HIROSHIMA MATH. J. **26** (1996), 75–77

On some new sequence spaces

Fatih NURAY

(Received September 27, 1991)

ABSTRACT. In this paper we introduce and study some new sequence spaces.

1. Introduction

Let ℓ_{∞} denote the Banach space of all real or complex bounded sequences $x = (x_k)$ normed as usual by $||x|| = \sup_k |x_k|$.

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional Φ on ℓ_{∞} is said to be an invariant mean or σ -limit if and only if

i) $\Phi(x) \ge 0$ whenever $x_n \ge 0$ for all n,

ii) $\Phi(e) = 1$, where e = (1, 1, ...)

iii) $\Phi(x_{\sigma(n)}) = \Phi(x)$ for all $x \in \ell_{\infty}$.

Let V_{σ} denote the space of bounded sequences all of whose σ -means are equal, if $x = (x_k)$, we write $Tx = (x_{\sigma(n)})$. It can be shown [6] that

 $V_{\sigma} = \{x: \lim_{m} t_{mn}(x) = L \text{ exists uniformly in } n, L = \sigma - \lim x\},\$

where

$$t_{mn}(x) = (x_n + Tx_n + \dots + T^m x_n)/(m+1)$$
 and $t_{-1,n}(x) = 0$. (A)

In the case that σ is the translation mapping $n \to n + 1$, the σ -mean is often called a Banach limit and V_{σ} is the set of almost convergent sequences [1].

In accordance with Mursaleen [4], $x = (x_n) \in \ell_{\infty}$ is said to be strongly σ -convergent to a number L if

$$1/m\sum_{i=1}^m |x_{\sigma'(n)} - L| = 0 \text{ as } m \to \infty \qquad \text{uniformly in } n.$$

Recently strongly σ -convergent sequences have been discussed and this concept of strong σ -convergence has been generalized by Savaş [5] in the following way:

¹⁹⁹¹ Mathematics Subject Classification. 40A05, 40C05

Key words and phrases. Sequence space, invariant convergence, paranormed space.

Fatih NURAY

$$[V_{\sigma}](p_i) = \left\{ x: \lim_m 1/m \sum_{i=1}^m |x_{\sigma^i(n)} - L|^{p_i} = 0 \text{ uniformly in } n \right\}$$

where (p_i) is a bounded sequence of positive real numbers.

If p_i is constant and $p_i = p > 0$ for all *i*, we write $[V_{\sigma}](p_i) = [V_{\sigma}](p)$ and if p = 1 then this coincides with the set of all strongly σ -convergent sequences introduced by Mursaleen [4].

Referring to [2] and [3], we introduce two spaces below:

$$w(p_i) = \left\{ x: 1/n \sum_{i=1}^n |x_i - L|^{p_i} \to 0 \text{ as } n \to \infty \right\}$$
$$\cos(p_i) = \left\{ x: \sum_{n=1}^\infty 1/n \sum_{i=1}^n |x_i|^{p_i} < \infty \right\}.$$

The associate spaces of Cesaro sequence spaces have been discussed by several authors.

2. Main Result

In the present note we introduce a new sequence space. This is suggested by the notion of σ -convergence. We here denote this new space by $\csc^{\sigma}(p)$. Topological properties and inclusion relations of $\csc^{\sigma}(p)$ to known sequence spaces are discussed.

In order to define the sequence space, we put

$$z_{mn} = z_{mn}(x) = 1/m \sum_{i=1}^{m} |x_{\sigma^i(n)}|^{p_i}$$

where (p_i) is a bounded sequence of positive real numbers. Then

$$\cos^{\sigma}(p_i) = \left\{ x: \sum_{m} z_{mn} \text{ converges uniformly in } n \right\}$$
$$\cos^{\sigma\sigma}(p_i) = \left\{ x: \sup_{n} \sum_{n} z_{mn} < \infty \right\}$$

If p_i is constant and $p_i = p > 0$ for all *i*, we write $\cos^{\sigma}(p)$ and $\cos^{\sigma\sigma}(p)$ for $\cos^{\sigma}(p_i)$ and $\cos^{\sigma\sigma}(p_i)$ respectively. It is obvious that $\cos^{\sigma}(p_i) \subset \cos(p_i)$. It is seen that $\cos(p) = \{0\}$ for $0 , hence we have <math>\cos^{\sigma}(p) = \{0\}$ for 0 . We have the following result:

THEOREM 1.

- i) For p > 1, $\ell_p \subset \cos^{\sigma}(p)$.
- ii) $\cos^{\sigma}(p_i) \subset \cos^{\sigma\sigma}(p_i)$

for any bounded sequence (p_i) of positive real numbers.

76

THEOREM 2. $ces^{\sigma}(p_i)$ is a complete linear metric space paranormed by g, where

$$g(x) = \sup_{m} \left(\sum_{m} z_{mn}\right)^{1/M}$$

 $M = \max\{1, \sup p_i\}$. Moreover $\cos^{\sigma\sigma}(p_i)$ is parametrized by g, if $\inf p_i > 0$.

PROOF. The proof is obtained through standard. However, it should be noted that there is an essential difference between $\cos^{\sigma}(p_i)$ and $\cos^{\sigma\sigma}(p_i)$.

If $x \in ces^{\sigma}(p_i)$ then given $\varepsilon > 0$ there exists an integer k such that

$$\sum_{m \ge k} z_{mn}(x) < \varepsilon \quad \text{for all } n \,. \tag{1}$$

So we conclude that for any $x \in \csc^{\sigma}(p_i)$, $\lambda x \to 0$ as $\lambda \to 0$. But if $x \in \csc^{\sigma\sigma}(p_i)$ we cannot assert (1). Now we assume that $\inf p_i = \theta > 0$. Then for $|\lambda| < 1$, $|\lambda|^{p_i} \le |\lambda|^{\theta}$, so that $g(\lambda x) \le |\lambda|^{\theta}g(x)$ and this proves that for any $x \in \csc^{\sigma\sigma}(p_i)$, $\lambda x \to 0$ as $\lambda \to 0$.

References

- G. G. Lorentz, A Contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
- [2] I. J. Maddox, Strong Cesaro Means, Rendiconti del Circolo Math. di Palermo (2), 17 (1968), 356-360.
- [3] N. P. Nung and L. P. Ye, On the Associate Spaces of Cesaro Sequence Spaces, Nanta Math., 9 (1976), 168-172.
- [4] Mursaleen, Matrix Transformations Between Some New Sequence Spaces, Houston Journal of Math., 9 (1983), 505-509.
- [5] E. Savaş, Strongly σ -convergent Sequences, Bull. Cal. Math. Soc., 81 (1989), 295-300.
- [6] P. Schaefer, Infinite Matrices and Invariant Means, Proc. Amer. Math. Soc., 36 (1872), 104-110.

Department of Mathematics Firat University Elaziğ/Turkey