On a function space related to the Hardy-Littlewood inequality for Riemannian symmetric spaces

Dedicated to Professor Kiyosato Okamoto on his 60th birthday

Keisaku KUMAHARA

(Received September 5, 1994)

ABSTRACT. On Riemannian symmetric spaces G/K we define an L^q type Schwartz space $\mathscr{J}^q(G)$ which corresponds to the Schwartz space with weight $|x|^{n(q-2)}$ on \mathbb{R}^n . We study some properties of $\mathscr{J}^q(G)$ and we prove if $2 \le q < 4$ and p and q are conjugate, then $J^q(G)$ equals to the L^p -type Schwartz space $\mathscr{I}^p(G)$ defined by Harish-Chandra.

1. Introduction

For a real number q ($2 \le q < \infty$) and a Borel function f on \mathbb{R}^n we put

$$\|f\|_{(q)} = \left(\int_{\mathbb{R}^n} |f(x)|^q |x|^{n(q-2)} dx\right)^{1/q}$$

and denote by $J^q(\mathbb{R}^n)$ the Banach space of all Borel functions f on \mathbb{R}^n satisfying $||f||_{(q)} < \infty$. The Hardy-Littlewood theorem ([3]) says that if $f \in J^q(\mathbb{R}^n)$, then the Fourier transform \tilde{f} of f is well-defined and there exists a constant $C_q > 0$ such that

$$\|f\|_{q} \le C_{q} \|f\|_{(q)} .$$

On the other hand, if $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$, then the Fourier transform \tilde{f} of $f \in L^p(\mathbb{R}^n)$ is well-defined and there exists a constant $B_p > 0$ such that

$$\|f\|_{q} \leq B_{p}\|f\|_{p}$$
.

This is the Hausdorff-Young theorem. These two theorems suggest the resemblance between $L^{p}(\mathbb{R}^{n})$ and $J^{q}(\mathbb{R}^{n})$. In fact, if we put $f_{\alpha}(x) = (1 + |x|^{2})^{\alpha}$ and $g_{\beta}(x) = |x|^{\beta}(|x| \le 1), = 0(|x| > 1)$, then

¹⁹⁹¹ Mathematics Subject Classification. 43A15, 43A30, 22E30

Key words and phrases. spherical Fourier transform, Hardy-Littlewood theorem, Schwartz space, Riemmanian symmetric space.

$$f_{\alpha} \in L^{p}(\mathbf{R}^{n}) \Leftrightarrow \alpha < -\frac{n}{2p} \Leftrightarrow f_{\alpha} \in J^{q}(\mathbf{R}^{n})$$

and

$$g_{\beta} \in L^{p}(\mathbf{R}^{n}) \Leftrightarrow \beta > -\frac{n}{p} \Leftrightarrow g_{\beta} \in J^{q}(\mathbf{R}^{n}).$$

We have proved a Hardy-Littlewood theorem and a Hausdorff-Young theorem (Eguchi-Kumahara [1], [2]) for the spherical Fourier transform on Riemannian symmetric spaces G/K of noncompact type. The Euclidean space \mathbb{R}^n is the symmetric space of the Euclidean motion group by the rotation group and is of rank one. The factor $|x|^n$ is the product of (distance from the origin)^{rank} and the Jacobian with respect to the polar decomposition. For a noncompact type symmetric space X = G/K we denote by $\sigma(x)$ the distance from the origin to x, by l the rank of X and by $\Omega(x)$ the Jacobian with respect to the polar decomposition. Then there exists a constant $C_q > 0$ such that

$$\|\widetilde{f}\|_q \leq C_q \left(\int_X |f(x)|^q \sigma(x)^{l(q-2)} \Omega(x)^{q-2} d\mu(x)\right)^{1/q},$$

for any K-biinvariant measurable function f on G whose value of the integration on the right hand side is finite (Hardy-Littlewood theorem). There exists a constant $B_p > 0$ such that

$$\|f\|_{a} \leq B_{p}\|f\|_{p}$$

for any K-biinvariant L^p function f on G (Hausdorff-Young theorem). We define $J^q(G)$ as the Banach space of all K-biinvariant measurable functions f on G satisfying $||f||_{(q)} < \infty$, where $||f||_{(q)}$ is defined by the right hand side of the Hardy-Littlewood inequality (see § 3). Let $I^p(G) = L^p(K \setminus G/K)$ be the Banach space of K-biinvariant L^p -functions on G. If $\frac{1}{p} + \frac{1}{q} = 1$, then it can be proved that the spherical Fourier transforms of functions in $I^p(G)$ and $J^q(G)$ can be extended holomorphically to a certain tube domain ([1, Theorem 2]), [2, Theorem 2]).

