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Introduction

Let M = {zeCn + 1; z2 = 0} be the complex light cone, where z2 = z\ 4-
z2 + —I- z2

+1 for z = (zl9 z2,...,zπ + 1), neN, and let Sn be the n-dimensional
real sphere. We are concerned with holomorphic functions, analytic func-
tionals, entire functions, and entire functionals on M. M \ {0} can be identified
with the cotangent bundle to S" minus its zero section. We call M = {z e M

||z || = 1/^/2} the spherical sphere and identify it with the cotangential sphere
bundle to Sn. Holomorphic functions on the complex light cone were
discussed by several authors ([2], [10] and [11]) and are related to
hyperfunctions on the sphere ([4]).

Let Θ(Cn+l) and Θ(M) be the spaces of entire functions on Cπ + 1 and M,
respectively. We denote by Exp(Cn+1) and Exp(M) the spaces of entire
functions of exponential type on Cπ+1 and M, respectively, and by &(M) and
Exp' (M) the dual spaces of 0(M) and Exp(M), respectively. Put Exp^(Cπ+1)
= ^(Cπ+1)nExp(Cn+1), where &Δ(Cn+1) is the space of complex harmonic
functions on Cn+l.

We call the function ^λT(ζ) = <T2, exp(Uz 0> the Fourier-Borel trans-
form of T.

First, we give an integral representation of holomorphic functions on M
and by using the integral kernel we define the Cauchy transform of analytic
functionals on M. The integral representation gives the inverse mapping of

the restriction mapping ΘA(Cn+l)-^-+Θ(M), and the Cauchy transformation

gives isomorphisms such as ®'(M) —^-> 04({0}) (Theorem 9).
Second, we prove such topological isomorphisms as

&λ: &'(M) -̂  Exp^(Cn + l) and &λ: Exp' (M) -̂  GΔ (Cn+ x)

by using the growth behavior of homogeneous expansions (Theorems 18, 19
and 20). These results were announced in [7], and the first author gave
them a different proof in [8] by means of exact sequences and Martineau's
theorem. The fact that the Fourier-Borel transformation is a topological
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isomorphism on Exp' (M) generalizes a Kowata-Okamoto theorem (Theorem

2 in [3]).

1. Preliminaries

Lie ball and complex light cone
Let \\x\\ be the Euclidean norm on Rπ + 1. We denote the open and the

closed balls of radius r with center at 0 in Rw + 1 by

1; ||x|| <r}, 0 < r < oo

and by

1 ; | |x | |<r}, 0 < r < oo,

respectively. Note that B(ao) = Rn+1 and £[0] = {0}. The cross norm L(z)
on Cn + 1 corresponding to ||x|| is the Lie norm given by

L(z) = L(x + iy) = [||x||2 + ||>;||2 + 2 vΊ|x||2 \\y\\2 - (x - y)2]2,

where x y = x^ + x2y2 H ----- I- *π+ι)Ίι+ι Its dual norm L*(z) is given by

= 1Λ/2 [||x||2 + ||y||2 + V( I I x I I 2 - ||y|| 2)2 + 4(x

(see [1]).
The open and the closed Lie balls of radius r with center at 0 are defined

by

B(r) = {zeCΛ + 1; L(z) < r}, 0 < r < oo

and by

B[r] = {zeCn + 1 L(z) < r}, 0 < r < oo,

respectively. It is clear that B(r) = B(r)nRn + 1 and β[r] = 5[r]nRπ + 1.
Since L(z) is a norm, 5(r) is an open convex and balanced subset of

Cπ + 1. In particular, B(r) is a domain of holomorphy in Cn+1.
We define the spherical sphere M by M = {zeM; L(z) = 1}, where M is

the complex light cone. If z = x + ΐyeM, then z2 = x2 — y2 + 2ix y = 0, and
hence, x2 = y2 and x y = 0. We have L(x + iy) = 2 || x || , L*(x + iy) = II x II =

L(x + iy)/2, and || x -I- iy \\ = ^/2 \\x\\. Therefore, we can write

M = {x + iy; \\x\\ = \\y\\ = 1/2, x y = Q}

= {zeM; L*(z) = 1/2} = {zeM; ||z|| =
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Further, put

M(r) = {zeM; L(z) < r] = MnS(r), 0 < r < oo,

M[r] = {zeM; L(z) < r} = MnB[r], 0 < r < oo.

