HIROSHIMA MATH. J. 26 (1996), 385–404

On maximal Riemann surfaces

Dedicated to Professor F. Maeda for his 60th birthday

Naondo JIN

(Received August 11, 1994) (Revised May 8, 1995)

ABSTRACT. We obtain two sufficient conditions for a Riemann surface to be maximal. One is the condition $\Gamma_{h0} \cap \Gamma_{h0}^* \neq \{0\}$ and the other is the existence of a function which has the special behavior in the neighborhood of the ideal boundary.

1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping i of R into a Riemann surface \tilde{R} , then we call \tilde{R} , or more precisely the pair (\tilde{R} , ι), an extension of R. According to this definition R itself is an extension of R. An extension (\tilde{R}, ι) is called a proper extension if $\tilde{R} \setminus \iota(R) \neq \emptyset$. A Riemann surface is called maximal if it has no proper extensions. An extension \tilde{R} of R is called a maximal extension if \tilde{R} is a maximal Riemann surface. On the maximality of Riemann surfaces many papers have been written. Bochner [3] proved that every Riemann surface has a maximal extension. We say that a Riemann surface R has a unique maximal extension if all maximal extensions of R are conformally equivalent to one another (cf. [6]). Clearly every maximal Riemann surface has a unique maximal extension. A closed subset E of a Riemann surface R is said to be an N_D -set if every compact subset of $\varphi(U \cap E)$ is an N_D -set in the complex plane for every local chart (U, φ) on R; see [10, p. 255] for an N_p -set. Renggli [7] determined the class of Riemann surfaces which have a unique maximal extension.

THEOREM A [7, Theorem 2]. A Riemann surface R has a unique maximal extension if and only if R is conformally equivalent to some $\tilde{R} \setminus E$, where \tilde{R} is a maximal Riemann surface and E is a closed $N_{\rm D}$ -set in \tilde{R} .

By a neighborhood of the ideal boundary of R we mean the exterior of

¹⁹⁹¹ Mathematics Subject Classification. 30F20, 30F30.

Key words and phrases. maximal Riemann surface, Γ_{h0} , Γ_{χ} -behavior.

This work is supported by Grant-in-Aid for Encouragement of Young Scientists (No. 03740095), The Ministry of Education, Science and Culture.

Naondo Jin

a compact set of R. A connected component V of a neighborhood of the ideal boundary is called an end if it is not relatively compact. Let D be a simply connected regular subregion of R, and consider a conformal map from D onto the unit disc U in the complex plane. Then the relative boundary ∂D corresponds to a relatively open subset of ∂U . We denote by I the complement of the image set of ∂D with respect to ∂U . We call D a disc with crowded ideal boundary if I is totally disconnected and is not an N_D -set. Recently Sakai [8] has obtained a new characterization of non-maximal Riemann surfaces.

THEOREM B [8, Theorem 4.1]. Let R be a Riemann surface. Then R is not maximal if and only if one of the following conditions holds for R.

- (a) R has a planar end.
- (b) R has a border.
- (c) R has a disc with crowded ideal boundary.

In [2, V.14F] it is pointed out that the condition $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) = \{0\}$ seems to be indicative of a strong boundary, where $\Gamma_{h0}(R)$ is a closed subspace of the space of square integrable harmonic differentials (see the next section). In this paper we shall consider the case $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) \neq \{0\}$. We know by Accola ([1, Lemma 3 on p. 158]) that if R is a bordered Riemann surface with boundary γ , not necessarily compact, then every $\omega \in \Gamma_{h0}(R)$ can be extended to be harmonic on $R \cup \gamma$ and the extended ω is zero along γ . If ω^* also belongs to $\Gamma_{h0}(R)$, then ω^* is also zero along γ . Hence $\omega \equiv 0$ and we have shown

PROPOSITION 1. If $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) \neq \{0\}$ holds for R, then R does not have a border.

We may expect that the condition $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) \neq \{0\}$ gives us some information about the ideal boundary of R. We shall show in Theorem 1 that R of finite positive genus belongs to the class O_{AD} if and only if $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) \neq \{0\}$ holds. In the paper [4] we have shown that there exists a Riemann surface of infinite genus which satisfies the condition $\Gamma_{h0}(R) \cap$ $\Gamma_{h0}^{*}(R) \neq \{0\}$ but does not belong to the class O_{AD} ; see Lemma 3 and [4, Proposition 1]. Hence the information is not about the "scale" of the ideal boundary, but the "complexity" of the ideal boundary in case of infinite genus. We use Sakai's characterization of non-maximal Riemann surfaces to show in Theorem 2 that if R has no planar ends and satisfies the condition $\Gamma_{h0}(R) \cap$ $\Gamma_{h0}^{*}(R) \neq \{0\}$, then R is maximal.

In Theorem 3 we shall obtain another sufficient condition for a Riemann surface to be maximal. It will be shown that Proposition 6.1 in [8] follows from Theorem 3.

2. Preliminaries

We recall some definitions of first order differentials on R. A differential $\omega = a(x, y)dx + b(x, y)dy$ is called real if all local coefficients a(x, y) and b(x, y) are real-valued functions and called of C^{∞} class if a(x, y) and b(x, y) are so. We say that ω is square integrable if local coefficients are measurable and

$$\int_{R} (a^2 + b^2) dx dy = \int_{R} \omega \wedge \omega^*$$

is finite, where $\omega^* = -b(x, y)dx + a(x, y)dy$ is the conjugate differential of ω . The positive square root of this integral is denoted by $\|\omega\|_R$, and we call it the norm of ω . Let $\Gamma = \Gamma(R)$ be the space of all real square integrable differentials on R. We know that Γ is a Hilbert space with the inner product

$$(\omega_1, \omega_2) = (\omega_1, \omega_2)_R = \int_R \omega_1 \wedge \omega_2^*.$$

Set

$$\Gamma_e^\infty(R) = \{df; \|df\|_R < \infty, f \in C^\infty(R)\} \text{ and } \Gamma_{e0}^\infty(R) = \{df; f \in C_0^\infty(R)\},$$

where $C^{\infty}(R)$ is the class of infinitely differentiable functions on R and $C_0^{\infty}(R)$ is the class of infinitely differentiable functions with compact support on R. Denote by $\Gamma_e(R)$ and $\Gamma_{e0}(R)$ the closures of $\Gamma_e^{\infty}(R)$ and $\Gamma_{e0}^{\infty}(R)$ in Γ , respectively. We denote by $\Gamma_h = \Gamma_h(R)$ the subspace of $\Gamma(R)$ which consists of harmonic differentials. We introduce important subspaces of Γ_h . Let $\Gamma_{he}(R)$ (resp. $\Gamma_{hse}(R)$) be the subspace of $\Gamma_h(R)$ whose elements ω are exact (resp. semiexact) on R, that is

$$\int_{\gamma} \omega = 0 \quad \text{for every (resp. every dividing) 1-cycle } \gamma \text{ on } R.$$

We have the orthogonal decompositions

$$\Gamma = \Gamma_h + \Gamma_{e0} + \Gamma_{e0}^*$$
 and $\Gamma_e = \Gamma_{he} + \Gamma_{e0}$

(cf. [2, V.10A, 10B, and 11G]).

