} = (\tilde{\mathbf{B}}^{l} \cdot, \tilde{\mathbf{B}}^{l} \cdot)_{\mathscr{H}}$.

Noticing that $C^{\infty}(\mathbf{B}) = \bigcap_{n=1}^{\infty} \mathcal{D}(\mathbf{B}^n)$ is a complete metric space equipped with a countable system of semi norms $|\cdot|_n = |\mathbf{B}^n \cdot|_{\mathscr{H}}$, $n = 1, 2, \cdots$, for any natural number k, we have, by Baire's category theorem, a natural number $l_1(\geq k)$ and a constant $c_1 \geq 1$ such that

$$|\tilde{\mathbf{B}}^{k}\mathbf{A}h|_{\mathscr{H}} \leq c_{1}|\tilde{\mathbf{B}}^{l_{1}}h|_{\mathscr{H}}, \qquad h \in C^{\infty}(\tilde{\mathbf{B}}).$$

$$(3.4)$$

For any $1 \le n \le k$ and any $\xi \in C^{\infty}(\mathbf{B})$ such that $|\xi|_{\mathscr{H}} \le 1$, the assumption (2) of Theorem 1.1 implies that $(\mathbf{B}^n \mathbf{A} h, \xi)_{\mathscr{H}} = (h, \mathbf{A} \mathbf{B}^n \xi)_{\mathscr{H}}$ is continuous in h on $C^{\infty}(\mathbf{B})$, so that noticing that

$$|\mathbf{B}^{k}\mathbf{A}h|_{\mathscr{H}} = \sup\left\{(\mathbf{B}^{k}\mathbf{A}h, \xi)_{\mathscr{H}}; \xi \in C^{\infty}(\mathbf{B}), |\xi|_{\mathscr{H}} \leq 1\right\},\$$

we see that the norm $|\mathbf{B}^n \mathbf{A} h|_{\mathscr{H}}$ is lower-semicontinuous in h on $C^{\infty}(\mathbf{B})$. The assumption (3) of Theorem 1.1 yields that

$$\{h \in C^{\infty}(\mathbf{B}); |\mathbf{B}^n \mathbf{A}h|_{\mathscr{H}} < \infty\} = \bigcup_{m=0}^{\infty} \{h \in C^{\infty}(\mathbf{B}); |\mathbf{B}^n \mathbf{A}h|_{\mathscr{H}} \le m\} \supset C^{\infty}(\mathbf{B}).$$

Baire's category theorem then asserts that for some a > 0 the closed set $\Delta_a = \{h \in C^{\infty}(\mathbf{B}); |\mathbf{B}^n \mathbf{A}h|_{\mathscr{H}} \le a\}$ contains a ball of the form

$$h_0 + \{h \in C^\infty(\mathbf{B}); |h|_{l(n)} \le b\}$$

with $h_0 \in C^{\infty}(\mathbf{B})$ and b > 0. If $|h|_{l(n)} \le b$, $h_0 - h \in \Delta_a$. Since $|\mathbf{B}^n \mathbf{A}h|_{\mathscr{H}}$ is symmetric, so $-h_0 + h \in \Delta_a$. Since $h_0 + h \in \Delta_a$, we have

$$|\mathbf{B}^n \mathbf{A}(2h)|_{\mathscr{H}} = |\mathbf{B}^n \mathbf{A}(-h_0 + h + h_0 + h)|_{\mathscr{H}} \le 2a.$$

Thus we get for $1 \le n \le k$,

548

$$|\mathbf{B}^{n}\mathbf{A}h|_{\mathscr{H}} \leq ab^{-1}|\mathbf{B}^{l(n)}h|_{\mathscr{H}}, \qquad h \in C^{\infty}(\mathbf{B}).$$

For p, q given in Theorem 1.1, set $p \lor q = \max \{p, q\}$. Then the lowersemicontinuity of $|\mathbf{A}h|_{\mathscr{H}}$ on $\mathscr{D}(\mathbf{B}^{p \lor q})$ is proved similarly by the assumptions (1) and (2) of Theorem 1.1, so that by Baire's category theorem again we get

$$|\mathbf{A}h|_{\mathscr{H}} \leq \text{const.} |\mathbf{B}^{p \vee q}h|_{\mathscr{H}}, \qquad h \in \mathscr{D}(\mathbf{B}^{p \vee q}).$$

Since $C^{\infty}(\tilde{\mathbf{B}}) \subset C^{\infty}(\mathbf{B}) \subset \mathscr{D}(\mathbf{B}^{p \vee q})$, the two inequalities above hold for $h \in C^{\infty}(\tilde{\mathbf{B}})$, which together with

Invariant nuclear space of a second quantization operator

$$|\tilde{\mathbf{B}}^{k}\mathbf{A}h|_{\mathscr{H}} \leq \sum_{n=0}^{k} \frac{k!}{n!(k-n)!} 2^{k-n} |\mathbf{B}^{n}\mathbf{A}h|_{\mathscr{H}}$$

completes the proof of (3.4)

Here we prepare a lemma concerning with the operator norm of tensor product of linear operators on Hilbert space, which will be used later. Given Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 and a linear operator T from \mathcal{H}_1 to \mathcal{H}_2 , we denote the operator norm of T by

$$\|\mathbf{T}\|_{\mathscr{H}_1 \to \mathscr{H}_2} = \sup_{\mathbf{x} \in \mathscr{H}_1} \frac{|\mathbf{T}\mathbf{x}|_{\mathscr{H}_2}}{|\mathbf{x}|_{\mathscr{H}_1}}.$$

We note that (3.4) implies

$$\|\mathbf{A}\|_{\mathscr{H}_{\widetilde{\mathbf{B}}^{l_1}} \xrightarrow{\rightarrow} \mathscr{H}_{\widetilde{\mathbf{B}}^k}} \le c_1. \tag{3.5}$$

For simplicity we use the notation $\mathscr{H}_{\widetilde{\mathbf{B}}^{l}}^{\hat{\otimes}^{n}}$ instead of $(\mathscr{H}_{\widetilde{\mathbf{B}}^{l}})^{\hat{\otimes}^{n}}$.