The purpose of the present paper is to point out more similarities between $I^{p}(G)$ and $J^{q}(G)$. There is a dense subset of $I^{p}(G)$ which plays an important role in harmonic analysis. That is the Schwartz space $\mathscr{I}^{p}(G)$ of L^{p} type (Trombi-Varadarajan [7]). We define the Schwartz space $\mathscr{I}^{q}(G)$ of J^{q} type and investigate some properties of $\mathscr{I}^{q}(G)$. This is a Fréchet space and dense in $J^{q}(G)$. Furthermore, $\mathscr{I}^{q}(G)$ is contained in $\mathscr{I}^{q}(G)$. If $2 \leq q < 4$, then we

can prove that $\mathscr{J}^q(G) = \mathscr{I}^p(G)$. Moreover, we prove that $\mathscr{J}^q(G) = \mathscr{I}^p(G)$ for all $q \ge 2$ if the rank of G/K is one.

2. Notation and preliminaries

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We denote by g and f the Lie algebras of G and K, respectively. Let g = f + p be a fixed Cartan decomposition of g with Cartan involution θ , a a maximal abelian subspace of p, and Σ the corresponding set of restricted roots. Let M' and M be the normalizer and the centralizer of a in K, respectively, and denote by W = M'/M, which is called the Weyl group of G/K, and let |W| be its order. Fix a Weyl chamber a^+ and put $A^+ = \exp a^+$. Let Σ^+ be the corresponding set of positive restricted roots and $|\Sigma^+|$ be its order. For $\alpha \in \Sigma^+$, g_α denotes the root subspace and $m_\alpha = \dim g_\alpha$ the multiplicity of α . Let $n = \sum_{\Sigma^+} g_\alpha$ and $\rho = \frac{1}{2} \sum_{\Sigma^+} m_\alpha \alpha$. Then g = f + a + n is an Iwasawa decomposition of g. We denote by G = KAN the corresponding decomposition of G. For $x \in G$, $H(x) \in \alpha$ denotes the element uniquely determined by $x \in K \exp(H(x))N$. For $a \in A$, we write log a for H(a).

Let \mathfrak{a}^* be the dual space of \mathfrak{a} and $\mathfrak{a}_{\mathcal{C}}^*$ its complexification. We denote by \langle , \rangle the Killing form of \mathfrak{g} . For $\lambda \in \mathfrak{a}^*$, let $H_{\lambda} \in \mathfrak{a}$ be the unique element determined by $\lambda(H) = \langle H_{\lambda}, H \rangle$ for all $H \in \mathfrak{a}$. For $\lambda, \mu \in \mathfrak{a}^*$, we put $\langle \lambda, \mu \rangle =$ $\langle H_{\lambda}, H_{\mu} \rangle$ and $|\lambda| = \langle \lambda, \lambda \rangle^{1/2}$. Let $\overline{\mathfrak{n}} = \theta(\mathfrak{n})$ and \overline{N} denote the corresponding analytic subgroup of G. For $\varepsilon > 0$ we put $C_{\varepsilon\rho} = [w(\varepsilon\rho); w \in W]$, the convex hull of the set $\{w(\varepsilon\rho); w \in W\}$. For $0 we define the tube domain <math>T_p$ by $T_p = \mathfrak{a}^* + \sqrt{-1C_{(2/p-1)\rho}}$.

We denote by $C_c^{\infty}(G)$ the space of all compactly supported C^{∞} -functions on G and by $C_c^{\infty}(G/K)$ and $C_c^{\infty}(K \setminus G/K)$ the subspaces of $C_c^{\infty}(G)$ of right K-invariant and K-biinvariant functions, respectively. The Killing form induces euclidean measures on A and \mathfrak{a}^* . We normalize them by multiplying with the factor $(2\pi)^{-l/2}$ and denote them by da and $d\lambda$, respectively, where $l = \dim \mathfrak{a}$, the rank of G/K. Let dk be the normalized Haar measure on K so that the total measure is one. The Haar measures on N and \overline{N} are normalized so that

$$\theta(dn) = d\bar{n}$$
, $\int_{\bar{N}} e^{-2\rho(H(\bar{n}))} d\bar{n} = 1$.

Moreover, we normalize the Haar measure dx on G so that

$$\int_{G} f(x)dx = \int_{KAN} f(kan)e^{2\rho(\log a)}dkdadn , \qquad f \in C^{\infty}_{c}(G) .$$

We denote by vol (K/M) the volume of K/M with respect to the K-invariant measure $d\mu(b)$ induced from the restriction of $-\langle , \rangle$ to \mathfrak{k} . Let dk_M be the K invariant measure on K/M defined by $dk_M = \operatorname{vol}(K/M)^{-1}d\mu(k_M)$.

The following integral formula corresponds to the Cartan decomposition G = KAK (Helgason [6]).

$$\int_{G} f(x)dx = \frac{(2\pi)^{l/2} \operatorname{vol}(K/M)}{|W|} \int_{\mathfrak{a}} \prod_{\alpha \in \Sigma^{+}} |\sinh \alpha(H)|^{m(\alpha)} dH$$
$$\times \iint_{K \times K} f(k_{1} \exp(H)k_{2}) dk_{1} dk_{2} , \qquad f \in C_{c}^{\infty}(G)$$

We put

$$\Omega(\exp H) = \frac{(2\pi)^{l/2} \operatorname{vol} (K/M)}{|W|} \prod_{\alpha \in \Sigma^+} |\sinh \alpha(H)|^{m(\alpha)}, \qquad H \in \mathfrak{a}.$$

By the W-invariance of $\Omega(a)(a \in A)$ we can extend it to G by $\Omega(x) = \Omega(a)$ for $x = k_1 a k_2$, k_1 , $k_2 \in K$, $a \in A$.