Let Γ_y be a closed subspace of Γ_h . The orthogonal complement of Γ_y in Γ_h is denoted by Γ_y^{\perp} . Set $\Gamma_y^* = \{\omega^*; \omega \in \Gamma_y\}$. Since $(\omega_1, \omega_2) = (\omega_1^*, \omega_2^*)$ holds, we have $(\Gamma_y^*)^{\perp} = (\Gamma_y^{\perp})^*$. Then we shall write it simply $\Gamma_y^{*\perp}$. We need the subspace of harmonic measures Γ_{hm} and Γ_{h0} ; see [2, V.15C, 10B, and 14C] for definition. By [2, V.15D and 10C] we have $\Gamma_{hm} = \Gamma_{hse}^{*\perp}$ and $\Gamma_{h0} =$ $\Gamma_{he}^{*\perp}$. By definition it follows that $\Gamma_h \supset \Gamma_{hse} \supset \Gamma_{he}$ and $\Gamma_{he} \supset \Gamma_{hm}$. We have $\Gamma_{hse} \supset \Gamma_{h0} \supset \Gamma_{hm}$ because they are orthogonal complements of Γ_{hm}^* , Γ_{he}^* , and Γ_{hse}^* , respectively. See also [2, V.15E]. We summarize the inclusion relations

here:

For a given 1-cycle c on R and a closed subspace Γ_y of Γ_h there exists uniquely a period reproducing differential $\sigma_y(c)$ in Γ_y such that

$$\int_{c} \omega = (\omega, \sigma_{y}(c))_{R} \quad \text{for every } \omega \in \Gamma_{y}.$$

We are interested in $\sigma_h(c)$, $\sigma_{hse}(c)$, and $\sigma_{h0}(c)$. We consider the set $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$, where $\{A_j, B_j\}$ is the canonical homology basis for R modulo dividing cycles. We note that every $\omega \in \Gamma_{he}$ satisfies

$$(\omega, \sigma_{hse}(A_j))_R = 0$$
 and $(\omega, \sigma_{hse}(B_j))_R = 0.$

Hence the set $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$ is included in $\Gamma_{hse} \cap \Gamma_{h0}^*$. If $\sigma \in \Gamma_{hse} \cap \Gamma_{h0}^*$ satisfies relations $(\sigma, \sigma_{hse}(A_j)) = (\sigma, \sigma_{hse}(B_j)) = 0$ for every *j*, then σ belongs to Γ_{he} . Hence it is equal to zero. This shows that $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$ spans $\Gamma_{hse} \cap \Gamma_{h0}^*$. Moreover $\sigma_h(c), \sigma_{hse}(c)$, and $\sigma_{h0}(c)$ have the following property:

$$\int_{\gamma} \sigma_h(c)^* = \int_{\gamma} \sigma_{hse}(c)^* = \int_{\gamma} \sigma_{h0}(c)^*$$
$$= \gamma \times c \quad \text{for 1-cycle } \gamma$$

where $\gamma \times c$ is the intersection number of γ and c (cf. [11, Theorem 4] and [2, V. Theorem 21G]).

REMARK. In [11, Theorem 4] the period reproducing differential $\sigma_{\chi}(c)^*$ in a closed subspace $\Gamma_{\chi}^{*\perp}$ is defined by

$$\int_{c} \omega = (\omega, \sigma_{\chi}(c)^{*})_{R} \quad \text{for every } \omega \in \Gamma_{\chi}^{*\perp}.$$

Then $\sigma_h(c)$, $\sigma_{hse}(c)$ and $\sigma_{h0}(c)$ in this paper are equal to $\sigma_{\{0\}}(c)^*$, $\sigma_{hm}(c)^*$ and $\sigma_{he}(c)^*$ in [11], respectively.

If the differential dh of a function h of the class C^1 is square integrable, then we call the integral $\int_R (h_x^2 + h_y^2) dx dy = ||dh||_R^2$ the Dirichlet integral of hand say that h has a finite Dirichlet integral. Let HD(R) be the class of real-valued harmonic functions on R with finite Dirichlet integral and KD(R)be the subclass of HD(R) whose elements u have the property

On maximal Riemann surfaces

$$\int_{\gamma} du^* = 0 \qquad \text{for every dividing 1-cycle } \gamma \text{ on } R.$$

Let AD(R) be the class of analytic functions on R with finite Dirichlet integral. We denote by $\Re AD(R)$ the class of real-valued harmonic functions u such that there is a single-valued conjugate harmonic function u^* of u and $u + iu^*$ belongs to AD(R). By the Cauchy-Riemann equation we have

$$du^* = -u_y dx + u_x dy = (u^*)_x dx + (u^*)_y dy = d(u^*).$$

It is easily seen that $u \in \Re AD(R)$ if and only if $u \in HD(R)$ and

$$\int_{\gamma} du^* = 0 \quad \text{for every 1-cycle } \gamma \text{ on } R.$$

The relations between subclasses of HD(R) and subspaces of $\Gamma_h(R)$ are the following:

$$\{du; u \in HD(R)\} = \Gamma_{he}(R)$$
$$\{du; u \in KD(R)\} = \Gamma_{he}(R) \cap \Gamma_{hse}^*(R)$$
$$\{du; u \in \Re AD(R)\} = \Gamma_{he}(R) \cap \Gamma_{he}^*(R).$$

We say that a Riemann surface R belongs to the class O_{AD} (resp. O_{KD}) if and only if AD(R) or equivalently $\Re AD(R)$ (resp. KD(R)) consists of only constant functions.

