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ABSTRACT. We obtain two sufficient conditions for a Riemann surface to be maximal.

One is the condition Γh0 Π Γh% Φ {0} and the other is the existence of a function which

has the special behavior in the neighborhood of the ideal boundary.

1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping / of
R into a Riemann surface R, then we call R, or more precisely the pair (R, /),
an extension of R. According to this definition R itself is an extension of
R. An extension (R, i) is called a proper extension if R\ι(R) Φ 0. A Riemann
surface is called maximal if it has no proper extensions. An extension R of
R is called a maximal extension if R is a maximal Riemann surface. On
the maximality of Riemann surfaces many papers have been written. Bochner
[3] proved that every Riemann surface has a maximal extension. We say
that a Riemann surface R has a unique maximal extension if all maximal
extensions of R are conformally equivalent to one another (cf. [6]). Clearly
every maximal Riemann surface has a unique maximal extension. A closed
subset £ of a Riemann surface R is said to be an Λ/p-set if every compact
subset of φ(UΓ\E) is an ΛΓ̂ -set in the complex plane for every local chart
(U, φ) on R; see [10, p. 255] for an ND-set Renggli [7] determined the class
of Riemann surfaces which have a unique maximal extension.

THEOREM A [7, Theorem 2]. A Riemann surface R has a unique maximal
extension if and only if R is conformally equivalent to some R\E9 where R is
a maximal Riemann surface and E is a closed ND-set in R.

By a neighborhood of the ideal boundary of R we mean the exterior of
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a compact set of R. A connected component V of a neighborhood of the
ideal boundary is called an end if it is not relatively compact. Let D be a
simply connected regular subregion of R, and consider a conformal map from
D onto the unit disc U in the complex plane. Then the relative boundary
dD corresponds to a relatively open subset of dU. We denote by / the
complement of the image set of dD with respect to dU. We call D a. disc
with crowded ideal boundary if / is totally disconnected and is not an iV -̂set.
Recently Sakai [8] has obtained a new characterization of non-maximal
Riemann surfaces.

THEOREM B [8, Theorem 4.1]. Let R be α Riemann surface. Then R is
not maximal if and only if one of the following conditions holds for R.

(a) R has a planar end.
(b) R has a border.
(c) R has a disc with crowded ideal boundary.

In [2, V.14F] it is pointed out that the condition Γh0(R)Γ)Γh%(R) = {0}
seems to be indicative of a strong boundary, where Γh0(R) is a closed subspace
of the space of square integrable harmonic differentials (see the next section).
In this paper we shall consider the case Γh0(R)Γ\Γh%(R) Φ {0}. We know by
Accola ([1, Lemma 3 on p. 158]) that if R is a bordered Riemann surface
with boundary y, not necessarily compact, then every ωeΓh0(R) can be
extended to be harmonic on ΛUy and the extended ω is zero along y. If
ω* also belongs to Γh0{R)9 then ω* is also zero along y. Hence ω = 0 and
we have shown

PROPOSITION 1. // Γh0(R)ΠΓh%(R) Φ {0} holds for R, then R does not
have a border.

We may expect that the condition Γh0(R)Γ\Γh%(R) Φ {0} gives us some
information about the ideal boundary of R. We shall show in Theorem 1
that R of finite positive genus belongs to the class OAD if and only if
Γh0{R)Γ\Γh%(R) φ {0} holds. In the paper [4] we have shown that there exists
a Riemann surface of infinite genus which satisfies the condition Γh0(R)Γ\
Γh%(R) Φ {0} but does not belong to the class OAD; see Lemma 3 and [4,
Proposition 1]. Hence the information is not about the "scale" of the ideal
boundary, but the "complexity" of the ideal boundary in case of infinite genus.
We use Sakai's characterization of non-maximal Riemann surfaces to show
in Theorem 2 that if R has no planar ends and satisfies the condition Γh0(R) Π
Γh%{R) Φ {0}, then R is maximal.

In Theorem 3 we shall obtain another sufficient condition for a Riemann
surface to be maximal. It will be shown that Proposition 6.1 in [8] follows
from Theorem 3.



On maximal Riemann surfaces 387

2. Preliminaries

We recall some definitions of first order differentials on R. A differential

ω = a(x, y)dx + b(x, y)dy is called real if all local coefficients a(x9 y) and b(x, y)

are real-valued functions and called of C00 class if α(x, y) and b(x, y) are so.

We say that ω is square integrable if local coefficients are measurable and

I (a2 + b2)dxdy = ί
JR JR

is finite, where ω* = — 6(x, y)dx + α(x, ;y)</;y is the conjugate differential of ω.

The positive square root of this integral is denoted by | |ω | | R , and we call it

the norm of ω. Let Γ = Γ(R) be the space of all real square integrable

differentials on R. We know that Γ is a Hubert space with the inner product

•ί.(ωl9 ω2) = (ωu ω2)R = \ ωx Λ ω2*.

Set

Γ«(R) = {df; \\df\\R < oo, / e C°°(K)} and Γe?(Λ) = {<*/; / e Q°(Λ)},

where C°°(K) is the class of infinitely differentiable functions on R and CQ(R)

is the class of infinitely differentiable functions with compact support on R.

Denote by Γe(R) and Γe0{R) the closures of Γe°°(R) and Γe%(R) in Γ, respec-

tively. We denote by Γh = Γh{R) the subspace of Γ(R) which consists of

harmonic differentials. We introduce important subspaces of Γh. Let Γhe(R)

(resp. Γhse(R)) be the subspace of Γh(R) whose elements ω are exact (resp.

semiexact) on R, that is

ω = 0 for every (resp. every dividing) 1-cycle y on R.

