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ABSTRACT. It is well-known that Teichmuller space is a global real analytic mani-

fold. Using the geometry of Mδbius transformations and the one-half power of a

hyperbolic transformation, we consider the minimal number of global real analytic

length parameters for Teichmuller space and such length parameter space.

1. Introduction

A Riemann surface S of genus g with m holes is called of type (g, 0, m). If
2g + m > 3, then S is conformally equivalent to the quotient space 'D/G9 where
D is the unit disk in the complex plane and G is a Fuchsian group acting
on D. This G is also called of type (g, 0, m). Teichmuller space T(g, 0, m),
2g + m > 3 is the set of equivalence classes of marked Fuchsian groups of
type (g, 0, m) and a global real analytic manifold of dimension 6g + 3m — 6. It
is well known that T(g, 0, m) is parametrized global real analytically by some
lengths of closed geodesies on a Riemann surface represented by a marked
Fuchsian group (see for example, [1], [4], [6], [7], [8], [13] and [16]). Such
lengths are called length parameters. In this paper, we consider the following
problem.

PROBLEM, (i) What is the minimal number of global real analytic length
parameters for T(g, 0, 0), g > 2?
(ii) How is the parameter space described by such length parameters?

About the first problem, Wolpert [20] and [21] announced that the
minimal number of these parameters is greater than dim (T(0,0, 0)) = 6g — 6.
Next, Seppala and Sorvali [17] and Okumura [8] showed that this minimal
number is less than or equal to 6g — 4. Finally, we concluded that the
minimal number of global real analytic length parameters for T(g, 0, 0), g > 2
is 6g — 5 and, further, that we can take these lengths from simple closed geode-
sies on a Riemann surface. This was first proved by Schmutz [14]. In the
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same time, the author also obtained this result independently and concretely
from different methods. Moreover, the author obtained a result about the
second problem. Our results are derived from the consideration of the geome-
try of Mobius transformations and the one-half power of a hyperbolic transfor-
mation. A proof in the case of g > 3 is similar to that in the case of g = 2
and a parameter space of T(g, 0,0), g > 3 is defined by induction. Thus in
this paper, we only consider the case of g = 2.

THEOREM 1.1. Γ(2, 0, 0) is parametrized global real analytically by seven

length parameters which correspond to the absolute values of traces of the

following hyperbolic elements of a marked Fuchsian group:

A2 , B2 , B2A2A{ , B2A2Bϊl,

where (Al9 Bl9 A2, B2) is a canonical system of generators of this group (see

Section 2 for the definition). Thus these length parameters are lengths of simple

closed geodesies on a Riemann surface represented by a marked Fuchsian group.

This parameter space is described as follows:

Xj > 2, yj > 2 (j = 1, 2), zt > 2, u > 2, v > 2 ,

xl + yl+zl- xίyίz1 =χ2

2 + y2

2 + |tr (B2A2)\2 - x2y2 |tr (B2A2)\ < 0 ,

| tr(B 2 Λ 2 ) |=- 1

zί —

+ 2(xlu + y^υ) - z^y^u + x^)} > 2 ,

where Xj := |tr μ,)|, y, := |tr (Bj)\ (j = 1, 2), zx := |tr (B.A^ u :=

ί;:= |tr (J52A2B1~
1)|.

The simple closed geodesies used in the above theorem are characterized
as Theorems 3.7 and 4.9.

REMARK 1.2 ([11]). In the case of T(g, n, m\ m / 0, the minimal number
of global real analytic length parameters is dim (T(g, n, m)), where n means
the number of branch points and punctures on a Riemann surface represented
by a marked Fuchsian group.

The author would like to thank Professors F. Maeda, Y. Miki, K. Niino,
H. Sato and M. Taniguchi who encourage him to publish this paper.

2. Preliminaries

Let X be the unit disk D or the upper half plane H in the complex
plane. The group M(X) of Mobius transformations preserving X is the group
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of isometrics of X with respect to the Poincare metric d. For distinct two
points P! and p2 in the closure X of X, let L(p l 5p2) be the full geodesic
through pί and p2 with the direction from p^ to p2, where this direction

is sometimes ignored. Note that L(p1,p2) divides X into two parts; the
right-hand part and the left-hand part are denoted by r — L(p l 5p2) and
/ - L(p1? p2), respectively.