Let ω be a real differential defined in a neighborhood of the ideal boundary of R and Γ_{χ} be any closed subspace of Γ_{he} . Then ω is said to have Γ_{χ} -behavior if the following representation holds in some neighborhood of the ideal boundary of R:

$$\begin{cases} \omega = \omega_1 + df, \\ \omega^* = \omega_2 + dg \end{cases}$$

where $\omega_1 \in \Gamma_{\chi}$, $\omega_2 \in {\Gamma_{\chi}^*}^{\perp}$, f and g are C^{∞} -functions on R such that df and dg belong to Γ_{e0} . We say that a function u has Γ_{χ} -behavior if du does. We know by [11, Theorem 4] that $\sigma_{hse}(c)^*$ (resp. $\sigma_{h0}(c)^*$) has Γ_{hm} - (resp. Γ_{he} -) behavior.

REMARK. Suppose that ω is defined in a neighborhood V of the ideal boundary of R and has Γ_r -behavior.

1) The above representation may not hold in V, but it holds in some neighborhood $V' \subset V$ of the ideal boundary. Since ω and ω^* are closed differentials in V', from Weyl's lemma it follows that ω is harmonic in V' (cf. [2, V.9A and 9B]).

2) Let V_0 be a neighborhood of the ideal boundary which is a subset of V. It is easily seen that $\omega|_{V_0}$ also has Γ_{χ} -behavior.

The following basic properties for special Γ'_{x} s will be used later.

LEMMA 1. Let V be a neighborhood of the ideal boundary of R such that the relative boundary consists of a finite number of mutually disjoint analytic Jordan curves. Let u be a harmonic function on $\overline{V} = V \cup \partial V$. Denote by HD(V) the set of harmonic functions on \overline{V} with finite Dirichlet integral over V and set $KD(V) = \{v \in HD(V); dv^* \text{ is semi-exact in } V\}$.

(1) If u has Γ_{he} -behavior, then

(1-1)
$$(du, dv)_V = \int_{\partial V} v du^* \quad \text{for every } v \in HD(V).$$

If u has Γ_{hm} -behavior, then

(1-2)
$$(du, dv)_V = \int_{\partial V} u dv^* \quad \text{for every } v \in KD(V).$$

(2) For every $h \in H(\partial V)$, there exist $u_0, u_1 \in KD(V)$ such that $u_0 = u_1 = h$ on ∂V , u_0 has Γ_{he} -behavior and u_1 has Γ_{hm} -behavior, where $H(\partial V)$ is the class of harmonic functions defined in some neighborhood of ∂V .

See [11, Propositions 1 and 2] for the assertions (1-1) and (1-2), and [11, Theorem 6 and p. 203] for (2).

Let (\tilde{R}, ι) be an extension of R. We denote by $\iota^{\#}(\tilde{\omega})$ the pull back of a differential $\tilde{\omega}$ on \tilde{R} induced by ι . For a closed subspace $\Gamma_{y}(\tilde{R})$ of $\Gamma_{h}(\tilde{R})$ we set $\iota^{\#}(\Gamma_{y}(\tilde{R})) = \{\iota^{\#}(\tilde{\omega}); \tilde{\omega} \in \Gamma_{y}(\tilde{R})\}$. It is easily seen that $\iota^{\#}(\tilde{\omega}^{*}) = \iota^{\#}(\tilde{\omega})^{*}$ and $\iota^{\#}(d\tilde{u}) = d(\tilde{u} \circ \iota)$ hold for $\tilde{\omega} \in \Gamma_{h}(\tilde{R})$ and $\tilde{u} \in HD(\tilde{R})$.

3. Results

We know that if R is of finite genus and belongs to the class O_{AD} then R has a unique maximal extension. (See [6].) In this case a maximal extension of R is a compact Riemann surface \tilde{R} of the same genus as that of R and we may assume that R is a subregion of \tilde{R} such that $\tilde{R} \setminus R$ is an N_D -set; see [9, II.15A]. We say that a Riemann surface R has (W)-property if

$$\Gamma_{he}(R) \cap \Gamma_{hse}^*(R) \subset \Gamma_{he}^*(R)$$

holds; see [5]. We obtain the next theorem.

THEOREM 1. Let R be a Riemann surface of finite positive genus. Then the following properties are equivalent:

On maximal Riemann surfaces

- (a) $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$ holds.
- (b) R belongs to the class O_{AD} .
- (c) R has (W)-property.

Furthermore if $R \in O_{AD}$ and \tilde{R} is the unique maximal extension of R, then $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) = \Gamma_{h}(\tilde{R})|_{R}$.

Our results in case of infinite genus are Theorems 2 and 2'.

THEOREM 2. Let R be a Riemann surface of infinite genus having no planar ends. If R satisfies the condition $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$, then R is maximal.

THEOREM 2'. Let R be a Riemann surface of infinite genus. If R satisfies the condition $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$, then R has a unique maximal extension and the following relation holds for a maximal extension (\tilde{R} , ι) of R:

$$\iota^{\#}(\Gamma_{h0}(\tilde{R})\cap\Gamma_{h0}^{*}(\tilde{R}))=\Gamma_{h0}(R)\cap\Gamma_{h0}^{*}(R).$$

In particular Theorem 2' is a generalization of the last part of Theorem 1. We obtain

COROLLARY 1. If R satisfies $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$, then any extension (\tilde{R}, ι) of R satisfies

$$\iota^{\#}(\Gamma_{h0}(\tilde{R})\cap\Gamma_{h0}^{*}(\tilde{R}))=\Gamma_{h0}(R)\cap\Gamma_{h0}^{*}(R).$$

We have another sufficient condition for R to be maximal.

THEOREM 3. Let R be a Riemann surface of infinite genus having no planar ends. Suppose that there exists a harmonic function u on a neighborhood V of the ideal boundary of R such that u is non-constant in each component of V and has Γ_{he} - and Γ_{hm} -behaviors simultaneously. Then R is maximal.

The next is a generalization of Theorem 3.

THEOREM 3'. Let R be a Riemann surface of infinite genus. Suppose that there exists a harmonic function u on a neighborhood V of the ideal boundary of R such that u is non-constant in each component of V and has Γ_{he} - and Γ_{hm} -behaviors simultaneously. Then R has a unique maximal extension and u is extended over a maximal extension \tilde{R} of R so that the extended one has $\Gamma_{he}(\tilde{R})$ - and $\Gamma_{hm}(\tilde{R})$ -behaviors simultaneously.