Note that we can also write M = {(1/2, i/2, 0, ,0)0; geSO(n + 1)} and it is

isomorphic with the Stiefel manifold O(n + l)/0(n — 1). So, there is the

unique O(n + l)-in variant measure dμ on M with JM dμ(z) = 1.

Complex harmonic polynomials
We denote by 0>k(Cn+1) the space of fc-homogeneous polynomials with

complex coefficients of n + 1 variables and by 0>k(M) the restriction to M of

0>k(Cn+ί). We call 0>k(M) the space of fe-homogeneous polynomials on M

and ^(M) = Xk°°=0 0>k(M) the space of polynomials on M. Put

1); 2JZF = 0},

where Λz = d2 /dz\ + d2/dz\ -I- — h 32/δz^+1 is the complex Laplacian. It is

the space of fc-homogeneous complex harmonic polynomials. Put

N(k, n) = dim^(Cn+1).

We know N(k, n) = (2fc + n- l)(fc + n-2)!/(fc!(n- l)!) = O(fc"-1), (fc, n)/(0, 1)
and JV(0, 1) = 1. (See [5] or [9].)

LEMMA 1 ([10, Lemma 1.3]).

(i) (Reproducing property) For any fke0>k(M), we have

Λ(w) = 2kN(k, n) f fh(z) (z - w)fcdμ(z), w G M.

(») (Orthogonality) If fke0>k(M)9 f^»\M\ k Φ /,

fk(z)fl(z)dμ(z) = 0.

LEMMA 2. ΓΛe restriction mapping β: Ft-*F\β is a linear topological

isomorphism of ^(Cπ+1) onto 0>k(M):

Moreover, we have

IIΛ llc(M) < II Fk \\cm < N(k, n) ||Λ ||C(M), (1)

where ||/||C(B) = sup {|/(z)|; zeB[l]} and ||/||C(M) = sup (|/(z)|; zeM[l]}.
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PROOF. Let fke&k(M). We define Fk by

Fk(w) = 2kN(k,n)\ fk(z)(z w)kdμ(z), weC w + 1 . (2)

Then Ffce^(Cw+1) and by Lemma 1, FJχ,=/ fe. Thus β is surjective.

Further, (2) implies

, n) ||/J|C(M)sup {|z w\k; zeM, w

») II AW

Thus β is injective. q.e.d.

2. Holomorphic functions on M

We denote by @(B(r)) (resp., 0(M(r))) the space of holomorphic functions

on B(r) (resp., M(r)) equipped with the topology of uniform convergence on

compact sets. A fundamental system of seminorms is given by

\\F\\P.L = sup {|F(z)|; L(z) < p}9 0<p<r.

We call Φ(Cn+1) (resp., (9(M)) the space of entire functions on Cπ + 1 (resp.,
M). 0(B(r)) and 0(M(r)) are FS spaces (Frechet-Schwartz spaces).

For 0 < r < oo, we define the space &(§[r]) (resp., 0(M[r])) of germs of

holomorphic functions on B[r~\ (resp., M[r]) by

) = ind lim {&(B(r')); r' > r}

(resp., 0(M[r]) = ind lim {0(M(r')); r' > r}).

&(B[r]) and β?(M[r]) are DFS spaces (dual Frechet-Schwartz spaces).

By restriction mappings, we have the following inclusion relations:

Φ(M) c= 0(M[r]) ci 0(M(r)) c 0(M[0]), 0 < r < oo. (3)

LEMMA 3. The following sequences are exact:

0 - » JfcWr)) -̂  &(§(r)) -^ Θ(M(r)) - > 0, 0 < r < oo, (4)

0 - > ̂ (5[r]) -U β?(B[r]) -̂  C?(M[r]) - > 0, 0 < r < oo, (5)

where

= {/e^(B(r)); /(z) = 0, zeM(r)},

) = ind lim {,/£(£(>•')); r' > r},
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is the canonical injection and β is the restriction mapping. Further,

) = z2(9(B(r)) and >Λ(S[r]) = z20(£[r]). (6)

PROOF. Since B(r) is a domain of holomorphy, the exact sequence (4) is
a consequence of the Oka-Cartan Theorem B. The exactness of (5) follows
from that of (4) by taking inductive limits. q.e.d.

