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0. Introduction

Suppose that we have serial measurements for each of N individuals on
each of p occasions, and let X be an N x p data matrix of observations. Then,
the growth curve model proposed by Potthoff and Roy [17] can be written as

(0.1) X = AΞB + E,

where A is an N x k between-individual design matrix of rank k, Ξ is an
unknown k x q parameter matrix, B is a q x p within-individual design matrix
of rank q(< p), and E is an N x p unobservable matrix of random errors. It
is assumed that the rows of E are independently and identically distributed
as Np(0, Σ), where Σ is an unknown p x p positive definite matrix. The model
(0.1) is also called a GMANOVA model since this model is a MANOVA
model in the special case B = Ip. The model (0.1), which is adequate for
balanced data, has been studied by many authors, including Potthoff and Roy
[17], Khatri [12], Rao [18], Grizzle and Allen [10], etc. An extension of
this model to unbalanced data has been considered in Laird and Ware [14],
Vonesh and Carter [29], etc., by assuming that Σ has certain covariance
structures. For an extensive survey or a comprehensive review of the literature
on these models, see, e.g., Timm [27], Woolson [31] and von Rosen [22]. An
extension of the model (0.1) is given by

(0.2) X = A1Ξ1B + A2Ξ2 + E,

where A± and A2 are N x k± and N x k2 design matrices, respectively,
rank \_Al9 A2~\ = k{ + k2 < N — p, and Ξ^ and Ξ2 are unknown k1 x q and
k2 x p parameter matrices, respectively. The expected value of X in the model
(0.2) is the sum of two matrix components. The first component is the
GMANOVA portion, and the second one is the MANOVA portion. The
model (0.2) may be called a mixed MANOVA-GMANOVA model. This type
of models has been considered in Chinchilli and Elswick [6], Verbyla and
Venables [28], Yokoyama and Fujikoshi [33], [34], etc. It may be noted
(Verbyla and Venables [28]) that the model (0.2) can be applied to analysis
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of repeated measurements with parallel profiles or covariates.
When there is no theoretical or empirical basis for assuming special

covariance structures, we need to assume that Σ is arbitrary positive
definite. However, there exist some situations that certain covariance
structures can be imposed for repeated measurements. Typical parsimonious
covariance structures are a random-effects covariance structure (see, e.g., Rao
[18], [19], Ware [30], Reinsel [20], [21], Lange and Laird [15]), a uniform
covariance structure (see, e.g., Arnold [3, pp. 209-238]) and an autoregressive
covariance structure (see, e.g., Hudson [11], Lee [16], Fujikoshi, Kanda and
Tanimura [8]).

This paper is concerned with some mixed MANOVA-GMAVOVA models
with random effects. The random-effects covariance structure, which is based
on random-coefficients models proposed by Rao [18], can be naturally and
reasonably introduced to a repeated measurements design and enables us to
make more efficient inferences. Main inferential problems on this model are
divided into two parts:

(PI) the adequacy of a random-effects covariance structure,
(P2) estimation and testing problems of unknown mean parameters under

this structure.
This paper consists of two parts. Part I is concerned with a multivariate

parallel profile model with random effects and consists of Sections 1 to 4. In
Section 1 a multivariate parallel profile model, which is useful in analyzing
multiple-response parallel growth curves of several groups, is described in detail
and is reduced to a canonical form. The model is a special case of (0.2), but
it has a random-effects covariance structure based on several response
variables. In Section 2 the likelihood ratio (= LR) statistic for a hypothesis
concerning the adequacy of a random-effects covariance structure is obtained.
However, since the exact LR criterion is complicated and impractical, it is
suggested to use a modified LR statistic, which is the LR criterion for a
modified hypothesis. An asymptotic expansion of the null distribution of the
statistic is derived. The LR criterion for the hypothesis is also discussed. In
Section 3 the maximum likelihood estimators (= MLE's) of unknown mean
parameters are obtained under the random-effects covariance structure, and
one of the MLE's is compared with the MLE in the case when the covariance
matrix has no structures. Further, two testing problems are considered.
Modified LR statistics and their asymptotic null distributions are obtained. In
Section 4 we discuss the single-response case, in which the exact LR criteria
for testing the hypotheses in Sections 2 and 3 have been obtained by Yokoyama
[32] and Yokoyama and Fujikoshi [34]. In this section asymptotic non-null
distributions of the LR criteria are obtained under local alternatives.
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Part II is concerned with a growth curve model with covariates and
random effects and consists of Sections 5 to 8. In Section 5 a growth curve
model with covariates is outlined and is reduced to a canonical form. The
model is a mixed MANOVA-GMANOVA model which has random-effects
covariance structures based on a single response variable. In Section 6 test
statistics for a general hypothesis concerning the adequacy of a family of
random-effects covariance structures are proposed. A modified LR statistic
and its asymptotic null distribution are obtained. The LR criterion for the
hypothesis is also discussed. In Section 7 the MLE's of unknown mean
parameters are obtained under one of these covariance structures, and the
efficiency of one of the MLE's is discussed. Finally, in Section 8 the results
of Section 6 are exemplified by a data set of repeated measurements.

Part I. Multivariate parallel profile model with random effects

1. The model and its canonical form

Suppose that m response variables x l 5...,xm have been measured at p
different occasions on each of N individuals, and each individual belongs to
one of k groups or treatments. Let x(f be an mp-vector of measurements on
the 7-th individual in the 0-th group arranged as

γ(g) _ (Ύ(g) γ(g) Ύ(g) Ύ(g) γxj — \xl Ij9 » Λ lmj5 9 X p ί j 9 9 xpmj) >

and assume that the x^ are independently distributed as Nmp(μ(9\ Ω), where
j=l,...,Ng9 0 = l,...,fc. Further, we assume that profiles of fe groups are
parallel, i.e.,

(1.1) ^(Ipfc/Jί^ + A 0=1,...Λ

where lp is a p-vector of ones, and (lp®/m) defines the Kronecker product
of lp and the m x m identity matrix. Without loss of generality we may
assume that δ(k) = 0. In the following we shall do this. Let

v _ rr(D rd) v(fc) r(fc)-ι/
Λ — LX1 9 >">XNl9-">Xl > 9XNkJ '