Finally, we put $\sigma(x) = \sqrt{\langle X, X \rangle}$ for $x = k \exp X$, $k \in K$, $X \in \mathfrak{p}$.

3. Schwartz space of L^p type

Let $I^{p}(G)$ be the Banach space of all K-biinvariant measurable functions f on G such that

$$\|f\|_p = \left(\int_G |f(x)|^p dx\right)^{1/p} < \infty .$$

Of course, we identify two functions which differ only on a set of measure zero. Let

$$\varphi_{\lambda}(x) = \int_{K} e^{(\sqrt{-1}\lambda - \rho)(H(xk))} dk , \qquad x \in G ,$$

be the elementary spherical function. Then φ_{λ} is bounded if and only if $\lambda \in T_1$. We put $\Xi = \varphi_0$. The Harish-Chandra *c*-function is defined by

$$c(\lambda) = \int_{\overline{N}} e^{(-\sqrt{-1}\lambda + \rho)(H(\overline{n}))} d\overline{n} .$$

We define the spherical Fourier transform \tilde{f} of $f \in I^1(G)$ by

$$\tilde{f}(\lambda) = \int_G f(x) \varphi_{-\lambda}(x) dx$$
, $\lambda \in \mathfrak{a}^*$.

Let $L^2\left(\mathfrak{a}^*, \frac{1}{|W||c(\lambda)|^2}d\lambda\right)^W$ be the Hilbert space of *W*-invariant square integrable functions on \mathfrak{a}^* with respect to the measure $\frac{1}{|W||c(\lambda)|^2}d\lambda$. Then the Plancherel theorem can be stated as follows (see e.g. Warner [8], p. 338).

LEMMA 1. For $f \in I^1(G) \cap I^2(G)$, we have

$$\|f\|_2 = \left(\frac{1}{|W|}\int_{\mathfrak{a}^*} |\tilde{f}(\lambda)|^2 \frac{1}{|c(\lambda)|^2} d\lambda\right)^{1/2} \,.$$

Moreover, the map $f \mapsto \tilde{f}$ can be extended to an isometry of $I^2(G)$ onto $L^2\left(\mathfrak{a}^*, \frac{1}{|W||c(\lambda)|^2} d\lambda\right)^W$.

The following is the Hausdorff-Young theorem (cf. Eguchi-Kumahara [1]).

LEMMA 2. Let $1 \le p < 2$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then the spherical Fourier transform can be defined for functions in $I^p(G)$ and, for each $f \in I^p(G)$, the spherical Fourier transform \tilde{f} can be extended to a holomorphic function on Int T_p and, for any $\eta \in \operatorname{Int} C_{(2/p-1)p}$, there exists a constant $B_{p,\eta} > 0$ such that

$$\left(\frac{1}{|W|}\int_{a^*}|\tilde{f}(\xi+\sqrt{-1}\eta)|^q|c(\xi)|^{-2}d\xi\right)^{1/q}\leq B_{p,\eta}\|f\|_p\,,\qquad f\in I^p(G)\,.$$

Let $U(g_{\mathcal{C}})$ be the universal enveloping algebra of the complexification $g_{\mathcal{C}}$ of g. Let p > 0. We denote by $\mathscr{I}^{p}(G)$ the space of all $f \in C^{\infty}(K \setminus G/K)$ such that for any $u \in U(g_{\mathcal{C}})$ and any integer $m \ge 0$,

$$\mu_{u,m}^{p}(f) = \sup_{x \in G} (1 + \sigma(x))^{m} |(uf)(x)| \Xi(x)^{-2/p} < \infty .$$

Then $\mathscr{I}^{p}(G)$ is a Frécht space by the system of seminorms $\{\mu_{u,m}^{p}\}$ and is dense in $I^{p}(G)$ (see Trombi-Varadarajan [7]).

Let $S(\mathfrak{a}_{C}^{*})$ be the symmetric algebra over \mathfrak{a}_{C}^{*} and for $s \in S(\mathfrak{a}_{C}^{*})$ denote by $\partial(s)$ the corresponding differential operator on \mathfrak{a}_{C}^{*} . Let $0 . We define the space <math>\overline{\mathscr{T}}(T_{p})$ to be the set of all *W*-invariant holomorphic functions *F* on Int T_{p} such that for any $s \in S(\mathfrak{a}_{C}^{*})$ and any integer $m \geq 0$,

$$\zeta_{s,m}^p(F) = \sup_{\lambda \in \operatorname{Int} T_p} (1+|\lambda|^2)^m |(\partial(s)F)(\lambda)| < \infty .$$

Then the following important theorem due to Trombi-Varadarajan holds true.

