The chromatic \boldsymbol{E}_{1}-term $\boldsymbol{H}^{1} \boldsymbol{M}_{1}^{1}$ at the prime 3

Yoshiko Arita and Katsumi Shimomura
(Received December 22, 1994)

(Revised May 16, 1995)

Abstract

In this paper, we determine the E_{1}-term $H^{1} M_{1}^{1}$ of the chromatic spectral sequence converging to the E_{2}-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}(M)$ of the $\bmod 3$ Moore spectrum M. At the prime $p>3$, the E_{1}-term $H^{1} M_{1}^{1}$ plays a central role determining the homotopy groups $\pi_{*}\left(L_{2} M\right)$ of the $v_{2}^{-1} B P$-localized $\bmod p$ Moore spectrum.

1. Introduction

Let M denote the $\bmod p$ Moore spectrum and L_{n} the Bousfield localization functor with respect to $v_{n}^{-1} B P$. Here $B P$ is the Brown-Peterson ring spectrum at a prime number p and $v_{n}(n=1,2, \ldots)$ denotes the generator of $\pi_{*}(B P)$ with $\left|v_{n}\right|=2 p^{n}-2$. Consider the spectrum N^{1} obtained as a cofiber of the localization map $M \rightarrow L_{1} M$. In [12] and [9] H. Tamura and the second author determined the homotopy groups $\pi_{*}\left(L_{2} N^{1}\right)$ by using the Adams-Novikov spectral sequence at the prime $p>3$. For $p>3$ the AdamsNovikov filtration is at most 4 and the homotopy groups of $L_{2} N^{1}$ is determined by E_{2}-term [9]. At the prime $p=3$, on the other hand, it is known that for any large integer $s_{0}>0$ there exists an integer $s>s_{0}$ such that the E_{2}-term $E_{2}^{s, *} \neq 0$ by the Morava structure theorem [8, Th. 6.2.10 (c)].

In this paper we will determine the first line of the E_{2}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(L_{2} N^{1}\right)$ at the prime 3. The E_{2}-term is an Ext group $\operatorname{Ext}_{B P .(B P)}^{*}\left(B P_{*}, M_{1}^{1}\right)$ for a $B P_{*}(B P)$-comodule $B P_{*}\left(L_{2} N^{1}\right)=M_{1}^{1}$ which will be denoted by $H^{*} M_{1}^{1}$ following the paper on chromatic spectral sequences due to Miller, Ravenel and Wilson [6].

In order to state the result, we define integers $a(n), a^{\prime}(n)$ and a_{n} for $n \geq 0$ by:

$$
a(0)=2 \quad \text { and } \quad a(n)=6 \cdot 3^{n-1}+1 \quad(n>0)
$$

[^0]\[

$$
\begin{aligned}
& a^{\prime}(0)=10 \quad \text { and } \quad a^{\prime}(n)=28 \cdot 3^{n-1} \quad(n>0) ; \quad \text { and } \\
& a_{0}=1 \quad \text { and } a_{n}=4 \cdot 3^{n-1}-1 \quad(n>0) .
\end{aligned}
$$
\]

Furthermore we use the notation:

$$
k(n)_{*}=F_{3}\left[v_{n}\right] \quad \text { and } \quad K(n)_{*}=v_{n}^{-1} k(n)_{*}=F_{3}\left[v_{n}, v_{n}^{-1}\right],
$$

where F_{3} denotes the prime field of characteristic 3.
Theorem 1.1. $H^{1} M_{1}^{1}$ is isomorphic to the direct sum of the $k(1)_{*}$-modules

$$
K(1)_{*} / k(1)_{*} \oplus K(1)_{*} / k(1)_{*}
$$

and

$$
\bigoplus_{k \geq 0, t}\left(k(1)_{*} /\left(v_{1}^{a(k)}\right) \oplus k(1)_{*} /\left(v_{1}^{a_{1}^{\prime}(k)}\right)\right) \oplus \bigoplus_{t} k(1)_{*} /\left(v_{1}^{2}\right) \bigoplus_{k \geq 0, u} \bigoplus_{*} k(1)_{*} /\left(v_{1}^{a_{k}}\right),
$$

where $t, u \in \boldsymbol{Z}$ with $3 \nmid u$.
The generators of each cyclic $k(1)_{*}$-module will be given in Theorem 6.1 which is a finer restatement of Theorem 1.1.

As in [12], we can apply this theorem to the nontriviality problem of the products of β-elements in the homotopy groups $\pi_{*}(M)$, as we will discuss in a forthcoming paper. We hope that this will be the first milestone to determine the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ of L_{2}-localized spheres $L_{2} S^{0}$ at the prime 3 as in the case for the prime >3 (cf. [6], [12], [9], [14]).

In 2 we restate a key lemma given in [6] to fit our situation so that it suffies to find some elements in order to discribe Ext-group. After giving some preparatory computations in 3, we define new elements for the case $p=3$ in 4 (cf. [12]). Then we get the desired elements in 5 which satisfy the condition given in 2.

2. Key lemma

Let (A, Γ) denote the Hopf algebroid such that Γ is A-flat as an A module. Then the category of Γ-comodules has enough injectives (cf. [6, Lemma A.1.2.2]) and Ext group $\operatorname{Ext}_{\Gamma}^{i}(M, N)$ is defined to be the i-th derived functor of $\mathrm{Hom}_{\text {-functor }} \operatorname{Hom}_{\Gamma}(M, N)$ for comodules M and N. Let $C^{*} M$ denote an injective resolution of a comodule M. Then the Ext group $\operatorname{Ext}_{\Gamma}^{*}(A, M)$ is a cohomology of the resolution, that is, the homology of the complex $\operatorname{Hom}_{\Gamma}\left(A, C^{*} M\right)$. Here we use a cobar resolution, and the resulting cobar complex $\Omega_{\Gamma}^{*} M$ is given by:

$$
\Omega_{\Gamma}^{n} M=M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma \quad(n \text { copies of } \Gamma)
$$

with the differential $d_{r}: \Omega_{\Gamma}^{n} M \rightarrow \Omega^{n+1} M$ defined by
$d_{r}\left(m \otimes x_{1} \otimes \cdots \otimes x_{n}\right)=\psi(m) \otimes x_{1} \otimes \cdots \otimes x_{n}$

$$
\begin{aligned}
& +\sum_{i=1}^{n}(-1)^{i} m \otimes x_{1} \otimes \cdots \otimes x_{i-1} \otimes \Delta\left(x_{i}\right) \otimes x_{i+1} \otimes \cdots \otimes x_{n} \\
& -(-1)^{n} m \otimes x_{1} \otimes \cdots \otimes x_{n} \otimes 1
\end{aligned}
$$

Here $\psi: M \rightarrow M \otimes_{A} \Gamma$ and $\Delta: \Gamma \rightarrow \Gamma \otimes_{A} \Gamma$ denote the structure map of M and the diagonal map of the Hopf algebroid Γ, respectively.

An example of such a Hopf algebroid (A, Γ) is $\left(B P_{*}, B P_{*}(B P)\right)$ associated to the Brown-Peterson spectrum $B P$ at the prime 3. In this case we abbreviate $\operatorname{Ext}_{B P .(B P)}^{*}\left(B P_{*}, M\right)$ by $H^{*} M$ for a $B P_{*}(B P)$-comodule M.

We recall [6] the comodules

$$
\begin{aligned}
& M_{2}^{0}=v_{2}^{-1} B P_{*} /\left(3, v_{1}\right) \text { and } \\
& M_{1}^{1}=v_{2}^{-1} B P_{*} /\left(3, v_{1}^{\infty}\right)=\left\{x / v_{1}^{j}: j>0, x \in M_{2}^{0}\right\} .
\end{aligned}
$$

Then we have the short exact sequence

$$
0 \rightarrow M_{2}^{0} \xrightarrow{\varphi} M_{1}^{1} \xrightarrow{v_{1}} M_{1}^{1} \rightarrow 0
$$

of comodules, where $\varphi(x)=x / v_{1}$. This gives rise to the long exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0} M_{2}^{0} \xrightarrow{\varphi_{0}} H^{0} M_{1}^{1} \xrightarrow{v_{1}} H^{0} M_{1}^{1} \xrightarrow{\delta_{0}} H^{1} M_{2}^{0} \xrightarrow{\varphi_{0}} H^{1} M_{1}^{1} \xrightarrow{v_{1}} H^{1} M_{1}^{1} \xrightarrow{\delta_{1}} H^{2} M_{2}^{0} \rightarrow \cdots \tag{2.1}
\end{equation*}
$$