Then the model of X can be written as

(1-2) ^-ATN x m |,(

where TV = Nl + ••• 4- Nk,
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0

0

\ 0

is an N x (k — 1) between-individual design matrix of rank fc — 1 (<N — p— 1),

Δ = [5(1),...,£(k~1)]' is an unknown (k — 1) x m parameter matrix, μ = (μ(9...9

μp)' is an mp-vector of unknown parameters, Ω is an unknown mp x mp
positive definite matrix. The model (1.2) is called a multivariate parallel profile

model.
We are now interested in a random-effects covariance structure

where Σλ and Σe are arbitrary m x m positive semi-definite and positive definite
matrices, respectively. The random-effects covariance structure (1.3) is based
on the following model:

(1-4) = (1 λf)

where λ(f and e(/} are independently distributed as ΛΓm(0, Σλ) and Nmp(Q, Ip®Σe\
respectively. Here, the λ(f's are m-vectors of latent variables and can be
regarded as ones denoting variation between individuals for each group. From
(1.4), we have

V(xf) = Ω = (lp® IJΣλ(\'p ® Im) + Ip® Σe.

Therefore, the model of X with random effects can be written as

(1.5) X ~ N^mp(A,Δ(l'p ® Im) + lNμ', ((lp ® IJΣλ(l'p ® Im) + Ip ® Σe) ® IN),

which is an extension of the single-response case due to Yokoyama and
Fujikoshi [34] to the multiple-response case.

Reinsel [20], [21] introduced certain multivariate random-effects cova-
riance structures to a multivariate GMANOVA model. Chinchilli and Carter

[5] discussed the LR test for a patterned covariance structure

Ω = J + (W® Im)Στ(W

in a multivariate GMANOVA model, where W is a known p x (p — 1) matrix of
rank p— 1 such that l'pW = 0, and 27τ is an arbitrary m(p— 1) x m(p— 1) positive
semi-definite matrix. We note that the model (1.5) is a multivariate mixed
MANOVA-GMANOVA model with multivariate random-effects covariance

structure. In Section 2 we propose test statistics for the hypothesis
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(1.6) HQ:Ω = (lp®Im)Σλ(\'p®lm) + Ip®Σe vs. H.'.notH^

under the multivariate parallel profile model (1.2). By making this stronger
assumption about ί2, we can expect to have more efficient estimators. For
the single-response case (m = 1), Srivastava [25] obtained the MLE of A when
no special assumptions about Ω are made. For the case m = 1, in comparison
with his result, Yokoyama and Fujikoshi [34] has shown how much gains
can be obtained for the maximum likelihood estimation of A by assuming this
covariance structure. In Section 3 we discuss the efficiency of the MLE of
A in the multiple-response case.

We now reduce the model (1.2) to a canonical form, which implies that
the problem of obtaining the LR test under the model (1.2) can be reduced
to the one of obtaining the LR test under a GMANOVA model. Let
G = [p"1/2lp, g(2\ ,g(2~1}] = [p~1/2lp, G2~] be an orthogonal matrix of order
p. Then

is an orthogonal matrix of order mp. Further, let H = [Λf ~1/21N, //2] be an
orthogonal matrix of order N. Consider the transformation from X to

Then, letting F= [rl9 F2

(1),..., î 1'] = [Ylt F2], we have

(1.7)

where 0' = N'^l'^A^Γ, 0] + Nίl2μ'Q, Al = H'2Aί, Γ = pll2Δ and

«f = ρ'Ωρ = (^n ^12

\ *2

We can express the hypothesis (1.6) as

(1.8) H0: Ψ=(P A + e } vs.
v o ^ 0 _ ^ /

2. Tests for random-effects covariance structure

In order to examine whether or not the model (1.5) can be assumed, we
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consider the LR test for the hypothesis (1.6) under the model (1.2). This is
equivalent to considering the LR test for the hypothesis (1.8) under the model
(1.7). Let L(0, Γ, Ψ) be the likelihood function of [z, 7']. Then we have

, Ψ)=-2logL(θ,Γ,Ψ)

where θ = z. The minimum of g(Γ, Ψ) when Γ and Ψ are unrestricted, which
has been obtained by Khatri [12] and Gleser and Olkin [9], is given by

(2.1)

where 511>2 = S11 —

ί3 1 1 .

N

1

77
+ Nmp,

and

S=Y'(IN..1-Aί(A'1A1Γ
1A'ί)Y=

As is seen later on, the minimum of g(Γ, Ψ) under H0 in (1.8) is
complicated. For simplicity, we consider the LR test for a modified hypothesis

(2.2) Hn: Ψ =
*ι ι

O

0

where Ψlt is an arbitrary m x m positive definite matrix. We note that the
difference between H0 and H0 is whether or not Ψ11 satisfies a restriction
Ψ11 > Σe. It is easily seen that

(2.3)

min 0(Γ, Ψ) = N log
Ho N

JV(p-l) log
1 y2

(ί)'y2

(ί»

Therefore, from (2.1) we can obtain the LR test statistic

\S\ \YίY2\(2.4) A =

P - i i=t

p-l

for testing H0 vs. fί^ which may be also used for testing H0 vs. H±. In order
to express the statistic (2.4) in terms of the original observations, let

s,= Σ
0=1 j

= Σ Σ

where
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ι k N

— Σ
Nt

and
= 1 . 7 = 1

Noting that

(2.5)

we have

1
77Nί

(2.6)

- 1

u ~ p '

#'>#" = i

Nk_

% J = 1

+ J_ι
^v.