We have the orthogonal decompositions

Γ' = Γ -+• Γ -f- 7"** and Γ ^ Γ \ Γ

(cf. [2, V.10A, 10B, and 11G]).

Let /^ be a closed subspace of Γh. The orthogonal complement of Γy

in Γh is denoted by / / . Set Γy* = {ω*; ω eΓy}. Since (ω 1 ,ω 2 ) = ( ω *» ω *)

holds, we have ( Γ / ) 1 = (Γ/)*. Then we shall write it simply Γy*\ We need

the subspace of harmonic measures Γhm and Γh0; see [2, V.15C, 10B, and

14C] for definition. By [2, V.15D and IOC] we have Γhm = Γh%
λ and Γh0 =

Γh*
λ. By definition it follows that Γh => Γhse 3 Γhe and Γhe => Γhm. We have

îsβ ^ ^io ^ Γhm because they are orthogonal complements of 7 ,̂*, Γh*, and

Γh*e, respectively. See also [2, V.15E]. We summarize the inclusion relations
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here:

Naondo

=> Γhse :

u

JIN

=> Γhe

u

For a given 1-cycle c on R and a closed subspace Γy oi Γh there exists

uniquely a period reproducing differential σy(c) in Γy such that

ί ω = (ω, σy(c))R for every ωe Γy.

We are interested in σh(c)9 σhse(c), and σΛ0(c). We consider the set

{σhse(Aj), σhse(Bj)}9 where {Aj9 B}) is the canonical homology basis for R

modulo dividing cycles. We note that every ωeΓhe satisfies

(ω, σhse(Λj))R = 0 and (ω, σhse(Bj))R = 0.

Hence the set {σhse(Aj% σhse(Bj)} is included in ΓhseΠΓh%. If σeΓhseΠΓh% sat-

isfies relations (σ, σΛse(4/)) = (σ, σhse(Bj)) = 0 for every j , then σ belongs to Γhe.

Hence it is equal to zero. This shows that {σhse(Aj), σhse(Bj)} spans ΓhseΓ\Γh%.

Moreover σh(c), σhse(c), and σh0(c) have the following property:

ί σh(c)* = ί σhse(c)* = ί σh0(c)*
Jγ Jy Jy

= 7 x c for 1-cycle y

where y x c is the intersection number of 7 and c (cf. [11, Theorem 4] and

[2, V. Theorem 21G]).

REMARK. In [11, Theorem 4] the period reproducing differential σχ(c)*

in a closed subspace Γ*1 is defined by

ω = (ω, ̂ (c)*)^ for every ω e

Then σΛ(c), σhse(c) and σΛ0(c) in this paper are equal to σ {0}(c)*, σhm(c)* and

σΛe(c)* in [11], respectively.

If the differential dh of a function ft of the class C 1 is square integrable,

then we call the integral $R(hl + hy)dxdy = \\dh\\R the Dirichlet integral of h

and say that ft has a finite Dirichlet integral. Let HD(R) be the class of

real-valued harmonic functions on R with finite Dirichlet integral and KD(R)

be the subclass of HD(R) whose elements u have the property
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du* = 0 for every dividing 1-cycle y on R.

Let AD(R) be the class of analytic functions on R with finite Dirichlet integral.

We denote by 91AD(R) the class of real-valued harmonic functions u such

that there is a single-valued conjugate harmonic function u* of u and u + iu*

belongs to AD(R). By the Cauchy-Riemann equation we have

du* = —uydx + uxdy = (u*)xdx + (u*)ydy = d(u*).

It is easily seen that u e 9{AD(R) if and only if u e HD(R) and

du* = 0 for every 1-cycle 7 on R.

The relations between subclasses of HD(R) and subspaces of Γh(R) are the

following:

{du;ueHD(R)} = Γhe(R)

{du; u e KD(R)} = Γhe(R) Π ΓΛJe(K)

{rfu; u

We say that a Riemann surface K belongs to the class OAD (resp. OKD) if and

only if AD(R) or equivalently 9L4D(.R) (resp. KD(R)) consists of only constant

functions.

Let ω be a real differential defined in a neighborhood of the ideal bound-

ary of R and Γχ be any closed subspace of Γhe. Then ω is said to have

/^-behavior if the following representation holds in some neighborhood of

the ideal boundary of R:

ω = ωx + df,
co* = ω2 + </0,

where ωx e/^, ω2eΓ*1, f and # are C00-functions on R such that df and

d<7 belong to Γe0. We say that a function u has /^-behavior if du does. We

know by [11, Theorem 4] that σhse(c)* (resp. σh0(c)*) has /^m- (resp. Γhe-)

behavior.

REMARK. Suppose that ω is defined in a neighborhood V of the ideal

boundary of R and has /^-behavior.

1) The above representation may not hold in V9 but it holds in some

neighborhood V c V of the ideal boundary. Since ω and ω* are closed

differentials in V\ from WeyΓs lemma it follows that ω is harmonic in V

(cf. [2, V.9A and 9B]).
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2) Let Vo be a neighborhood of the ideal boundary which is a subset
of V. It is easily seen that ω\Vo also has Γj-behavior.

The following basic properties for special /^s will be used later.

LEMMA 1. Let V be a neighborhood of the ideal boundary of R such that
the relative boundary consists of a finite number of mutually disjoint analytic
Jordan curves. Let u be a harmonic function on V=VUdV. Denote by
HD(V) the set of harmonic functions on V with finite Dίrichlet integral over
V and set KD(V) = {ve HD(V); dv* is semi-exact in V}.