LEMMA 3 (TROMBI-VARADARAJAN [7]). Let $0 . Then, for <math>f \in \mathcal{I}^p(G)$, the integral $\tilde{f}(\lambda) = \int_G f(x) \varphi_{-\lambda}(x) dx$ converges absolutely for all $\lambda \in T_p$.

The function \tilde{f} lies in $\overline{\mathscr{Z}}(T_p)$ and the spherical Fourier transform $f \mapsto \tilde{f}$ is a linear topological isomorphism of $\mathscr{I}^p(G)$ onto $\overline{\mathscr{Z}}(T_p)$.

4. Schwartz Space of J^{q} type

For $q \ge 2$ we define the Banach space $J^{q}(G)$ of all K-biinvariant measurable functions f on G such that

$$\|f\|_{(q)} = \left(\int_{G} |f(x)|^{q} \sigma(x)^{l(q-2)} \Omega^{q-2} dx\right)^{1/q} < \infty .$$

Then the following Hardy-Littlewood theorem holds (Eguchi-Kumahara [2]).

LEMMA 4. Let $2 \le q < \infty$. Then the spherical Fourier transform can be defined for $f \in J^q(G)$ and there exists a constant $C_q > 0$, independent of f, such that

$$\left(\frac{1}{|W|}\int_{\mathfrak{a}^*}|\tilde{f}(\lambda)|^q|c(\lambda)|^{-2}d\lambda\right)^{1/q}\leq C_q\|f\|_{(q)}.$$

We denote by $\mathscr{J}^q(G)$ the set of all $f \in C^{\infty}(K \setminus G/K)$ such that for any $u \in U(\mathfrak{a}^*_{\mathbb{C}})$ and any integer $m \ge 0$,

$$v_{u,m}^{q}(f) = \sup_{x \in G} (1 + \sigma(x))^{m} |(uf)(x)| \sigma(x)^{l(1-2/q)} \Omega(x)^{1-2/q} (x) \Xi(x)^{-2/q} < \infty$$

Then $\mathscr{J}^{q}(G)$ is a Fréchet space by the system of the seminorms $\{v_{u,m}^{q}\}$.

5. Some inclusion properties

The following estimate in (1) is an immediate consequence of the definition of $\Omega(x)$. The statement (2) is due to Harish-Chandra (see [4] Theorem 3).

LEMMA 5. (1) We put $c_1 = 2^{-|\Sigma^+|}(2\pi)^{l/2} \operatorname{vol} (K/M) |W|^{-1}$. Then $\Omega(a) \le c_1 e^{2\rho(\log a)} \quad a \in A^+$, $\Omega(a) \sim c_1 e^{2\rho(\log a)} \quad a \in A^+ \quad and \quad a \to \infty$.

(2) There exist constants $c_2 > and d > 0$ such that

$$1 \le e^{\rho(\log a)} \mathcal{Z}(a) \le c_2 (1 + |\log a|)^d \qquad a \in A^+ \ .$$

THEOREM 1. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then we have $\mathscr{I}^p(G) \subset \mathscr{J}^q(G) \subset I^p(G) \cap J^q(G)$

and each inclusion map is continuous.

PROOF: Let $f \in \mathscr{I}^{p}(G)$, $u \in U(\mathfrak{g}_{C})$ and $m \geq 0$ integer. For any $x \in G$ there exist k_{1} , $k_{2} \in K$ and $a \in \operatorname{Cl}(A^{+})$ such that $x = k_{1}ak_{2}$. If $a \in \operatorname{Cl}(A^{+}) \setminus A^{+}$, then $\Omega(a) = 0$. So we assume that $a \in A^{+}$. Then, by Lemma 5, we have

$$\begin{aligned} (1+\sigma(x))^{m}|(uf)(x)|\sigma(x)^{l(1-2/q)}\Omega(x)^{1-2/q}\Xi(x)^{-2/q} \\ &= (1+\sigma(a))^{m}|(uf)(x)|\sigma(a)^{l(1-2/q)}\Omega(a)^{1-2/q}\Xi(a)^{-2/q} \\ &\leq c_{1}^{1-2/q}(1+\sigma(a))^{m+l(1-2/q)}e^{2(1-2/q)\rho(\log a)}e^{(2/q)\rho(\log a)}|(uf)(x)| \\ &\leq c_{1}^{1-2/q}c_{2}^{2/p}(1+\sigma(a))^{m+l(1-2/q)+2d/p}|(uf)(x)|\Xi(a)^{-2/p} \\ &= c_{1}^{1-2/q}c_{2}^{2/p}(1+\sigma(x))^{m+l(1-2/q)+2d/p}|(uf)(x)|\Xi(x)^{-2/p} \\ &\leq c_{1}^{1-2/q}c_{2}^{2/p}\mu_{u,m+[l(1-2/q)+2d/p]+1}(f) < \infty . \end{aligned}$$

Hence $f \in \mathscr{J}^q(G)$ and $v_{u,m}^q(f) \le c_1^{1-2/q} c_2^{2/p} \mu_{u,m+\lceil l(1-2/q)+2d/p\rceil+1}^p(f)$. Now let $f \in \mathscr{J}^q(G)$ and m be an integer satisfying $m > \frac{1}{p} \left(l(p-1) + \frac{2pd}{q} \right)$.