Let $P \in R$ and z be a local parameter in a neighborhood of P. There exists the principal function p_0 (resp. p_1) with respect to the singularity $\Re(1/z)$ at P and the operator L_0 (resp. $(Q)L_1$); see for example [9, Chapters I and II]. We say that R belongs to the class \mathscr{G}_{KD}^1 if $p_0 = p_1$ for some $P \in R$ and z.

This class \mathscr{G}_{KD}^1 includes O_{KD} . In fact by [10, II.2E] R belongs to the class O_{KD} if and only if $p_0 = p_1$ for every $P \in R$ and every local parameter about P. We know by [11, Theorem 6] that every principal function with respect to L_0 (resp. $(Q)L_1$) has Γ_{he} (resp. Γ_{hm})-behavior. If $R \in \mathscr{G}_{KD}^1$, then $p_0(=p_1)$ satisfies the condition of Theorem 3. Now we have

COROLLARY 2 [8, Proposition 6.1]. Let R be a Riemann surface having no planar ends. If R belongs to the class \mathscr{G}_{KD}^{1} , then R is maximal.

By Lemma 1 (2) there exist many principal functions other than p_0 and p_1 . For example $\sigma_{hse}(A_j)^*$ and $\sigma_{h0}(A_j)^*$ are exact in $R \setminus A_j$. Then harmonic functions $\int \sigma_{hse}(A_j)^*$ and $\int \sigma_{h0}(A_j)^*$ in $R \setminus A_j$ have Γ_{hm} - and Γ_{he} -behaviors, respectively. Hence Theorem 3 is a generalization of Sakai's result [8].

4. Proofs

If R has a planar end G whose relative boundary ∂G consists of one analytic Jordan curve, then G is mapped conformally into the unit disc $U = \{|z| < 1\}$ so that ∂G corresponds to ∂U . Denote by E the inner boundary of the image of G, which is considered as a realization of the ideal boundary of G (cf. [9, I.8E]). We show

PROPOSITION 2. Let R, G, and E be as above. If $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$ holds, then E is an N_D -set.

PROOF. We shall use the following lemma.

LEMMA 2 [5, Lemma 4]. Let R be a Riemann surface of finite genus. Suppose that there exists a non-constant harmonic function u in a neighborhood of the ideal boundary of R which satisfies the relations (1-1) and (1-2) in Lemma 1. Then R belongs to the class O_{AD} .

It suffices to show the existence of u. By assumption we can take a non-zero $\omega \in \Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R)$. This ω is semi-exact on R, and hence exact on G. Thus we can choose $u \in HD(G)$ such that $du = \omega$. Every $v \in HD(G)$ can be extended over $R \setminus G$ as a C^{∞} -function such that v = 0 in the exterior of some neighborhood of ∂G , which will be still denoted by v. Since dv belongs to $\Gamma_{e}^{\infty}(R) \subset \Gamma_{e}(R)$ and $\Gamma_{e}(R) = \Gamma_{he}(R) + \Gamma_{e0}(R)$, it follows that $(\omega, dv)_{R} = 0$. Now we have

$$(du, dv)_G = (\omega, dv)_G = (\omega, dv)_R - (\omega, dv)_{R\setminus G} = 0 + \int_{\partial G} v\omega^* = \int_{\partial G} v du^*.$$

This shows that u satisfies the relation (1-1).

Moreover if $v \in KD(G)$, then the conjugate harmonic function v^* of v belongs to HD(G). Since ω^* is also a non-zero element in $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$, by the above equality we have

$$(du, dv)_G = (du^*, dv^*)_G = -\int_{\partial G} (v^*) du.$$

From integration by parts it follows that

$$(du,\,dv)_G=\int_{\partial G}\,udv^*.$$

This shows that *u* satisfies also the relation (1-2). Since *G* is a neighborhood of the ideal boundary of a Riemann surface $S = \hat{\mathbb{C}} \setminus E$, *S* belongs to the class O_{AD} by Lemma 2 so that *E* is an N_D -set. \Box

We recall the following result.

THEOREM C [5]. Let R be a Riemann surface and $\sigma_{hse}(c)$ (resp. $\sigma_{h0}(c)$) be the Γ_{hse} (resp. Γ_{h0}) period reproducing differential for a 1-cycle c. Then the following properties are equivalent:

(a) R has (W)-property.

(b) $\|\sigma_{hse}(c)\| = \|\sigma_{h0}(c)\|$ (equivalently $\sigma_{hse}(c) = \sigma_{h0}(c)$) for every 1-cycle c.

Furthermore, if R is of finite positive genus, then the next properties are also equivalent to (a):

(c) R belongs to the class O_{AD} .

(d) $\|\sigma_{hse}(c)\| = \|\sigma_{h0}(c)\|$ (equivalently $\sigma_{hse}(c) = \sigma_{h0}(c)$) for some non-dividing 1-cycle c.

By this theorem if R has (W)-property, then the set $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$ is included in Γ_{h0} . Hence $\Gamma_{hse} \cap \Gamma_{h0}^*$ which is spanned by $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$ is included in Γ_{h0} and we have $\Gamma_{hse} \cap \Gamma_{h0}^* = \Gamma_{h0} \cap \Gamma_{h0}^*$. Conversely if $\Gamma_{hse} \cap \Gamma_{h0}^* =$ $\Gamma_{h0} \cap \Gamma_{h0}^*$ holds, then every Γ_{hse} period reproducing differential $\sigma_{hse}(c)$, which is represented as a finite linear combination of $\{\sigma_{hse}(A_j), \sigma_{hse}(B_j)\}$, belongs to Γ_{h0} . This means that $\sigma_{hse}(c)$ is also Γ_{h0} period reproducing differential. By the uniqueness of the period reproducing differential $\sigma_{hse}(c) = \sigma_{h0}(c)$ holds. Therefore R has (W)-property. We have shown that R has (W)-property if and only if $\Gamma_{hse} \cap \Gamma_{h0}^* = \Gamma_{h0} \cap \Gamma_{h0}^*$.