Following the computation of $H^{1} M_{1}^{1}$ in [12] at $p>3$, we will work in the category of $E(2)_{*}(E(2))$-comodules. Here $E(2)_{*}=Z_{(3)}\left[v_{1}, v_{2}, v_{2}^{-1}\right]$ and the action of $B P_{*}$ is induced by sending v_{i} to v_{i} for $i \leq 2$ and to zero for $i>2$. $E(2)$ is a ring spectrum representing the homology theory $E(2)_{*}(X)=$ $E(2)_{*} \otimes_{B P} B P_{*}(X)$. Then

$$
E(2)_{*}(E(2))=E(2)_{*} \otimes_{B P *} B P_{*}(B P) \otimes_{B P .} E(2)_{*}
$$

and the Hopf algebroid structure of $\left(E(2)_{*}, E(2)_{*}(E(2))\right)$ is induced by the one of $\left(B P_{*}, B P_{*}(B P)\right.$). Since $E(2)_{*}(E(2))$ is flat over $E(2)_{*}$, we can use homological algebra in the category and define Ext groups as derived functors of Hom. Then we have a change of rings theorem ([5]):

$$
H^{i} M=\operatorname{Ext}_{E(2) \cdot(E(2))}^{i}\left(E(2)_{*}, M \otimes_{B P_{*}} E(2)_{*}\right)
$$

for any v_{2}-local comodule M. Remark that M_{k}^{j} is v_{2}-local when $j+k=2$. By virtue of this theorem, we will hereafter abbreviate $M_{j}^{i} \otimes_{B P .} E(2)_{*}$ to M_{j}^{i} :

$$
M_{2}^{0}=K(2)_{*}=E(2)_{*} /\left(3, v_{1}\right) \quad \text { and } \quad M_{1}^{1}=E(2)_{*} /\left(3, v_{1}^{\infty}\right),
$$

and $H^{i} M_{k}^{j}$ will denote

$$
\operatorname{Ext}_{E(2) \cdot(E(2))}^{i}\left(E(2)_{*}, M_{k}^{j}\right)
$$

There will be no serious confusion, since these $H^{*} M^{\prime}$ s coincide as long as $M=M_{k}^{j}$ with $j+k=2$.

In [7] (cf. [8]), Ravenel claimed to have determined the structure of $H^{*} M_{2}^{0}$ at the prime 3, which turned out to be wrong as pointed out by Henn. There are independent corrections, see [2], [3], [11] and [16]. In particular they show that Ravenel's result is correct up to dimension 2 and we will use only this part:

Theorem 2.2. a) $H^{1} M_{2}^{0}$ is the $K(2)_{*}$-vector space generated by

$$
h_{10}, h_{11} \text { and } \zeta_{2}
$$

b) $H^{2} M_{2}^{0}$ is the $K(2)_{*}$-vector space generated by

$$
\xi, b_{0}, b_{1}, h_{10} \zeta_{2} \text { and } h_{11} \zeta_{2}
$$

These generators have degrees

$$
\left|h_{10}\right|=4,\left|h_{11}\right|=\left|b_{0}\right|=12,\left|b_{1}\right|=36,\left|\zeta_{2}\right|=0 \quad \text { and } \quad|\xi|=8
$$

and are represented by cocycles as follows

$$
\begin{align*}
h_{10} & =\left[t_{1}\right], \\
h_{11} & =\left[v_{2}^{-1} t_{1}^{3}\right], \\
\zeta_{2} & =\left[v_{2}^{-1} t_{2}+v_{2}^{-3} t_{2}^{3}-v_{2}^{-1} t_{1}^{4}\right], \tag{2.3}\\
b_{i} & =\left[-t_{1}^{3^{i}} \otimes t_{1}^{2 \cdot 3^{i}}-t_{1}^{2 \cdot 3^{i}} \otimes t_{1}^{3 i}\right] \text { and } \\
\xi & =\left[v_{2}^{-3} t_{1} \otimes t_{3}+v_{2}^{-10} t_{3}^{3} \otimes t_{1}^{3}+\cdots\right] .
\end{align*}
$$

Here the generator ξ is represented by any cocycle whose leading term is $v_{2}^{-3} t_{1} \otimes t_{3}+v_{2}^{-10} t_{3}^{3} \otimes t_{1}^{3}$. These representatives are in the cobar complex $\Omega_{E(2),(E(2))}^{*} K(2)_{*}$. In this paper the same symbol will be used to denote a cohomology class and its representative as is done in [12].

To compute $H^{1} M_{1}^{1}$ by the exact sequence (2.1) we need the following lemma that can be proved by an easy diagram chasing:

Lemma 2.4. (cf. [6, Remark 3.11]) Consider a $k(1)_{*}$-submodule B of $H^{1} M_{1}^{1}$ that fits into the following commutative diagram:

$$
H^{1} M_{2}^{0} \xrightarrow{\varphi} H^{1} M_{1}^{1} \xrightarrow{v_{1}} H^{1} M_{1}^{1} \xrightarrow{\delta} H^{2} M_{2}^{0} .
$$

If the upper sequence is exact, then

$$
H^{1} M_{1}^{1}=B .
$$

To construct the desired $k(1)_{*}$-module B, we first note that $B \supset \operatorname{Im} \varphi$. Since $\operatorname{Im} \varphi$ is isomorphic to Coker ($\delta: H^{0} M_{1}^{1} \rightarrow H^{1} M_{2}^{0}$) and Ker ($v_{1}: H^{1} M_{1}^{1} \rightarrow$ $H^{1} M_{1}^{1}$), we start with

Lemma 2.5. Ker v_{1} in $H^{1} M_{1}^{1}$ is the F_{3}-vector space with basis consisting of the cocycles represented by:

$$
v_{2}^{3 k s} t_{1} / v_{1}, v_{2}^{3 t-1} t_{1}^{3} / v_{1}, v_{2}^{t} \zeta_{2} / v_{1} \text { and } t_{1} / v_{1}
$$

for $k \geq 0, t \in \boldsymbol{Z}$ and $s \in Z$ such that either $s \equiv 1(3)$ or $s \equiv-1(9)$.
This lemma is shown by using the elements $x_{i} \in v_{2}^{-1} B P_{*}$ defined in [6] such that

$$
\begin{align*}
x_{i} & \equiv v_{2}^{3^{i} \bmod \left(3, v_{1}\right) \quad \text { and }} \\
d_{0}\left(x_{i}\right) & \equiv \begin{cases}v_{1} t_{1}^{3} \bmod \left(3, v_{1}^{3}\right) & i=0, \\
v_{1}^{3} v_{2}^{2} t_{1}-v_{1}^{4} v_{2}\left(\tau+v_{2} \zeta_{2}\right) \bmod \left(3, v_{1}^{5}\right) & i=1, \\
v_{1}^{a_{i} v_{2}^{2} 3^{i-1} \sigma \bmod \left(3, v_{1}^{2+a_{i}}\right)} & i>1,\end{cases} \tag{2.6}
\end{align*}
$$

where a_{i} is an integer such that $a_{0}=1$ and $a_{i}=4 \cdot 3^{i-1}-1$ for $i>0$. In fact, the lemma follows from Theorem 2.2 a) and the fact that δ is computed [6, (5.9)] to be

$$
\begin{aligned}
& \delta\left(x_{0}^{s} / v_{1}\right)=s v_{2}^{s-1} t_{1}^{3}, \\
& \delta\left(x_{1}^{s} / v_{1}^{3}\right)=s v_{2}^{3 s-1} t_{1} \quad \text { and } \\
& \delta\left(x_{i}^{s} / v_{1}^{a_{i}}\right)=-s v_{2}^{3^{-1}(3 s-1)} t_{1}, \quad i>1,
\end{aligned}
$$

and $H^{0} M_{1}^{1}$ is generated by $x_{i}^{s} / v_{1}^{a_{i}}$ and $1 / v_{1}^{j}, j \geq 1$ [6, Th. 5.3]. These elements may also be considered in $E(2)_{*}$ and satisfy the same formula there. Hence we do not distinguish them either.

Consider the pairs $(w(i), e(i))=(x(i), a(i)),(y(i), b(i))$ and $(z(i), c(i))$ of elements $x(i), y(i)$ and $z(i)$ in $\Omega_{E(2) .(E(2))}^{1} E(2)_{*} /(3)=E(2)_{*} /(3) \otimes_{E(2) .} E(2)_{*}(E(2))$ and positive integers (including ∞) $a(i), b(i)$ and $c(i)$ such that

$$
\begin{aligned}
x(i) & \equiv v_{2}^{i} t_{1} \bmod \left(3, v_{1}\right) \\
y(i) & \equiv v_{2}^{i} t_{1}^{3} \bmod \left(3, v_{1}\right) \\
z(i) & \equiv v_{2}^{i} \zeta_{2} \bmod \left(3, v_{1}\right) \quad \text { and }
\end{aligned}
$$

$e(i)=\infty$ if $\delta\left(w(i) / v_{1}^{j}\right)=0$ for any $j>0$, otherwise $e(i)=\min \left(e^{\prime}(i)\right)$ such that $\delta\left(w(i) / v_{1}^{e^{\prime}(i)}\right) \neq 0$.