Then

$$|f(x)| \le c_3(1 + \sigma(x))^{-m} \sigma(x)^{l(-1+2/q)} \Omega(x)^{-1+2/q} \Xi(x)^{2/q},$$

where $c_3 = v_{1,m}^q(f)$.

$$\begin{split} \int_{G} |f(x)|^{p} dx &= |W| \int_{A^{+}} |f(a)|^{p} \Omega(a) da \\ &\leq c_{3} |W| \int_{A^{+}} (1 + \sigma(a))^{-mp} \sigma(a)^{l(p-2)} \Omega(a)^{p-1} \Xi(a)^{2p/q} da \\ &\leq c_{1}^{p-1} c_{2}^{2p/q} c_{3} |W| \int_{A^{+}} (1 + \sigma(a))^{-mp} \sigma(a)^{l(p-2)} (1 + \sigma(a))^{2pd/q} da \\ &\leq c_{1}^{p-1} c_{2}^{2p/q} c_{3} \int_{A} (1 + \sigma(a))^{-mp+2pd/q} \sigma(a)^{l(p-2)} da \\ &= c_{4} \int_{0}^{\infty} (1 + t)^{-mp+2pd/q} t^{l(p-2)+l-1} dt < \infty , \end{split}$$

where

$$c_4 = c_1^{p-1} c_2^{2p/q} v_{1,m}^q(f) 2\pi^{l/2} \Gamma(l/2)^{-1} .$$

Thus we have proved that there exists a constant $c_5 > 0$ such that $||f||_p \le c_5 v_{1,m}^q(f) < \infty$.

Next we prove that $\mathscr{J}^q(G) \subset J^q(G)$ and the inclusion map is continuous. Let $f \in \mathscr{J}^q(G)$ and $m > \frac{d+l}{q}$. Then,

$$\begin{split} \|f\|_{(q)}^{q} &= \int_{G} |f(x)|^{q} \sigma(x)^{l(q-2)} \Omega(x)^{q-2} dx \\ &= |W| \int_{A^{+}} |f(a)|^{q} \sigma(a)^{l(q-2)} \Omega(a)^{q-1} da \\ &\leq |W| \{ v_{1,m}^{q}(f) \}^{q} \int_{A^{+}} (1 + \sigma(a))^{-mq} \Xi(a)^{2} \Omega(a) da \\ &\leq c_{1} c_{2}^{2} \{ v_{1,m}^{q}(f) \}^{q} \int_{A} (1 + \sigma(a))^{-mq+2d} da \\ &= c_{6} \int_{0}^{\infty} (1 + t)^{-mq+d+l-1} dt < \infty , \end{split}$$

where

$$c_6 = c_1 c_2^2 \{ v_{1,m}^q(f) \}^q 2\pi^{l/2} \Gamma(l/2)^{-1}$$

This completes the proof.

LEMMA 6. The space $C_c^{\infty}(K \setminus G/K)$ is dense in $\mathscr{J}^q(G)$.

PROOF: For any t > 0, let G_t denote the set of those $x \in G$ satisfying $\sigma(x) < t$ and let χ_t denote the characteristic function of G_t . Fix a > 0 and a K-biinvariant function $\alpha \in C_c^{\infty}(G_a)$ such that $\int_G \alpha(x) dx = 1$. We put $g_t = (1 - \chi_t) * \alpha = 1 - \chi_t * \alpha$, where the star denotes the convolution on G. Then, by Harish-Chandra [5] Lemma 20, $g_t \in C_c^{\infty}(K \setminus G/K)$ and

$$g_t(x) = \begin{cases} 0 & \text{if } \sigma(x) \le t - a \\ 1 & \text{if } \sigma(x) \ge t + a \end{cases}$$

$$|(ug_t)(x)| \leq \int_G |(u\alpha)(y)| dy \qquad (x \in G)$$

for $u \in U(\mathfrak{g}_{\mathbf{C}})$.