Suppose that a non-planar surface R has (W)-property. Since we have $\int_{A_j} \sigma_{hse}(B_j)^* = A_j \times B_j = 1$, $\sigma_{hse}(B_j)$ is not zero. Then $\Gamma_{h0} \cap \Gamma_{h0}^*$ contains a non-zero element $\sigma_{hse}(B_j)$. Hence R satisfies the condition $\Gamma_{h0} \cap \Gamma_{h0}^* \neq \{0\}$ so that (W)-property implies the condition $\Gamma_{h0} \cap \Gamma_{h0}^* \neq \{0\}$.

We have hence shown

Naondo Jin

LEMMA 3. If a non planar Riemann surface R has (W)-property, then $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R) \neq \{0\}$ holds.

REMARK. In general the converse is not true. We recall an example of a Riemann surface R on which there exist non-dividing 1-cycles c_1 and c_2 with the property

$$\|\sigma_{hse}(c_1)\|_{R} = \|\sigma_{h0}(c_1)\|_{R} \neq 0, \ \|\sigma_{hse}(c_2)\|_{R} \neq \|\sigma_{h0}(c_2)\|_{R}$$

(see [4, Example 2]). The Riemann surface R satisfies the condition $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \neq \{0\}$ because a non-zero element $\sigma_{hse}(c_1) = \sigma_{h0}(c_1)$ belongs to $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$. But R does not have (W)-property.

We now give

PROOF OF THEOREM 1. The equivalence $(b) \Leftrightarrow (c)$ follows from Theorem C and by Lemma 3 (c) implies (a). The assertion $(a) \Rightarrow (b)$ follows from Proposition 2.

To prove the last part of Theorem 1 suppose that R belongs to the class O_{AD} . Then there exists a compact Riemann surface \tilde{R} of the same genus as that of R such that $E = \tilde{R} \setminus R$ is an N_D -set. By [6] \tilde{R} is a unique maximal extension of R. Let R_0 be a regular subregion of R defined in [9, I.8E]. For every $\omega \in \Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$, ω and ω^* are exact on $R \setminus R_0 \setminus E$. Hence an analytic function $\int (\omega + i\omega^*)$ with finite Dirichlet integral can be extended to be analytic on $\tilde{R} \setminus R_0$. Therefore ω can be extended to be harmonic on $\tilde{R} \setminus R_0$ and the extended ω belongs to $\Gamma_h(\tilde{R})$. We obtain $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R) \subset \Gamma_h(\tilde{R})|_R$. Now we prove the inverse inclusion relation. Since R is of finite genus and $R \in O_{AD}$, R belongs to the class O_{KD} ; see for example [9, II.15A]. Note that KD(R)consists of only constant functions if and only if $\Gamma_{he}(R) \cap \Gamma_{hse}^*(R) = \{0\}$. On the other hand by the orthogonal decomposition $\Gamma_{hse} = \Gamma_{h0} + (\Gamma_{hse}^* \cap \Gamma_{he})^*$ we know that $\Gamma_{he}(R) \cap \Gamma_{hse}^*(R) = \{0\}$ if and only if $\Gamma_{hse}(R) = \Gamma_{h0}(R)$. Thus R belongs to the class O_{KD} if and only if $\Gamma_{hse}(R) = \Gamma_{h0}(R)$ holds. Let $\tilde{\omega}$ be an arbitrary differential in $\Gamma_h(\tilde{R})$. Since $\tilde{\omega}|_R$ is semiexact in R, it belongs to $\Gamma_{hse}(R) = \Gamma_{h0}(R)$. If we consider the conjugate differential $\tilde{\omega}^*$, then we see that $\tilde{\omega}^*|_R$ is an element of $\Gamma_{h0}(R)$, too. Hence we have $\tilde{\omega}|_{R} \in \Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R)$ and conclude $|\Gamma_h(\tilde{R})|_R \subset |\Gamma_{h0}(R) \cap |\Gamma_{h0}^*(R)|$. This completes the proof. \square

Let (\tilde{R}, ι) be an extension of R and $H_1(\tilde{R})$ (resp. $H_1(R)$) be the homology group of \tilde{R} (resp. R). Then the mapping ι maps a closed curve on R to a closed curve on \tilde{R} . Thus ι induces a natural homomorphism ι^* of $H_1(R)$ into $H_1(\tilde{R})$. Since ι is injective, the image set $\{\iota^*(A_j), \iota^*(B_j)\}$ of the canonical homology basis $\{A_i, B_i\}$ for R modulo dividing cycles is linearly independent.

To prove Theorems 2 and 3 we need the following lemma.

LEMMA 4. Let R be a Riemann surface of infinite genus having to planar ends. If R is not maximal, then there is an extension (\tilde{R}, ι) of R having the following properties:

- (1) $\tilde{R} \setminus \iota(R)$ is a set of two dimensional Lebesgue measure zero.
- (2) \tilde{R} has a border.

(3) Every dividing cycle on R is mapped to a dividing cycle on \tilde{R} by ι^* and $\{\iota^*(A_i), \iota^*(B_i)\}$ is the canonical homology basis for \tilde{R} modulo dividing cycles.

PROOF. By Theorem B we know that R has a border or a disc with crowded ideal boundary. If R has a border, then R itself is an extension of R which satisfies (1), (2), and (3).

Suppose that R has a disc D with crowded ideal boundary. Let ϕ be a one-to-one conformal mapping of D onto the unit disc U and I be the complement of the image set of ∂D with respect to ∂U . Let ψ be a Möbius transformation which maps U onto the upper half plane H with $\psi(I) = \tilde{I} \subset \partial H$. Let \mathscr{V} be the family of univalent functions F on $\mathbb{C}\setminus \tilde{I}$ with the following expansion around ∞ :

$$F(z) = z + \frac{a[F]}{z} + \cdots.$$

By [10, VI. Theorems 2B and 2C] there exists a unique function $P_1(z) = P_1(z; \infty)$ (resp. $P_0(z) = P_0(z; \infty)$) which minimizes (resp. maximizes) $\Re a[F]$ in \mathscr{V} and P_1 (resp. P_0) maps $\mathbb{C}\setminus \tilde{I}$ onto a vertical (resp. horizontal) slit plane. Since $\overline{P_1(\bar{z})}$ has the expansion $z + \overline{a[P_1]}/z + \cdots$ around ∞ , we conclude $P_1(z) = \overline{P_1(\bar{z})}$ by the uniqueness of P_1 . Let $z_0 \in H$. If $|z_0|$ is sufficiently large, then from the expansion of P_1 it follows that $P_1(z_0) \in H$. For any $z \in H$ we join z with z_0 by a segment $l_{z_0 z}$ in H. By the univalency of P_1 and the property $P_1(z) = \overline{P_1(\bar{z})}$ the image set $P_1(l_{z_0 z})$ does not intersect the real axis. Hence $P_1(l_{z_0 z})$ is included in either the upper half plane or the lower half plane. Since $P_1(z_0) \in H$, $P_1(l_{z_0 z})$ is included in the upper half plane H and we conclude $P_1(z) \in H$. Therefore we obtain $P_1(H) = P_1(\mathbb{C}\setminus \tilde{I}) \cap H$. For the same reason we have $P_0(H) = P_0(\mathbb{C}\setminus \tilde{I}) \cap H$ and $\mathbb{C}\setminus P_0(H) = (\mathbb{C}\setminus P_0(\mathbb{C}\setminus \tilde{I})) \cup (\mathbb{C}\setminus H)$.