We also consider the subsets of \boldsymbol{Z} :

$$
\Lambda=\left\{i: i=3^{k} s \text { with } s \equiv 1(3) \text { or } s \equiv-1(9)\right\} \quad \text { and } \quad \Lambda^{\prime}=\{i: i \equiv-1(3)\} .
$$

Now Lemma 2.4 implies the following
Corollary 2.7. With the above notation, let B be the $k(1)_{*}$-module generated by $w(i) / v_{1}^{e(i)}$'s for i such that

$$
i \in \Lambda \text { if } w=x, \quad i \in \Lambda^{\prime} \text { if } w=y \text { and } i \in \boldsymbol{Z} \text { if } w=z .
$$

If the set
$\left\{\delta\left(w(i) / v_{1}^{e(i)}\right)\right\}=\left\{\delta\left(x(i) / v_{1}^{a(i)}\right), \delta\left(y(j) / v_{1}^{b(j)}\right), \delta\left(z(k) / v_{1}^{c(k)}\right): i \in \Lambda, j \in \Lambda^{\prime}, k \in Z\right\} \subset H^{2} M_{2}^{0}$ is linearly independent over F_{3}, then $H^{1} M_{1}^{1}=B$.

3. Preparatory computations

Before proceeding we need some computations. First we give some formulae on the right unit $\eta_{R}: B P_{*} \rightarrow B P_{*}(B P)$ by tensoring the rational numbers Q. Note that

$$
B P_{*} \otimes \boldsymbol{Q}=\boldsymbol{Q}\left[m_{1}, m_{2}, \ldots\right] \quad \text { and } \quad B P_{*}(B P) \otimes \boldsymbol{Q}=\left(B P_{*} \otimes \boldsymbol{Q}\right)\left[t_{1}, t_{2}, \ldots\right]
$$

where the generators have the internal degrees $\left|m_{i}\right|=2\left(3^{i}-1\right)=\left|t_{i}\right| . \quad$ Recall [1] that

$$
\begin{aligned}
& \eta_{R}\left(m_{1}\right)=m_{1}+t_{1}, \eta_{R}\left(m_{2}\right)=m_{2}+m_{1} t_{1}^{3}+t_{2} \quad \text { and } \\
& \eta_{R}\left(m_{3}\right)=m_{3}+m_{2} t_{1}^{9}+m_{1} t_{2}^{3}+t_{3}
\end{aligned}
$$

and [4] that

$$
v_{1}=3 m_{1}, v_{2}=3 m_{2}-m_{1} v_{1}^{3} \quad \text { and } \quad v_{3}=3 m_{3}-m_{2} v_{1}^{9}-m_{1} v_{2}^{3} .
$$

Since $9 m_{2} \equiv v_{1}^{4} \bmod (3) B P_{*}$, we have

$$
\begin{align*}
& \eta_{R}\left(v_{1}\right)=v_{1}+3 t_{1} \\
& \eta_{R}\left(v_{2}\right)=v_{2}+v_{1} t_{1}^{3}+3 t_{2}-v_{1}\left(3 v_{1}^{2} t_{1}+9 v_{1} t_{1}^{2}+9 t_{1}^{3}\right)-t_{1} \eta_{R}\left(v_{1}^{3}\right) \quad \text { and } \tag{3.1}\\
& \eta_{R}\left(v_{3}\right) \equiv v_{3}+v_{2} t_{1}^{9}+v_{1} t_{2}^{3}-v_{1}^{9} t_{2}+v_{1}^{2} V-t_{1} \eta_{R}\left(v_{2}^{3}\right) \bmod (3)
\end{align*}
$$

Here V is an element of $B P_{*}(B P)$ which satisfies

$$
\begin{equation*}
3 v_{1} V \equiv v_{2}^{3}+v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}-\eta_{R}\left(v_{2}^{3}\right) \bmod (9) \tag{3.2}
\end{equation*}
$$

Next we will calculate Ext group $\operatorname{Ext}_{E(2)}^{* * *},(E(2))\left(E(2)_{*}, M_{1}^{1}\right)$. Following [6], we will write

$$
x \equiv y \bmod \left(3, v_{1}^{j}\right)
$$

for $x, y \in \Omega_{B(2) \cdot(E(2))}^{* *} E(2)_{*}$, if $p r(x)=p r(y)$ in $\Omega_{E(2),(E(2))}^{* *} E(2)_{*}^{*} /\left(3, v_{1}^{j}\right)$ where $\operatorname{pr}: \Omega_{E(2) \cdot(E(2))}^{* *} E(2)_{*} \rightarrow \Omega_{E(2),(E(2))}^{* *} E(2)_{*} /\left(3, v_{1}^{j}\right)$ denotes the natural projection.

The definition of cobar complex shows that the differentials d_{i} : $\Omega_{E(2),(E(2))}^{i} E(2)_{*} /\left(3, v_{1}^{j}\right) \rightarrow \Omega_{E(2) \cdot(E(2))}^{i+1} E(2)_{*} /\left(3, v_{1}^{j}\right)$ for $i=0,1$ are given by

$$
\begin{align*}
d_{0}(m) & =\eta_{R}(m)-m \quad \text { and } \tag{3.3}\\
d_{1}(x) & =1 \otimes x-\Delta(x)+x \otimes 1
\end{align*}
$$

for $m \in E(2)_{*}$ and $x \in E(2)_{*}(E(2))$, where $\eta_{R}: E(2)_{*} /\left(3, v_{1}^{j}\right) \rightarrow E(2)_{*} /\left(3, v_{1}^{j}\right) \otimes_{E(2)}$. $E(2)_{*}(E(2))$ is induced by the right unit η_{R} of the Hopf algebroid $B P_{*}(B P)$ and $\Delta: E(2)_{*}(E(2)) \rightarrow E(2)_{*}(E(2)) \otimes_{E(2),} E(2)_{*}(E(2))$ is the diagonal of the Hopf algebroid. Note that

$$
\begin{align*}
x \otimes v y & =x \eta_{R}(v) \otimes y \quad \text { and } \\
\Delta(x y) & =\Delta(x) \Delta(y) . \tag{3.4}
\end{align*}
$$

We also note that (3.3) shows the derivative formula:

$$
d_{1}(m x)=d_{0}(m) \otimes x+m d_{1}(x)
$$

for $m \in E(2)_{*}$ and $x \in E(2)_{*}(E(2))$.
Furthermore, (cf. [12, (2.3.2), (2.3.5)])

$$
\begin{align*}
d_{1}\left(x \eta_{R}(m)\right) & =d_{1} x \otimes m-x \otimes d_{0}(m), \\
d_{1}\left(t_{2}\right) & \equiv-t_{1} \otimes t_{1}^{3}-v_{1} b_{0} \bmod (3) \quad \text { and } \tag{3.5}\\
d_{1}\left(t_{3}\right) & \equiv-t_{1} \otimes t_{2}^{3}-t_{2} \otimes t_{1}^{9}-v_{2} b_{1} \bmod \left(3, v_{1}\right)
\end{align*}
$$

Here $b_{i} \in E(2)_{*}(E(2))^{\otimes 2}$ is defined by

$$
\begin{equation*}
b_{i}=-t_{1}^{3 i} \otimes t_{1}^{2 \cdot 3^{i}}-t_{1}^{2 \cdot 3^{i}} \otimes t_{1}^{3 i} \tag{3.6}
\end{equation*}
$$

For example, (3.2) is written as $3 v_{1} V=v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}-d_{0}\left(v_{2}^{3}\right)$, and so we obtain by (3.1)

$$
\begin{equation*}
d_{1}(V) \equiv v_{1}^{2} b_{1}-v_{1}^{8} b_{0} \bmod (3) \tag{3.7}
\end{equation*}
$$

The last formula of (3.1) yields the relation in $E(2)_{*}(E(2))$:

$$
\begin{equation*}
v_{2} t_{1}^{9}+v_{1} t_{2}^{3}-v_{1}^{9} t_{2}+v_{1}^{2} V-t_{1} \eta_{\mathrm{R}}\left(v_{2}^{3}\right)=0 \tag{3.8}
\end{equation*}
$$

In fact, $\eta_{R}\left(v_{3}\right)=0$ in $E(2)_{*}(E(2))=E(2)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(\eta_{R}\left(v_{k}\right): k>2\right)$. More generally, the relation $\eta_{R}\left(v_{k}\right)=0$ for $k>2$ in $E(2)_{*}(E(2))$ implies (cf. [12, (3.2.2)]):

$$
\begin{equation*}
t_{n}^{9}=v_{2}^{3^{n-1}} t_{n}-v_{1} v_{2}^{-1} t_{n+1}^{3} \in E(2)_{*}(E(2)) /\left(3, v_{1}^{2}\right) \tag{3.9}
\end{equation*}
$$

Now we see that
Lemma 3.10. By definition, we have

$$
b_{0}^{3} \equiv b_{1} \bmod (3)
$$

Furthermore, we have

$$
b_{1}^{3} \equiv v_{2}^{6} b_{0} \bmod \left(3, v_{1}^{2}\right)
$$

up to homology. That is, there exists an elements ω_{1} such that

$$
d_{1}\left(\omega_{1}\right) \equiv-b_{1}^{3}+v_{2}^{6} b_{0} \bmod \left(3, v_{1}^{2}\right) .
$$