Let U_i , i = 1, 2, ..., n be bounded linear operators from $\mathscr{H}_{\tilde{\mathbf{B}}^l}$ to $\mathscr{H}_{\tilde{\mathbf{B}}^k}$ for any natural number l and k such that $l \ge k$. We have the following lemma, which is an extended version of the proposition of [12] on p. 299.

LEMMA 3.1. Let U_i , $i = 1, 2, \dots, n$ be bounded linear operators from $\mathscr{H}_{\tilde{\mathbf{B}}^i}$ to $\mathscr{H}_{\tilde{\mathbf{B}}^k}$. Then

$$\|U_1 \otimes U_2 \otimes \cdots \otimes U_n\|_{\mathscr{H}_{\widetilde{\mathfrak{g}}_l}^{\otimes n} \to \mathscr{H}_{\widetilde{\mathfrak{g}}_k}^{\otimes n}} \leq \|U_1\|_{\mathscr{H}_{\widetilde{\mathfrak{g}}_l}^{-1} \to \mathscr{H}_{\widetilde{\mathfrak{g}}_k}^{\infty}} \|U_2\|_{\mathscr{H}_{\widetilde{\mathfrak{g}}_l}^{-1} \to \mathscr{H}_{\widetilde{\mathfrak{g}}_k}^{\infty}} \cdots \|U_n\|_{\mathscr{H}_{\widetilde{\mathfrak{g}}_l}^{-1} \to \mathscr{H}_{\widetilde{\mathfrak{g}}_k}^{\infty}}$$

PROOF. Let $\{\theta_k : k = 0, 1, 2, \cdots\}$ be a complete orthonormal basis of $\mathscr{H}_{\tilde{\mathbf{B}}^l}$, $\{\zeta_k : k = 0, 1, 2, \cdots\}$ a complete orthonormal basis of $\mathscr{H}_{\tilde{\mathbf{B}}^k}$ and $\Sigma c_{k_1 \dots k_n}(\theta_{k_1} \otimes \cdots \otimes \theta_{k_l} \otimes \zeta_{k_{l+1}} \otimes \cdots \otimes \zeta_{k_n})$ a finite sum in the space $\mathscr{H}_{\tilde{\mathbf{B}}^l}^{\otimes i} \otimes \mathscr{H}_{\tilde{\mathbf{B}}^l}^{\otimes n-i}$. We get

$$\begin{split} |\mathbf{I}\otimes\cdots\otimes\mathbf{I}\otimes U_{i}\otimes\mathbf{I}\otimes\cdots\otimes\mathbf{I}\\ &(\sum c_{k_{1}\ldots k_{n}}\theta_{k_{1}}\otimes\cdots\otimes\theta_{k_{i}}\otimes\zeta_{k_{i+1}}\otimes\cdots\otimes\zeta_{k_{n}})|_{\mathscr{H}_{\mathbf{B}^{i}}^{\mathfrak{G}^{i-1}}\otimes\mathscr{H}_{\mathbf{B}^{k}}^{\mathfrak{G}^{n-i+1}}} \\ &=\sum \sum c_{k_{1}\ldots k_{n}}c_{k_{1}\ldots k_{i-1}l_{i}k_{i+1}\ldots k_{n}}(U_{i}\theta_{k_{i}}, U_{i}\theta_{l_{i}})_{\mathscr{H}_{\mathbf{B}^{k}}}^{\mathfrak{G}^{k}} \\ &=\sum_{k_{1}\ldots k_{i-1}k_{i+1}\ldots k_{n}}|\sum_{l_{i}}c_{k_{1}\ldots k_{i-1}l_{i}k_{i+1}\ldots k_{n}}U_{i}\theta_{l_{i}}|_{\mathscr{H}_{\mathbf{B}^{k}}}^{\mathscr{H}} \\ &\leq ||U_{i}||_{\mathscr{H}_{\mathbf{B}^{i}}^{\mathfrak{G}^{i}}} \mathscr{H}_{\mathbf{B}^{k}}\sum_{k_{1}\ldots k_{i-1}k_{i+1}\ldots k_{n}}|\sum_{l_{i}}c_{k_{1}\ldots k_{i-1}l_{i}k_{i+1}\ldots k_{n}}\theta_{l_{i}}|_{\mathscr{H}_{\mathbf{B}^{i}}}^{\mathscr{H}} \\ &= ||U_{i}||_{\mathscr{H}_{\mathbf{B}^{i}}^{\mathfrak{G}^{i}}} \mathscr{H}_{\mathbf{B}^{k}}|\sum c_{k_{1}\ldots k_{n}}(\theta_{k_{1}}\otimes\cdots\otimes\theta_{k_{i}}\otimes\zeta_{k_{i+1}}\otimes\cdots\otimes\zeta_{k_{n}})|_{\mathscr{H}_{\mathbf{B}^{i}}^{\mathfrak{G}^{i}}\otimes\mathscr{H}_{\mathbf{B}^{k}}^{\mathfrak{G}^{n-i}}} \end{split}$$

so that

$$\|I \otimes I \otimes U_i \otimes I \otimes \cdots \otimes I\|_{\mathscr{H}^{\mathfrak{S}_i}_{\widetilde{\mathfrak{g}}_i} \otimes \mathscr{H}^{\mathfrak{S}_n-i}_{\widetilde{\mathfrak{g}}_k} \to \mathscr{H}^{\mathfrak{S}_i-1}_{\widetilde{\mathfrak{g}}_i} \otimes \mathscr{H}^{\mathfrak{S}_n-i+1}_{\widetilde{\mathfrak{g}}_k} \leq \|U_i\|_{\mathscr{H}_{\widetilde{\mathfrak{g}}_i} \to \mathscr{H}_{\widetilde{\mathfrak{g}}_k}}.$$