We shall show that $P_0(H) \equiv z$. Suppose that $\mathbb{C} \setminus P_0(\mathbb{C} \setminus \tilde{I})$ contains a point $z_1 \in H$. The connected component C_1 of $\mathbb{C} \setminus P_0(\mathbb{C} \setminus \tilde{I})$ which contains z_1 is a horizontal slit or a point. Then C_1 is included in H. Set $E_n = \{z; \operatorname{dist}(z, \mathbb{C} \setminus P_0(\mathbb{C} \setminus \tilde{I})) \leq 1/n\}$ for $n \in \mathbb{N}$. Let E_n^1 be the connected component of E_n which includes C_1 . Since $\bigcap_{n=1}^{\infty} E_n^1 = C_1$, there is a number $n_0 \in \mathbb{N}$ such that $E_{n_0}^1 \subset H$. Then $\operatorname{Int} E_{n_0}^1 (= \operatorname{the interior of } E_{n_0}^1)$ and $\mathbb{C} \setminus E_{n_0}^1$ are mutually disjoint open sets such that $(\operatorname{Int} E_{n_0}^1) \cup (\mathbb{C} \setminus E_{n_0}^1) \supset \mathbb{C} \setminus P_0(\mathbb{C} \setminus \tilde{I})) \cup (\mathbb{C} \setminus H)$ and that $(\mathbb{C} \setminus P_0(H)) \cap (\operatorname{Int} E_{n_0}^1), (\mathbb{C} \setminus P_0(H)) \cap (\mathbb{C} \setminus E_{n_0}^1)$ are not empty. This shows that $\mathbb{C} \setminus P_0(H)$ is not connected, which contradicts the simply connectivity of

 $P_0(H)$. Therefore $P_0(H)$ must coincide with H. Hence $P_0(z)$ is a Möbius transformation which preserves H. Since P_0 fixes ∞ and its expansion around ∞ has a vanishing constant term, we conclude $P_0(z) \equiv z$. Since \tilde{I} is not of class N_D , by [10, VI. Theorem 2D] we have $P_1(z) \neq P_0(z) = z$. Therefore we see that $P_1(H) \neq H$. By the same argument as above we can show that every connected component of the complement of $P_1(\mathbb{C}\setminus\tilde{I})$ is either a point on the real axis or a vertical slit which intersects the real axis. Let l be one of the vertical slits not degenerating to a point. We construct a Riemann surface \tilde{R} as the union of R and $H\setminus l$ by identifying $p \in D$ with $(P_1 \circ \psi \circ \phi)(p) \in H \setminus l$. There is a natural inclusion mapping ι of R into \tilde{R} . Then (\tilde{R}, ι) is an extension of R. It is easily seen that \tilde{R} satisfies properties (1) and (2).

Let γ be a piecewise analytic dividing curve on R. If $\gamma \cap D = \emptyset$, then it is clear that $\iota(\gamma)$ is dividing also on \tilde{R} . We consider the case when γ intersects D. Since ∂D and y are piecewise analytic, $\gamma \cap D$ consists of a finite number of components and $H \setminus l \setminus l(y)$ consists of a finite number of components which are simply connected regions with piecewise analytic boundary. If $\tilde{R} \setminus i(\gamma)$ is connected, then there exist points $z_1, z_2 \in R \setminus \gamma$ which are not in the same component of $R \setminus \gamma$ and a piecewise analytic arc $\tilde{\gamma}$ which joins $\tilde{z}_1 = \iota(z_1)$ with $\tilde{z}_2 = \iota(z_2)$ in $\tilde{R} \setminus \iota(\gamma)$. It is easily seen that $\tilde{\gamma} \cap (H \setminus l)$ is not empty and consists of a finite number of components, $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_n$. Since each endpoint of $\tilde{\gamma}_j$ is \tilde{z}_1 , \tilde{z}_2 , or some point on $\partial H \setminus \tilde{I}$, we can deform $\tilde{\gamma}_i$ to a piecewise analytic arc γ_i on $P_1(H)$ whose endpoints are equal to those of $\tilde{\gamma}_i$ continuously in $H \setminus l \setminus l(\gamma)$. If we replace $\tilde{\gamma}_i$ by γ_i , then we obtain a new piecewise analytic arc γ^* on $R \setminus \gamma$ which joins z_1 with z_2 . But this is a contradiction. Therefore y is a dividing curve on \tilde{R} . Since every dividing cycle is homologous to a finite linear combination of piecewise analytic dividing curves, we deduce that i^* maps dividing cycles on R to those on \tilde{R} .

Let \tilde{c} be a piecewise analytic Jordan curve on \tilde{R} . By the same deformation as above we can show that \tilde{c} is homologous to some piecewise analytic Jordan curve c on R. Then \tilde{c} is homologous to a finite linear combination of $\{\iota^*(A_j), \iota^*(B_j)\}$ modulo dividing cycles. Hence $\{\iota^*(A_j), \iota^*(B_j)\}$ is the canonical homology basis for \tilde{R} modulo dividing cycles. This completes the proof.