-1

The statistic (2.4) can be decomposed as

(2.7) Λ =

where

\S\
and 1 "Σ

p-1

p - 1 i = i

The statistics /1(1) and Λ(2) are the LR statistics for Ψ12 = 0 and

!P22 = Ip_1 ® 2Γe, respectively. Further, we can decompose Λ<2), which is the

LR statistic for testing multivariate sphericity, as

(2.8) Λ™ = Λφ

where

Λ(ι2> = —r1 p-1 and ί=1

Π
p — 1 i=ι

The statistic Λ(f] is the LR statistic for testing the hypothesis that Ψ22 is

block diagonal, and the statistic Λ(

2

2) is the one for testing equality of diagonal

matrices given that Ψ22 is block diagonal. It is easy to verify that under

HO, Sll.29 Sί2S22S2l and Y2Y2 are independent,

ιι-2 -k~m(p- 1), S12S2VS21 - 1),
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lϊ Y2 ~ Wm(f- 1, (N - 1, /,_ , (8) 2ΓJ and "̂  Ff y2«> ~ Wm((N - 1) (p - 1), Γe).

Therefore, the statistics Λ(1) and Λ(2} in (2.7) are independent. The h-th
moment of Λ(1) is obtained from that Λ(1) is distributed as a lambda

distribution Λ..WQ,- !).*-*-*<,- 1> and is given by

{AT - fc - info - 1)} + fc Γm^(N - k)

(2.9) 7 V

{N - k - m(p - 1)} / m j ( Λ Γ - fc) + fc

where Γm( ) is the multivariate gamma function defined by Γm(n/2) =
πw(m'1)/4Π7=1 Γ((n -j + l)/2). On the other hand, it is known (Boik [4])
that under H0, the statistics Λ\2) and Aψ in (2.8) are independent, and the
h-ih moment of Λ(2) is given by

(2.10)

From these null moments of Λ, we can obtain an asymptotic expansion of
the null distribution of — Np log Λ by expanding its characteristic function.
For the method, see, e.g., Anderson [2].

THEOREM 2.1. When the hypothesis HQ is true, the distribution function
of — Np log Λ can be expanded for large M = Np as

P(-NplogΛ<x)

= P(χ2

f < x) + -̂  {P(χ2

f+4 <x)- P(χ2

f < x)} + 0(M~3),
M

where f = — m(mp2 + p — 2m — 2),

72 = — m < 2m(p — 1) {6u2 — 6(mp + \)u + m(p — 1) (2mp + m + 3)

ιι + k)
2

-2|(p-l){2m2(p-l)2-h3m(p-l)-l} -- —(2m2 + 3m - l)l(ιι + k)
( P- 1 J
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u = N(l — p) — fc, and p is defined by

fN(l -p) = — m\6m(p- l)(2/c + mp + 1)

+ (p - I){2m2(p - I)2 + 3m(p -!)-!} — (2m2 + 3m - 1)1.
p-1 J

We now consider the exact LR criterion AN/2 for HQ vs. //!. Let

1 ~ 1 J7"1

r> i n Ψ — \ y — V y(»)'y(oI Z . l l ) x 1 1 i31 ι , Z/p / Ij Ij .
N N(p- l ) i = !

If it holds that

(2.12) Ψu-Σ.^0,

the LR statistic A is equal to A. However, if (2.12) does not hold, we need
to solve the problem of minimizing

g*(Σλ, Σe) = log \pΣλ + Σe\ + tr (pΣλ + Σe)~1Ψ,, + (p - l)(log \Σe\ + tr Σ~1ΣJ,

which is equal to the quantity obtained by minimizing g(Γ, Ψ)/N under H0

with respect to Γ. The problem is not simple and is left as a future
problem. Here, we give a bound. Let δl > ••• > δm and 5? > ••• > <5* be the
characteristic roots of pΣλ + Γe and 27e, respectively, and let ^ > ••• > tm and
if > ••• > ί* be ones of Ψvι and ^e, respectively. Then, from Anderson [1]
we can get a lower bound given by

log*ι +

where ω = {^t > ••• > δm, δf > ••• > δ*, δi>δf> 0, i = l,...,w}. It is easily
seen that the values of <5f's and δf's which minimize the right-hand side of
(2.13) are

if if > if,

tf>t,,

(2.14)
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t f , i f t, > t f ,

-̂fa + (P -I)'?}, i ί t f > t tP

for i = l,...,m. Therefore, we obtain the following bound for Λ:

(2.15)
R, elsewhere,

where

R==
\Su.2\\YiY2\

Since the statistic R is obtained by letting δt = δf = {tt + (p — l)tf}/p for all
i = l,...,m in the right-hand side of (2.13), we have

(2.16) A<A<A.

We note that the LR statistic A agrees with A in the case m = 1.

3. The MLE's and LR tests

3.1. The MLE's of unknown mean parameters

In this section we obtain the MLE's of unknown mean parameters in the
multivariate parallel profile model (1.5) and consider the efficiency of the MLE
of A. Reinsel [20], [21] discussed some aspects of estimation and hypothesis
testing in a multivariate GMANOVA model with multivariate random-effects
covariance structure. It may be noted that the covariance matrix of the model
(1.5) has a multivariate random-effects covariance structure, but the mean
structure is a multivariate mixed MANOVA-GMANOVA model. The
canonical form of the model (1.5) is the same as the model (1.7) except the
covariance matrix, i.e.,

(3.., U '' J~MU/ <,]•'«'»)
with

λ + Σ. 0

"-• o
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It is easily seen that the MLE's of θ and Γ are given by

Hence the MLE of μ is given by

(3.3) μ = N~1/2Qz-

We now express the MLE's given in (3.2) and (3.3) in terms of the original

observations. Noting that

from (2.5) it can be shown that

~ 1
~ Γr γ v - v T Π (9\ T }ιx —x ,...,* — x j(Lp<&ιm).

P

Therefore, from these results we have the following theorem.

THEOREM 3.1. The MLE's of A and μ under the multivarίate parallel

profile model (1.5) are given as follows:

A=- [*α> - *<*>,..., J^-D - *<*>]'(!, ® /J,
P

μ = x--(lpΓp®Im)(x-ϊW).
P

On the other hand, the MLE of A when Ω has no structures, i.e., is

arbitrary positive definite is given by

^[ĵ -^V.,^-"-^

The result, which is an extension of Srivastava [25] to a multivariate case,
follows by rewriting a general expression in Chinchilli and Elswick [6]. The

estimators A and A have the following properties.