Hence

$$\|U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n}\|_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}} \leq \|U_{1} \otimes I \otimes \cdots \otimes I\|_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}} \otimes \mathscr{H}^{\otimes n-1}_{\widetilde{B}^{k}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}$$

$$\times \|I \otimes U_{2} \otimes I \otimes \cdots \otimes I\|_{\mathscr{H}^{\otimes 2}_{\widetilde{B}^{l}} \otimes \mathscr{H}^{\otimes n-2}_{\widetilde{B}^{k}} \to \mathscr{H}^{\otimes n-1}_{\widetilde{B}^{l}} \cdots \|I \otimes \cdots \otimes I \otimes U_{n}\|_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n-1}_{\widetilde{B}^{l}} \otimes \mathscr{H}^{\otimes n-1}_{\widetilde{B}^{k}}} \leq \|U_{1}\|_{\mathscr{H}^{\otimes 1}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}} \cdots \|U_{n}\|_{\mathscr{H}^{\otimes 1}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}.$$
(3.6)

On the other hand, by making use of (2.5) and (2.6) we have

$$\| U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n} \|_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}^{2}$$

$$= \sup_{\substack{\hat{f} \in \mathscr{H}^{\otimes n}_{\widetilde{B}^{l}}}} ((U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n})\hat{f}, (U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n})\hat{f})_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}/(\hat{f}, \hat{f})_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}}}^{2}$$

$$\leq \sup_{\substack{f \in \mathscr{H}^{\otimes n}_{\widetilde{B}^{l}}}} ((U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n})f, (U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n})f)_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}/(f, f)_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}}}$$

$$= \| U_{1} \otimes U_{2} \otimes \cdots \otimes U_{n} \|_{\mathscr{H}^{\otimes n}_{\widetilde{B}^{l}} \to \mathscr{H}^{\otimes n}_{\widetilde{B}^{k}}}.$$

$$(3.7)$$

Combining (3.6) and (3.7) we obtain that

$$\|U_1 \otimes U_2 \otimes \cdots \otimes U_n\|_{\mathscr{H}_{\widetilde{\mathbf{B}}^l}^{\mathfrak{d}_n} \to \mathscr{H}_{\widetilde{\mathbf{B}}^k}^{\mathfrak{d}_n}} \le \|U_1\|_{\mathscr{H}_{\widetilde{\mathbf{B}}^l} \to \mathscr{H}_{\widetilde{\mathbf{B}}^k}} \|U_2\|_{\mathscr{H}_{\widetilde{\mathbf{B}}^l} \to \mathscr{H}_{\widetilde{\mathbf{B}}^k}} \cdots \|U_n\|_{\mathscr{H}_{\widetilde{\mathbf{B}}^l} \to \mathscr{H}_{\widetilde{\mathbf{B}}^k}}.$$

Now we return to the proof of Theorem 1.1. Since $N_A \hat{h}_n$ is also symmetric, we have by (2.6),

$$\begin{split} |\Gamma(\widetilde{\mathbf{B}})^{k} d\Gamma(\mathbf{A}) \langle :x^{\otimes n}:, \hat{h}_{n} \rangle|_{L^{2}(E, d\mu)}^{2} = n! |((\widetilde{\mathbf{B}}^{k})^{\otimes n} \mathbf{N}_{\mathbf{A}}) \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &= n! |\mathbf{N}_{\mathbf{A}} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}}^{2} = n! |\mathbf{N}_{\mathbf{A}} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}}^{2} \\ &\leq n! (\sum_{i=1}^{n} |(I \otimes \cdots \otimes I \otimes \overset{i}{\mathbf{A}} \otimes I \otimes \cdots \otimes I) \hat{h}_{n}|_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}})^{2} \\ &\leq n! (\sum_{i=1}^{n} ||I \otimes \cdots \otimes I \otimes \overset{i}{\mathbf{A}} \otimes I \otimes \cdots \otimes I||_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k-1}} \to \mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}} |\hat{h}_{n}|_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}})^{2} \\ &= n! (\sum_{i=1}^{n} ||I \otimes \cdots \otimes I \otimes \overset{i}{\mathbf{A}} \otimes I \otimes \cdots \otimes I||_{\mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k-1}} \to \mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}}|^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} ||\mathbf{A}}||_{\mathscr{H}^{\otimes}_{\widetilde{\mathbf{B}}^{l_{1}}} \to \mathscr{H}^{\otimes n}_{\widetilde{\mathbf{B}}^{k}}}|(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^{2} c_{1}^{2} |(\widetilde{\mathbf{B}^{l_{1}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2} \\ &\leq n! n^$$

and hence

$$\widetilde{\mathbf{B}} \| d\Gamma(\mathbf{A}) \omega \|_{2,k}^{2} = |\Gamma(\widetilde{\mathbf{B}})^{k} d\Gamma(\mathbf{A}) \omega|_{L^{2}(E,d\mu)}^{2}$$
$$= \sum_{n=0}^{\infty} |\Gamma(\widetilde{\mathbf{B}})^{k} d\Gamma(\mathbf{A}) \langle : x^{\otimes n} :, \hat{h}_{n} \rangle |_{L^{2}(E,d\mu)}^{2}$$

Invariant nuclear space of a second quantization operator

$$\leq \sum_{n=0}^{\infty} n! n^2 c_1^2 |(\widetilde{\mathbf{B}}^{l_1})^{\otimes n} \hat{h}_n|_{\mathscr{H}^{\otimes n}}^2.$$
(3.8)

Since for the natural number q given in the assumption (2) of Theorem 1.1, $\tilde{\mathbf{B}}^q \ge 2^q$, $(\tilde{\mathbf{B}}^q)^{-1} \le 2^{-q}$, we choose a natural number m_1 such that $(\tilde{\mathbf{B}}^q)^{-m_1} \le (2c_1)^{-1}$. Then the right of (3.8) is dominated by

$$\sum_{n=0}^{\infty} n! n^2 c_1^2 \left(\frac{1}{2c_1}\right)^{2n} |(\tilde{\mathbf{B}}^{l_1+qm_1})^{\otimes n} \hat{h}_n|_{\mathscr{H}^{\otimes n}}^2 \leq \sum_{n=0}^{\infty} n! |(\tilde{\mathbf{B}}^{l_1+qm_1})^{\otimes n} \hat{h}_n|_{\mathscr{H}^{\otimes n}}^2 \\ = |\Gamma(\tilde{\mathbf{B}})^{l_1+qm_1} \omega|_{L^2(E,d\mu)}^2 = \tilde{\mathbf{B}} ||\omega||_{2,l_1+qm_1}^2.$$

Therefore we have $d\Gamma(\mathbf{A})S \subset S$. As noted in Proposition 2.1, S is a nuclear space. Thus the proof of the first half of Theorem 1.1 is completed.