Suppose /e0(M(r)), 0 < r < oo. For ε with 0 < ε < 1 we define the
k-homogeneous component fkE0*k(M) o f / by

(7)
^ '

The right-hand side of (7) is independent of ε with 0 < ε < 1. In [6], we
defined the k-homogeneous component Fke0>k(Cn+ί) of F e(9(B (r)) for zeC w + 1

by (7).
Put

0Δ(B(r)) = {Fe(9(B(r))ι AzF(z) = 0}, 0 < r < oo,

^(^[r]) = ind lim {(9Δ(B(r')); r'>r}, 0 < r < oo.

We call an element of 0Δ(B(r)) (resp., 0Λ(B[r\)) a complex harmonic function
on B(r) (resp., J*[r]).

Since (9Δ(B(r)) is a closed subspace of the FS space Φ(B(r)), it is an FS
space. Since &Λ(B[r]) is a closed subspace of the DFS space &(B[r]), it is
a DFS space.

Using the inequality (1) in Lemma 2, we can deduce the following theorem
from Lemma 4.1 in [6].

THEOREM 4. Let 0<r< oo. Suppose Fe&Δ({Q}). Then the k-homogeneous
component Fk(z) is complex harmonic and we have the following relations:

( i )

(ii)
->αo

(iii) Fe&Δ(B(r)) ^lim sup
fc-*oo

(iv) FeΘΔ({0}) ^^limsup
K-+ oo

Further, the expansion F(z) = X^°=0 Fk(z) converges in the topology of respective

spaces.
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Similarly, our spaces of holomorphic functions on M can be characterized
by the growth behavior of their homogeneous expansions:

THEOREM 5 ([7, Theorem 3.3]). Let 0 < r < oo, /e(P(M[0]) and /ke
^k(M) the k-homogeneous component of f. Then we have the following
relations :

0(M) <=^ limjmp [ || fk ||C(M)P = 0,

(ii)

(iii) /e0(M(r)) <=^lim sup
κ-* oo

(iv) /e0(#[0])*^limjup [||/JC(M)] < oo.

Further, f(z) is expanded by homogeneous components as follows:

= Σ ΛW.

Λe convergence is in the topology of respective spaces.

PROOF. We prove only (iii). Let /e0(M(r)) and 0 < p < r. Then the
fc-homogeneous component fk of / is given by (7) in a neighborhood of
M[y. Therefore, for any p with 0 < p < r, ||/J|C(M) < l/p*sup {|/(z)|;
zeM[p]}, and hence,

limsup[||/JC(M)]* <-. (8)

Conversely, suppose a sequence (/ke^k(M); fe = 0, 1, 2, } satisfies (8). For

any r' with 0 < rr < r there is C > 0 such that ||/JC(M) ̂  C(l/r')k. Then we
have

oo oo oo / Γ ίz\ \ fc

Σ I Λ W I ^ Σ )̂* IIΛIIcwo ^ Σ c -V '
fc = 0 k = 0 k = 0 \ Γ /

which converges uniformly for zeM(r"), where r" < r'. Since r" and r' can

be arbitrarily close to r, f(z) = Σfk(z) *s holomorphic on M(r). q.e.d.
Since the restriction mapping is continuous, the following theorem is clear

from Theorems 4, 5, Lemma 2 and the closed graph theorem :

THEOREM 6 ([11, Theorem 2.4]). Let 0 < r < oo. The restriction
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mapping establishes the following linear topological isomorphisms:

(i) β:

(ii) β:

(iii) β:

(iv) j»:

Now we consider the integral representation of holomorphic functions on
M. Let r > 0 and fε(9(M(r)). We denote by fk the fc-homogeneous
component of /. Fix 0 < p < r. Then,

f(pz) = Σ fk(pz) = Σ pki
fc = 0 k=0

converges uniformly in a neighborhood of M [1]. Now suppose w e M. Then,

ί f ( p z ) ( z . w γ d μ ( z ) = ί £ PJfj(
JM J M J = O

= Σ P> ί //^j ^ I J j V
7=0 JM

where the last equality is implied by Lemma 1. Put

oo 1 _μ f

κ0(t)= I

Let 0 < p' < p and L(w) < p'. Then for zeM, we have

2|f - w|/p < 2L*(z)L(w)/p < p'/p < 1.