Remark 3.11. Moreover, we can show

$$
b_{1}^{3} \equiv v_{2}^{6} b_{0}+v_{1}^{2} v_{2}^{4} b_{1} \bmod \left(3, v_{1}^{3}\right)
$$

up to homology.
Proof of Lemma 3.10. Rewriting b_{1}^{3} in $E(2)_{*}(E(2)) \otimes_{E(2) .} E(2)_{*}(E(2)) /\left(3, v_{1}^{2}\right)$ by (3.4) and (3.9), we get

$$
\begin{aligned}
-b_{1}^{3}= & t_{1}^{9} \otimes t_{1}^{18}+t_{1}^{18} \otimes t_{1}^{9} \\
\equiv & \left(v_{2}^{2} t_{1}-v_{1} v_{2}^{-1} t_{2}^{3}\right) \otimes\left(v_{2}^{4} t_{1}^{2}+v_{1} v_{2} t_{1} t_{2}^{3}\right) \\
& +\left(v_{2}^{4} t_{1}^{2}+v_{1} v_{2} t_{1} t_{2}^{3}\right) \otimes\left(v_{2}^{2} t_{1}-v_{1} v_{2}^{-1} t_{2}^{3}\right) \bmod \left(3, v_{1}^{2}\right) \\
\equiv & v_{2}^{6} t_{1} \otimes t_{1}^{2}+v_{1} v_{2}^{5} t_{1}^{4} \otimes t_{1}^{2}+v_{1} v_{2}^{3} t_{1} \otimes t_{1} t_{2}^{3}-v_{1} v_{2}^{3} t_{2}^{3} \otimes t_{1}^{2} \\
& +v_{2}^{6} t_{1}^{2} \otimes t_{1}-v_{1} v_{2}^{5} t_{1}^{5} \otimes t_{1}-v_{1} v_{2}^{3} t_{1}^{2} \otimes t_{2}^{3}+v_{1} v_{2}^{3} t_{1} t_{2}^{3} \otimes t_{1} \bmod \left(3, v_{1}^{2}\right)
\end{aligned}
$$

On the other hand we have by (3.4) and (3.9),

$$
\begin{equation*}
\Delta\left(t_{2}^{3}\right)=t_{2}^{3} \otimes 1+v_{2}^{2} t_{1}^{3} \otimes t_{1}+1 \otimes t_{2}^{3} \bmod \left(3, v_{1}\right) \tag{3.12}
\end{equation*}
$$

Therefore, using the formula $d_{1}(x y)=d_{1}(x)(y \otimes 1+1 \otimes y)+\Delta(x) d_{1}(y)-$ $x \otimes y-y \otimes x$, we compute

$$
\begin{aligned}
-d_{1}\left(v_{1} v_{2}^{3} t_{1}^{2} t_{2}^{3}\right) \equiv & -v_{1} v_{2}^{3} d_{1}\left(t_{1}^{2} t_{2}^{3}\right) \bmod \left(3, v_{1}^{2}\right) \\
\equiv & -v_{1} v_{2}^{3}\left(t_{1} \otimes t_{1}\right)\left(t_{2}^{3} \otimes 1+1 \otimes t_{2}^{3}\right) \\
& +v_{1} v_{2}^{3}\left(t_{1}^{2} \otimes 1-t_{1} \otimes t_{1}+1 \otimes t_{1}^{2}\right)\left(v_{2}^{2} t_{1}^{3} \otimes t_{1}\right) \\
& +v_{1} v_{2}^{3} t_{1}^{2} \otimes t_{2}^{3}+v_{1} v_{2}^{3} t_{2}^{3} \otimes t_{1}^{2} \bmod \left(3, v_{1}^{2}\right) \\
\equiv & -v_{1} v_{2}^{3}\left(t_{1} t_{2}^{3} \otimes t_{1}+t_{1} \otimes t_{1} t_{2}^{3}\right) \\
& +v_{1} v_{2}^{3}\left(v_{2}^{2} t_{1}^{5} \otimes t_{1}-v_{2}^{2} t_{1}^{4} \otimes t_{1}^{2}+v_{2}^{2} t_{1}^{3} \otimes t_{1}^{3}\right) \\
& +v_{1} v_{2}^{3} t_{1}^{2} \otimes t_{2}^{3}+v_{1} v_{2}^{3} t_{2}^{3} \otimes t_{1}^{2} \bmod \left(3, v_{1}^{2}\right) .
\end{aligned}
$$

Moreover we have

$$
-d_{1}\left(v_{1} v_{2}^{5} t_{1}^{6}\right) \equiv-v_{1} v_{2}^{5} t_{1}^{3} \otimes t_{1}^{3} \bmod \left(3, v_{1}^{2}\right)
$$

Collecting these terms we get the desired homologous relation:

$$
d_{1}\left(\omega_{1}\right) \equiv-b_{1}^{3}+v_{2}^{6} b_{0} \bmod \left(3, v_{1}^{2}\right),
$$

by defining $\omega_{1}=v_{1} v_{2}^{3} t_{1}^{2} t_{2}^{3}+v_{1} v_{2}^{5} t_{1}^{6}$.
q.e.d.

4. The elements X and Y

In this section, we define the elements X and Y, which will yield the generators of $H^{1} M_{1}^{1}$. Note that there are no corresponding elements for $p>3$.

By (3.2) we compute

$$
\begin{align*}
\eta_{R}\left(v_{2}^{6}\right) \equiv & \left(v_{2}^{3}+v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}-3 v_{1} V\right)^{2} \bmod (9) \tag{4.1}\\
\equiv & v_{2}^{6}-6 v_{1} v_{2}^{3} V+2 v_{1}^{3} v_{2}^{3} t_{1}^{9}-6 v_{1}^{4} t_{1}^{9} V \\
& +v_{1}^{6} t_{1}^{18}-2 v_{1}^{9} v_{2}^{3} t_{1}^{3}+6 v_{1}^{10} t_{1}^{3} V-2 v_{1}^{12} t_{1}^{12}+v_{1}^{18} t_{1}^{6} \bmod (9) .
\end{align*}
$$

Lemma 4.2. For the element $x_{2}=v_{2}^{9}-v_{1}^{8} v_{2}^{7}$ of $E(2)_{*}$, we obtain

$$
\begin{aligned}
d_{0}\left(x_{2}\right) \equiv & -v_{1}^{11} v_{2}^{6} t_{1}-v_{1}^{12} v_{2}^{6}\left(v_{2}^{-3} t_{2}^{3}-v_{2}^{-3} t_{1}^{12}+v_{2}^{-9} t_{2}^{9}+v_{1} v_{2}^{-3} V\right) \\
& -v_{1}^{14} t_{1}^{18} \eta_{R}\left(v_{2}\right)+v_{1}^{15} v_{2}^{3} t_{1}^{9}-v_{1}^{17} v_{2}^{4} t_{1}^{3} \bmod \left(3, v_{1}^{18}\right)
\end{aligned}
$$

in $\Omega_{E(2) \cdot(E(2))}^{1} E(2)_{*}=E(2)_{*}(E(2))$.
Proof. Using (3.3), (3.1) and (3.8), we compute $\bmod \left(3, v_{1}^{18}\right)$:

$$
\begin{aligned}
d_{0}\left(v_{2}^{9}\right) & \equiv v_{1}^{9} t_{1}^{27} \\
& \equiv v_{1}^{9}\left(v_{2}^{6} t_{1}^{3}-v_{1}^{3} v_{2}^{-3} t_{2}^{9}-v_{1}^{6} v_{2}^{-3} V^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
-d_{0}\left(v_{1}^{8} v_{2}^{7}\right) \equiv & -v_{1}^{8}\left(v_{2}^{3}+v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}\right)^{2}\left(v_{2}+v_{1} t_{1}^{3}-v_{1}^{3} t_{1}\right)+v_{1}^{8} v_{2}^{7} \\
\equiv & -v_{1}^{8}\left(v_{2}^{6}-v_{1}^{3} v_{2}^{3} t_{1}^{9}+v_{1}^{6} t_{1}^{18}+v_{1}^{9} v_{2}^{3} t_{1}^{3}\right)\left(v_{2}+v_{1} t_{1}^{3}-v_{1}^{3} t_{1}\right)+v_{1}^{8} v_{2}^{7} \\
\equiv & -v_{1}^{9} v_{2}^{6} t_{1}^{3}+v_{1}^{11} v_{2}^{6} t_{1}+v_{1}^{11} v_{2}^{4} t_{1}^{9}+v_{1}^{12} v_{2}^{3} t_{1}^{12} \\
& -v_{1}^{14} v_{2}^{3} t_{1}^{10}-v_{1}^{14} t_{1}^{18} \eta_{R}\left(v_{2}\right)-v_{1}^{17} v_{2}^{4} t_{1}^{3} \\
\equiv & -v_{1}^{9} v_{2}^{6} t_{1}^{3}-v_{1}^{11} v_{2}^{6} t_{1}+v_{1}^{11} v_{2}^{4}\left(-v_{1} v_{2}^{-1} t_{2}^{3}-v_{1}^{2} v_{2}^{-1} V+v_{1}^{3} v_{2}^{-1} t_{1}^{10}\right) \\
& +v_{1}^{12} v_{2}^{3} t_{1}^{12}-v_{1}^{14} v_{2}^{3} t_{1}^{10}-v_{1}^{14} t_{1}^{18} \eta_{R}\left(v_{2}\right)-v_{1}^{17} v_{2}^{4} t_{1}^{3} .
\end{aligned}
$$

Now by summing up we get the desired congruence, since $V \equiv-v_{2}^{6} t_{1}^{9} \bmod \left(3, v_{1}^{3}\right)$. q.e.d.