Now we will prove the second half of the theorem. Note that $e^{-td\Gamma(A)}$ is the self-adjoint operator defined on $L^2(E, \mu)$ such that

$$e^{-td\Gamma(\mathbf{A})} = \Gamma(e^{-t\mathbf{A}}). \tag{3.9}$$

This follows from the identity

$$\frac{d}{dt}\Gamma(e^{-t\mathbf{A}}):\langle x,\,\xi_1^{\ 1}\rangle\cdots\langle x,\,\xi_n\rangle:=-d\Gamma(\mathbf{A})\Gamma(e^{-t\mathbf{A}}):\langle x,\,\xi_1\rangle\cdots\langle x,\,\xi_n\rangle:$$

which is verified by the induction on n. By (2.10), (3.2) and (3.9), we have the following expression;

$$e^{-td\Gamma(\mathbf{A})}\omega(x) = \sum_{n=0}^{\infty} \langle :x^{\otimes n}:, (e^{-t\mathbf{A}})^{\otimes n}\hat{h}_n \rangle.$$
(3.10)

For any natural number k, by the assumption (4) of Theorem 1.1 and the manner similar to that in (3.4) we find a natural number $l_2 (\geq k)$ and a constant $c_2 \geq 1$ such that

$$|\tilde{\mathbf{B}}^{k}e^{-t\mathbf{A}}h|_{\mathscr{H}} \leq c_{2}|\tilde{\mathbf{B}}^{l_{2}}h|_{\mathscr{H}}, \qquad h \in C^{\infty}(\tilde{\mathbf{B}}).$$
(3.11)

Then we have

$$\begin{split} |\Gamma(\tilde{\mathbf{B}})^{k} e^{-td\Gamma(\mathbf{A})} \langle : x^{\otimes n} :, \hat{h}_{n} \rangle |_{L^{2}(E, d\mu)}^{2} \\ &= n! |(\tilde{\mathbf{B}}^{k} e^{-t\mathbf{A}})^{\otimes n} \hat{h}_{n}|_{\mathcal{H}^{\otimes n}}^{2} \\ &= n! |(e^{-t\mathbf{A}})^{\otimes n} \hat{h}_{n}|_{\mathcal{H}^{\otimes n}}^{2} \\ &\leq n! ||(e^{-t\mathbf{A}})^{\otimes n} ||_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}} \to \mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{k}}} |\hat{h}_{n}|_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}}}^{2} \\ &= n! ||(e^{-t\mathbf{A}})^{\otimes n} ||_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}} \to \mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{k}}} |(\tilde{\mathbf{B}}^{l_{2}})^{\otimes n} \hat{h}_{n}|_{\mathcal{H}^{\otimes n}}^{2} \\ &\leq n! ||e^{-t\mathbf{A}} ||_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}} \to \mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{k}}} |(\tilde{\mathbf{B}}^{l_{2}})^{\otimes n} \hat{h}_{n}|_{\mathcal{H}^{\otimes n}}^{2} \\ &\leq n! ||e^{-t\mathbf{A}} ||_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}} \to \mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{k}}} |(\tilde{\mathbf{B}}^{l_{2}})^{\otimes n} \hat{h}^{n}|_{\mathcal{H}^{\otimes n}}^{2} \\ &\leq n! ||e^{-t\mathbf{A}} ||_{\mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{l_{2}}} \to \mathcal{H}^{\otimes n}_{\tilde{\mathbf{B}}^{k}}} |(\tilde{\mathbf{B}}^{l_{2}})^{\otimes n} \hat{h}^{n}|_{\mathcal{H}^{\otimes n}} \qquad (by \text{ Lemma 3.1}) \end{split}$$

Hong Chul Chae, Kenji Handa, Itaru MITOMA and Yoshiaki OKAZAKI

$$\leq n! c_2^{2n} |(\tilde{\mathbf{B}}^{l_2})^{\otimes n} \hat{h}_n|_{\mathscr{H}^{\otimes n}}^2 \qquad (\text{by } (3.11))$$

and

$$\widetilde{\mathbf{B}} \| e^{-td\Gamma(\mathbf{A})} \omega \|_{2,k}^{2} = |\Gamma(\widetilde{\mathbf{B}})^{k} e^{-td\Gamma(\mathbf{A})} \omega |_{L^{2}(E, d\mu)}^{2}$$

$$= \sum_{n=0}^{\infty} |\Gamma(\widetilde{\mathbf{B}})^{k} e^{-td\Gamma(\mathbf{A})} \langle : x^{\otimes n} :, \hat{h}_{n} \rangle |_{L^{2}(E, d\mu)}^{2}$$

$$\leq \sum_{n=0}^{\infty} n! c_{2}^{2n} |(\widetilde{\mathbf{B}}^{l_{2}})^{\otimes n} \hat{h}_{n}|_{\mathscr{H}^{\otimes n}}^{2}.$$
(3.12)

In the same manner as the proof of the first half, we choose a natural number m_2 such that $(\tilde{\mathbf{B}}^q)^{-m_2} \le c_2^{-1}$. Then the right hand side of (3.12) is dominated by

$$\sum_{n=0}^{\infty} n! c_2^{2n} \left(\frac{1}{c_2}\right)^{2n} |(\widetilde{\mathbf{B}}^{l_2+qm_2})^{\otimes n} \hat{h}_n|_{\mathscr{H}^{\otimes n}}^2 = \widetilde{\mathbf{B}} |\omega|_{2,l_2+qm_2}^2,$$

which completes the proof of the second half of Theorem 1.1.