Therefore, for weM[p'], we have

/(w) = £ Λ(w)

= ί f(pz) Σ ^(fe,«)(-
JM * = o \P

= ί f(pz)K0z Wdμ(z).
JM "

This is an integral representation of holomorphic function /e0(M(r)) which
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is valid on M(p).
Note that

ι= ί
J

F(w) = f(pz)K0 - z w dμ(z), w e B(p), (10)

is a holomorphic function on B(p) and satisfies AF(w) = 0. Because the
right-hand side of (10) is independent of p with L(w) < p < r, F(w) defined by
(10) belongs to ΘΔ(B(r)) and satisfies F|£(r) =/ by (9).

Let K0: Θ(M(r))-> &Δ(B(r)) be the integral operator defined by (10). The
operator K0 is the inverse of the restriction mapping β. Thus by Lemma 3
we have the following:

COROLLARY 7. The exact sequences (4) and (5) are split. More precisely,
we have

0(3(r)) = z2Θ(B(r)) ® ΘΔ(B(r)), 0 < r < oo,

β(B[r]) = z2Θ(B[r-])®(9A(B[r^ 0 < r < oo.

3. Analytic functional on M

For 0 < r < oo, Θ'(M(r)) denotes the dual space of Θ(M(r)). If r = oo,
we denote it by &'(M). Similarly, for 0 < r < oo, Θ'(M[r\) denotes the dual
space of 0(M[r]). An element of ®'(M(r)} or &(M[f\) is generally called
an analytic functional on M.

Theorem 5 implies that 0>(M) is dense in each of the spaces in (3). There
fore, by taking dual spaces, (3) gives rise to the following relations:

) z> &(M(r)) => 0r([0]), 0 < r < oo.

LEMMA 8. The following sequnces are exact and split:

0 - > 0'(M(r)) -£+ &'(B(r)) -^ ^(B(r)) - > 0, 0 < r < oo,

0 - > 0'(Af [r]) -̂  0'(5[r]) ^̂ > ̂ &(5[r]) - > 0, 0 < r < oo,

PROOF. This is the dual statement of Lemma 3 and Corollary 7. q.e.d.
By the mapping β* we will regard ®'(M(r)) and $'(M[r]) as subspaces

of &(B(r)) and 0'(5[r]), respectively.
Let T60r(M[r]) and /e0(M[r]). Then there is r' > r such that

/e$(M(r')). For p with r < p <r'9 we have

1kN(k \ Γ

Ί
JM
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£ Γ / w\=.?.j/ws'(τ^)
where Sk(T; w) = 2kN(k, π)<Γz, (z w)k>. It is clear that 5fc(Γ; w)
We call Sfc(Γ; w) the k-homogeneous component of T. The harmonic extension
Sk(T; w) of Sfc(Γ; w) is given by the same formula:

Sk(T; w) = 2kN(k, n)<Γ2, (z w)*>, weC"+ 1. (11)

We define the Cauchy transform of Γ by

If L(z) < 1/r' < 1/r, then we have 2|z - w| < 2L*(z)L(w) < L(w)/rr. Thus

wι-^X0(2z w)6ίP(M(r/)). Therefore, f(z) is defined for L(z) < 1/r' and
holomorphic and complex harmonic in a neighborhood of B[_\/rf~\. Since
r' > r is arbitrary, f(z) belongs to ΦΔ(B(l/r)).

THEOREM 9. Let 0 < r < oo. Γλe Cauchy transformation and the restric-
tion mapping establish the following linear topological isomorphisms:

( i )

(ii)

(iii)

(iv)

PROOF. We prove only (iii). By Theorem 6 (iii),
Let Γe0'(M[r]). We shall prove that the Cauchy transformation if:
^^(β(l/r)) is a linear topological isomorphism. For any /e0(M[r]) there
is r' with r < r' such that /e0(M(r')). Therefore, for r < p < r' we have

= ί
JM

This can be rewritten as follows:

<Γ,/>= f f(pz)f(-]dμ(z).
JM \P

Thus ^ is injective.
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Conversely, let φeO(M(l/r)). For any f e ® ( M [ f ] ) there is r' > r such
that /e0(M(r')). Take p with r<p<r' and form

f f(pz)φ(-}
JM \P /

<Tφ,fy= f(pz)φ(-\dμ(z).
JM \PJ

This does not depend on p with r < p < r' and T e0'(M[r]). Further,

= ί K0(2z pw)φ(-Ww)
J M \ P /

Thus # is surjective.
Since # is continuous and linear, its inverse mapping is also continuous

by the closed graph theorem.
Since Tφ = φ, we have φk = (Tφ)k = Sk(Tφ; w). Therefore, from Theorems

5 and 9, we obtain the following theorem:

THEOREM 10 ([7, Theorem 3.4]). Let 0 < r < oo, Te&(M) and Sk(w) =
Sk(T; w) the k-homogeneous component of T. Then we have the following
relations :

( i )

(ϋ)

(iii)

(iv)

Γe0'(M[θ;

Teΰ'(M(r)

Te&'(M[r'_

Te&'(M)

])^limsupl\\Sk(w)\\cM']k

) <^=>limsup[||S,(w)||C(M)]^
K— > oo

1) <=> lim sup [ || Sk(w) ||C(M)P
IC~* CX)

^=>limsup[||Sk(w)||C(M)P

= 0,

<r,

<r,

< 00.

Further, we have

<τ>fy= Σ ί ^(w)/(
*=o JM

/ is a test function in respective spaces.

4. Entire functions of exponential type on M

Let N(z) be a norm on Cw + x and A > 0. For an entire function /, we put
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11/lljτM.*) = sup {|/(z)| exp (- AN(z)); zeC"+1},

X(A, N) = {/e0(Cn+1); \\f\\X(Atin < 00}.

Then X(A, N) is a Banach space with respect to the norm H/Hx^,^. Define

Exp(C"+1;(4, N)) = proj lim {AΓ(5, N)'9B>A}9 0 < A < oo,

Exp (CΛ+1 [Λ, AT]) = ind lim {*(£, N); B < A}, 0<A< oo.

It is clear that Exp (Cn+1 (A, N)) is an FS space and that Exp (Cn+1 [_A, N])
is a DFS space.

Note that Exp(C"+1; (0)) = Exp(C"+1; (0, N)) is the space of entire
functions of minimal exponential type and that Exp(Cn+1) = Exp(C"+1;
[oo, ΛΓ]) is the space of entire functions of exponential type. Define

ExpΔ (CΛ+l;(A9 N)) = 04(C"+1)nExp(C"+1; (Λ, N))9

FYΠ (C*n+^ ΓA N~\\ — /O (Γ*n+l\ n Fvn (C*n+* ΓΛ ΛΓ~Π*-**-\rA \ ' L. 9 ^ ' J / — Δ \ f \ \ L-JΛ^J \^ , L-^I, ^ » J /

Similarly, for /e0(M), we put

11/llzM.N) = sup {|/(z)| exp(- ^JV(z)); zeM},

Z(A9 N) = {/60(Af); 11/HzM.N) < 00}.

Then Z(^4, JV) is a Banach space with respect to the norm ||/||z(x,jv) Define

Exp (M; (A, N)) = proj lim {Z(B, N);B>A}, 0<A<σo,

Exp (M; IA9 JV]) = ind lim {Z(B, N); B < A}, 0<A<ao.

It is clear that Exp (M; (A, N)) is an FS space and that Exp (M; [Λ, N]) is a
DFS space. Exp (M; (0)) = Exp (M; (0, N)) and Exp (M) = Exp (M; [oo, JV])
are independent of the norm N(z). In the sequel, the norm N(z) will be the
Lie norm L(z) or the dual Lie norm L*(z). Because 2L*(z) = L(z) on M, we
have

Exp(M;μ,L*)) =

We are mainly concerned with the following spaces:

Exp (M; (0)) c Exp (M; [A, L*]) c Exp (M; (A, L*)) c Exp (M)

: 0(M[r]) c 0(M(r)) c 0(M[0]), (12)

where 0 < A < oo and 0 < r < oo.
Using the inequality (1) in Lemma 2 we can deduce the following theorem

from Lemma 4.2 in [6].
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THEOREM 11. Let A>0. Suppose F(z)e&Δ(Cn+1) and Fk(z)ε0>k

Δ(Cn+1)
is the k-homogeneous component of F. Then we have the following relations:

(i) FeExp^ (C" +1 (0)) <=> limjmp [fc! || Fk ||C(M)]* = 0,

i A
(ii) FeExpΔ (Cn [A9 L*])<=>lim sup [fc! ||Fk||C(M)]

fc < —,
fc->αo 2

I A
(iii) FeExpΔ (Cn+1; (A, L*)) <=>lim sup [fc! ||Ffc||C(M)]* < —,

k~* oo 2

n+1 ' k

Further, the expansion

converges in the topology of respective spaces.