Next we define an element X of $E(2)_{*}(E(2))$ such that

$$
\begin{equation*}
3 v_{1}^{3} X \equiv-v_{1}^{9} x-3 v_{1}^{9} y-d_{0}\left(x_{2}\right) \bmod \left(9, v_{1}^{15}\right) \tag{4.3}
\end{equation*}
$$

Here x and y are defined by

$$
x=v_{1}^{2} v_{2}^{6} t_{1}+v_{1}^{3} v_{2}^{6} \zeta^{\prime}+v_{1}^{4} v_{2}^{3} V+v_{1}^{5} v_{2} t_{1}^{18} \quad \text { and } \quad y=v_{1} v_{2}^{6} t_{1}^{2}+v_{1}^{3} v_{2}^{3} t_{1} V
$$

By [10, Lemma 2.6] there exists an element ζ^{\prime} such that

$$
\zeta^{\prime} \equiv \zeta_{2}^{3} \bmod \left(3, v_{1}^{3}\right) \quad \text { and } \quad d_{1}\left(\zeta^{\prime}\right) \equiv 0 \bmod \left(9, v_{1}^{3}\right)
$$

For the following computations note that $\left(9, v_{1}^{15}\right)$ is an invariant ideal.
Theorem 4.4. The element $X \in E(2)_{*}(E(2))$ satisfies:

$$
X \equiv-v_{2}^{8} t_{1} \bmod \left(3, v_{1}\right)
$$

and

$$
d_{1}(X) \equiv v_{1}^{10} v_{2}^{5} b_{0}+v_{1}^{10} v_{2}^{5} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{11}\right)
$$

Proof. Note that $\left(9, v_{1}^{6}\right)$ is an invariant ideal, and we have

$$
3 v_{1}^{3} X \equiv-d_{0}\left(v_{2}^{9}\right) \bmod \left(9, v_{1}^{6}\right)
$$

Now the first formula follows from

$$
d_{0}\left(v_{2}^{9}\right) \equiv 3 v_{1}^{3} v_{2}^{6} t_{1}^{9} \equiv 3 v_{1}^{3} v_{2}^{8} t_{1} \bmod \left(9, v_{1}^{4}\right)
$$

implied by (3.3), (3.1) and (3.8).
For the second formula we see from $d_{1} d_{0}=0$ and (4.3) that

$$
3 v_{1}^{3} d_{1}(X) \equiv-v_{1}^{9} d_{1}(x+3 y) \bmod \left(9, v_{1}^{15}\right)
$$

Thus it suffices to compute $d_{1}(x)$ and $d_{1}(3 y) \bmod \left(9, v_{1}^{5}\right)$. First we compute
$d_{1}(x)$. Note that the definitions (3.1), (3.2) and (3.3) show

$$
d_{1}(V) \equiv 0 \bmod \left(9, v_{1}\right) .
$$

Using (3.1), (3.5) and (4.1), we compute $\bmod \left(9, v_{1}^{5}\right)$:

$$
\begin{aligned}
d_{1}\left(v_{1}^{2} v_{2}^{6} t_{1}\right) & \equiv 6 v_{1} t_{1} \otimes v_{2}^{6} t_{1}+v_{1}^{2}\left(-6 v_{1} v_{2}^{3} V+2 v_{1}^{3} v_{2}^{3} t_{1}^{9}-6 v_{1}^{4} t_{1}^{9} V\right) \otimes t_{1} \\
& \equiv 6 v_{1} v_{2}^{6} t_{1} \otimes t_{1}+3 v_{1}^{4} v_{2}^{3} t_{1}^{10} \otimes t_{1}-6 v_{1}^{3} v_{2}^{3} V \otimes t_{1} \\
d_{1}\left(v_{1}^{3} v_{2}^{6} \zeta^{\prime}\right) & \equiv-6 v_{1}^{4} v_{2}^{3} V \otimes \zeta^{\prime}, \\
d_{1}\left(v_{1}^{4} v_{2}^{3} V\right) & \equiv 3 v_{1}^{3} v_{2}^{3} t_{1} \otimes V \quad \text { and } \\
d_{1}\left(v_{1}^{5} v_{2} t_{1}^{18}\right) & \equiv 6 v_{1}^{4} v_{2} t_{1} \otimes t_{1}^{18} .
\end{aligned}
$$

Summing up, we have

$$
\begin{aligned}
d_{1}(x) \equiv & 6 v_{1} v_{2}^{6} t_{1} \otimes t_{1}-6 v_{1}^{3} v_{2}^{3} V \otimes t_{1}+3 v_{1}^{4} v_{2}^{3} t_{1}^{10} \otimes t_{1}-6 v_{1}^{4} v_{2}^{3} V \otimes \zeta^{\prime} \\
& +3 v_{1}^{3} v_{2}^{3} t_{1} \otimes V+6 v_{1}^{4} v_{2} t_{1} \otimes t_{1}^{18} \bmod \left(9, v_{1}^{5}\right) .
\end{aligned}
$$

For $d_{1}(3 y)$, we will use $d_{1}(V) \equiv 0 \bmod \left(3, v_{1}^{2}\right)$ as seen in (3.7) and compute similarly $\bmod \left(3, v_{1}^{5}\right)$,

$$
\begin{aligned}
d_{1}\left(v_{1} v_{2}^{6} t_{1}^{2}\right) & \equiv 2 v_{1}^{4} v_{2}^{3} t_{1}^{9} \otimes t_{1}^{2}-2 v_{1} v_{2}^{6} t_{1} \otimes t_{1} \quad \text { and } \\
d_{1}\left(v_{1}^{3} v_{2}^{3} t_{1} V\right) & \equiv-v_{1}^{3} v_{2}^{3}\left(t_{1} \otimes V+V \otimes t_{1}\right)
\end{aligned}
$$

Now note that $t_{1}^{9} \equiv v_{2}^{2} t_{1} \bmod \left(3, v_{1}\right)$ by (3.8) and $V \equiv-v_{2}^{2} t_{1}^{3}-v_{1} v_{2} t_{1}^{6}+$ $v_{1}^{2} v_{2}^{2} t_{1} \bmod \left(3, v_{1}^{3}\right)$ by (3.1) and (3.2). Then, we compute $\bmod \left(9, v_{1}^{5}\right)$,

$$
\begin{aligned}
3 v_{1}^{4} v_{2}^{3} t_{1}^{10} \otimes t_{1}+ & 6 v_{1}^{4} v_{2} t_{1} \otimes t_{1}^{18}+6 v_{1}^{4} v_{2}^{3} t_{1}^{9} \otimes t_{1}^{2} \equiv-3 v_{1}^{4} v_{2}^{5} b_{0} \quad \text { and } \\
& -6 v_{1}^{4} v_{2}^{3} V \otimes \zeta^{\prime} \equiv 6 v_{1}^{4} v_{2}^{5} t_{1}^{3} \otimes \zeta_{2}^{3}
\end{aligned}
$$

This shows

$$
d_{1}(x+3 y) \equiv-3 v_{1}^{4} v_{2}^{5} b_{0}+6 v_{1}^{4} v_{2}^{5} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(9, v_{1}^{5}\right) .
$$

Substitute this to $3 v_{1}^{3} d_{1}(X) \equiv-v_{1}^{9} d_{1}(x+3 y) \bmod \left(9, v_{1}^{14}\right)$, and we obtain the result.
q.e.d.

Next we define the element Y. First we need a lemma.
Lemma 4.5. For $i=1,2$ there exist elements κ_{i} of $E(2)_{*}(E(2))$ such that

$$
d_{1}\left(\kappa_{1}\right) \equiv v_{1}^{3} v_{2}^{-3}\left(t_{2}^{3} \otimes t_{1}^{9}-t_{1}^{3} \otimes t_{1}^{18}\right)-v_{1}^{6}\left(v_{2}^{-30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-12} t_{2}^{9} \otimes t_{1}^{18}\right) \bmod \left(3, v_{1}^{7}\right)
$$

and

$$
\begin{aligned}
d_{1}\left(\kappa_{2}\right) \equiv & v_{1} v_{2}^{-2}\left(t_{1}^{3} \otimes t_{2}^{3}-t_{1}^{6} \otimes t_{1}^{9}+v_{2}^{3} b_{0}\right) \\
& +v_{1}^{2} v_{2}^{-9} t_{1}^{3} \otimes\left(c\left(t_{3}^{3}\right)+v_{2}^{6} t_{1}^{3} t_{2}^{3}\right)-v_{1}^{2} \zeta_{2}^{3} \otimes t_{1}^{6}+v_{1}^{2} t_{1}^{3} \zeta_{2}^{3} \otimes t_{1}^{3} \bmod \left(3, v_{1}^{3}\right)
\end{aligned}
$$

Proof. Define

$$
\kappa_{1}=v_{1}^{3} v_{2}^{-27} t_{1}^{9} t_{2}^{27}-v_{1}^{3} v_{2}^{-27} t_{3}^{9}-v_{1} V+\zeta_{2}^{9} \eta_{R}\left(v_{2}^{3}\right)+v_{1}^{3} v_{2}^{-18} \omega_{1}^{3}
$$