4. Inveriant nuclear space

In this section we discuss the conditions of Theorem 1.1. Especially the conditions (3) and (4) have been examined by several authors such as J. Fröhlich [3]. Let **A** and **B** be positive self-adjoint operators in the separable Hilbert space \mathcal{H} . In the sequel we denote by c_i , $i = 3, 4, \cdots$ positive constants.

4.1. Case where A and B are non-commutative.

LEMMA 4.1. Let **D** and **B** be positive self-adjoint operators in \mathcal{H} such that $C^{\infty}(\mathbf{B}) \subset C^{\infty}(\mathbf{D})$ and $\mathbf{D} \ge 1 + \varepsilon$ for some $\varepsilon > 0$. Suppose that **B** has a bounded inverse and for any natural number n, there exists a constant c_3 such that

$$|\mathbf{B}^{n}\mathbf{D}f|_{\mathscr{H}} \leq c_{3} |\mathbf{B}^{n}f|_{\mathscr{H}}, \qquad f \in C^{\infty}(\mathbf{B}).$$

Then, for any natural number n, there exists a constant c_4 such that

$$|\mathbf{B}^n e^{-t\mathbf{D}} f|_{\mathscr{H}} \le c_4 |\mathbf{B}^n f|_{\mathscr{H}}, \qquad f \in C^\infty(\mathbf{B})$$

PROOF. Since $B^n DB^{-n}$ is a bounded operator, we have

$$|\mathbf{B}^{n}e^{-t\mathbf{D}}f|_{\mathscr{H}} = |\mathbf{B}^{n}e^{-t\mathbf{D}}\mathbf{B}^{-n}\mathbf{B}^{n}f|_{\mathscr{H}}$$
$$= |e^{-t\mathbf{B}^{n}\mathbf{D}\mathbf{B}^{-n}}\mathbf{B}^{n}f|_{\mathscr{H}}$$
$$\leq c_{4}|\mathbf{B}^{n}f|_{\mathscr{H}}$$

Next, we have the following proposition which is implied by Lemma 4.1.

Suppose that **D** is a positive self-adjoint operator in \mathscr{H} and $\mathbf{D} \ge 1 + \varepsilon$ for some $\varepsilon > 0$. We choose and fix a complete orthonormal system $\{e_i: i = 0, 1, 2, \cdots\}$ of the Hilbert space \mathscr{H} taken from $\mathscr{D}(\mathbf{D})$. Given $\{\lambda_i\}$ such that $\lambda_i \ge 1 + \varepsilon$, $\varepsilon > 0, \lambda_i \uparrow \infty$, define a positive self-adjoint operator **B** in \mathscr{H} by $\mathbf{B}e_i = \lambda_i e_i$. Let $\{d_{i,j}\}_{i,j=0}^{\infty}$ be the infinite dimensional matrix such that

$$\mathbf{D}e_i=\sum_{j=0}^{\infty}d_{i,j}e_j.$$

PROPOSITION 4.1. Suppose that

$$M_n \equiv \sum_{i=0}^{\infty} \frac{\sum_{j=0}^{\infty} d_{i,j}^2 \lambda_j^{2n}}{\lambda_i^{2n}} < +\infty, \quad \text{for all } n \in \mathbb{N}.$$
(4.1)

Then the conditions (1), (2), (3), (4) of Theorem 1.1 are satisfied for $\mathbf{A} = \mathbf{D}$ and \mathbf{B} .

Proof. To prove (1), let $f = \sum a_i e_i$ be a finite sum. Then $f \in \mathcal{D}(\mathbf{D})$ and hence

$$\mathbf{D}f = \sum a_i \mathbf{D}e_i$$

Therefore

$$\begin{aligned} |\mathbf{D}f|_{\mathscr{H}}^{2} &= |\sum a_{i}\mathbf{D}e_{i}|_{\mathscr{H}}^{2} \\ &= |\sum a_{i}\lambda_{i}\lambda_{i}^{-1}\mathbf{D}e_{i}|_{\mathscr{H}}^{2} \\ &\leq (\sum a_{i}^{2}\lambda_{i}^{2})(\sum \lambda_{i}^{-2}|\mathbf{D}e_{i}|_{\mathscr{H}}^{2}) \\ &\leq c_{5}|\mathbf{B}f|_{\mathscr{H}}^{2}, \end{aligned}$$

where $c_5 = \sum \lambda_i^{-2} |\mathbf{D}e_i|_{\mathscr{H}}^2 = \sum \lambda_i^{-2} \sum_{j=0}^{\infty} d_{i,j}^2 \le M_1$. Since $\{\lambda_i^{-1}e_i: i = 0, 1, 2, \cdots\}$ forms a complete orthonormal system of $\mathscr{D}(\mathbf{B})$ and

$$\sum_{i=0}^{\infty} \left| \frac{1}{\lambda_i} e_i \right|_{\mathscr{H}}^2 = \sum_{i=0}^{\infty} \frac{1}{\lambda_i^2} \leq \sum_{i=0}^{\infty} \frac{|\mathbf{D}e_i|_{\mathscr{H}}^2}{\lambda_i^2} < +\infty,$$

then the identity map $\mathscr{D}(\mathbf{B}) \to \mathscr{H}$ becomes a Hilbert-Schamit operator. Of course **B** has a bounded inverse \mathbf{B}^{-1} such that $\mathbf{B}^{-1}e_i = \lambda_i^{-1}e_i$.