Similarly, our spaces of entire functions of exponential type on M can
be characterized by the growth behavior of their homogeneous components:

THEOREM 12 ([7, Theorem 3.3]). Let 0 <A < oo. Suppose f e ( 9 ( M ) and
fke^k(M) is the k-homogeneous component of f. Then we have the following
relations:

( i ) /eExp (M; (0)) ^lim sup [fc! ||/JC(M)? = 0,
k~* oo

(ii) /eExp(M; [A, L*])^lim sup [fc! ||/t||C(M)]^ < 4»
K-* oo 2

(iii) /e Exp (M (A, L*)) ^==> Hmjmp [fc! || fk \\ C(M)]* < —,

(iv) /eExp (M) ^̂  limjmp [fc! || fk ||C(M)]* < oo.

Further, the expansion

converges in the topology of respective spaces.

PROOF. We prove only (iii). Let /eExp(M; (A, L*)) and B > A. The
fc-homogeneous component fk of / is defined by (7) and hence satisfies
IIΛIIc(M) < ll/llz(*,L*)/y exp(βp/2) for any p > 0. Here, we used 2L*(z) = L(z)
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for z e M. Putting p = 2k/ B, we get

Therefore, by the Stirling formula lim supk^ [fc! ||/JC(M)]
1/k < B/2. Since

B > A is arbitrary,

2,

Conversely, suppose a sequence { fk e 0* (M) fe = 0, 1 , 2, } satisfies
(13). Then, for any B >A there is C > 0 such that ||/k||c<M) ̂  C(B/2)k/k\.
Therefore, we have

|/(z)|^k? ' Λ ω i ^ c j ;

/ B \
< C exp ( — L(z) 1 = C exp (£L*(z))

for zeM. Because £ > A is arbitrary, /(z) = ££°=0/fc(z) belongs to Exp(M;

(A, L*)). q.e.d.
Since the restriction mapping is continuous, the following theorem is clear

from Theorems 11, 12, Lemma 2 and the closed graph theorem:

THEOREM 13 ([7, Theorem 3.2]). Let 0 < r < oo. The restriction mapping
establishes the following linear topological isomorphisms:

( i ) β: ExpΔ (CM + 1 (0)) -̂  Exp (M; (0)),

(ii) β: ExpΔ (Cw + 1; [Λ, L*]) -^Exp(M; [A, L*]),

(iii) β: ExpΔ (Cn + 1; (A9 L*)) ̂ ^ Exp (M (A, L*)),

(iv) j?:ExPj(C" + 1)^^Exp(M).

We have the following corollary, which generalizes Lemma 3.

COROLLARY 14. The following sequences are exact:

0 —+ ΛxP(Cπ +1 μ, L*)) ̂  Exp (Cw+1 (A, L*)) -̂  Exp (M (A, L*))

/or 0 < A < oo and

O^ΛxP(Cn+1; [^L*])^^Exp(Cw + 1; [A, L*]) -^Exp (M

for 0 < A < oo,
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JLp (Cw + 1 (A, L*)) = S$(Cn + !) n Exp (Cn + 1 (A, L*)),

5. Entire functionals on M

Let 0 < A < oo. Exp' (M; (A, L*)) and Exp' (M; [A, L*]) denote the dual
spaces of Exp (M; (A, L*)) and Exp (M; \_A9 L*]), respectively. An element of
Exp'(M; (A, L*)) or Exp'(M; [A, L*]) is called an entire functional on M.

Since ^(M) is dense in each of the spaces in (12), by duality, the relations
in (12) imply

Exp'(M; (0)) ̂  Exp' (M; [A, L*]) ̂  Exp' (M; (A, L*)) ̂  Exp' (M)

(14)

where 0 < A < oo and 0 < r < oo.

LEMMA 15. The following sequences are exact:

0 — >Exp'(M; (A, L*)) -̂ U Exp' (Cn+ x (X, L*)) -^^P(C"+1; (X, L*)) — .0

/or 0 < A < oo #«</

0 — >Exp'(M; [A, L*])-^Exp'(C"+1; [A, L*])-^«/E;p(Cπ+1; [X, L*]) — .0

for 0 < ,4 < oo.

PROOF. This is the dual statement of Corollary 14. q.e.d.
Thanks to this lemma, we can regard Exp' (M; (A, L*)) and Exp'(M;

[A, L*]) as subspaces of Exp'(C"+1; (A, L*)) and Exp' (C"+1; [A, L*]),
respectively.