We continue our computation using the formulae (3.1), (3.3) and (3.5). We recall the relation in $E(2)_{*}(E(2)): v_{2}^{3^{n}} t_{n} \equiv v_{2} t_{n}^{9}+v_{1} t_{n+1}^{3} \bmod \left(3, v_{1}^{2}\right)$ given in (3.9). Then the right hand side of the first congruence in the lemma is:

$$
\begin{align*}
& v_{1}^{3} v_{2}^{-3}\left(t_{2}^{3} \otimes t_{1}^{9}-t_{1}^{3} \otimes t_{1}^{18}\right)-v_{1}^{6}\left(v_{2}^{-30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-12} t_{2}^{9} \otimes t_{1}^{18}\right) \tag{4.6}\\
& \quad \equiv v_{1}^{3} v_{2}^{-27} t_{2}^{27} \otimes t_{1}^{9}-v_{1}^{3} v_{2}^{-9} t_{1}^{27} \otimes t_{1}^{18} \bmod \left(3, v_{1}^{7}\right)
\end{align*}
$$

Now $\bmod \left(3, v_{1}^{7}\right)$,

$$
\begin{aligned}
d_{1}\left(v_{1}^{3} v_{2}^{-27} t_{1}^{9} t_{2}^{27}\right) & \equiv-v_{1}^{3} v_{2}^{-27}\left(t_{1}^{36} \otimes t_{1}^{81}+t_{1}^{27} \otimes t_{1}^{90}+t_{1}^{9} \otimes t_{2}^{27}+t_{2}^{27} \otimes t_{1}^{9}\right) \\
d_{1}\left(-v_{1}^{3} v_{2}^{-27} t_{3}^{9}\right) & \equiv v_{1}^{3} v_{2}^{-27}\left(t_{1}^{9} \otimes t_{2}^{27}+t_{2}^{9} \otimes t_{1}^{81}+v_{2}^{9} b_{1}^{9}\right) \\
d_{1}\left(-v_{1} V\right) & \equiv-v_{1}\left(v_{1}^{2} b_{1}\right) \quad \text { and } \\
d_{1}\left(\zeta_{2}^{9} \eta_{R}\left(v_{2}^{3}\right)\right) & \equiv-\zeta_{2}^{9} \otimes\left(v_{1}^{3} t_{1}^{9}\right) .
\end{aligned}
$$

Noticing that $\zeta_{2}^{9} \equiv v_{2}^{-9}\left(t_{2}^{9}-t_{1}^{36}\right)+v_{2}^{-27} t_{2}^{27} \bmod (3), 90=81+9$ and $t_{1}^{81} \equiv v_{2}^{18} t_{1}^{9}$ for our modulo, the sum of these terms equals the right hand side of (4.6). Thus the first part follows from the congruence $d_{1}\left(v_{1}^{3} v_{2}^{-18} \omega_{1}^{3}\right) \equiv-v_{1}^{3} v_{2}^{-18} b_{1}^{9}+$ $v_{1}^{3} b_{1} \bmod \left(3, v_{1}^{9}\right)$ obtained by Lemma 3.10.

To prove the second assertion, put

$$
\kappa_{2}=v_{1} v_{2}^{-2} t_{1}^{3} t_{2}^{3}+v_{1} v_{2}^{-8} c\left(t_{3}^{3}\right)+\eta_{R}\left(v_{2}^{2}\right) \zeta_{2}^{3}
$$

Where $c: E(2)_{*}(E(2)) \rightarrow E(2)_{*}(E(2))$ denotes the Hopf conjugation. Note that c satisfies $\Delta c=(c \otimes c) T \Delta$ for the switching map T (cf. [1], [8], [15]). Furthermore, $c\left(t_{1}\right)=-t_{1}$ and $c\left(t_{2}\right)=\tau=t_{1}^{4}-t_{2}\left(c f\right.$. [8]). Thus $\bmod \left(3, v_{1}^{3}\right)$:

$$
\begin{aligned}
d_{1}\left(v_{1} v_{2}^{-2} t_{1}^{3} t_{2}^{3}\right) \equiv & v_{1}^{2} v_{2}^{-3} t_{1}^{3} \otimes t_{1}^{3} t_{2}^{3}-v_{1} v_{2}^{-2}\left(t_{1}^{6} \otimes t_{1}^{9}+t_{1}^{3} \otimes t_{1}^{12}+t_{1}^{3} \otimes t_{2}^{3}+t_{2}^{3} \otimes t_{1}^{3}\right) \\
d_{1}\left(v_{1} v_{2}^{-8} c\left(t_{3}^{3}\right)\right) \equiv & v_{1}^{2} v_{2}^{-9} t_{1}^{3} \otimes c\left(t_{3}^{3}\right) \\
& -v_{1} v_{2}^{-8}\left(t_{1}^{27} \otimes t_{2}^{3}-t_{1}^{27} \otimes t_{1}^{12}-\tau^{9} \otimes t_{1}^{3}-v_{2}^{3} b_{1}^{3}\right) \quad \text { and } \\
d_{1}\left(\eta_{R}\left(v_{2}^{2}\right) \zeta_{2}^{3}\right) \equiv & -\zeta_{2}^{3} \otimes\left(-v_{1} v_{2} t_{1}^{3}+v_{1}^{2} t_{1}^{6}\right)
\end{aligned}
$$

Here we used $\zeta_{2} \equiv v_{2}^{-1} t_{2}-v_{2}^{-3} \tau^{3} \bmod \left(3, v_{1}\right)$. Thus the second congruence follows.
q.e.d.

Now define an element Y^{\prime} of $E(2)_{*}(E(2))$ by

$$
\begin{equation*}
Y^{\prime}=z+w+v_{1} \kappa_{1}+v_{1}^{5} \kappa_{2} \tag{4.7}
\end{equation*}
$$

for

$$
z=v_{2} t_{1}^{9}+v_{1} t_{2}^{3}+v_{1}^{2} V \quad \text { and } \quad w=v_{1}^{3} v_{2}^{-2} t_{1}^{18}+v_{1}^{5} v_{2}^{-1} t_{2}^{3}
$$

Theorem 4.8. There is an element $Y \in E(2)_{*}(E(2))$ which satisfies:

$$
Y \equiv v_{2}^{3} t_{1} \bmod \left(3, v_{1}\right)
$$

and

$$
d_{1}(Y) \equiv v_{1}^{7} v_{2} \xi \bmod \left(3, v_{1}^{8}\right)
$$

Proof. First we compute for z :

$$
d_{1}(z) \equiv\left(v_{1} t_{1}^{3}-v_{1}^{3} t_{1}\right) \otimes t_{1}^{9}-v_{1}\left(t_{1}^{3} \otimes t_{1}^{9}+v_{1}^{3} b_{1}\right)+v_{1}^{2}\left(v_{1}^{2} b_{1}\right)
$$

$\bmod \left(3, v_{1}^{8}\right)$ by (3.5) and (3.7), which equals $-v_{1}^{3} t_{1} \otimes t_{1}^{9} . \quad$ By (3.8), we also have $v_{2}^{3} t_{1} \equiv v_{2} t_{1}^{9}+v_{1} t_{2}^{3}+v_{1}^{2} V-v_{1}^{3} t_{1}^{10} \bmod \left(3, v_{1}^{9}\right)$. Therefore,

$$
d_{1}(z) \equiv-v_{1}^{3}\left(v_{2}^{-2} t_{1}^{9}+v_{1} v_{2}^{-3} t_{2}^{3}+v_{1}^{2} v_{2}^{-3} V-v_{1}^{3} v_{2}^{-3} t_{1}^{10}\right) \otimes t_{1}^{9} \bmod \left(3, v_{1}^{8}\right) .
$$

Now we consider the other elements:

$$
\begin{aligned}
d_{1}(w) \equiv & v_{1}^{3}\left(v_{1} v_{2}^{-3} t_{1}^{3}-v_{1}^{3} v_{2}^{-3} t_{1}-v_{1}^{3} v_{2}^{-5} t_{1}^{9}-v_{1}^{4} v_{2}^{-6} t_{1}^{12}\right) \otimes t_{1}^{18}+v_{1}^{3} v_{2}^{-2} t_{1}^{9} \otimes t_{1}^{9} \\
& -v_{1}^{6} v_{2}^{-2} t_{1}^{3} \otimes t_{2}^{3}+v_{1}^{7} v_{2}^{-3} t_{1}^{6} \otimes t_{2}^{3}-v_{1}^{5} v_{2}^{-1} t_{1}^{3} \otimes t_{1}^{9} \bmod \left(3, v_{1}^{8}\right) .
\end{aligned}
$$