(1) If u has Γhe-behavior, then

•ί.
// u has Γhm-behavior, then

(1-2) (du,dv)v=\ udv* for every v e KD(V).
JdV

(2) For every h e H(dV), there exist u0, uίe KD(V) such that u0 = u1 = h
on dV, u0 has Γhe-behavior and u1 has Γhm-behavior, where H(dV) is the class
of harmonic functions defined in some neighborhood of dV.

See [11, Propositions 1 and 2] for the assertions (1-1) and (1-2), and
[11, Theorem 6 and p. 203] for (2).

Let (R9 ή be an extension of R. We denote by ι*(ω) the pull back of
a differential ώ on R induced by i. For a closed subspace Γy(R) of Γh(R)
we set i *(Γy(R)) = {i #(ώ); ώ e Γy(R)}. It is easily seen that i #(ώ*) = i #(ώ)*
and i *(du) = d(u o ή hold for ώ e Γh(R) and u e HD(R).

(1-1) (du9 dv)v = vdu* for every v e HD(V).
lev

3. Results

We know that if R is of finite genus and belongs to the class OAD then
R has a unique maximal extension. (See [6].) In this case a maximal exten-
sion of R is a compact Riemann surface R of the same genus as that of R
and we may assume that R is a subregion of R such that R\R is an iVD-set;
see [9, II.15A]. We say that a Riemann surface R has (WO-property if

holds; see [5]. We obtain the next theorem.

THEOREM 1. Let R be a Riemann surface of finite positive genus. Then
the following properties are equivalent:
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(a) ΓΛO(Λ)nΓA*o(K)#{0} holds.

(b) R belongs to the class OAD.

(c) R has (W)-property.

Furthermore if Re OAD and R is the unique maximal extension of R9 then

Our results in case of infinite genus are Theorems 2 and 2'.

THEOREM 2. Let R be a Riemann surface of infinite genus having no

planar ends. If R satisfies the condition Γh0(R)ΠΓht(R) Φ {0}, then R is

maximal.

THEOREM 2'. Let R be a Riemann surface of infinite genus. If R satisfies

the condition Γh0(R)ΠΓh%(R) Φ {0}, then R has a unique maximal extension and

the following relation holds for a maximal extension (R, i) of R:

i * (ΓM(R) Π Γh*0(R)) = Γh0(R) Π Γh%(R).

In particular Theorem 2' is a generalization of the last part of Theorem 1.

We obtain

COROLLARY 1. // R satisfies Γh0(R)Γ\Γh%(R) Φ {0}, then any extension

(R, i) of R satisfies

i# (Γh0(R) Π Γh*0(R)) = Γh0(R) Π Γh*0(R).

We have another sufficient condition for R to be maximal.

THEOREM 3. Let R be a Riemann surface of infinite genus having no

planar ends. Suppose that there exists a harmonic function u on a neighborhood

V of the ideal boundary of R such that u is non-constant in each component

of V and has Γhe- and Γhm-behaviors simultaneously. Then R is maximal.

The next is a generalization of Theorem 3.

THEOREM 3r. Let R be a Riemann surface of infinite genus. Suppose that

there exists a harmonic function u on a neighborhood V of the ideal boundary

of R such that u is non-constant in each component of V and has Γhe- and

Γhm-behaviors simultaneously. Then R has a unique maximal extension and u

is extended over a maximal extension R of R so that the extended one has

Γhe(R)- and Γhm(R)-behaviors simultaneously.

Let P e R and z be a local parameter in a neighborhood of P. There

exists the principal function p0 (resp. px) with respect to the singularity 9l(l/z)

at P and the operator L o (resp. (β)Li); see for example [9, Chapters I and II].

We say that R belongs to the class £^D if p0 = Pi f°Γ s o m e Pe R a f l d z
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This class Sf£D includes OKD. In fact by [10, II.2E] R belongs to the class

OKD if and only if p 0 = Pi f°Γ every P e R and every local parameter about

P. We know by [11, Theorem 6] that every principal function with respect

to L o (resp. (Q)LX) has Γhe (resp. ΓΛm)-behavior. If K e ^ , then p o ( = P i )

satisfies the condition of Theorem 3. Now we have

COROLLARY 2 [8, Proposition 6.1]. Let R be a Riemann surface having

no planar ends. If R belongs to the class £^D, then R is maximal.

By Lemma 1 (2) there exist many principal functions other than p0 and

pγ. For example σhse(Aj)* and σh0(Aj)* are exact in R\AJm Then harmonic

functions $σhse(Aj)* and ]σh0(Aj)* in R\Aj have Γhm~ and Γhe-behaviors, respec-

tively. Hence Theorem 3 is a generalization of Sakai's result [8].

4. Proofs

If JR has a planar end G whose relative boundary dG consists of one

analytic Jordan curve, then G is mapped conformally into the unit disc

U = {\z\ < 1} so that dG corresponds to dU. Denote by E the inner bound-

ary of the image of G, which is considered as a realization of the ideal

boundary of G (cf. [9, I.8E]). We show

PROPOSITION 2. Let R, G, and E be as above. If Γh0(R)ΓiΓh%{R) φ {0}

holds, then E is an ND-set.

PROOF. We shall use the following lemma.

LEMMA 2 [5, Lemma 4]. Let R be a Riemann surface of finite genus.