The following theorem extends Theorem 10 in case of entire functionals.
Because we have no Cauchy transformation of entire functionals, we cannot
prove it by Theorem 12 as we did for Theorem 10.

THEOREM 16 ([7, Theorem 3.4]). Let 0 < A < oo. Let Sk(w) = Sfc(T; w)
be the k-homogeneous component of TeExp' (M; (0)). Then we have the
following relations:

( i ) Γe Exp' (M) <=> lim sup
1*_π

\ ~ '
i

(ii) TeEχp'(M;μ,L*))—limsupl ' « * > J < i.
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(iii) ΓeExp'(M;[A,

[ IIS (w) II "1*"
^̂  < 00.fe! J

Further, we have

s Γ
<Γ,/> = Y Sfc(w)/(w)<iμ(w), (15)

X 7 ̂  / ^_^ I Λ . V /./ V '

fc = o JM

wA^r^ / w a test function in respective spaces.

PROOF. We prove only (iii). Suppose TeExp' (M; \_A9 L*]). Then by
the continuity of T, for any B with 0 < B < A there is CB > 0 such that

for any feZ(B9 L*). Therefore, for weM,

< CB2
kN(k, n) sup {|z - w|* exp (- BL*(z)); zeM}

< CB2
kN(k, ή) sup {L*(z)k exp (- BL*(z)); zeM}

<CB2
kN(k9 n)(k/B)ke~k.

By the Stirling formula, we get lim sup^^ [||Sfc||C(M)/k!]1/k < 2/B. Since
B < A is arbitrary, we have lim sup^^^ [||Sk||C(M)/fc!]1/k < 2/A

Conversely, suppose a sequence (Sfce^k(M); k = 0, 1, 2, } satisfies the
condition lim sup*.^ [ || Sk ||C(M)/fc!]1/fc ^ 2/A Then, for any B with 0 < B < A
there is CB > 0 such that |Sk(w)| < Cβfc!(2/β)k for k = 0, 1, 2, . Let
/eExp(M; [A, L*]). Then there is B' with 0 < B' <A such that

llz(B';L ) = sup {|/(z)| exp (- FL*(z)); zeM} < oo.

Since the fe-homogeneous component of / is defined by (7), we have

1
I Λ W I =

for weM, and hence

\=P tk+l
dt

For B' < B, the Stirling formula implies
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Σ f Sk(w)fk(w)dμ(w)
k=o JM

oo

k = 0

<C'\\ \\Z(B',L*)

for /eZ(B', L*). Therefore,

f Sk(w)f(w)dμ(w)= Σ f ^(
jM fc = o J M

converges and defines a linear functional T on Exp(M; [A, L*]). It is clear
that Sk(w) = Sk(T; w). q.e.d.

6. Fourier-Borel transformation

For (eCπ + 1 fixed, we consider the exponential function /(z) = exp (iλz ζ).
The Taylor expansion /(z) = exp (iλz ζ) = Σk°=o(iλ)k(z - ζ)k/k\ coincides with
the expansion by homogeneous polynomials:

fk(z) = ^-(z'ζ)\ zeM. (16)

For Teθ'(M), the function

is defined for C E C W + I and is called the Fourier-Borel transform of T. If
TeExp'(M; (0)), then &λT(ζ) is defined only for ζ in a neighborhood of 0
in Cπ + 1.

LEMMA 17. If TeExp'(M; (0)), then we have

oo (j yc ι
& 'T(ζ) = Y — - - St(Γ; 0 (17)

A ιw

 4tΌ fe! 2kN(k,n) k ' ^ '

where Sk(T; ζ) is the k-homogeneous polynomial defined by (11). In particular,

Sk(^T; 0 = ̂ f -η-J— St(T; ζ). (18)
k\ 2 N(k9 n)

The function F(z) = ^T(z) satisfies the differential equation AF(z) = 0.