Lemma 4.5 then shows

$$
\begin{aligned}
d_{1}\left(v_{1} k_{1}\right) \equiv & v_{1}^{4} v_{2}^{-3}\left(t_{2}^{3} \otimes t_{1}^{9}-t_{1}^{3} \otimes t_{1}^{18}\right) \\
& -v_{1}^{7}\left(v_{2}^{-30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-12} t_{2}^{9} \otimes t_{1}^{18}\right) \bmod \left(3, v_{1}^{8}\right) \quad \text { and } \\
d_{1}\left(v_{1}^{5} \kappa_{2}\right) \equiv & v_{1}^{6} v_{2}^{-2}\left(t_{1}^{3} \otimes t_{2}^{3}-t_{1}^{6} \otimes t_{1}^{9}+v_{2}^{3} b_{0}\right)+v_{1}^{7} t_{1}^{3} \zeta_{2}^{3} \otimes t_{1}^{3} \\
& +v_{1}^{7} v_{2}^{-9} t_{1}^{3} \otimes\left(c\left(t_{3}^{3}\right)+v_{2}^{6} t_{1}^{3} t_{2}^{3}\right)-v_{1}^{7} \zeta_{2}^{3} \otimes t_{1}^{6} \bmod \left(3, v_{1}^{8}\right) .
\end{aligned}
$$

Notice that

$$
v_{1}^{6} v_{2}^{-3} t_{1}^{10} \otimes t_{1}^{9}-v_{1}^{6} v_{2}^{-3} t_{1} \otimes t_{1}^{18}-v_{1}^{6} v_{2}^{-5} t_{1}^{9} \otimes t_{1}^{18} \equiv-v_{1}^{6} v_{2} b_{0}+v_{1}^{7} \rho \bmod \left(3, v_{1}^{8}\right)
$$

Since $t_{1}^{9} \equiv v_{2}^{2} t_{1}-v_{1} v_{2}^{-1} t_{2}^{3} \bmod \left(3, v_{1}^{2}\right)$ by (3.8), ρ does not involve t_{3}. Therefore we obtain

$$
d_{1}\left(Y^{\prime}\right) \equiv v_{1}^{7} \Xi \bmod \left(3, v_{1}^{8}\right),
$$

where Ξ involves $-v_{2}^{-30} t_{3}^{9} \otimes t_{1}^{9}-v_{2}^{-9} t_{1}^{3} \otimes t_{3}^{3} \equiv-v_{2}^{-2} t_{3} \otimes t_{1}-v_{2}^{-9} t_{1}^{3} \otimes t_{3}^{3} \bmod \left(3, v_{1}\right)$ which is the characterization of the homology class $\left[v_{2} \xi\right]$. So there is a cochain ω_{2} such that $d_{1}\left(\omega_{2}\right)=-\Xi+v_{2} \xi$. Now we define the element Y by $Y=Y^{\prime}+v_{1}^{7} \omega_{2}$.
q.e.d.

5. Construction of $\boldsymbol{w}(\boldsymbol{i})$

First we consider ξ. The generator ξ is represented by a cocycle whose leading term is $t_{1} \otimes t_{3}+t_{3}^{3} \otimes t_{1}^{3}$ and there is no other generator of the same
degree. So any cocycles whose leading terms are $t_{1} \otimes t_{3}+t_{3}^{3} \otimes t_{1}^{3}$ are homologous. Therefore, (3.9) shows that we have a cochain ω_{3} such that

$$
\begin{equation*}
d_{1}\left(\omega_{3}\right) \equiv \xi^{3}+v_{2} \xi \bmod \left(3, v_{1}\right) \tag{5.1}
\end{equation*}
$$

Now we define $x(m) \in E(2)_{*}(E(2))$ for $m=3^{k} s$ with $k \geq 0$ and for $s \in Z$ with $s \equiv 1$ or $s \equiv-1(9)$ by

$$
\begin{aligned}
x(1)= & v_{2} t_{1}+v_{1} \tau, \\
x(3)= & Y, \\
v_{1}^{3} x\left(3^{n+1}\right)= & v_{1} x\left(3^{n}\right)^{3}+(-1)^{k} v_{1}^{3 a(n)+1} v_{2}^{3 i(n)} \omega_{3}-d_{0}\left(v_{2}^{3^{n+1}+1}\right) \quad n>0, \quad \text { and } \\
x\left(3^{n}(3 t+1)\right)= & x_{n+1}^{t} x\left(3^{n}\right) \quad n \geq 0, t \in Z ; \quad \text { and } \\
x(9 t-1)= & -x_{2}^{t-1} X, \\
v_{1}^{3} x(3(9 t-1))= & v_{1} x(9 t-1)^{3}+v_{1}^{29} v_{2}^{27 t-12} V-d_{0}\left(v_{2}^{3(9 t-1)+1}\right) \quad \text { and } \\
v_{1}^{3} x\left(3^{n+1}(9 t-1)\right)= & v_{1} x\left(3^{n}(9 t-1)\right)^{3}+v_{1}^{3 a^{\prime}(n)} v_{2}^{33^{\prime \prime}(t ; n)+1} \zeta_{2}^{3 n+2} \\
& -d_{0}\left(v_{2}^{3^{n+1}(9 t-1)+1}\right) \quad n>0
\end{aligned}
$$

for the integers $a(k)$ and $a^{\prime}(k)$ for $k \geq 0$ defined in the introduction, and $i(k)$ and $i^{\prime}(t ; k)$ for $k \geq 0$ and $t \in Z$ defined by

$$
\begin{gathered}
i(0)=0, \quad i(k+1)=3 i(k)+1 \\
i^{\prime}(t ; 0)=9 t-4, \quad i^{\prime}(t ; k+1)=3^{k}(9(3 t-1)-1)
\end{gathered}
$$

Proposition 5.2. Let s denote an integer such that $s \equiv 1(3)$ and $s \equiv-1(9)$. Then there exist elements $x(m)$ of $E(2)_{*}(E(2)) /(3)$ for m satisfying $m=3^{k}$ s such that

$$
x(m) \equiv v_{2}^{m} t_{1} \bmod \left(3, v_{1}\right)
$$

and for $n \geq 0$ and $t \in Z$,

$$
\begin{aligned}
d_{1}(x(3 t+1)) & \equiv v_{1}^{2} v_{2}^{3 t} b_{0} \bmod \left(3, v_{1}^{3}\right), \\
d_{1}\left(x\left(3^{n}(3 t+1)\right)\right) & \equiv-(-1)^{n} v_{1}^{a(n)} v_{2}^{3 n+1} t+i(n) \xi \bmod \left(3, v_{1}^{a(n)+1}\right)(n>0) ; \quad \text { and } \\
d_{1}(x(9 t-1)) & \equiv-v_{1}^{10} v_{2}^{9 t-4} b_{0}-v_{1}^{10} v_{2}^{9 t-4} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{11}\right), \\
d_{1}\left(x\left(3^{n}(9 t-1)\right)\right) & \equiv-v_{1}^{a^{\prime}(n)} v_{2}^{i^{\prime}(t, n)} t_{1} \otimes \zeta_{2}^{3 n+1} \bmod \left(3, v_{1}^{a^{\prime}(n)+1}\right)(n>0) .
\end{aligned}
$$

Proof. The first part is proved by induction as follows: First $x(1) \equiv$ $v_{2} t_{1} \bmod \left(3, v_{1}\right)$ follows from the definition. Theorem 4.8 shows the assertion for $x(3)$. Since $d_{0}\left(v_{2}^{3^{n+1}+1}\right) \equiv v_{2}^{3^{n+1}}\left(v_{1} t_{1}^{3}-v_{1}^{3} t_{1}\right) \bmod \left(3, v_{1}^{4}\right)$, we have $v_{1}^{3} x\left(3^{n+1}\right) \equiv$
$v_{1}^{3} 3_{2}^{3 n+1} t_{1} \bmod \left(3, v_{1}^{4}\right)$ for $n>1$ if we assume that $x\left(3^{n}\right) \equiv v_{2}^{3^{n}} t_{1} \bmod \left(3, v_{1}\right)$. Noticing that $x_{n} \equiv v_{2}^{3^{n}} \bmod \left(3, v_{1}\right)$, we see

$$
x\left(3^{n}(3 t+1)\right) \equiv v_{2}^{3^{n}(3 t+1)} t_{1} \bmod \left(3, v_{1}\right)
$$

Second, $x(9 t-1) \equiv v_{2}^{9 t-1} t_{1} \bmod \left(3, v_{1}\right)$ follows from Theorem 4.4. The other part is shown inductively as above.

For the second part, first we get the congruence $d_{1}(x(1)) \equiv v_{1}^{2} b_{0} \bmod \left(3, v_{1}^{3}\right)$ from the fact $d_{1}(\tau)=-t_{1}^{3} \otimes t_{1}+v_{1} b_{0}$.