PROOF OF THEOREM 2. Suppose that R is not maximal. By Lemma 4 there exists (\tilde{R}, ι) , an extension of R, which satisfies conditions (1), (2), and (3). Let ω be a non-zero element in $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$. Then $L_{\omega}(\tilde{\sigma}) = (\iota^{\#}(\tilde{\sigma}), \omega)_R$ is a bounded linear functional of $\tilde{\sigma} \in \Gamma_{hse}(\tilde{R})$. Hence there exists a unique $\tilde{\omega} \in \Gamma_{hse}(\tilde{R})$ such that $L_{\omega}(\tilde{\sigma}) = (\tilde{\sigma}, \tilde{\omega})_{\tilde{R}}$ for every $\tilde{\sigma} \in \Gamma_{hse}(\tilde{R})$. We shall show that $\tilde{\omega}$ belongs to $\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})$. Since every $\tilde{u} \in KD(\tilde{R})$ satisfies $(d\tilde{u}^*, \tilde{\omega})_{\tilde{R}} = (d(\tilde{u} \circ \iota)^*, \omega)_R = 0$, we deduce that $\tilde{\omega}$ belongs to $\Gamma_{h0}(\tilde{R})$ from the orthogonal

decomposition $\Gamma_{hse}(\tilde{R}) = \Gamma_{h0}(\tilde{R}) + \Gamma_{hse}(\tilde{R}) \cap \Gamma_{he}^*(\tilde{R})$. Similarly we obtain $L_{\omega}(d\tilde{u}) = (d(\tilde{u} \circ \iota), \omega)_R = 0$ for every $\tilde{u} \in HD(\tilde{R})$ and so $(d\tilde{u}, \tilde{\omega})_{\tilde{R}} = 0$. Hence $\tilde{\omega}$ belongs also to $\Gamma_{h0}^*(\tilde{R})$. It is shown that $\tilde{\omega} \in \Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})$.

If we show that $\tilde{\omega} \neq 0$, then $\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R}) \neq \{0\}$. By Proposition 1 \tilde{R} does not have a border. This contradicts the property (2) of \tilde{R} in Lemma 4.

Now we show that $\tilde{\omega}$ is not 0. By Lemma 4 (1) and (3) we see that $\iota^{\#}(\Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^{*}(\tilde{R}))$ is a (closed) subspace of $\Gamma_{hse}(R) \cap \Gamma_{hse}^{*}(R)$. Let π be the orthogonal projection of $\Gamma_{hse}(R) \cap \Gamma_{hse}^{*}(R)$ onto $\iota^{\#}(\Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^{*}(\tilde{R}))$. We remark that $\pi(\sigma^{*}) = \pi(\sigma)^{*}$ holds for every $\sigma \in \Gamma_{hse}(R) \cap \Gamma_{hse}^{*}(R)$, because $\pi(\sigma^{*}) - \pi(\sigma)^{*}$ satisfies the equation

$$(\pi(\sigma^*) - \pi(\sigma)^*, \tau)_R = (\pi(\sigma^*), \tau)_R - (\pi(\sigma)^*, \tau)_R$$

= $(\sigma^*, \tau)_R - (-\pi(\sigma), \tau^*)_R$
= $(-\sigma, \tau^*)_R - (-\sigma, \tau^*)_R$
= 0

for every $\tau \in \iota^{\#}(\Gamma_{hse}(\widetilde{R}) \cap \Gamma_{hse}^{*}(\widetilde{R})).$

If $\tilde{\sigma} \in \Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^*(\tilde{R})$ and c is a non-dividing 1-cycle of R, then we have

$$\int_{\tilde{c}} \tilde{\sigma} = \int_{c} \iota^{\#}(\tilde{\sigma}) = (\iota^{\#}(\tilde{\sigma}), \sigma_{hse}(c))_{R}$$
$$= (\iota^{\#}(\tilde{\sigma}), \pi(\sigma_{hse}(c)))_{R},$$

where $\tilde{c} = \iota^*(c)$. On the other hand

$$\int_{\tilde{c}} \tilde{\sigma} = (\tilde{\sigma}, \, \tilde{\sigma}_{hse}(\tilde{c}))_{\tilde{R}} = (\iota^{\#}(\tilde{\sigma}), \, \iota^{\#}(\tilde{\sigma}_{hse}(\tilde{c})))_{R}$$

holds, where $\tilde{\sigma}_{hse}(\tilde{c}) \in \Gamma_{hse}(\tilde{R}) \cap \Gamma_{h0}^{*}(\tilde{R})$ is $\Gamma_{hse}(\tilde{R})$ period reproducing differential for a 1-cycle \tilde{c} . By the uniqueness of the period reproducing differential in $\iota^{\#}(\Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^{*}(\tilde{R}))$ we obtain $\pi(\sigma_{hse}(c)) = \iota^{\#}(\tilde{\sigma}_{hse}(\tilde{c}))$. If we restrict the linear functional L_{ω} to $\Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^{*}(\tilde{R})$, then

$$L_{\omega}(\tilde{\sigma}) = (\iota^{\#}(\tilde{\sigma}), \omega)_{R} = (\iota^{\#}(\tilde{\sigma}), \pi(\omega))_{R}$$
$$= (\tilde{\sigma}, \tilde{\omega})_{\tilde{R}} = (\iota^{\#}(\tilde{\sigma}), \iota^{\#}(\tilde{\omega}))_{R}$$

holds for every $\tilde{\sigma} \in \Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^*(\tilde{R})$. Since $\pi(\omega)$ and $\iota^{\#}(\tilde{\omega})$ belong to $\iota^{\#}(\Gamma_{hse}(\tilde{R}) \cap \Gamma_{hse}^*(\tilde{R}))$, we conclude $\pi(\omega) = \iota^{\#}(\tilde{\omega})$. Since $\omega \in \Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$ and $\Gamma_{he}^*(R) = \Gamma_{h0}^{\perp}(R)$, ω does not belong to $\Gamma_{he}^*(R)$. Hence there exists a non-dividing 1-cycle γ such that

$$(\omega^*, \sigma_{hse}(\gamma))_R = \int_{\gamma} \omega^* = \alpha \neq 0,$$

where $\sigma_{hse}(\gamma)$ is $\Gamma_{hse}(R)$ -period reproducing differential for γ . We construct a complete orthonormal system $\{\phi_n\}$ of $\Gamma_{hse}^*(R) \cap \Gamma_{h0}(R)$ from $\{\sigma_{hse}(A_j)^*, \sigma_{hse}(B_j)^*\}$ by Schmidt's orthogonarization. Expand $\omega^* = \sum_{n=1}^{\infty} a_n \phi_n$, where $a_n = (\omega^*, \phi_n)_R$. The orthogonal projection of ω^* is equal to $\sum_{n=1}^{\infty} a_n \pi(\phi_n)$, so that

$$\iota^{*}(\tilde{\omega}^{*}) = \pi(\omega)^{*} = \sum_{n=1}^{\infty} a_n \pi(\phi_n).$$