THEOREM 3.2. Under the multivarίate parallel profile model (1.5) // holds

that both the estimators A and A are unbiased, and

-
P
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K(vec (A)) = - jl + , (PΣ, + Σe) ® M,
/? ( Λ Γ - f c - m(/>- 1)- I J

M = diag (JVf x , . . . , ΛTk"Λ) + JVk~
 x l f c_ x \'k. 1 .

PROOF. Since A = p-1/2(Άf

ίAlΓ
1Άf

1 Yl9 we have

E(A) = A and K(vec(J)) = -(pΣλ

which imply the result on J. By an argument similar to the one in Srivastava
[25], it can be shown that for any positive definite co variance matrix
Ω, E(A) = A and

F(vcc(J)) =
M Ί Λ,N — k — m(p — 1) — 1

Under the assumption of Ω = (lp ® IJΣλ(l'p ® / J + Ip ® Γe, it holds that

1 = -(pΣλ

P

which proves the desired result.

From Theorem 3.2, we obtain

F(vec ( )) - K(vec (Λ)) = (pΓ, + Γe) ® M > 0,
— fe — m(p — 1) — 1}

which implies that under the model (1.5) A is more efficient than A. This
shows that we can get a more efficient estimator for A by assuming a
random-effects co variance structure. For the case m = 1, this result agrees
with the one in Theorem 2.2 in Yokoyama and Fujikoshi [34].

3.2. LR tests for two hypotheses
In this section we consider two testing problems under the multivariate

parallel profile model (1.5). First we consider the LR test for

(3.4) H0i: Σλ = 0 vs. /fn : not H0ί

under the model (1.5). For testing the hypothesis (3.4), we may start from
the model (3.1). Let L(θ,Γ,Σλ9Σe) be the likelihood function of [z, 7'].
Then we have

(3.5) gι(Σλ, Σe) = - 2 log L(0, Γ, Σλ, Σe)

= ΛΓ jlog \pΣλ + Σe\ + tr (pΣλ + Σ.Γ1 jj Sn
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where θ and Γ are defined in (3.2), and

Then the minimum of (3.5) under H0ί is given by

1 p^Hoi
+ Nmp.

Since the minimum of (3.5) under Hll is complicated (see (2.13), (2.14)), we
consider the minimization of Qι(Ψ^9 Σe) under the model (3.1) with the same
modified covariance matrix as in (2.2). Therefore, mmg^ll9 Σe) is equal to
(2.3). From (2.3) and (3.6), we can suggest a test statistic

(3.7)

1

P - 1 1
y2

(ί)Ύ2

(ί) p-l

for testing H01 vs. Hn. The statistic (3.7) can be expressed in terms of the
original observations, using (2.6).

LEMMA 3.1. When the hypothesis H0ί is true, the h-th moment of A1 is

E(Λ\) =
pm' fh

rm-(N-k)

(p - {(N - l)p - (fc -

PRCK>F. It is easy to verify that under ff0 1,

Sii - «i(^ - *, Σe) and "̂  ̂  Y^ ~ »

Further, these two statistics are independent. Therefore, the h-ih moment of
Aί can be written as
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pmph

E(Λ\] = —

where WJ and W2 are independently distributed, Wt ~ Wm(vl9 /J, H£ ~
W^(v2, /J, and V! = N - k + 2Λ, v2 = (JV - l)(p - 1) - 2Λ. The desired result
follows from that

>w + w, ~ Λ,,v l f V2

Using Lemma 3.1, we can obtain an asymptotic expansion of the null
distribution of — Np^ log A1 by expanding its characteristic function.

THEOREM 3.3. When the hypothesis H01 is true, the distribution function
of — Np1 log ΛI can be expanded for large M = Np1 as

= P(χ2

fί <*)+{jϊ W1+4 < x) ~ P(x2

fl < x)} + 0(M-3),
M

where /x = — m(m + 1),

p(p-l)

P(P-1)

u = N(l — pj — fc, and p± is defined by

+ ί j (2m2 + 3m-
P(P-1)J

P

We now consider the exact LR criterion Λ^12 for Hol vs. #n. If (2.12)
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holds, the LR statistic Λ1 is equal to Λ^. However, if it is not the case, the
LR statistic Λ^ is complicated. As a simple bound for Λl9 we can suggest

(3.8)
1,

if Ψ^-

elsewhere

such that

(3.9) Λ^Λ^Λ,.

We note that the LR statistic A± agrees with Άl in the case m = 1.

Next we consider the LR test for

(3.10) H02: A = 0 vs. H12: not H02

under the multivariate parallel profile model (1.5). For simplicity, we consider
again the model (3.1) with the modified covariance matrix given in (2.2). Let

(3.11) g2(Ψlί9Σe) = tr ^Γi1

1

N(p - 1) &

This function is defined by the same way as g1(Ψli9 Σe)9 i.e., by considering
the maximization of the likelihood function L(0, Δ9 Ψll9 Σe) under H02 with
respect to θ. Then we have

(3.12)
N

1

N(p - 1) i

Therefore, from (2.3) we can suggest a test statistic

(3.13) Λ,

p-l

Σ + Nmp.

\γ{γ,\

for testing H02 vs. H12, where

verify that under H02,

1

P
It is easy to

and

Further, these two statistics are independent. Therefore, the ft-th moment of
A2 is obtained from that Ά2 is distributed as a lambda distribution Λm, f c-ι,N-k
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and is given by

E(ΛH

2) =

For an asymptotic expansion of the null distribution of —Np2logΛ2, see,
e.g., Siotani, Hayakawa and Fujikoshi [24, p. 250].