Suppose that there exists a non-constant harmonic function u in a neighborhood

of the ideal boundary of R which satisfies the relations (1-1) and (1-2) in

Lemma 1. Then R belongs to the class OAD.

It suffices to show the existence of u. By assumption we can take a

non-zero ω e Γh0(R) Π Γh%(R). This ω is semi-exact on R9 and hence exact on

G. Thus we can choose u e HD(G) such that du = ω. Every v e HD(G) can

be extended over R\G as a C00-function such that v = 0 in the exterior of

some neighborhood of δG, which will be still denoted by v. Since dv belongs

to Γe°°(R) cz Γe(R) and Γe(R) = Γhe(R) + Γe0(R% it follows that (ω, dv)R = 0.

Now we have

(du, dv)G = (ω, dv)G = (ω, dv)R - (ω, dv)R^G = 0 + vω* = vdu*.
JdG JdG

This shows that u satisfies the relation (1-1).
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Moreover if v e KD(G), then the conjugate harmonic function υ* of υ

belongs to HD(G). Since ω* is also a non-zero element in Γh0(R) Π Γh%(R),

by the above equality we have

(du, dv)G = (du*, dv*)G = - I (v*)du.
JdG

From integration by parts it follows that

(du, dv)G = udv*.

This shows that u satisfies also the relation (1-2). Since G is a neighborhood

of the ideal boundary of a Riemann surface S = t\E, S belongs to the class

OAD by Lemma 2 so that E is an ΛΓD-set. •

We recall the following result.

THEOREM C [5]. Let R be a Riemann surface and σhse(c) (resp. σh0(c)) be

the Γhse (resp. Γh0) period reproducing differential for a 1-cycle c. Then the

following properties are equivalent:

(a) R has (W)-property.

(b) \\σhse(c)\\ = ||<7A0(c)|| (equivalently σhse(c) = σh0(c)) for every 1-cycle c.

Furthermore, if R is of finite positive genus, then the next properties are

also equivalent to (a):

(c) R belongs to the class OAD.

(d) ||σfaβ(c)|| = ||σh0(c)|| (equivalently σhse(c) = σh0(c)) for some non-dividing

1-cycle c.

By this theorem if R has (WO-property, then the set {σhse(Λj), σhse(Bj)} is

included in Γh0. Hence ΓhseΓ)Γh% which is spanned by {σhse(Aj), σhse(Bj)} is

included in Γh0 and we have ΓhseΓiΓh% = Γh0Γ\Γh%. Conversely if Γhsef)Γh% =

Γh0 Π Γh% holds, then every Γhse period reproducing differential σhse(c), which

is represented as a finite linear combination of {σhse(Aj), σhse(Bj)}, belongs to

Γh0. This means that σhse(c) is also Γh0 period reproducing differential. By

the uniqueness of the period reproducing differential σhse(c) = σh0(c) holds.

Therefore R has (VF)-property. We have shown that R has (P^)-property if

and only if Γhse Π Γh% = Γh0 Π Γh*.

Suppose that a non-planar surface R has (^-property. Since we have

$A.σhse(Bj)* = Aj x Bj = 1, σhse(Bj) is not zero. Then Γh0Γ\Γh% contains a non-

zero element σhse(Bj). Hence R satisfies the condition Γh0 Π Γh% Φ {0} so that

(^-property implies the condition Γh0ΠΓh% Φ {0}.

We have hence shown
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LEMMA 3. // a non planar Riemann surface R has (W)-property, then

ΓhO(R)Γ\Γh*o(R)Φ{0} holds.

REMARK. In general the converse is not true. We recall an example of

a Riemann surface R on which there exist non-dividing 1-cycles cx and c2

with the property

(see [4, Example 2]). The Riemann surface R satisfies the condition Γh0{R)Γ\

Γh%(R) Φ {0} because a non-zero element σhse{cγ) = σh0(cx) belongs to Γh0(R)Π

Γh%(R). But R does not have (W>ρroperty.

We now give

PROOF OF THEOREM 1. The equivalence (b)o(c) follows from Theorem

C and by Lemma 3 (c) implies (a). The assertion (a)=>(b) follows from

Proposition 2.

To prove the last part of Theorem 1 suppose that R belongs to the

class OAD. Then there exists a compact Riemann surface R of the same genus

as that of R such that E = R\R is an ND-set By [6] R is a unique maximal

extension of R. Let Ro be a regular subregion of R defined in [9, I.8E]. For

every ω e Γh0(R)Γ\Γ£0(R), ω and ω* are exact on R\R0\E. Hence an analytic

function J(ω + iω*) with finite Dirichlet integral can be extended to be analytic

on R\R0. Therefore ω can be extended to be harmonic on R\R0 and the

extended ω belongs to Γh(R). We obtain Γh0(R) Γ\ Γh%(R) c= Γh(R)\R. Now we

prove the inverse inclusion relation. Since R is of finite genus and R e OAD,

R belongs to the class OKD; see for example [9, II. 15A]. Note that KD(R)

consists of only constant functions if and only if Γhe(R) Π Γh*e(R) = {0}. On

the other hand by the orthogonal decomposition Γhse = Γh0 + (Γh*e Π Γhef we

know that Γhe(R)Γ)Γh*e(R) = {0} if and only if Γhse(R) = Γh0(R). Thus R belongs

to the class OKD if and only if Γhse(R) = Γh0(R) holds. Let ώ be an arbitrary

differential in Γh(R). Since ώ\R is semiexact in R9 it belongs to Γhse(R) = Γh0(R).