PROOF. By (15) and Lemma 1,

oo Γ ( j l Λ k

= X S4(Γ; w) LI
fc=oJM

 fc!
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_ - w i s
~ 1 [ ' °

for ζeC n + 1 and (18) is clear. Because (17) is a uniformly convergent series
of complex harmonic functions, the limit function is also complex harmonic.

q.e.d.
We now prove theorems on the Fourier-Borel transformation analogous

to Martineau's theorem (for example see [6]):

THEOREM 18 ([7, Theorem 4.4]). Let λ Φ 0 and 0 < r < oo. The
Fourier-Borel transformation &λ establishes the following linear topological
isomorphisms :

( i ) ^λ : 0'(M [0]) ̂ + Exp4 (C"+ * (0)),

(ii) JV 0'(M(r)) ^+ExpΛ (C"+1; [|λ|r, L*]),

(iii) J^λ: 0'(M[r]) -^Exp4 (C"+1; (|λ|r, L*)),

(iv) ^ :

PROOF. We prove only (iii). Let Te0'(M[r]). By Lemma 17, F(z) =
^λT(z) is holomorphic in a neighborhood of 0 in C""1"1 and satisfies
ΔF(z) = 0. By (18) and Theorem 10 (iii), we have

lίmjup [fe! |

By Theorem 11 (iii), J^T belongs to Exp4 (C" + 1; ( |A | r , L*)).
Conversely, let FeExp^ (Cn+1; (\λ\r, L*)). Expand F into homogeneous

polynomials: F(z) = X^°=0 Fk(z). Since F is complex harmonic, Fk belongs to
1). Theorem 11 (iii), implies

! | | F k | | C ( l o ] . (19)

Define

Sk(ζ) = (2-}kk\N(k,n)Fk(ζ). (20)
\ ι λ /

Then (19) implies limsupfc^ [||Sk(ζ)||C(M)]
1/fc < r. Since r > 0, by Theorem

00

10 (iii), the formal series T(ζ) = £ Sk(ζ) defines an analytic functional and
fc = 0

belongs to Φ'(M\r}). By the construction of T and Lemma 17, we have
!Fλ T = F. Since ̂  is continuous, ^λ~

 1 is also continuous by the closed graph
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theorem. q.e.d.
The following theorem generalizes Kowata-Okamoto's theorem:

THEOREM 19 ([7, Theorem 4.4]). Let λ φ 0 and 0 < A < oo. The
Fourier-Borel transformation 3Fλ establishes the following linear topological
isomorphisms :

( i )

(ϋ) &λ: Exp' (M; (A, L*)) ̂ + 0Δ(BlA/\λ\]),

(ϋi) &λ: Exp' (M; [X, L*]) -^ 0Δ(B(A/\λ\))9

(iv) ^

PROOF. We prove only (iii). Let ΓeExp' (M; [A, L*]). If L(ζ) < A/\λ\9

then there is B < A such that L(ζ) <B/\λ\< A/\λ\ and we have

I exp (iλζ z)| < exp (\λ\ L(ζ)L*(z)) < exp (5L*(z)).

Therefore, exp (iλζ z)eExp(M; [yl, L*]) and we can define the Fourier-Borel
transformation :

= <TZ, exp (iλζ z)>, L(0 < .
| Λ |

By Lemma 17, Theorems 16 (iii) and 4 (iii), F(z) = J^T(z) belongs to
ΦΔ(B(A/\λ\)).

Conversely, let FεOΔ(B(A/\λ\)). Expand F into homogeneous poly-
nomials : F(z) = £fc°°= 0 Fk(z). Since F is complex harmonic, Fk ε 0>% (Cn +1). By

Theorem 4 (iii),

limsup[||FJ|C(M)]<y. (21)fc~>0° ^4

Define Sk(ζ) by (20). Then (21) implies

K— >• oo

Because 4 > 0, by Theorem 16, the formal series T(ζ) = £k°°=0 Sk(C) defines an

entire functional and belongs to Exp'(M; [_A, L*]). By the construction of T
and Lemma 17, we have 3FλT=F. Since ^ is continuous, ^λ~

l is also
continuous by the closed graph theorem. q.e.d.

Thanks to Theorem 13, Theorems 18 and 19 may be stated as follows:
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THEOREM 20 ([7, Theorem 4.5]). Let λ φ 0, 0 < r < oo and 0 < A < oo.
The conical Fourier-Borel transformation Άλ = β ° ̂ λ establishes the following
linear topological isomorphisms'.

( i ) &λ: 0'(M[0]) ̂  Exp (M (0)),

( ϋ ) Sλ: 0'(M(r)) ^Exp(M; [μ|r, L*]),

( in) :̂ 0'(M[r]) ̂ + Exp (M; (\λ\ r, L*)),

( i v ) Jλ:0'(M)-^

( v ) £λ: Exp' (M)

( v i ) Jλ: Exp' (M; μ, L*))

(vii) Jλ: Exp'(M; [A, L*])

(viii) <2λ: Exp' (M (0))
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