Since for any integer i and natural number n,

$$\sum_{j=0}^{\infty} d_{i,j}^2 \lambda_j^{2n} < \infty,$$

from (4.1), we have $\mathbf{D}e_i \in \mathcal{D}(\mathbf{B}^n)$, so that for any $f \in C^{\infty}(\mathbf{B})$ and for any fixed natural number N,

$$\begin{aligned} \|\mathbf{B}^{n}\sum_{i=0}^{N}(f, e_{i})_{\mathscr{H}}\mathbf{D}e_{i}\|_{\mathscr{H}}^{2} &= |\sum_{i=0}^{N}(f, e_{i})_{\mathscr{H}}\mathbf{B}^{n}\mathbf{D}e_{i}|_{\mathscr{H}}^{2} \\ &= |\sum_{i=0}^{N}(f, e_{i})_{\mathscr{H}}\lambda_{i}^{n}\lambda_{i}^{-n}\mathbf{B}^{n}\mathbf{D}e_{i}|_{\mathscr{H}}^{2} \\ &\leq (\sum_{i=0}^{N}(f, e_{i})_{\mathscr{H}}^{2}\lambda_{i}^{2n})(\sum_{i=0}^{N}\lambda_{i}^{-2n}|\mathbf{B}^{n}\mathbf{D}e_{i}|_{\mathscr{H}}^{2}) \\ &\leq \mathbf{M}_{n}|\mathbf{B}^{n}f|_{\mathscr{H}}^{2}. \end{aligned}$$

This implies the condition (3) of Theorem 1.1.

Since **B** has a bounded inverse, Lemma 4.1 yields the condition (4) of Theorem 1.1. \blacksquare

PROPOSITION 4.2. Suppose that **D** and **B** satisfy the assumptions of Proposition 4.1 and **C** is a positive self-adjoint operator in \mathcal{H} such that **C** and **B** are commutative and $\mathcal{D}(\mathbf{B}) \subset \mathcal{D}(\mathbf{C})$. Then the conditions (1), (2), (3), (4) of Theorem 1.1 are satisfied for $\mathbf{A} = \mathbf{C} + \mathbf{D}$ and **B**.

PROOF. The condition (1) is obvious from $\mathscr{D}(\mathbf{B}) \subset \mathscr{D}(\mathbf{D})$ and $\mathscr{D}(\mathbf{B}) \subset \mathscr{D}(\mathbf{C})$. It has been already proved in Proposition 4.1 that the condition (2) is satisfied.

Since $\mathscr{D}(\mathbf{B}) \subset \mathscr{D}(\mathbf{C})$, there exists a constant c_6 such that

$$|\mathbf{C}f|_{\mathscr{H}} \le c_6 |\mathbf{B}f|_{\mathscr{H}}, \qquad f \in C^{\infty}(\mathbf{B}).$$

$$(4.2)$$

By the commutativity of C and B and (4.2), for any natural number n, we have

$$\begin{aligned} |\mathbf{B}^{n}\mathbf{A}f|_{\mathscr{H}}^{2} &= |\mathbf{B}^{n}(\mathbf{C}+\mathbf{D})f|_{\mathscr{H}}^{2} \\ &\leq 2\left\{|\mathbf{B}^{n}\mathbf{C}f|_{\mathscr{H}}^{2} + |\mathbf{B}\mathbf{D}f|_{\mathscr{H}}^{2}\right\} \\ &\leq 2\left\{|\mathbf{C}\mathbf{B}^{n}f|_{\mathscr{H}}^{2} + \mathbf{M}_{n}|\mathbf{B}^{n}f|_{\mathscr{H}}^{2}\right\} \\ &\leq 2\left\{c_{6}|\mathbf{B}^{n+1}f|_{\mathscr{H}}^{2} + \mathbf{M}_{n}|\mathbf{B}^{n}f|_{\mathscr{H}}^{2}\right\} \\ &\leq c_{7}|\mathbf{B}^{n+1}f|_{\mathscr{H}}^{2}.\end{aligned}$$

To prove (4), it suffices to show that for some constant $0 < c_8 < \infty$

$$|\mathbf{B}^n e^{-t\mathbf{A}} f|_{\mathscr{H}} \leq c_8 |\mathbf{B}^n f|_{\mathscr{H}}, \qquad f \in C^\infty(\mathbf{B}).$$

By Theorem 1.19 of Chap. IX in [8], we have an integral equation

$$e^{-t\mathbf{A}}f = e^{-t\mathbf{C}}f + \int_0^t e^{-(t-\tau)\mathbf{C}}\mathbf{D}e^{-\tau\mathbf{A}}f\,d\tau,$$

so that operating \mathbf{B}^n on both sides of the above equality and using the commutativity of \mathbf{C} and \mathbf{B} , the assumption of Proposition 4.1, we get

Invariant nuclear space of a second quantization operator

$$\begin{aligned} |\mathbf{B}^{n}e^{-t\mathbf{A}}f|_{\mathscr{H}} &\leq |e^{-t\mathbf{C}}\mathbf{B}^{n}f|_{\mathscr{H}} + \int_{0}^{t} |e^{-(t-\tau)\mathbf{C}}\mathbf{B}^{n}\mathbf{D}e^{-\tau\mathbf{A}}f|_{\mathscr{H}}d\tau \\ &\leq |\mathbf{B}^{n}f|_{\mathscr{H}} + \int_{0}^{t} |\mathbf{B}^{n}\mathbf{D}e^{-\tau\mathbf{A}}f|_{\mathscr{H}}d\tau \\ &\leq |\mathbf{B}^{n}f|_{\mathscr{H}} + \sqrt{M_{n}}\int_{0}^{t} |\mathbf{B}^{n}e^{-\tau\mathbf{A}}f|_{\mathscr{H}}d\tau. \end{aligned}$$

Gronwall's lamma then yields

$$|\mathbf{B}^{n}e^{-t\mathbf{A}}f|_{\mathscr{H}} \leq e^{t\sqrt{M_{n}}}|\mathbf{B}^{n}f|_{\mathscr{H}} =: c_{8}|\mathbf{B}^{n}f|_{\mathscr{H}}.$$

This completes the proof of Proposition 4.2.