For any $f \in \mathcal{J}^q(G)$ we put

$$f_t = (1 - g_t)f = (\chi_t * \alpha)f.$$

Then it is obvious that $f_t \in C_c^{\infty}(G) \cap \mathscr{J}^q(G)$. Fix $u \in U(\mathfrak{g}_c)$. Then there exist finite elements u_i , $u'_i \in U(\mathfrak{g}_c)$ such that

$$u(f-f_t)=u(g_tf)=\sum_i u_i'g_t\cdot u_if.$$

110

and

If $\sigma(x) \ge t + a$, then

$$f(x) - f_t(x) = g_t(x)f(x) = f(x)$$

and if $\sigma(x) \ge t$, then, for any integer $m \ge 0$,

$$(1 + \sigma(x))^{m} |(uf)(x)| \sigma(x)^{l(1 - 2/q)} \Omega(x)^{1 - 2/q} (x) \Xi(x)^{-2/q} v_{a,m}^{q}(f)$$

$$\leq (1 + t)^{-1} v_{u,m+1}^{q}(f) .$$

Hence, if $\sigma(x) \ge t + a$, then

$$\begin{aligned} (1 + \sigma(x))^m |(uf)(x) - (uf_t)(x)| \,\sigma(x)^{l(1 - 2/q)} \Omega(x)^{1 - 2/q}(x) \Xi(x)^{-2/q} \\ &\leq (1 + t)^{-1} v_{u,m+1}^q(f) \,. \end{aligned}$$

Now suppose that $\sigma(x) < t + a$. Since $f(x) - f_t(x) = 0$ for $\sigma(x) \le t - a$, we assume that $t - a < \sigma(x) < t + a$. Let t > a. Then

$$\begin{aligned} (1+\sigma(x))^{m}|(uf)(x)-(uf_{t})(x)|\sigma(x)^{l(1-2/q)}\Omega(x)^{1-2/q}(x)\Xi(x)^{-2/q} \\ &\leq \sum_{i}c_{i}(1+\sigma(x))^{m}|(u_{i}f)(x)|\sigma(x)^{l(1-2/q)}\Omega(x)^{1-2/q}(x)\Xi(x)^{-2/q} \\ &\leq \sum_{i}c_{i}(1+t-a)^{-1}v_{u_{i},m+1}^{q}(f) \,, \end{aligned}$$

where

$$c_i = \int_G |(u_i'\alpha)(y)| dy \, .$$

This shows that $v_{u,m}^q(f-f_i) \to 0$ as $t \to \infty$ and f_i converges to f in $\mathscr{J}^q(G)$. Thus $C_c^{\infty}(K \setminus G/K)$ is dense in $\mathscr{J}^p(G)$.

THEOREM 2. Let
$$q > 2$$
 and $\frac{1}{p} + \frac{1}{q} = 1$. If $\frac{1}{p} - \frac{1}{q} < \frac{1}{r} \le \frac{1}{p}$, then
 $\mathscr{J}^{q}(G) \subset I^{r}(G)$,

and the inclusion map is continuous.

PROOF: Let $f \in \mathscr{J}^q(G)$ and assume that $m > \frac{2d}{q} + l\left(\frac{2}{q} - 1\right) + \frac{l}{r}$. Let c_1 and c_2 be the constants in Lemma 5. First we have

$$|f(x)| \le c_3 (1 + \sigma(x))^{-m} \sigma(x)^{-l(1-2/q)} \Omega(x)^{-1+2/q} \Xi(x)^{2/q}$$

for all $x \in G$, where $c_3 = v_{1,m}^q(f)$. Then

$$\begin{split} &\int_{G} |f(x)|^{r} dx \\ &\leq c_{3}^{r} \int_{G} (1 + \sigma(x))^{-rm} \sigma(x)^{-rl(1-2/q)} \Omega(x)^{-r(1-2/q)} \Xi(x)^{2r/q} dx \\ &= c_{3}^{r} |W| \int_{A^{+}} (1 + \sigma(a))^{-rm} \sigma(a)^{-rl(1-2/q)} \Omega(a)^{1-r(1-2/q)} \Xi(a)^{2r/q} da \\ &\leq c_{1}^{1-r(1-2/q)} c_{2}^{2r/q} c_{3}^{r} |W| \int_{A^{+}} (1 + \sigma(a))^{-rm+2rd/q} \sigma(a)^{rl(2/q-1)} e^{(2r/q-2r+2)\rho(\log a)} da \\ &\leq c_{1}^{1-r(1-2/q)} c_{2}^{2r/q} c_{3}^{r} |W| \int_{A^{+}} (1 + \sigma(a))^{-rm+2rd/q} \sigma(a)^{rl(2/q-1)} da \\ &\leq c_{4} \int_{0}^{\infty} (1 + t)^{-rm+2rd/q} t^{rl(2/q-1)+l-1} dt < \infty \;, \end{split}$$

where

$$c_4 = c_1^{1-r(1-2/q)} c_2^{2r/q} c_3^r 2\pi^{l/2} \Gamma(l/2)^{-1}$$

If we put

$$c_5 = \{c_1^{1-r(1-2/q)} c_2^{2r/q} 2\pi^{l/2} \Gamma(l/2)^{-1}\}$$

× the value of the integral in the last term $\}^{1/r}$,

we have $||f||_r \le c_5 v_{1,m}^q(f)$.

If we choose r = 2, then we obtain the following corollary.

CROROLLARY. If $2 \le q < 4$, then $\mathscr{J}^q(G) \subset I^2(G)$ and the inclusion map is continuous.