4. Parallel profile analysis for single-response case

For the single-response case (m = 1), we can obtain the exact LR criteria
for two testing problems in Sections 2 and 3. Asymptotic null distributions
of the LR criteria have been derived by Yokoyama [32] and Yokoyama and
Fujikoshi [34]. In this section we derive asymptotic non-null distributions
of the LR criteria under local alternatives. First we consider the LR criterion
for the hypothesis (1.6) under the model (1.2) in the case m = 1, i.e., for

(4.1) H0: Ω = λ2ΐpl'p + σ2Ip vs. H,: not H0

under

(4.2) X ~ NNxp(Aίδlp 4- lNμ', Ω (x) 7N),

where λ2 > 0 and σ2 > 0. Then, the canonical forms (1.7) and (1.8) can be
expressed as

<4j) L° i
and

(4.4) H0: ψ=(f vs. H.'.not H0,
ϋ σ Ip-J

respectively. The MLE's of λ2 and σ2 under H0 can be obtained by a
well-known technique in a variance components model (see, e.g., Arnold [3,
p. 251]) and are given by

-Sii tr Y2Y2 1,0
N N(p- 1) /

(4.5)

= min — tr Y2' Y2, — (sn + tr Ύ{ Y2)N(p-l) Np
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respectively. Therefore, we can write the LR criterion as

(4.6)

where

if Sll/N > tr Y^Y2/{N(p - 1)},

if Sll/N<tiY2Y2/{N(p-l)},

I
— Ϊ2Ϊ2

I

Si tr K y,
1

~Np

and

N
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THEOREM 4.1. Let ΛN/2 be the LR criterion for testing HQ vs. H1. Then,
under the sequence of local alternatives

J2,
. ~N

it holds that

lim P(~ NlogΛ < c)
N—*• co

= δ1)<c), if λ2>0,

I Φ(δ*)P(χ2

f(δί) <c) + {l- Φ(δ*)} P(χ2

f+1(δ2) < c), if λ2 = 0,

where Ψ0 = diag(τ2, σ2,...,σ2), τ = (pi2 + σ2)1'2, η is a fixed matrix partitioned
as

lu . .
, ι j n : l x l ,

-2-2
σ2τ2 tr ί -

(p —
>?22)

2,
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p J σ2 V P \ P - 1

ι) denotes a χ2 variate with f degrees of freedom and noncentrality parameter
δί9 and Φ(x) denotes the distribution function of the standard normal distribution.

PROOF. From the definition of ΛN/2 we have

P(- ΛΠog A < c) = P(-2logR1 < c, sn/ΛΓ > tr Y2Y2/{N(p - 1)})

+ P(- 2logR2 < c, Sll/N < tr Y2Y2/{N(p - 1)}).

Let

1

2N
(ψ-ll2Sψ-1/2-NIp) = U.

Then all the different elements of U are asymptotically independent, and the
limiting distributions of uu and utj are ΛΓ(0, 1) and ΛΓ(0, 1/2), respectively,

where 1 < /, j < p, i ¥^j. Under H^\ N~^S can be expressed as

ls-y + /IK
JV ° V N '

where

Here we note that the limiting distribution of V is the same as the one of
η + Ψ^/2UΨo/2. Then, by the same way as in Yokoyama [32], we can
expand —2\ogRl as

where

+ tr V2

2 - - - L— (tr V22)
2.

4 - 4σ2τ2 σ4 (p -

It is easily seen that the limiting distribution of Z1 is a noncentral χ2

distribution with / degrees of freedom and noncentrality parameter δ^. When
τ2 > σ2, we have

lim P ( — S l l >
ΛΓ(p-

and hence
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lim P(- N log A < c) = lim P(- 2 log R x < c)
N—> oo N-* oo

When τ2 = σ2, we can expand — 21og/?2 as

where

Let

P ~ 1

Then the Imiting distribution of Z* is JV(δ*, 1). It is easy to verify that Z*
and Z1 are independent, Z2 = Z*2 + Z^ Therefore, the limiting distribution
of Z2 is χ}+l(δ2)9 δ2 = δ*2 + δι. Since sn/JV > tr Y^Y2/{N(p - 1)} is
equivalent to Z* > 0, it holds that

lim P(- N log Λ < c) = lim {P(Zl < c, Z* > 0) + P(Z2 < c, Z* < 0)}
ΛΓ-» oo JV-* oo

= Φ(δ^P(χ}(δl) < c) + {1 - Φ(δ*)}P(χ2

f + l(δ2) < c),

which proves the desired result.

Next we consider the LR criterion for the hypothesis (3.4) under the
model (1.5) in the case m = 1, i.e., for

(4.7) H01 : ̂
2 = 0 vs. Hn : not H01

under

(4.8) X - NNXp(AιδΓp + l*μ', (A2lpi; + σ%)(x) IN).

It is easily seen that the MLE's of λ2 and σ2 under /f01 is given by

(4.9) 12 = 0 and σ2 = -L(sn + tr y2'72),
JVp

respectively. Therefore, from (4.5) we can write the LR criterion as

if s u /N>try 2 'y 2 /{N(p-l)},
(410)

if s 1 1 /N<trY 2 ' y 2 /{N(p-l)} ,
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where

Ώ , N(p-l)-

N(p-l)

1 1 2

tr r2'

1

.A^(Sl'
THEOREM 4.2. Let Λ"/2 be the LR criterion for testing #01 vs. H^. Then,

under the sequence of local alternatives

j* =

ί7

lim P(- JV log ΛI < c) = 1 - Φ(δ$ + Φ(δΐ)P(χl(δ*S) < c),
TV -> 00

vv/zere α2 iy α constant, and <5f = ^/pίp — I)α2/σ2.

PROOF. From the definition of /I?'2 we have

p(- jviogA < c) = p(- 2io g Λ 3 < c, SII/N > tr y2'y2

+ P(s 1 1/jv<try 2 'y 2/{jv(p-i)}).

Let

sll-N\=U1,

Then ί/j and l/2

 are independent, and the limiting distribution of Ut is JV(0, 1),

i = 1, 2. Let

Then, by the same way as in Yokoyama and Fujikoshi [34], we can expand

— 2 log R3 as

where
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Z*-*Ί — - l "" — 2
P

Here we note that the limiting distribution of Zf is N(δί, 1). Since
SII/N > tr y2'y2/{N(p - I)} is equivalent to Zf > 0, it holds that

lim P(- N log Λ! < c) = lim {P(Zf2 < c, Zf > 0) + P(Zf < 0)},
N-* oo N -* <x>

which implies the desired result.

We note that under the null hypotheses HQ and H01, the limiting
distributions of the LR criteria in Theorems 4.1 and 4.2 agree with the results
in Yokoyama [32] and Yokoyama and Fujikoshi [34].