If we consider the conjugate differential ώ*, then we see that ώ*|R is an

element of Γh0(R\ too. Hence we have ώ\R e Γh0(R)Γ\Γh%(R) and conclude

ΓH(R)\R ^ Γho(R)ΓlΓh%(R). This completes the proof. •

Let (R, ή be an extension of R and Ht(R) (resp. H^R)) be the homology

group of R (resp. JR). Then the mapping i maps a closed curve on R to a

closed curve on R. Thus i induces a natural homomorphism i* of H^R)

into HX(R). Since / is injective, the image set {ι*(Aj\ ι*(Bj)} of the canonical

homology basis {Aj9 Bj} for R modulo dividing cycles is linearly independent.

To prove Theorems 2 and 3 we need the following lemma.
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LEMMA 4. Let R be a Riemann surface of infinite genus having to planar

ends. If R is not maximal, then there is an extension (R9 ή of R having the

following properties:

(1) R\ι(R) is a set of two dimensional Lebesgue measure zero.

(2) R has a border.

(3) Every dividing cycle on R is mapped to a dividing cycle on R by i*

and {ι*(Λj), ι*(Bj)} is the canonical homology basis for R modulo dividing cycles.

PROOF. By Theorem B we know that R has a border or a disc with
crowded ideal boundary. If R has a border, then R itself is an extension of
R which satisfies (1), (2), and (3).

Suppose that R has a disc D with crowded ideal boundary. Let φ be
a one-to-one conformal mapping of D onto the unit disc U and / be the
complement of the image set of dD with respect to δU. Let ψ be a Mόbius
transformation which maps U onto the upper half plane H with ψ(I) = 7 a dH.
Let if be the family of univalent functions F on C\7 with the following expan-
sion around oo:

By [10, VI. Theorems 2B and 2C] there exists a unique function Pχ(z) =
Pι{z\ oo) (resp. P0(z) = P0(z; oo)) which minimizes (resp. maximizes) 9tα[F] in
Ψ* and Px (resp. Po) maps C\7 onto a vertical (resp. horizontal) slit plane.
Since Pγ{z) has the expansion z + a\_P{\jz + around oo, we conclude Pχ{z) =
Pγ(z) by the uniqueness of Px. Let zoeH. If \zo\ is sufficiently large, then
from the expansion of Px it follows that P1(z0)eH. For any z e H we join
z with z0 by a segment 1ZQZ in H. By the univalency of Pt and the property
P1(z) = P1(z) the image set Pi(/ZoZ) does not intersect the real axis. Hence
Pχ(lZoZ) is included in either the upper half plane or the lower half plane.
Since Pι(z0)eH, Pi(lZQZ) is included in the upper half plane H and we con-
clude P^EH. Therefore we obtain P^H) = P j ^ / j n f l . For the same
reason we have P0(H) = P0(C\I)Γ\H and C\P0(H) = (C\P0(C\7))U(C\H).

We shall show that P0(H) = z. Suppose that C\P0(C\7) contains a point
zx E H. The connected component Cί of C\P0(C\7) which contains zx

is a horizontal slit or a point. Then Cx is included in H. Set En =
{z; dist(z, C\P0(C\J)) < l/ή} for n e N . Let E\ be the connected component
of En which includes Q . Since Π ^ E * = Cl9 there is a number n0 E N such
that Elo a H. Then Int £*o ( = the interior of E*o) and C\£*o are mutually dis-
joint open sets such that (Int EjJ U (CN^) 3 C\P0(H) = (C\P0(C\7))U(C\fl)
and that (C\P0(H)) Π (Int £^o), (C\Po(H))Π(C\£io) are not empty. This shows
that C\P0(H) is not connected, which contradicts the simply connectivity of
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P0(H). Therefore P0(H) must coincide with H. Hence P0(z) is a Mόbius

transformation which preserves H. Since Po fixes oo and its expansion around

oo has a vanishing constant term, we conclude P0(z) = z. Since 7 is not of

class ND9 by [10, VI. Theorem 2D] we have Px(z) Φ P0(z) = z. Therefore we

see that Pt(H) φ H. By the same arguement as above we can show that

every connected component of the complement of Λ(C\7) is either a point

on the real axis or a vertical slit which intersects the real axis. Let I be

one of the vertical slits not degenerating to a point. We construct a Riemann

surface R as the union of R and H\l by identifying peD with (P1oψ o ψ)(p)e

H\l. There is a natural inclusion mapping i of R into R. Then (R, ή is an

extension of R. It is easily seen that R satisfies properties (1) and (2).

Let y be a piecewise analytic dividing curve on R. If γ Π D = 0 , then

it is clear that ι(y) is dividing also on R. We consider the case when y

intersects D. Since dD and y are piecewise analytic, y Π D consists of a finite

number of components and H\l\ι(y) consists of a finite number of components

which are simply connected regions with piecewise analytic boundary. If

R\ι(y) is connected, then there exist points zl9 z2eR\y which are not in the

same component of R\y and a piecewise analytic arc y which joins zx = ι(zx)

with z2 = ι(z2) in R\ι(y). It is easily seen that yΓ\(H\l) is not empty and

consists of a finite number of components, γl9 . . . , yn. Since each endpoint

of ty is zl9 z 2, or some point on dH\I, we can deform y} to a piecewise

analytic arc yj on Pι(H) whose endpoints are equal to those of ty continuously

in H\l\ι(γ). If we replace fy by γj9 then we obtain a new piecewise analytic

arc y* on R\γ which joins zx with z2. But this is a contradiction. Therefore

y is a dividing curve on R. Since every dividing cycle is homologous to a

finite linear combination of piecewise analytic dividing curves, we deduce that

/* maps dividing cycles on R to those on R.