An elliptic element A e M(X) has one fixed point in X. We denote
it by fp (A). A hyperbolic element A e M(X) has the attracting fixed point
q(A\ and the repelling fixed point p(A\ which are characterized by q(A) =
lim,,̂  An(z) and p(A) = lim,,̂  A~n(z) for any z e AT, respectively. For a hy-
perbolic element A, the axis of A ax (A) = L(p(A\ q(A)\ and the translation
length of A tl (A) = inf {d(z, A(z))\z e X] are characterized by

We remark that q(A) = p(A~1) and / - ax (A) = r - ax (A~l).
Let A be a hyperbolic element of a Fuchsian group G acting on X. Then

ax (A) projects on a closed geodesic on X/G whose length is tl (A) and corre-
sponds to |tr(Λ)| real analytically.

To define a marked Fuchsian group, we give the following proposition.

PROPOSITION 2.1 (Keen [3]). Let G be a Fuchsian group of type (g, 0, m).
Then G has a system of generators

Σ=(Al9Bl9...9Άβ9Bg9El9...9Em)9

£»Λn-ι ••• E^Cg^ ... Q = identity,

where ΛJ9 BJ9 C3 = \BJ9 A£ = B^A^BjAj (;=1,...,0) and Ek (k = 1, ..., m)
are hyperbolic elements with the axes illustrated as in Figure 2.1, and if g = 0
(resp. m = 0), then AJ9 Bj and Cj (resp. Ek) are omitted.

A system Σ mentioned in Proposition 2.1 is called a canonical system of
generators of type (0, 0, m). A pair (G,Σ) is called a marked Fuchsian group
of type (g,Q,m). Two marked Fuchsian groups (Gl9Σ^) and (G^Z^) are
equivalent, if G2 = hG±h~l and Σ2 = hΣ^h'1 for some h e M(X). Teichmuller
space T(g, 0, m) is the set of equivalence classes of (G, Σ) of type (g, 0, m).

az + b , _ r Γα fcl . „ t tLet Λ(z) = - r, ad — be = 1. Then >1 = I is called the matrix
cz + d \_c d_\

representation of A. Since the matrix representations of A are ±A, A is
determined up to the sign. If tτ(A) is positive (resp. negative), then A is
called the positive (resp. negative) matrix representation.
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REMARK 2.2. Similarly, we define the positive and negative matrix repre-
sentations in the case of tr (̂ Γ) = 0, namely, A is elliptic of order 2 (see Lemma
4.2 and [12]).

REMARK 2.3. Two Mobius transformations A and B uniquely determine
the matrix [5, A], which is independent of the choice of A and B.

The following relations of commutator traces among X, 7, Z = (ΫX)'1 e
SL(2,C) are useful: for ε, ιye{±l},

tr (IX, f]) = tr ([!', ?<]) = tr ([?*,

Finally, we define the one-half power of A e M(X).

DEFINITION. Let A e M(X) be hyperbolic or parabolic. Then X e M(X)
satisfying X2 = A is called the one-half power of A and denoted by A1/2.

A1/2 is determined by A as follows:

PROPOSITION 2.4. Let A e M (X) be hyperbolic or parabolic. If A is the
negative (resp. positive) matrix representation of A, then the matrix representa-
tions of A1/2 are

±l
=04 - /) (resp. A * * ^ + '))

Thus
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3. Basic tools

In this section, we state some properties of hyperbolic transformations

and a parametrization of Γ(l, 0, 1).

First we consider the relationships between the positions of the axes of

hyperbolic transformations and the traces of their matrix representations.

THEOREM 3.1 ([12]). Let X, Y and Z be hyperbolic elements of M(X)

satisfying ZYX = identity. Then about the positions of the axes of X, Y and

Z, one of the following cases occurs:

(a) three axes are disjoint,

(b) three axes are parallel (namely, they have one common endpoint on

the circle at infinity) or coincident,

(c) three axes do not intersect at one point and any two axes intersect

each other.

Thus, if some two axes are disjoint, parallel, coincident or intersecting, then

three axes are also in the same situation. Furthermore, the orientations of the

axes are determined as in Figure 3.1, where the pair (U, V, W) is any permutation

of X, Y and Z. These cases are characterized by tτ(X), tr(Y) and tτ(ΫX)

as follows:

> 2,
= 2,
< 2.