Part II. Growth curve model with covariates and random effects

5. The model and its canonical form

An important application of the mixed MANOVA-GMANOVA model
(0.2) arises in the growth curve model with covariates. In the model (0.1),
suppose that we can use the observations of r covariates for the N
individuals. Let C be the N x r observation matrix of r covariates. Then
the model (0.1) can be extended to a case of (0.2), and the model of X can
be written as

(5.1) X ~ NNXp(AΞB + CΘ9 Σ®IN),

where Θ is an unknown r x p parameter matrix. It is assumed that C is
fixed and rank [A, C] = k + r < N — p. Here, without loss of generality we
may assume that BB' = Iq. In fact, if BB' Φlq, we may replace Ξ and B by
Ξ(BB')ίl2 and (BB'Γ l/2B, respectively. In the following we shall do this. The
model (5.1) is called a growth curve model with covariates.

We are now interested in a family of covariance structures

(5.2) Σ = B'SASBS + σ2

slp(= Σs)9 0 < s < q,

which is based on random-coefficients models with differing numbers of random
effects, where As is an arbitrary 5 x 5 positive semi-definite matrix, σ2. > 0, Bs

is the matrix which is composed of the first s rows of B. This family is a
generalization of random-effects covariance structures proposed by Rao
[18]. In fact, the covariance structure (5.2) can be naturally introduced by
assuming that the first s columns of Ξ are random. We note that Lange and
Laird [15] has introduced the family (5.2) of covariance structures to a
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GMANOVA model (0.1).
A test statistic for testing H0s: Σ = Σs vs. Hίs: not H0s under the mixed

MANOVA-GMANOVA model (5.1) has been proposed by Yokoyama and
Fujikoshi [33]. In Section 6 we propose test statistics for the hypothesis

(5.3) HOS:Σ = ΣS vs. Hlt:Σ = Σt

under the model (5.1), where 0 < s < t < q.

We now give a canonical reduction. We define the submatrices Bγ and
β-nί of B by_ B = [β;, B£\'9 Bt = [βs', B
such that Bff = Ip-q and Bff = O, i.e.,

Q =

Bs

B

Let B be a (p - q) x p matrix

βl

Q2

βs

is an orthogonal matrix of order p. Further, let H = [ff1,ίf2] ^e an
orthogonal matrix of order N such that H1 is an orthonormal basis matrix on
the space spanned by the column vectors of C. Consider the transformation
from X to

Then, letting Y = H'2XQ' = [7lf Y2, Y3, 74] = [^123)) 74], we have

(5'4)

where μ = H(A[_E, 0] + HJ C6>ρ', A = H'2A and «? = QΣQ'. Here we note
that (Θ, Ξ) is an invertible function of (μ, Ξ). In fact, Θ can be expressed
in terms of μ and Ξ as

(5.5) Θ^iH'^CΓ'μQ-ίHΊCΓ'H'.AΞB.

We can express the hypothesis (5.3) as

. + σs

2/s 0

O σ?/n.
(5.6) vs. H,,:Ψ =

Δ, + σ?It 0

O σ,2/n

6. Tests for ramdom-effects covariance structures

We may consider the LR test for the hypothesis (5.6) under (5.4) instead
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of the one for the hypothesis (5.3) under (5.1). Since the elements of μ in
(5.4) are free parameters, for testing the hypothesis (5.6) we may consider the
LR test formed by only the density of Y. The model of Y can be written as

(6.1) Y~ NnXp([AΞ, O], Ψ®I^,

where n = N — r. Let L(Ξ, Ψ) be the likelihood function of Y. Then we can
see that the MLE of Ξ under H0s or Hlt is given by Ξ = (A(Aί)~lAΎ(123}.
Let

g(Ψ)=-2logL(Ξ,Ψ)

-AΞ 74].

As is seen later on, the minimum of g(Ψ) under H0s or Hlt can be obtained
in a closed form. However, since it is complicated, we consider the LR test
for a modified hypothesis

<6 2)
ψ(s) o
o ,', vs. Hlt: Ψ =

O σ*I,_t

where Ψ(s} and Ψ(t) are assumed to be arbitrary s x s and ί x ί positive definite
matrices, respectively, and

'i ί: s x s.

It is easily seen that

(6.3)

= nlog Jιι + n(p - s) log
1

I n(p - s)

and

(6.4)

mm
Hit

where

= nlog + n(p - t) log
1

n(p-t)

SΊl ^12 S13 <S14

^ c c ^^21 ^22 ^23 ^24

S31 532 533 S34

\ 5^41 ^42 ^43 ^44
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( c e \ / c e \
ύ l l ύ!2 \ , „ _ / ^22 ^23 \

C C / ύ(23)(23) — I c α Γ
ύ21 ύ 22/ \ ύ32 **33/

Therefore, we can suggest a test statistic

(6.5) Λs. =

s(23)(23) + tr

for testing H0s vs. H l f. In order to express the statistic (6.5) in terms of the

original observations, we denote Stj and y4'Y4 in terms of

I Dxx Dxc Dxa\

(6.6) D = IX, C, A\'{X9 C,A]= Dcx Dcc Dca .

\Dax Dac Daaj

Noting that H2H'2 = IN-PC, Pc = C(C'C)~1C'9 it can be shown (see

Yokoyama and Fujikoshi [33]) that

(6.7) Y4' Y4 = Q*DXX.CQ'4, Sy = QtD^Q'j,

where Dxx.c = Dxx - DXCD~1DCX and

which is equal to Dxx.c - Dxa.cDaa\Dax.c.

The statistic (6.5) can be decomposed as

(6.8) ΛStί = Λ1A2

where

and

Λ2 =

Here, the statistics A1 and Λ2 are the LR statistics for Ψ(l\ = 0 and
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= σ^/,-5, respectively.