Let c be a piecewise analytic Jordan curve on R. By the same deforma-

tion as above we can show that c is homologous to some piecewise analytic

Jordan curve c on R. Then c is homologous to a finite linear combination

of {ι*{Aj)9 ι*(Bj)} modulo dividing cycles. Hence {ι*(Aj\ ι*{Bj)} is the canoni-

cal homology basis for R modulo dividing cycles. This completes the proof.

D

PROOF OF THEOREM 2. Suppose that R is not maximal. By Lemma 4

there exists (R91\ an extension of R, which satisfies conditions (1), (2), and

(3). Let ω be a non-zero element in Γh0(R) Π Γh%(R). Then Lω(σ) = (i #(σ), ω)R

is a bounded linear functional of σ e Γhse(R). Hence there exists a unique

ώ G Γhse(R) such that Lω(σ) = (σ, ώ)χ for every σ e Γhse(R). We shall show

that ώ belongs to Γh0(R)Γ\Γh%(R). Since every u e KD(R) satisfies (dύ*, CO)R =

(d(ϋoή*9ω)R = 0f we deduce that ώ belongs to Γh0(R) from the orthogonal
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decomposition Γhse(R) = Γh0(R) + Γhse(R) Π Γh*(R). Similarly we obtain

LJdύ) = (d(ϋ o ι\ ω)R = 0 for every ύ e HD(R) and so (dύ, ώ)^ = 0. Hence ώ

belongs also to Γhl(R). It is shown that ώ e Γh0(R) Π Γh%(R).

If we show that ώ φ 0, then Γh0(R) Π Γh%(R) Φ {0}. By Proposition 1 R

does not have a border. This contradicts the property (2) of R in Lemma 4.

Now we show that ώ is not 0. By Lemma 4 (1) and (3) we see that

ιφ(Γhse(R)ΠΓhUR)) is a (closed) subspace of Γhse(R) Π Γh*e(R). Let π be the

orthogonal projection of Γhse(R) Π Γh*e(R) onto /#(ΓΛ s e(Λ)ΠΓh?eW). We re-

mark that π(σ*) = π(σ)* holds for every σ e Γhse(R) Π ΓΛJe(Λ), because π(σ*) -

π(σ)* satisfies the equation

(π(σ*) - π(σ) , τ)Λ = (π(σ*), τ)Λ - (π(σ)*, τ)R

= 0

for every τ 6 z # J Γ Λ s ^ ) Π Γht(R)).

If σ G Γhse(R) Π 7 ,̂Jβ(ί?) and c is a non-dividing 1-cycle of R, then we have

JH'
where c = ι*(c). On the other hand

£*-<*.*
holds, where σ f e e(c)e/i s e(Λ)nΓΛJ(Λ) is ΓΛse(Λ) period reproducing differential

for a 1-cycle c. By the uniqueness of the period reproducing differential in

ι#(Γhse(R)ΠΓh*e(R)) we obtain π(σhse(c)) = ι#(σhse(c)). If we restrict the linear

functional Lω to Γhse(R)f)Γ*e(R), then

holds for every σ e Γhse(R) Π Γh*e(R). Since π(ω) and ιφ(ώ) belong to

i *(Γhse(R) Π Γh*se(R)), we conclude π(ω) = z #(ώ). Since ω e Γh0(R) Π ΓΛS(K) and

Γh*(R) = /^o W , ω does not belong to Γh*(R). Hence there exists a non-

dividing 1-cycle γ such that

= ω * = α
Jy

0,



398 Naondo JIN

where σhse(y) is Γhse(R)-peήod reproducing differential for y. We construct a

complete orthonormal system {φn} of Γh*e(R) Π Γh0(R) from {σhse(Aj)*> σΛse(B, )*}

by Schmidt's orthogonarization. Expand ω* = Σ£=iα*A> where αn = (ω*, φn)R.

The orthogonal projection of ω* is equal to Y£=\anπ(φn\ so that

( ) () ξ B #
n = l

Set Aj = z*(>4j), 5̂  = ι*(Bj\ and y = /*(y). Let us recall the relations

Jv

and

given in Section 2. The same is true for Bj. Since ^Π is a finite linear

combination of {σhse(Aj)*9 σhse(Bj)*} which is denoted by ^ j )

^)*}, we have

= .Σ WKΦΛAjn *UV))* + ft(n)(^(UW5 σhse(y))R}

We conclude that

' #(r7ί*\ =I _
Jγ ' ' \n=lί- -ί

= 1 Σ απ^». σ f e e (r) l

1= I co* = α # 0.

Now it is shown that ώ Φ 0 and it deduces that R is maximal. •

In order to prove Theorem 3, we need the following.
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LEMMA 5. Let R be a bordered Riemann surface with boundary y and
(V, φ) be a parametric half disc about a point on y (cf [2, II. 7C]). Suppose
that a C00 function f on R whose differential df belongs to Γe0(R) is harmonic
in V Π R. Then f is extended to be constant on yf)V.

PROOF. Set U = {z; \z\ < 1}, U+ = {z; \z\ < 1, 3z > 0}, U' = {z; \z\ < 1,

3z < 0} and / = {z; \z\ < 1,3z = 0}. A parametric half disc {V, φ) satisfies
φ(V) = {z; \z\ < 1, 3z > 0} and φ(γ Π V) = I. The local representation of / in
(V, φ) is also denoted by /. Set g(z) = — /(z) for z in U~ and

Uf in U+

dg in U-.