(a2) o tr (X) tr (Ϋ) tr (ΫX) > 0, tr ([?,
(b) o tr (X) tr (f ) tr (ΫX) > 0, tr ([Y,
(c) ^> tr (X) tr (f ) tr (ΫX) > 0, tr ([f,

REMARK 3.2.

tr ([?, X]) = tτ2(X) + tr2(f) + tτ2(ΫX ) - tr (X) tr (Ϋ) tr (ΫX) - 2

FIGURE 3.1
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and tτ(X) tr(7) tτ(ΫX) are invariant under the choice of matrix representa-

tions. In the case of (aj, we have tr([f, X])> 18.

REMARK 3.3. In the case of (c), the axes of X, Y and Z determine a

triangle. This triangle does not shrink into one point, even if X and Y are

deformated in such a way that tr([Y, X])<k for some constant k < 2, or

in particular, [_Y,X] is hyperbolic (namely, tr([f, X])< -2).

REMARK 3.4. Similarly, for any non-trivial elements X, Y, Z = (YX)~* e

M(X\ the positions of their fixed points and the directions of their actions

are characterized by tr(ί), tr(f) and tτ(ΫX) (see [12]).

THEOREM 3.5 ([12]). Let A, BeM(X) be hyperbolic elements with the

intersecting axes and p the intersection point of these axes. Let R e M(X) be

the elliptic element of order 2 with the fixed point p.

(i) The axes of AεBη, BεAη, ε, η e {±1} determine the quadrilateral with

four sides tl(BA)/2, U(B~lA)/2, tl(BA)/2 and tl (B'lA)/2 and four vertices

A~V2(p), Bll2(p\ Al'2(p) and B^l2(p).

Further, suppose that C = [B, A] is hyperbolic and p(A\ q(B\ q(A) and

p(B) are arranged clockwise in order on the circle at infinity. Then the following

claims hold:

(ii) (A9B^A-lB9C~l)9 (BA, B~1A~\ CΓ1) and (A~1BA, B~\ C'1) are ca-

nonical systems of generators of type (0, 0, 3).

(iii) A, B, C and R satisfy the following relations:

A = RA^R = [K, A1/2] , B = RB^R = [

C1/2 = RBA ,

R = - _ — (BA - AB) .
det (BA - AB)1/2

(iv) C~1/2A, C'^B'1 and C~1/2BA are elliptic elements of order 2 and

satisfy

fp (C~1/2A) = (ABAΓ1/2(p) = (BAΓ1/2A-1/2(p) = (BAΓ1Bί/2(p) ,

ax (ABA) = L(fp (C~1/2A\ p) .

(v) Let Alβ (resp. A,i/2) be the elliptic element of order 2 with the

fixed point Aί/2(p) (resp. A~ll2(p)\ namely, Ai/2 = AII2RA~112 (resp. A.1/2 =

A~l'2RA112). Similarly, let Bί/2 and £_1/2 be defined. Then

A = RA.1/2 = A1/2R , B = RB.1/2 = B1/2R ,

BA = B1/2A.1/2 , AB = Aί/2B.l/2 ,

C = ^-1/2^1/2^1/2^-1/2
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BA~

A~1B

FIGURE 3.2

In particular, C is determined by four elliptic transformations of order 2 whose

fixed points are four vertices of this quadrilateral (see Figure 3.2).

Now we state a parametrization of Γ(l, 0, 1).

THEOREM 3.6 (Keen [4]). Let Γ(1>0j l) = (Al9 Bl9 Q'1), C^^lβ^A^ be
a canonical system of generators of type (1,0, 1). Then ^(ι,0,i) is determined
global real analytically by xi := Itr^JI, yί := Itr^)! and zt := Itr^^JI, up
to conjugation by a Mόbius transformation. Thus T(l, 0, 1) is parametrized
global real analytically by these three length parameters. This parameter space
is described as follows:

2, 2,

y\ z\ -

This parameter space is determined by the following fact: Aί9 B1 and
! are hyperbolic and tr([51,A1])< -2. We notice that

tr (AJ tr (B,) tr (B.A,) = > 0 ,

(see Theorem 3.1(c)).
Let (di9bί9(aίb1a^1b^ΐ)~ΐ) be a canonical homotopy basis of the funda-

mental group of S corresponding to ^(ι>0,i) A. closed curve on S and the
closed geodesic freely homotopic to it are labeled the same symbol (see Figure
3.3). Then al9 b1 and α^ are the projections of ax^), ax(βx) and
a\(B1A1)9 respectively. Thus three length parameters correspond to lengths
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Φl)

FIGURE 3.3

of aί9 b1 and a1bί. Let qί be the intersection point of av and b±. Let r(a^

be the unique point on a1 satisfying d(qί9r(a1)) = U(A1)/29 that is, two seg-

ments obtained from a{ — {qί9 r(at)} have the same length U ( A l ) / 2 . Simi-

larly, let r^) be defined. From Theorem 3.5(i), the positions of al9 bl and

a^bi are obtained as follows:

THEOREM 3.7. a^b^ intersects al and bί at r(a^) and r(b^\ respectively.