LEMMA 6.1. When the hypothesis H0s is true, it holds that

( i ) Λ! and Λ2 are independent,

/*.(!(»-*-r
(ii) E(Λ\)=-

(n -k-t + s ) r ( n - k)

(iii) E(Λ*2)=¥—

PROOF. It is easy to verify that under H0s,

«! ι 2 ~Wt(n-k-(t- s), ψω), S12S;2

1S21 ~ Ws(t - s,

S22 ~ WJ_ s(n - k, σ s

2/ t_ s), S33 ~ W;_ t(n - k, σ2/,_ r) and

Further, these five statistics are independent. Therefore, Λ1 and Λ2 are
independent. The h-th moment of Λί is obtained from that Λί is distributed
as a lambda distribution Λ s r _ S B _ k _ ( t _ s ) . The Ji-th moment of Λ2 can be
written as

Γ'-\2(n~

where X : and K2 are independently distributed, K1 ~ χj l 9 K2 ~ xί2»
 an(^

V i = (2/z + n - k)(t - s), v2 = n(p - ί) - k(q - t).

Here, letting U = K1 + K2 and 7= K2/(Kl + K2), it is well known that U
and 7 are independent with

U ~ Ύ2 j. 7^^ Λ V 1 + V 2 ' K
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The third result (iii) follows from the above fact.

Using Lemma 6.1, we can obtain an asymptotic expansion of the null
distribution of — np log Λstt by expanding its characteristic function.

THEOREM 6.1. When the hypothesis H0s is true, the distribution function
of — np log ΆStt can be expanded for large M = np as

P(-nplogΛSft<x)

= P(χ2

f < x) + -̂  {P(χ2

f+4 <x)- P(χ2

f < x)} + 0(M'3),
M

where f = - (t - s)(t + s + 1),

y2 = — (ί - s)<6(t + s + l)w2 - 2<6(t + 1)5 + 2(ί - s)2 + 3(ί - s) - 1

+ £ {3(p - <?)2fc2 - 6(p - q)k + 2}In
(p-t)(p-s) J

+ 2{(3ί - 5 + 3)s + 2(ί - s)2 + 3(ί - s)- l}s + (ί - s - l)(ί - s + l)(ί - s + 2)

4
(2p - ί - s)(p - «){(p - ?)fc - 1} {(p - «)fc -

(p — 0 (p -

where u = n(\ — p) — fe, and p is defined by

fn(l - p) = — (t - s) < 6(t + s + l)fc + 6(ί + l)s + 2(ί - s)2 + 3(ί - s) -

2
+

We now obtain the exact LR criterion ΛnJ* for H0s vs. H l ί? which may
be obtained by starting from the distribution of Y. Let

(tr S(23)(23) + tr y4' 74),n n(p - 5)

(tr 533 + tr y4'

For the case

(6.9) Ψ(s)-σ2Is>0 and Ψ(t)-σ?It>0,
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the LR statistic ΛStt is equal to Λs > r. However, if (6.9) is not satisfied, we
need to solve the problem of minimizing

(6.10)

1 g(Δ., σ2) = log \AS + <τ2/J + tr (Δs + 0*1^9™ + (p - s)(log σ2 +

or

(6.11)

-g(Δt9 σ2) = log \Λt + σ2/,| + tr(4 + σ2/,)"1 ̂ (ί) + (p - θflog σ2 + ̂
Λ V σf

under H0s or H l ί5 respectively. Let / j > ••• > ίs(> 0) be the eigenvalues of
^(s) and PΓ= !>!,..., H>S] be an orthogonal matrix such that W'Ψ(s)W =
diag (/!,..., /s), and let

1 + ••• + /s H- (p - s)σ2} >.
P-J

Then the values of σ2 and ί̂s which minimize (6.10) are

(6.12) σ2 = — L_{/ms+1 +... + /, + (p - 5)ί
2} and Js = J (/,- - σf)^wj,

p — ms j = ι

respectively (see, Schott [23], Khatri and Rao [13], Fujikoshi [7]). Similarly
we obtain the values σ2 and At of σ2 and At which minimize (6.11) under
Hlt. Therefore, the exact LR criterion can be expressed as

(6.13) Λtf = exp |̂ - 1 {g(ΔΛ, <τ2) - g(Δt, σ
2)}!.

Since the LR statistic AStt is complicated and impractical, we propose to use
the following simple bounds for Λst:

( ί ^ Λ ^ a J^ ." if l*^Sϊ> A A* $%:*> iϊdt>σ?9(6.14) ΛSft = < and Λ*t = <
(RS9 if σ 2 >/ s , [Rt9 if σ?>dt,

where d± > ••• > rf,(> 0) denote the eigenvalues of Ψ(t\ and

R = and R =

s I y^>| {/. exp (σ.2//.- I)}'"' ' s -

The statistics A"1* and ^l*?'2 in (6.14) are approximate LR criteria for
H0s vs. Hlt and H0s vs. Hlt, respectively, and we have



468 Takahisa YOKOYAMA

Then, from (6.14) and (6.15) it is easily seen that

(6.16) \Λs,t - ΛStt\ < λ,

where λ = Λ*t — AStt.

7. The MLE's

In this section we obtain the MLE's of unknown mean parameters under
the mixed MANOVA-GMANOVA model (5.1) with Σ = B'SASBS + σ2

slp(= Σs)
and consider the efficiency of the MLE of Ξ. This model is reduced to the
same canonical form as in (5.4), but the covariance matrix Ψ is given by

/4 + σs

2/s OI s

\ 0 σllp.

It is easily seen that the MLE's of μ and Ξ are given by

(7.1) β = Z and Ξ = (ΆfΆ)~1AΎ(123)9

respectively. Therefore, from (5.5) the MLE of Θ is given by

(7.2) Θ = (H[CΓ1ZQ - (H(CΓ1H(A(Ά'AΓ1AΎ(123}B.

We now express the MLE's given in (7.1) and (7.2) in terms of the original
observations or the matrix D in (6.6). Noting that

(A'AΓ1AΎ(123) = (AΉ2H'2AΓ1AΉ2H'2XB', (H'^CΓ^H^ = (C'C)"1^,

we have the following theorem.