If we can prove that ω is a harmonic differential in U, then there exists a
harmonic function u in U such that du = ω. We have

g(z) + C in 17"

with constants C and C. Consider a harmonic function v(z) = «(z) + M(Z) in
U. Then we have v(z) = /(z) + C + g(z) + C = C + C in U+ and υ = C + C
in U. We conclude

lim u(z) = — - —
u+5z->i 2

so that

C -C
lim /(z)=

Thus / can be extended continuously over / and the extended / is a constant
function on / = φ(y Π V).

Now we shall show that ω is harmonic. Since df is an element of
Γe0(R), there is a sequence {hn} in Q°(K) such that lim,,^ \\df- dhn\\R = 0.
The local representation of hn in (F, φ) is also denoted by hn. Set

KM =
hn(z) in l/+

-hn(z) in I/".

Since every hn vanishes in some neighborhood of /, {hn} is a sequence in
C°°(IO which satisfies limn^^ \\ω — dhn\\u = 0. Let ^(z) be an arbitrary func-
tion in Q°(l/). We have (ω,dφ*)v = limn^o0(dhn,dφ*)u = 0. On the other
hand

(ω, dφ)υ = {df dφ)u+ + (A/, d ^ - = (df dφ)u+
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holds, where φ(z) = φ(z) - φ(z) in U. Set 17/ = {z; |z| < 1, 3z > 5} for δ > 0.
From here we use the same argument as in [2, V.13B]. We note

(df9 dφ)u+ = lim (df9 dφ)Ui+ = lim ί I dφ Λ d/
<5->0 «5->0 J J C7/

= lim { - \ \ φΔfdxdy + ί φdf*\.
<5-0 I J Jut JdUt J

Since / is harmonic, we have

(df dφ)u+ = -l im φ(x + iδ)fy(x + iδ)dx.

Hence for any ε > 0 there is a positive number δQ such that if 0 < y < δ0 then

(df dφ)u+ - ε < - φ(x + iy)fy(x + iy)dx < (df dφ)u+ + ε

holds. Integrate by y from 0 to δ, δ < δ0. We have

φfydx<δ{(dfdφ)u+ + ε}

φfydx < (df, dφ)u+ + ε.

φfydx.

Ψ)u+ - e/ ^

and

(df dφ)u+ - ε <

Therefore we have

(df,dφ)u+ =-lim- dy
δj

Since φ(x) = 0 on the real axis and φeC£(U), we have an estimate
\φ(x + iy)\ < My with constant M. We obtain

i Γδ Γsfi^y5-

0Jo j-yϊ^ ϊ
τ \ dy\ My\fy\dx<\
dJo J - y ϊ ^ Jo J-yr1^

0 J-VΪ^ / \Jθ J-JΪΞ

M\fy\dxdy

<M

<M(2δ)V2\\df\\R.

\fy\
2dxdy

1/2

This shows that (ω, dφ)v = 0 for all φ e C^(17). By Weyl's lemma we conclude
that ω is a harmonic differential. •

Now we show
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PROOF OF THEOREM 3. We may assume that dV consists of a finite

number of mutually disjoint analytic Jordan curves and u is harmonic on

dV too.

Assume that R is not maximal. Let (R, ή be an extension of R satisfying

properties (1), (2), and (3) in Lemma 4. Set V = R\ι(R\V). By Lemma 1

(2), there exist ύ0 and ύx e KD(V) such that ύ0 and ύ1 are equal to u o Γ1

on dV and u 0 (resp. MX) has Γhe(R) (resp. /^m(i?))-behavior.

Since R has the property (3) in Lemma 4, u0 o ι and ύί o ι also belong

to KD(V). Since u has Γhe(R)- and ΓΛm(£)-behaviors, from Lemma 1 (1-1)

and (1-2) it follows that

(du, d(ut o i))v = I ud(ut o i) = I (ut o ήdu* = ||du||2.
J 5F J dV

We have by Lemma 4 (1) ||ΛιJ|£ = ||d(fi,oi)||2 and by Lemma 1 (1-1)

ev

Therefore

||d(Mf o ,) - du\\l = 1 1 ^ o i)\\v +

= 0 for i = 0, 1

and we have M 0 O / = « 1 O / = M on F. SO Uoi^ύx) has ΓΛe(i?)- and Γhm(R)-

behaviors. Now represent dύ0 as follows

(dύ0 =

= ω 2 + dflf, ω 2 e ΓΛ0(Λ), ^ e Γe0(R)

By [1, Lemma 3 on p. 158] ωx and ω2 are extended to be harmonic on a

border y of R and zero along y. By Lemma 5 df and d# are zero along y.

Then du0 and dw^ are also extended to be harmonic on a border y of R

and zero along y. Hence dύ0 must be 0 on some component of V. But

this contradicts that u is non-constant on each component of V. Therefore

R is maximal. •

To prove Theorem 2' and Theorem 3' we construct an extension R of

R such that R has no planar ends as follows: Let {Kw}π=o,i,2,... be a canonical

exhaustion of R. Let Gί υ , . . . , G<kn) be the planar components of R\R^ each

of which is not included in any planar component of R\R^. Map G^

conformally into the unit disc t/π

α) = {\z\ < 1} so that dG^ corresponds to

dUJP, and denote by Etf* the inner boundary of the image of G^\ We obtain

a new Riemann surface as the union of R and U W > 1 J = 1 ,...fcnl/π

0) by identifying
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G^ with U^}\E^\ There is a natural inclusion mapping i of R into R. In

this way we obtain an extension (R, ή of R which has no planar ends. We

use the extension (R, ή in the proofs of Theorem 2' and 3'.

