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ABSTRACT. In this paper we introduce and study some new sequence spaces.

1. Introduction

Let Z,, denote the Banach space of all real or complex bounded sequences
x = (x,) normed as usual by |x| = sup,|x,l.

Let o be a mapping of the set of positive integers into itself. A continu-
ous linear functional @ on 7, is said to be an invariant mean or o-limit if
and only if

i) @(x) >0 whenever x, >0 for all n,

ii) @D(e) =1, where e=(1,1,...)

ili) P(xyp) = P(x) for all xer,,.

Let V, denote the space of bounded sequences all of whose o-means are
equal, if x = (x,), we write Tx = (x,). It can be shown [6] that

V, = {x:lim,, t,,(x) = L exists uniformly in n, L = ¢-lim x},
where
tan(X) = (x, + Tx, + -+ + T™x,)/(m + 1) and t_ya(x)=0. (A)

In the case that ¢ is the translation mapping n—n + 1, the o-mean is
often called a Banach limit and V, is the set of almost convergent sequences
[1].

In accordance with Mursaleen [4], x = (x,) €7, is said to be strongly
g-convergent to a number L if

m
1mY |Xpm— L =0a m—>o  uniformly in n.
i=1
Recently strongly o-convergent sequences have been discussed and this

concept of strong o-convergence has been generalized by Savag [5] in the
following way:
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[V.1(p;) = {x: lim,, 1/m ¥ |X4im — L|?* = O uniformly in n}
i=1

where (p;) is a bounded sequence of positive real numbers.

If p; is constant and p;,=p >0 for all i, we write [V,](p;) = [V,1(p)
and if p=1 then this coincides with the set of all strongly o-convergent
sequences introduced by Mursaleen [4].

Referring to [2] and [3], we introduce two spaces below:

w(p;) = {x: 1/n i |x; — L|P*—>0 as n— oo}

i=

ces(p;) = {x: i 1/n i |x;|P < oo} .
n=1 i=1

The associate spaces of Cesaro sequence spaces have been discussed by several
authors.

2. Main Result

In the present note we introduce a new sequence space. This is suggested
by the notion of g-convergence. We here denote this new space by ces’(p).
Topological properties and inclusion relations of ces’(p) to known sequence
spaces are discussed.

In order to define the sequence space, we put

Zmn = zmn(x) = l/m Zl |xa"'(n)|p‘

where (p;) is a bounded sequence of positive real numbers. Then

ces’(p;) ={x: 22,,,,, converges uniformly in n}
m

ces’(p;) = {x: SUP, Y Zyy < oo}

If p;, is constant and p;, = p >0 for all i, we write ces’(p) and ces’’(p) for
ces’(p;) and ces??(p;) respectively. It is obvious that ces’(p;) = ces (p;). It is
seen that ces (p) = {0} for 0 < p <1, hence we have ces’(p) = {0} for 0<p < 1.
We have the following result:

THEOREM 1.
i) For p>1, £, < ces’(p).
ii) ces’(p;) = ces”(p;)
for any bounded sequence (p;) of positive real numbers.
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THEOREM 2. ces’(p;) is a complete linear metric space paranormed by g,
where

1M
g(x) = Sup, (Z Zmn)

M = max {1, sup p;}. Moreover ces’*(p;) is parametrized by g, if inf p,> 0.

Proor. The proof is obtained through standard. However, it should
be noted that there is an essential difference between ces®(p;) and ces®(p;).
If x e ces’(p;) then given ¢ > 0 there exists an integer k such that

Y zu(x)<e  for all n. 1)
m>k
So we conclude that for any x e ces®(p;), Ax -0 as 1 —0. But if x € ces”(p;)
we cannot assert (1). Now we assume that infp, =6 > 0. Then for |A| <1,
|APt < |Al% so that g(Ax) <|4|%g(x) and this proves that for any x e ces®(p;),
Ax—0 as A-0.
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