The condition $\frac{1}{p} - \frac{1}{q} < \frac{1}{r}$ in Theorem 2 is necessary for the regularity of the function $\Omega(a)^{r(2/q-1)+1}$ on the walls of the Weyl chamber A^+ except for the origin. Hence if the rank l = 1, Theorem 2 holds for $r \ge p$ and Corollary holds for $q \ge 2$. In fact, we have the following proposition.

PROPOSITION. We assume that the rank l of G/K is one. Let $q \ge 2$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then we have $\mathcal{J}^q(G) \subset I^r(G)$ for all $r \ge p$ and, especially, $\mathcal{J}^q(G) \subset I^2(G)$.

PROOF: Suppose that $\frac{1}{p} - \frac{1}{q} \ge \frac{1}{r}$. Let $G_t = \{x \in G; \sigma(x) < t\}$ be defined as in the proof of Lemma 6. We denote by m_t the supremum of the absolute value of $f \in \mathscr{J}^q(G)$ on G_t . The function $\Omega(a)$ takes the minimal value at $\sigma(a) = 1$ in $(G \setminus G_1) \cap A_+$. Hence

$$\begin{split} \|f\|_{r}^{r} &\leq m_{1}^{r} \operatorname{vol}(G_{1}) + \{v_{1,m}^{q}(f)\}^{r} \int_{G_{1}} (1 + \sigma(x))^{-mr} \Omega(x)^{r(2/q-1)} \Xi(x)^{2r/q} dx \\ &\leq m_{1}^{r} \operatorname{vol}(G_{1}) + c' \int_{(G \setminus G_{1}) \cap A_{+}} (1 + \sigma(a))^{-mr} \Omega(a)^{1 + r(2/q-1)} \Xi(a)^{2r/q} da \\ &\leq m_{1}^{r} \operatorname{vol}(G_{1}) + c'' \int_{1}^{\infty} (1 + t)^{-rm + rd} dt < \infty \end{split}$$

for m > d + 1/r.

6. Fourier transforms of $\mathcal{J}^{q}(G)$

LEMMA 7. We assume that $q \ge 2$. Let φ be a measurable function on G such that there exist a constant C > 0 and an integer $m \ge 0$ satisfying

$$(4.1) \qquad \qquad |\varphi(x)| \le C\Xi(x)^{2/q}(1+\sigma(x))^m \qquad (x\in G).$$

Then

$$L(f) = \int_{G} (uf)(x)\varphi(x)dx$$

converges absolutely for all $f \in \mathscr{J}^q(G)$ and $u \in U(\mathfrak{g}_C)$, and L is a continuous linear functional on $\mathscr{J}^q(G)$. If φ and $u^*\varphi$ satisfy an inequality of the same type as (4.1), then

$$\int_G uf \cdot \varphi dx = \int_G f \cdot u^* \varphi dx ,$$

where u* is the adjoint differential operator of u.

PROOF: By the inequality

$$|(uf)(x)| \le v_{u,n}^q(f)(1+\sigma(x))^{-n}\sigma(x)^{-l(1-2/q)}\Omega(x)^{-1+2/q}\Xi(x)^{2/q}$$

 $(x \in G),$

$$\begin{split} \int_{G} |(uf)(x)| |\varphi(x)| \, dx &\leq c_1 \int_{G} (1 + \sigma(x))^{m-n} \sigma(x)^{-l(1-2/q)} \Omega(x)^{-1+2/q} \Xi(x)^{4/q} dx \\ &\leq c_2 \int_{A^+} (1 + \sigma(a))^{m+4d/q-n} \sigma(a)^{l(2/q-1)} da \\ &= c_3 \int_{0}^{\infty} (1 + t)^{m+4d/q-n} t^{2l/q-1} da < \infty \end{split}$$

for $n > m + \frac{4}{q}d + 2lq$.

The second part of Lemma 7 is already clear.

Let $Z_K(U(\mathfrak{g}_C))$ the centralizer of K in $U(\mathfrak{g}_C)$. For any $u \in U(\mathfrak{g}_C)$ we can find a unique element $a_u \in U(\mathfrak{a}_C)$ such that $u - a_u \in \mathfrak{f}U(\mathfrak{g}_C) + U(\mathfrak{g}_C)\mathfrak{n}$. For any $z \in Z_K(U(\mathfrak{g}_C))$, we put $\tau(z) = e^{\rho} \circ a_z \circ e^{-\rho}$. Then $\tau(z) \in U(\mathfrak{a}_C)$. The following lemma is due to Trombi-Varadarajan [7, Lemma 3.5.3].