Next we will prove

$$
d_{1}\left(x\left(3^{n}\right)\right) \equiv-(-1)^{n} v_{1}^{a(n)} v_{2}^{i(n)} \xi \bmod \left(3, v_{1}^{a(n)+1}\right),
$$

inductively. For $n=1$, this follows immediately from Theorem 4.8.
Now suppose that $d_{1}\left(x\left(3^{k}\right)\right) \equiv-(-1)^{k} v_{1}^{a(k)} v_{2}^{i(k)} \xi \bmod \left(3, v_{1}^{a(k)+1}\right)$ with $i(k) \equiv$ 1(3). Then $d_{1}\left(x\left(3^{k}\right)^{3}\right) \equiv-(-1)^{k} v_{1}^{3 a(k)} v_{2}^{3 i(k)} \xi^{3} \bmod \left(3, v_{1}^{3 a(k)+3}\right)$. On the other hand,

$$
d_{1}\left(v_{1}^{3 a(k)+1} v_{2}^{3 i(k)} \omega_{3}\right) \equiv v_{1}^{3 a(k)+1} v_{2}^{3 i(k)}\left(\xi^{3}+v_{2} \xi\right) \bmod \left(3, v_{1}^{3 a(k)+2}\right)
$$

by (5.1), which completes the induction for $x\left(3^{n}\right)$.
Note that $a_{k+1}>a(k)$, where $a_{k}=3^{k}+3^{k-1}-1$. Then we have the congruence for $d_{1}\left(x\left(3^{k}(3 t+1)\right)\right.$) since $d_{0}\left(x_{k+1}^{t}\right) \equiv 0 \bmod \left(3, v_{1}^{a(k)+1}\right)$ for $t \geq 1$ and $k \geq 0$.

Now we turn to the last claim. By Theorem 4.4, we see that

$$
d_{1}(x(9 t-1)) \equiv-v_{1}^{10} v_{2}^{9 t-4} b_{0}-v_{1}^{10} v_{2}^{9 t-4} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{11}\right)
$$

Cubing this we obtain

$$
d_{1}\left(x(9 t-1)^{3}\right) \equiv-v_{1}^{30} v_{2}^{3(9 t-4)} b_{1}-v_{1}^{30} v_{2}^{9(3 t-1)-1} t_{1} \otimes \zeta_{2}^{3^{2}} \bmod \left(3, v_{1}^{33}\right)
$$

On the other hand,

$$
d_{1}\left(v_{1}^{29} v_{2}^{3(9 t-4)} V\right) \equiv v_{1}^{31} v_{2}^{3(9 t-4)} b_{1} \bmod \left(3, v_{1}^{32}\right)
$$

This gives rise to the formula for $d_{1}(x(3(9 t-1)))$.
For $k>0$, we may suppose inductively that

$$
d_{1}\left(x\left(3^{k}(9 t-1)\right)\right) \equiv-v_{1}^{a^{\prime}(k)} v_{2}^{\left.i^{\prime} t ; k\right)} t_{1} \otimes \zeta_{2}^{3^{k+1}} \bmod \left(3, v_{1}^{a^{\prime}(k)+1}\right)
$$

Then, cubing this again, we obtain

$$
d_{1}\left(x\left(3^{k}(9 t-1)\right)^{3}\right) \equiv-v_{1}^{3 a^{\prime}(k)} v_{2}^{3 i^{\prime}(t, k)} t_{1}^{3} \otimes \zeta_{2}^{3^{k+2}} \bmod \left(3, v_{1}^{3 a^{\prime}(k)+3}\right)
$$

Finally, we compute

$$
d_{1}\left(v_{1}^{3 a^{\prime}(k)} v_{2}^{3 i^{\prime}(t, k)+1} \zeta_{2}^{3 k+2}\right) \equiv v_{1}^{3 a^{\prime}(k)} v_{2}^{3 i^{\prime}(t ; k)}\left(v_{1} t_{1}^{3}-v_{1}^{3} t_{1}\right) \otimes \zeta_{2}^{3 k+2} \bmod \left(3, v_{1}^{3 a^{\prime}(k)+3}\right)
$$

and get the assertion for $k+1$, which completes the induction. q.e.d.

The other terms $y(i)$ and $z(i)$ are defined similarly to the corresponding ones in [12]:

$$
y(3 t-1)=v_{2}^{3 t-3} V \quad \text { and } \quad z\left(3^{n} u\right)=x_{n}^{u} \zeta_{2}^{3^{n+1}} \text { for } \quad 3 \nmid u \in Z,
$$

where x_{n} is the element of (2.6). Next we verify the following
Proposition 5.3. For $t, u \in \boldsymbol{Z}$ with $3 \nmid u$,

$$
\begin{aligned}
d_{1}(y(3 t-1)) & \equiv v_{1}^{2} v_{2}^{3 t-3} b_{1} \bmod \left(3, v_{1}^{3}\right), \\
d_{1}\left(z\left(3^{n} u\right)\right) & \equiv \begin{cases}u v_{1} v_{2}^{u-1} t_{1}^{3} \otimes \zeta_{2}^{3} & n=0 \\
u v_{1}^{3} v_{2}^{3 u-1} t_{1} \otimes \zeta_{2}^{9} & n=1 \\
-u v_{1}^{a_{n}} v_{2}^{3^{n-1}(3 u-1)} t_{1} \otimes \zeta_{2}^{3^{n+1}} & n>1\end{cases}
\end{aligned}
$$

6. $H^{1} M_{1}^{1}$

Recall the notation:

$$
k(1)_{*}=F_{3}\left[v_{1}\right] \quad \text { and } \quad K(1)_{*}=F_{3}\left[v_{1}, v_{1}^{-1}\right] .
$$

From Corollary 2.7 we deduce our main theorem:
Theorem 6.1. $H^{1} M_{1}^{1}$ is the direct sum of $k(1)_{*}$-modules A and B. Here A is isomorphic to $K(1)_{*} / k(1)_{*} \oplus K(1)_{*} / k(1)_{*}$, in which each factor is generated by t_{1} and $\zeta_{2} . B$ is the direct sum of cyclic $k(1)_{*}$-modules generated by

$$
x\left(3^{k}(3 t+1)\right) / v_{1}^{a(k)}, x\left(3^{k}(9 t-1)\right) / v_{1}^{a^{\prime}(k)}, y(3 t-1) / v_{1}^{2} \quad \text { and } \quad z\left(3^{k} u\right) / v_{1}^{a_{k}}
$$

for $k \geq 0$ and $t, u \in \boldsymbol{Z}$ with $3 \nmid u$.
Note that a cyclic $k(1)_{*}$-module generated by x / v_{1}^{a} is isomorphic to the truncated polynomial algebra $k(1)_{*} /\left(v_{1}^{a}\right)$.

Proof. By Corollary 2.7 it suffices to show that δ-images of these generators are linearly independent. Notice that

$$
d_{1}(x) \equiv v_{1}^{a} y \bmod \left(3, v_{1}^{a+1}\right) \quad \text { implies } \quad \delta\left(x / v_{1}^{a}\right)=y
$$

for a representative y of a generator of $H^{2} M_{2}^{0}$ (see Theorem 2.2). Propositions 5.2 and 5.3 yield the classification of the set of δ-images of the generators as follows:
(I) $v_{2}^{3 t} b_{0}, v_{2}^{9 t-4} b_{0}+v_{2}^{9 t-3} h_{11} \zeta_{2} \quad(t \in Z)$,
(II) $v_{2}^{3^{n+1} t+i(n)} \xi \quad(n>0, t \in Z)$,
(III) $v_{2}^{i^{\prime}(t ; n)} h_{10} \zeta_{2}, v_{2}^{3^{n-1}(3 u-1)} h_{10} \zeta_{2} \quad(n>0, t \in \boldsymbol{Z}, u \in \boldsymbol{Z}-3 Z)$,
(IV) $v_{2}^{3 t-3} b_{1} \quad(t \in Z)$,
(V) $v_{2}^{u-1} h_{11} \zeta_{2} \quad(u \in \boldsymbol{Z}-3 Z)$.

Here we remark that the cocycles $\zeta_{2}^{3^{n}}, n \geq 1$, represent the same cohomology class ζ_{2} in $H^{1} M_{2}^{0}$. Every element in the same class has an distinct power of v_{2}. It is clear that the elements classified in different classes are linearly independent and so are δ-images of the generators. q.e.d.

References

[1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, 1974.
[2] V. Gorbounov, S. Siegel and P. Symonds, The cohomology of the Morava stabilizer group S_{2} at the prime 3, preprint.
[3] H-W. Henn, On the $\bmod p$ cohomology of profinite groups of positive p rank, preprint.
[4] M. Hazewinkel, A universal formal group law and complex cobordism, Bull. A.M.S. 81 (1975), 930-933.
[5] H. R. Miller and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov's E_{2}-term, Duke Math. J. 44 (1977), 433-447.
[6] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[7] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
[8] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
[9] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[10] K. Shimomura, Non-triviality of some products of β-elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349-353.
[11] K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, preprint.
[12] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
[13] K. Shimomura and A. Yabe, On the chromatic E_{1}-term $H^{*} M_{0}^{2}$, Topology and Representation Theory, Friedlander and Mahowald Ed., Contemp. Math. 158 (1994), 217-228.
[14] K. Shimomura and A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261289.
[15] R. M. Switzer, Algebraic Topology-Homotopy and Homology, Springer-Verlag, 1975.
[16] N. Yagita, Small subalgebras of Steenrod and Morava stabilzer algebras, preprint.

> Department of Mathematics,
> Faculty of Science, Hiroshima University, and
> Faculty of Education, Tottori University

[^0]: 1991 Mathematics Subject Classification. 55Q10, 55T99, 55Q45.
 Key words and phrases. The chromatic spectral sequence, The Adams-Novikov spectral sequence, $\bmod 3$ Moore spectrum, The Bousfield localization.