Thus the geodesic through r(ax) and r(b±) is the closed geodesic a1b1. Two

segments obtained from albl — {r(a^\ rφ^)} have the same length U(BlAl)/2.

4. A parametrization of Γ(2, 0, 0)

In this section, we consider global real analytic length parameters for

Γ(2, 0, 0) and prove Theorem 1.1.

First we show the following lemma.

LEMMA 4.1. A system of generators (Al9 Bί9 A2, B2) is canonical and of

type (2, 0, 0) if and only if Σj = (AJ9 Bp C/1), Cj = [BJ9 A^ (j = 1, 2) is a canoni-

cal system of generators of type (1, 0, 1) and Cί = C^"1.

In fact, the "only if" part is clear. The "if" part is obtained from

the combination theorem about the amalgamated product of two Fuchsian

groups generated by Z\ and Σ2 with the amalgamated subgroup generated

by Q = Cί1.
Let ̂ (2,0,0) = (^i) BI> be a canonical system of generators of type

(2,0,0) acting on D normalized in such a way that q(A1)= -1, p(Al)= 1
and the intersection point of ax^) and ax^), say pl9 is 0. Since Σί =

(Al9Bl9Cϊί) is a canonical system of generators of type (1,0,1), Theorem

3.6 implies that xx := |tr (A{)\9 yι'.= \tτ(Bl)\ and zx := |tr (BίAί)\ determine

A1 and Bl global real analytically.
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Next we construct B<*A<>.

LEMMA 4.2. B2A2 is determined global real analytically by Aί9 B1 and

the absolute values of traces u:= |tr(B2^42^ι)l an^ v:~ I^C^^^Γ1)!-

PROOF. Let p2 be the intersection point of ax(A2) and ax(B2) and
R2 e M(D) the elliptic element of order 2 with the fixed point p2. Then by
Theorem 3.5(iii), we have R2B2A2 = C2

/2 = C^1/2. Thus if R2 is determined,
then B2A2 is determined. In order to simplify the calculation, we normalize

in such a way that ^(2>0,o) acts on H> ax (£1^1) = L(co, 0) and fp (Cj~1/2Bf *) = i
(see Figure 4.1).

Then we have the positive matrix representation

~fc (f

ι°ί
z - /z2 - 4

where k = -—^ e (0,1). Since i = fp (Cf^BΓ1) e ax (AJ, ax (AJ in-

tersects the imaginary axis at i. Then we have q(Aί)p(A1) = —i. Thus we
obtain the negative matrix representation

: :]•
where ad = 1 + c2, a + d = — x l β Since ^(oo) = α/c < 0 and .4^0) = c/d < 0,
we obtain a < 0, d < 0 and c> 0. Thus the matrix representation

kd -kc

c a

~k k

B (P,) = fcί

A2 B2

FIGURE 4.1
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is negative. Since a/k + kd = — yί9 we have

a =

c =

-fc

The matrix representation

-kγ-kcd
k

- k2c2 2

is negative, since tr (Q *) = 2 — (1/fe — k)2c2 < 2 and Ct

 1 is hyperbolic. Thus
by Proposition 2.4, we have the negative matrix representation

Put •ί* ΊL9 -βj

c α

~ϊc fc

-fcd fee

where gf = —(e2 + 1) and 0 > 0 (this is called the nega-

tive matrix representation (see [12])). Since Re (fp (R2)) < 0, we have e < 0.
Then

ce ae

-^- + kde -f-fcce
k k

Hence we have

Since u = \
we have

1 ) and Ό =
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V

k u — kv

e =
-1

i~^
k

! - (u2 + v2 2 4 .

Therefore R2 is determined global real analytically.
Q.E.D.

REMARK 4.3. The intersection point p2 is also determined global real
analytically.

LEMMA 4.4.