We have a sufficient condition for (4) of Theorem 1.1. (See [3].)

PROPOSITION 4.3. Let **A** and **B** be positive self-adjoint operators in \mathcal{H} such that $\mathbf{A} \ge 1 + \varepsilon$, for some $\varepsilon > 0$ and the condition (3) of Theorem 1.1 is satisfied. Suppose that for any natural numbers n and k, there exist a natural number $\alpha(n) \ge n$ and a constant $C_k^n > 0$ such that

$$|(\mathbf{A}^{k}\mathbf{B}^{n}-\mathbf{B}^{n}\mathbf{A}^{k})f|_{\mathscr{H}} \leq C_{k}^{n}|\mathbf{B}^{\alpha(n)}f|_{\mathscr{H}}, \qquad f \in C^{\infty}(\mathbf{B}),$$

and

$$\sum_{k=0}^{\infty} \frac{t^k}{k!} C_k^n < \infty, \quad \text{for any } t > 0.$$

Then for any natural number n, there exists a constant $C^{n}(t) > 0$ such that

$$|\mathbf{B}^{n}e^{-t\mathbf{A}}f|_{\mathscr{H}} \leq C^{n}(t)|\mathbf{B}^{\alpha(n)}f|_{\mathscr{H}}.$$

PROOF. For any natural number *n* and $f \in C^{\infty}(\mathbf{B})$, we have

$$\begin{aligned} \left| \mathbf{B}^{n} \sum_{k=0}^{N} \frac{(-t)^{k}}{k!} \mathbf{A}^{k} f \right|_{\mathscr{H}} &= \left| \sum_{k=0}^{N} \frac{(-t)^{k}}{k!} \mathbf{B}^{n} \mathbf{A}^{k} f \right|_{\mathscr{H}} \\ &\leq \left| \sum_{k=0}^{N} \frac{(-t)^{k}}{k!} \mathbf{A}^{k} \mathbf{B}^{n} f \right|_{\mathscr{H}} + \left| \sum_{k=0}^{N} \frac{(-t)^{k}}{k!} (\mathbf{A}^{k} \mathbf{B}^{n} - \mathbf{B}^{n} \mathbf{A}^{k}) f \right|_{\mathscr{H}} \\ &\leq \left| \sum_{k=0}^{N} \frac{(-t)^{k}}{k!} \mathbf{A}^{k} \mathbf{B}^{n} f \right|_{\mathscr{H}} + \sum_{k=0}^{N} \frac{t^{k}}{k!} C_{k}^{n} |\mathbf{B}^{\alpha(n)} f|_{\mathscr{H}}. \end{aligned}$$

From the above estimate it is seen that

$$|\mathbf{B}^{n}e^{-t\mathbf{A}}f|_{\mathscr{H}} \leq |e^{-t\mathbf{A}}\mathbf{B}^{n}f|_{\mathscr{H}} + \sum_{k=0}^{\infty} \frac{t^{k}}{k!} C_{k}^{n} |\mathbf{B}^{\alpha(n)}f|_{\mathscr{H}}$$

$$\leq \left(1 + \sum_{k=0}^{\infty} \frac{t^k}{k!} C_k^n\right) |\mathbf{B}^{\alpha(n)} f|_{\mathscr{H}} \qquad (\text{by } A > 1).$$

REMARK 4.1. If **D** is a bounded operator in Lemma 4.1, then the conclusion is derived from Proposition 4.3 without **B** having a bounded inverse.

4.2. Case where A and B are commutative.

Here we assume that A and B are positive self-adjoint operators defined in the separable Hilbert space \mathcal{H} .

By the spectral theorem we have the following spectral representations;

$$\mathbf{A} = \int_0^\infty v dE(v), \qquad \mathbf{B} = \int_0^\infty \lambda dF(\lambda).$$

We say that A and B are commutative if E(v) and $F(\lambda)$ are commutative for all $v, \lambda \ge 0$.

PROPOSITION 4.4. Suppose that **A** and **B** are commutative and there exists the inverse \mathbf{B}^{-1} of **B** such that \mathbf{B}^{-1} is compact on \mathcal{H} . Then **A** has countable eigenvectors which form a complete orthonormal system of \mathcal{H} .

PROOF. Since \mathbf{B}^{-1} is compact and ker $\mathbf{B}^{-1} = \{0\}$, we have

$$\mathbf{B}^{-1} = \sum_{n=1}^{\infty} \gamma_n P_n,$$

where $\{P_n\}$ are orthogonal projections on \mathcal{H} satisfying

$$\dim P_n \mathscr{H} < +\infty$$

and

$$\mathscr{H}=\bigoplus_{n=1}^{\infty}P_{n}\mathscr{H}.$$

By the commutativity of E(v) and P_n , A maps $P_n \mathcal{H}$ into $P_n \mathcal{H}$, which asserts Proposition 4.4.

By Proposition 4.4, A has countable eigenvalues $\{v_i\}$ such that $Ae_i = v_ie_i$, $i = 0, 1, 2, \cdots$, where $\{e_i\}$ forms a complete orthonormal system of \mathcal{H} . Setting $Be_i = \lambda_i e_i$, $i = 0, 1, 2, \cdots$, we have

COROLLARY 4.1. Let A and B be as above. Suppose that $A \ge 1 + \varepsilon$ for some $\varepsilon > 0$. If for some natural number k

$$\sum_{i=0}^{\infty} \frac{v_i^2}{\lambda_i^{2k}} = c_9 < +\infty,$$

then the conditions (1), (2), (3) and (4) of Theorem 1.1 are satisfied for A and B.