PROOF OF THEOREM 2'. By Proposition 2 E^ is an ΛΓD-set. Let σ be

an arbitrary differential in Γh0(R) Π Γh%(R), Since Γh0 <= Γhse holds, σ and σ*

are exact in G^. Since J(σ + iσ*) belongs to AD(G\p\ it can be extended

to be analytic on ί/π

0). Then σ is extended to be harmonic on Ujp. Therefore

σ, more precisely the differential {Γί)#(σ) on /(K), is extended to be harmonic

over R. We denote the extended one by σ. Since R\ι(R) is a set of

two dimensional Lebesgue measure 0 (cf. [9, I. Theorem 8C]), (dύ, σ*)R =

(d(u o ι\ σ * ) R = 0 and (dw, σ)R = (d(u o /), σ ) R = 0 hold for any ύeHD(R).

Hence we have σ ε Γh0(R)ΠΓh*(R). Therefore ι#(Γh0(R)ΠΓh%(R)) ^ ΓΛ0(K)n

^ ( Λ ) / {0}. By Theorem 2 we conclude that R is a maximal Riemann

surface. Hence R has a maximal extension R such that R\ι(R) is a closed

iVD-set. By Theorem A, R has a unique maximal extension.

Let ώ be an arbitrary element in Γh0(R) Π Γh%(R). Since each boundary

component of dRn is a dividing curve on R or homologous to 0 on R, ι*(ώ)

belongs to Γhse(R) Π ΓΛJe(Λ). In Ĝ J) any u e KD(R) has a single-valued conju-

gate harmonic function u*. Since w + iu* belongs to AD(G\I)\ it can be

extended to be analytic on l/w

0). Then u is extended to be harmonic on l/n

0).

Therefore w, more precisely u o Γ1, is extended to be harmonic over JR. We

denote the extended one by ύ. It is easily seen that ύ belongs to HD(R).

We have

(i #(ώ), du*)R = (ώ, du*)R = 0 and (/ #(ώ*), du*)R = (ώ*, du*)R = 0.

By the orthogonal decomposition Γhse = Γh0 + ΓhseΓ\Γh* we conclude that ιφ(ώ)

belongs to Γh0(R)Γ\Γh%(R). We have shown the relation ιφ(Γh0(R)ΠΓh%(R)) =

ΓΛ0(K) Π ΓΛ$(#) for the special maximal extension (R, ή. Let (R\ ϊ) be another

maximal extension of R. By [7, Lemma 4] the conformal mapping /' o r 1

is extended to that of R onto R'. We denote the extended one by F. Then

the pull back F* induced by F is a bijection of Γh(Rf) onto Γh{R). It

is easily seen that ώ' e Γh0{R')ΓιΓh%(R') if and only if the pull back

F#(ώ') G ΓΛ0(£) Π Γh*(R). Since *' #(ώ') = / *{F#(ώ')) holds, we conclude that

/r # (Γh0(R') Π ΓΛS(Λr)) = ΓΛ0(Λ) Π Γh%(R). This completes the proof. •

PROOF OF THEOREM 3'. We may assume dV c= Ro. Since u has Γhe- and

7^m-behaviors, by Lemma 1,

u, dv)Gu) =
n Jeoy

(du, dv)Gu) = vdu* for every v e HD{Gψ)
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and

(du, dv)GΦ = udv* for every v e KD(G(

n

j)).

By Lemma 2 we conclude that Eψ is an iVD-set. Since du and du* are exact

in G^, u can be extended to be harmonic over E^\ By the same argument

as in the proof of Theorem 3 we can show that the extended u has Γhe(R)- and

/^OT(Λ)-behaviors. By Theorem 3 R is maximal. By Theorem A, R has a

unique maximal extension. Denote the extended u over R by ύ. Let (R\ ϊ)

be another maximal extension of R. Then ϊ o Γ 1 is extended to the conformal

mapping F of R onto i?'. It is easily seen that ύ o F"1 has Γhe(R')- and

/^m(K')-behaviors simultaneously. Since u o ί'"1 = w o F"1 holds on ί'(R), u o

ϊ~ι is extended to ύ o F"1. This completes the proof. Π

The last one is

PROOF OF COROLLARY 1. Let (R, ή be an extension of R, not necessarily

maximal. There is a maximal extension (R, ϊ) of R. Then (R, ί o z) is a

maximal extension of R. By Theorem 2' Λ\(i' o z)(Λ) is an iVβ-set and there

exists a non-zero element ώ in Γh0(R) Π ΓΛξ(Λ). Since Λ\z(K) is also an iV^-set,

we have for any u e HD(R)

(ϊ#(ώ), dύ)~R = {ι*{ϊ#(ώ)), d(u o ή)R = 0

and

(i' #(ώ*), d% = (i #(z' #(ώ*)), d(u o ,))Λ = 0

because ι*(ϊ*(ώ)) = (ϊ o i)*{ώ) and ι#(ϊ*(ώ*)) = (ϊ o ι)*(ώ*) belong to

Γh0(R)ΠΓh%(R). Therefore a non-zero element ϊ*(ώ) exists in Γh0(R)Γ\Γh%(R).

Again by Theorem 2'

ί *(rh0(R) n rh*0(R)) = rh0(K) n /;$(£)

holds. Since (/' o ήφ = ι* o ϊφ holds, we have a conclusion. •
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