LEMMA 8. Let $s \in S(\mathfrak{a}_{C}^{*})$ and $d_{s} = \deg(s)$. Then, if $z \in Z_{K}(U(\mathfrak{g}_{C}))$, $(z - \tau(z)(\lambda))^{d_{s}+1}\partial(s)(\varphi_{\lambda}(x)) = 0$ for all $\lambda \in \mathfrak{a}_{C}^{*}$ and $x \in G$. Furthermore, given $u \in U(\mathfrak{g}_{C})$, there exist constants $c_{u,s} > 0$ and $m_{u,s} \geq 0$ such that for all $x \in G$, $\lambda \in T_{p}$,

$$|\hat{\sigma}(s)u\varphi_{\lambda}(x)| \le c_{u,s} \{ (1+|\lambda|)(1+\sigma(x)) \}^{m_{u,s}} \Xi(x)^{2(1-1/p)}$$

THEOREM 3. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in \mathscr{J}^q(G)$, then the integral $\tilde{f}(\lambda) = \int_{G} f(x)\varphi_{-\lambda}(x)dx$

converges absolutely for any $\lambda \in T_p$. Moreover, the map $f \mapsto \tilde{f}$ is continuous from $\mathscr{J}^q(G)$ to $\overline{\mathscr{Z}}(T_p)$.

PROOF: The first part follows from Lemma 7 and Lemma 8. Let $\lambda \in$ Int T_p and $f \in \mathscr{J}^q(G)$. Then for $s \in S(\mathfrak{a}_C^*)$

$$\begin{split} \int_{G} |f(x)\partial(s)\varphi_{-\lambda}(x)| dx &\leq c_{1} \int_{G} |f(x)|(1+|\lambda|)^{m}(1+\sigma(x))^{m} \Xi(x)^{2(1-1/p)} dx \\ &\leq c_{2}(1+|\lambda|)^{m} v_{1,s}(f) \,. \end{split}$$

We can prove the latter part in the same way as in Trombi-Varadarajan [7] Theorem 3.5.5. For λ , f as above, we have, for any $z \in Z_K(U(\mathfrak{g}_C))$,

A function space related to the Hardy-Littlewood inequality

$$\int_G \left(((z^* - \tau(z)(-\lambda))^{d_s+1})f)(x)\partial(s^*)(\varphi_{-\lambda}(x))dx = 0 \right)$$

Then,

$$|\tau(z)(-\lambda)|^{d_s+1} |(\partial(s)\tilde{f})(\lambda)| \le 2^{d_s+1}(1+|\lambda|)^{m_s} \sum_{1 \le i \le d_s+1} |\tau(z)(-\lambda)|^{d_s+1-i} \mu_{1,s}(z^{*i}f).$$

Since $U(\mathfrak{a}_{C})$ is a finite module over $\tau(Z_{K}(U(\mathfrak{g}_{C})))$, we have the following. Given $s \in S(\mathfrak{a}_{C}^{*})$, there exists $m_{s} \geq 0$, and for each $v \in U(\mathfrak{a}_{C})$, a continuous seminorm $v_{v,s}$ on $\mathscr{J}^{q}(G)$ such that

$$|v(\lambda)||(\partial(s)f)(\lambda)| \le (1+|\lambda|)^{m_s} v_{v,s}(f)$$

for all $\mathscr{J}^q(G)$, $\lambda \in \text{Int } T_p$. Since m_s does not depend on v, $\tilde{f} \in \overline{\mathscr{Z}}(T_p)$ and the map $f \mapsto \tilde{f}$ is continuous.

7. Coincidence theorem

THEOREM 4. If $2 \le q < 4$ and $\frac{1}{p} + \frac{1}{q} = 1$, then $\mathscr{J}^q(G) = \mathscr{I}^p(G)$. If the rank of G/K is one, then $\mathscr{J}^q(G) = \mathscr{I}^p(G)$ for all $q \ge 2$.

PROOF: By Theorem 3 and Proposition, if $f \in \mathscr{J}^q(G)$, then $\tilde{f} \in \overline{\mathscr{Z}}(T_p)$. There exists a function $f_1 \in \mathscr{I}^p(G)$ such that $\tilde{f}_1 = \tilde{f}$ by Lemma 3. Then by the Corollary of Theorem 2 and Lemma 1 $f_1(x) = f(x)$ for almost all x. Since $f_1, f_1 \in C^{\infty}(K \setminus G/K), f = f_1$. Thus we have $f \in \mathscr{I}^p(G)$.

References

- M. Eguchi and K. Kumahara, An L^p Fourier analysis on symmetric spaces, J. Func. Anal. 47 (1982), 230-246.
- [2] M. Eguchi and K. Kumahara, A Hardy-Littlewood theorem for spherical Fourier transforms on symmetric spaces, J. Func. Anal. 71 (1987), 104-122.
- [3] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1926), 159-209.
- [4] Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. Math. 80 (1958), 241-310.
- [5] Harish-Chandra, Discrete series for semismple Lie groups, II, Acta. Math. 116 (1966), 1-111.
- [6] S. Helgason, "Differential Geometry and Symmetric Spaces," Academic Press, New York, London, 1962.
- [7] P. C. Trombi and V. S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. of Math. 94 (1971), 246-303.

[8] G. Warner, "Harmonic Analysis on Semi-Simple Lie Groups, II," Springer-Verlag, Berlin, Heidelberg, New York, 1972.

> Department of Information and Knowledge Sciences Faculty of Engineering Tottori University Tottori 680, Japan