THEOREM 7.1. The MLE's of Ξ and Θ under the mixed MANOVA-
GMANOVA model (5.1) with Σ = Σs are given as follows:

A'(IN - PC)XB'

= D-a\Dax.cB',

= (C'CΓ1C'X - (C'CΓ1C'A [A'(IN - Pc)AylA'(Iχ - PC)XB'B

We now consider the MLE of Ξ under (5.1) where Σ is an arbitrary
positive definite matrix. The MLE can be obtained as the MLE of Ξ under
(6.1) where Ψ is an arbitrary positive definite matrix. Since the latter model
is a GMANOVA model, it is well known (see, e.g., Siotani, Hayakawa and
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Fujikoshi [24, p. 312]) that the MLE of Ξ can be expressed as

= (A'AΓίAΉ2XS*-1B'(BS*-1B'Γ1,

where 5* = XΉ'2(In - Ά(Ά'AΓίAr)H2X and

'A'A AΎΛ-i^/Fu F 1 2

N

IA Y^Y^J \F2 1 F

Chinchilli and Elswick [6] obtained an expression similar to (7.3). In terms
of the submatrices of the matrix D in (6.6), we can write

A'A = Daa - DacD-1 Dca = Daa.c, AΉ2X = Dax - DacD~1 Dcx = Dax.c,

5* = Dxx.c - Dxa.cD~a

l

cDax.c = Dxx.ac.

Therefore, we can write Ξ as

(7.4) Ξ = D-a\Dax.cD^.acB'(BD^acBr *.

THEOREM 7.2. Under the mixed MANOVA-GMANOVA model (5.1) it
holds that both the estimators Ξ and Ξ are unbiased, and

(i) if Σ = 27,, F(vec(Ξ)) =ΨS®M,

(ii) K(vec (Ξ)) = ^ 1 + —^ - V^ - - Ϊ&Σ-1*)-1® M,
N -(k + r)-(p-q)

where M = [A'(IN - Pc)^]'1 and

+ σ2 0ψ _
S 0

PROOF. Since Ξ — (Ά' Ά)~ 1 A' Y(123), we have

E(Ξ) = Ξ and F(vec (Ξ)) = Ψs ® (A'A)'*,

which imply the result on Ξ. The results on Ξ are essentially obtained from
a general result in a GMANOVA model (see, e.g., Grizzle and Allen

[10]). Here we give a direct proof. Since Ά'H2X and S* are independent,
the unbiasedness of Ξ is easily obtained, and the co variance matrix of vec (Ξ)

given 5* can be written as

where B = BΣ~112 and 5 = 2r1/2S*2;-1/2. Let G = [Gl9 G2] be an orthogonal

matrix such that G! =B/(BF)~1 / 2

? and let



470 Takahisa YOKOYAMA

~ ' / W i i W12\W=G'SG = ( , W^'.qxq.
\ W W I
\ "21 "22 /

Then W is distributed as WP(N - (k + r), Ip)9 and it holds that

(BS-l8r)-lBs-2!y(BS-lff)-* = (SSv1/2(/« + w12w22

2w2ί

Noting that W12W2~^1/2 and W22
 are independent and the elements of

W12W2~2ί/2 are independently distributed as ΛΓ(0, 1), we have

which implies the desired result.

It is easily checked that (BΣ~^Bf)~l = Ψs. Therefore, from Theorem 7.2,
under the assumption of Σ = Σs we obtain

F(vec (Ξ)) - K(vec (Ξ)) = — — - ̂ — ? - -— ΨS®M>0.
N-(k + r)-(p-q)-l

This shows that a more efficient estimator for Ξ can be obtained by assuming
a random-effects covariance structure.

We note that the MLE's of unknown variance parameters σ2 and As

under the mixed MANOVA-GMANOVA model (5.1) with Σ = Σs are given
by (6.12). The MLE's are not unbiased. On the other hand, the usual
unbiased estimators of σ2 and Δs may be defined by

σ2 = (tr Sί23H23) + tr 74

r 74) and Δs = Sn - σ2Is,s (23)(23) 4 f

(7.5)

1
/ A T "77 \ ^tΓ ^(23X23) T u Λ4 ^4; αιlu ^s = — T; : °11 ~ us Js
(N-r)(p-s) N-(k + r)

respectively. However, there is the possibility that the use of As can lead to
a nonpositive semi-definite estimate of As. The estimators in (7.5) can be
expressed in terms of the original observations, using (6.7). Relating to these
unbiased estimators, we may propose the estimators obtained from the MLE's
by taking

1

" N - (k + r) n'

in stead of Ψ(s) = n~1Sίl. The modified MLE's of σ2 and As when ms = q are
equal to (7.5). Such estimators are called restricted maximum likelihood

estimators (= REMLE's).
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8. Numerical example

We now examine the data (see, e.g., Srivastava and Carter [26, Table
7.14]) of the price indices of hand soaps packaged in 4 ways, estimated by

12 consumers. For 6 of the consumers, the packages have been labeled with
a well-known brand name. For the remaining 6 consumers, no label is
used. From the data, we obtain

i(1) = (.31667, .45833, .47500, .64167)',

*(2) = (.60000, .66667, .85000, .96667)',

x = (.45833, .56250, .66250, .80417)',

/.45917 .32875 .52375 .35958 \

.38563 .39813 .41688

.72563 .54438

\ .61229 /

/ .21833 .15167 .20500 .08333 \

.25542 .16375 .21375

.30375 .17875

\ .29542

For the observation matrix X: 12 x 4, we assume the model (5.1) with

(8.1)

and the random-effects covariance structure

(8.2) K(vecpO) = ((521414 + σ 2/ 4)®/ 1 2.

The adequacy of the structures (8.1) and (8.2) to the data has been examined

in Yokoyama [32]. Now we consider testing the hypothesis

(8.3) vs. : Σ = <521414 + σ2/4

under this model. Since s = 0, ί = q = 1, and

s22 = - i Mp = 76635> tr y4 Y* = tr St - - ΓpStlp = .35130,
P P

it follows from (6.5) and Theorem 6.1 that
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P ' - = .20189,

and

- np log j?0 f l = 15.223 > χ*(.01) = 6.635.

Therefore, the hypothesis H00 should be rejected. This shows that random
effects on each individual are not absent in this example.
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