-2—zι ~~
~ (xι + y? + *ι) + - (u2 + t;2 + z2) + 4

Since α and / are negative, we obtain the following proposition.

PROPOSITION 4.5.

h t r ! 1

,k =

REMARK 4.6. In order to calculate \tτ(B2A2)\9 we determined C^1/2. We
can prove Lemma 4.2 without determining it.

In fact, under the same normalization as in Lemma 4.2, we consider the

matrix representations of C^1/2Al and Cf^Γ1- since fP (Cf^Mjeax (Bi^i),
we put fpίCf^AJ = i/l for some /e(0, 1). Then we have the matrix repre-
sentations

0 7
-/ o

and :-[_; J]

Thus we have / = k, since |tr (B^JI = |tr (
Hence we obtain R2 as in the later half of the above proof.

= I// + /.
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LEMMA 4.7. A2 and B2 are determined by Al9 Bl9 B2A2 and the absolute
values of traces x2 := \tτ(A2)\ and y2 := |tr (B2)\ global real analytically.

PROOF. Let Σ2 = (A29B2,C2

1) be a canonical system of generators of
type (1, 0, 1) acting on D such that q(A2) = — 1, p(A2) = 1 and the intersection
point of ax (A2) and ax (B2) is 0. Further, let Σ2 satisfy

|tr (A
2
)\ = |tr (A

2
)\, |tr (B

2
)\ = |tr (B

2
)\ and |tr (B

2
A

2
)\ = |tr (B

2
A
2
)\.

Then Theorem 3.6 implies that Σ2 is determined by these three traces and
conjugate to Σ2. Thus we have

TΣ2 T'1 = Σ2 for some T e M(D).

Since tf(C2) = p(CΊ) and p(C2) = q(Cl\ T satisfies

T(q(C2)) = p(C±), T(p(C2)) = ^(CJ and T(0) = p2 .

Thus T is determined global real analytically and so are A2 and B2.
Q.E.D.

From Theorem 3.6 and Lemmas 4.1, 4.2, 4.4 and 4.7, we obtain the
following lemma.

LEMMA 4.8. A parameter space of T(2, 0, 0) is described as follows:

Xj > 2, yj > 2 (j = 1, 2), zl > 2, u > 2, υ > 2 ,

*ι + yl + zί - ^i^i^i = *i + )>i + |tr (B2A2)\2 - x2y2 |tr (B2A2)\ < 0 ,

1 ,

2(x,u + y,v) - Zl(yιu + XIΌ)} > 2 .

Finally, we consider the segments in X and closed geodesies on a Riemann
surface corresponding to these seven length parameters. By Theorem 3.5(i),
we have

ax =

ax B = = d(Pp B}

ax

Since R2, C^1/2^ι and Cj^BΓ1 are elliptic elements of order 2 and
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B2A2A, = R2

we have

ax (BίA2A1) = L(fp (C^A,), p2)

177

= d(ίp (c^A,), p2)

ax ^) = L(fp (C^B?\ p2) , = d(ίp (C^Bf1), p2) .

Thus these seven length parameters are obtained from the lengths of the thick
segments drawn in Figure 4.2.

Let 5 be the Riemann surface represented by ^(2,o,o) Let (al9 bl9 α2, b2)
be a canonical homotopy basis of the fundamental group of S corresponding

to ^(2,o,o) Let <?/» r(aj) and r(bj) (j = 1, 2) be the points defined as in Section
3, which are the fixed points of the hyperelliptίc involution of S, namely, the
Weierstrass points of 5. Then aj9 bj and afy (j = 1, 2) are the simple closed
geodesies positioned as in Figure 4.3 (i).

Since fp(C^l2A1) = (B1A1)'lBii2(pl) and fpίCjf^BΓ1) = ̂ 1/2(pι) are

projected onto r f a ) and r(aj respectively, we obtain the following theorem.

THEOREM 4.9. The geodesic through r^) (resp. KαJ) and q2 is the

simple closed geodesic aίa2b2 (resp. b^a2b2) such that two segments obtained

FIGURE 4.2



178 Yoshihide OKUMURA

Φl)

a2b

(i)

FIGURE 4.3

from aia2b2 — {K
tl (B2A2A,) f tl

' resp.

> ^2} (resp. bi

 Ia2b2 — {Kαι)> #2})

Γ. . 1Γ.UFigure 4.3 (11)).

length

Hence Lemma 4.8 and Theorem 4.9 complete the proof of Theorem 1.1.
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