PROOF. Following the same argument as in the proof of Proposition 4.1, we see that for any finite sum $f = \sum a_i e_i$ and any integer $n \ge 0$,

$$|\mathbf{B}^n\mathbf{A}f|_{\mathscr{H}}^2 \le c_9 |\mathbf{B}^{n+k}f|_{\mathscr{H}}^2,$$

which implies the conditions (1) and (3) of Theorem 1.1. Since $v_i > 1$, $i = 0, 1, 2, \dots, (2)$ is proved by the same argument as in Proposition 4.1. Since **A** and **B** are commutative, we have

$$|\mathbf{B}^n e^{-t\mathbf{A}}f|_{\mathscr{H}}^2 \leq |\mathbf{B}^n f|_{\mathscr{H}}^2,$$

which completes the proof of Corollary 4.1.

5. Strong solution for a Segal-Langevin type equation

In [7], they discussed a fluctuation phenomena for interacting, spatially extended neurons and as a limit equation, they found a suitable fundamental space \mathscr{D}_E of functionals on E and studied Segal-Langevin type stochastic differential equations including a class of the weak version of (1.1):

$$dX_F(t) = dW_F(t) + X_{-d\Gamma(\mathbf{A})F}(t)dt, \qquad F \in \mathcal{D}_E.$$
(5.1)

A stochastic process $X_F(t)$ indexed by elements in \mathscr{D}_E is called a continuous $L(\mathscr{D}_E)$ -process if for any fixed $F \in \mathscr{D}_E$, $X_F(t)$ is a real continuous process and $X_{\alpha F+\beta G}(t) = \alpha X_F(t) + \beta X_G(t)$ almost surely for real numbers α , β and elements $F, G \in \mathscr{D}_E$ and further $E[X_F(t)^2]$ is continuous on \mathscr{D}_E . $W_F(t)$ is an $L(\mathscr{D}_E)$ -Wiener process such that for any fixed $F \in \mathscr{D}_E$, $W_F(t)$ is a real Wiener process.

Although the above \mathscr{D}_E is not nuclear, appealing to the results in [7], we get a unique continuous $L(\mathscr{D}_E)$ -process satisfying (5.1).

We consider the case where for A in (5.1) there exists a self-adjoint operator **B** satisfying all the conditions of Theorem 1.1. In this case, by Theorem 1.1, there is a nuclear space S invariant under both $d\Gamma(A)$ and a strong continuous semigroup $T(t) = e^{-td\Gamma(A)}$. If we replace \mathcal{D}_E by S in (5.1), then by the regularization theorem [5] there exists an S'-valued Wiener process W(t) such that $\langle W(t), F \rangle = W_F(t)$ almost surely and the strong form of the equation with \mathcal{D}_E replaced by S in (5.1) is the following stochastic differential equation on S':

$$dX(t) = dW(t) - d\Gamma(\mathbf{A})^* X(t) dt.$$

Let $T(t)^*$ be the adjoint operator of T(t). Since S is nuclear, again by the regularization theorem, the stochastic integral $\int_0^t T(t-s)^* dW(s)$ is well defined

from the weak form such that

$$\left\langle \int_0^t T(t-s)^* dW(s), F \right\rangle = \int_0^t \left\langle dW(s), T(t-s)F \right\rangle.$$

Since $T(t-s)F = F + \int_s^t T(\tau-s)(-d\Gamma(\mathbf{A}))Fd\tau$, we get

$$\int_0^t T(t-s)^* dW(s) = W(t) + \int_0^t (-d\Gamma(\mathbf{A})^*) \left(\int_0^\tau T(\tau-s)^* dW(s) \right) d\tau.$$

Noticing that

$$\int_0^t (-d\Gamma(\mathbf{A})^*) T(\tau)^* X(0) d\tau = T(t)^* X(0) - X(0),$$

we see that

$$X(t) = T(t)^* X(0) + \int_0^t T(t-s)^* dW(s)$$

is a unique strong solution of (1.1) on S'.

Acknowledgment

The authors would like to express heartful thank to Professor A. Inoue who kindly informed them the works of J. Fröhlich and their related ones.

References

- [1] A. Arai and I. Mitoma, De Rham-Hodge-Kodaira decomposition in ∞-dimensions, Math. Ann., 291 (1991), 51-73.
- [2] A. Arai and I. Mitoma, Comparison and Nuclearity of spaces of differential forms on topological vector spaces, J. Funct. Anal., 111 (1993), 278-294.
- [3] J. Fröhlich, Application of commutator theorems to the integration of representations of Lie algebra and commutation relations, Commun. Math. Phys., 54 (1977), 135–150.
- [4] T. Hida, J. Potthoff and L. Streit, White noise analysis and applications, in "Mathematics + Physics," 3, World Scientific 1989.
- [5] K. Itô, Infinite dimensional Ornstein-Uhlenbeck processes, Proc. Taniguchi symp. SA. Katata, Kinokuniya Tokyo, 1984, 197-224.
- [6] A. Jaffe, A. Lesniewski and J. Weitsman, Index of a family of Dirac operators on loop space, Commun. Math. Phys., 112 (1987), 75–88.
- [7] G. Kallianpur and I. Mitoma, A Segal-Langevin type stochastic differential equation on a space of generalized functionals, Canad. J. Math., 44 (1992), 524-552.
- [8] T. Kato, Perturbation theory for linear operators, Springer 1976.
- [9] H. Korezlioglue and A. S. Ustunel, A new class of distributions on Wiener space, in "Lecture Notes in Mathematics," 1444 (1988), Springer-Verlag, 106–121.

- [10] I. Kubo and S. Takenaka, Calculus on Gaussian white noise. I, Proc. Japan Acad., 56, Ser. A (1980), 376–380.
- [11] H. H. Kuo, Lecture on white noise analysis, in "Proceedings of preseminar for International Conference on Gaussian Random Fields," 1991, 1–65.
- [12] M. Reed and B. Simon, "Methods of Modern Mathematical Physis," 1, Academic Press 1980.
- [13] I. Shigekawa, Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ., 32 (1992), 731-748.
- [14] S. Watanabe, "Lectures on stochastic differential equations and Malliavin's calculus," Springer, Berlin 1984.

Department of Mathematics Saga University Saga 840, Japan

and

*Department of Artificial Intelligence Kyushu Institute of Technology Iizuka 820, Japan