Set $\tilde{A}_j = \iota^*(A_j)$, $\tilde{B}_j = \iota^*(B_j)$, and $\tilde{\gamma} = \iota^*(\gamma)$. Let us recall the relations

$$(\sigma_{hse}(A_j)^*, \sigma_{hse}(\gamma))_R = \int_{\gamma} \sigma_{hse}(A_j)^* = \gamma \times A_j$$

and

$$(\iota^{\,\#}(\tilde{\sigma}_{hse}(\tilde{A_j})^*), \sigma_{hse}(\gamma))_{R} = (\tilde{\sigma}_{hse}(\tilde{A_j})^*, \tilde{\sigma}_{hse}(\tilde{\gamma}))_{\tilde{R}} = \tilde{\gamma} \times \tilde{A_j} = \gamma \times A_j$$

given in Section 2. The same is true for B_j . Since ϕ_n is a finite linear combination of $\{\sigma_{hse}(A_j)^*, \sigma_{hse}(B_j)^*\}$ which is denoted by $\sum_{j=1}^{\gamma_n} \{\alpha_j^{(n)}\sigma_{hse}(A_j)^* + \beta_j^{(n)}\sigma_{hse}(B_j)^*\}$, we have

$$\begin{aligned} (\pi(\phi_{n}), \,\sigma_{hse}(\gamma))_{R} &= \sum_{j=1}^{\nu_{n}} \left\{ \alpha_{j}^{(n)}(\pi(\sigma_{hse}(A_{j})^{*}), \,\sigma_{hse}(\gamma))_{R} + \beta_{j}^{(n)}(\pi(\sigma_{hse}(B_{j})^{*}), \,\sigma_{hse}(\gamma))_{R} \right\} \\ &= \sum_{j=1}^{\nu_{n}} \left\{ \alpha_{j}^{(n)}(\iota^{*}(\tilde{\sigma}_{hse}(\tilde{A}_{j})^{*}), \,\sigma_{hse}(\gamma))_{R} + \beta_{j}^{(n)}(\iota^{*}(\tilde{\sigma}_{hse}(\tilde{B}_{j})^{*}), \,\sigma_{hse}(\gamma))_{R} \right\} \\ &= \sum_{j=1}^{\nu_{n}} \left\{ \alpha_{j}^{(n)} \cdot \gamma \times A_{j} + \beta_{j}^{(n)} \cdot \gamma \times B_{j} \right\} \\ &= \sum_{j=1}^{\nu_{n}} \left\{ \alpha_{j}^{(n)}(\sigma_{hse}(A_{j})^{*}, \,\sigma_{hse}(\gamma))_{R} + \beta_{j}^{(n)}(\sigma_{hse}(B_{j})^{*}, \,\sigma_{hse}(\gamma))_{R} \right\} \\ &= (\phi_{n}, \,\sigma_{hse}(\gamma))_{R}. \end{aligned}$$

We conclude that

$$\begin{split} \int_{\tilde{\gamma}} \tilde{\omega}^* &= \int_{\gamma} \iota^{\#}(\tilde{\omega}^*) = \left(\sum_{n=1}^{\infty} a_n \pi(\phi_n), \sigma_{hse}(\gamma)\right)_R \\ &= \left(\sum_{n=1}^{\infty} a_n \phi_n, \sigma_{hse}(\gamma)\right)_R \\ &= \int_{\gamma} \omega^* = \alpha \neq 0. \end{split}$$

Now it is shown that $\tilde{\omega} \neq 0$ and it deduces that R is maximal. \Box

In order to prove Theorem 3, we need the following.

LEMMA 5. Let R be a bordered Riemann surface with boundary γ and (V, φ) be a parametric half disc about a point on γ (cf. [2, II. 7C]). Suppose that a C^{∞} function f on R whose differential df belongs to $\Gamma_{e0}(R)$ is harmonic in $V \cap R$. Then f is extended to be constant on $\gamma \cap V$.

PROOF. Set $U = \{z; |z| < 1\}$, $U^+ = \{z; |z| < 1, \Im z > 0\}$, $U^- = \{z; |z| < 1, \Im z < 0\}$ and $I = \{z; |z| < 1, \Im z = 0\}$. A parametric half disc (V, φ) satisfies $\varphi(V) = \{z; |z| < 1, \Im z \ge 0\}$ and $\varphi(\gamma \cap V) = I$. The local representation of f in (V, φ) is also denoted by f. Set $g(z) = -f(\overline{z})$ for z in U^- and

$$\omega = \begin{cases} df & \text{ in } U^+ \\ dg & \text{ in } U^-. \end{cases}$$

If we can prove that ω is a harmonic differential in U, then there exists a harmonic function u in U such that $du = \omega$. We have

$$u(z) = \begin{cases} f(z) + C & \text{in } U^+ \\ g(z) + C' & \text{in } U^- \end{cases}$$

with constants C and C'. Consider a harmonic function $v(z) = u(z) + u(\overline{z})$ in U. Then we have $v(z) = f(z) + C + g(\overline{z}) + C' = C + C'$ in U^+ and $v \equiv C + C'$ in U. We conclude

$$\lim_{U^+\ni z\to I}u(z)=\frac{C+C'}{2}$$

so that

$$\lim_{U^+\ni z\to I}f(z)=\frac{C'-C}{2}.$$

Thus f can be extended continuously over I and the extended f is a constant function on $I = \varphi(\gamma \cap V)$.

Now we shall show that ω is harmonic. Since df is an element of $\Gamma_{e0}(R)$, there is a sequence $\{h_n\}$ in $C_0^{\infty}(R)$ such that $\lim_{n\to\infty} ||df - dh_n||_R = 0$. The local representation of h_n in (V, φ) is also denoted by h_n . Set

$$\tilde{h}_n(z) = \begin{cases} h_n(z) & \text{in } U^+ \\ -h_n(\bar{z}) & \text{in } U^-. \end{cases}$$

Since every h_n vanishes in some neighborhood of I, $\{\tilde{h}_n\}$ is a sequence in $C^{\infty}(U)$ which satisfies $\lim_{n\to\infty} \|\omega - d\tilde{h}_n\|_U = 0$. Let $\phi(z)$ be an arbitrary function in $C_0^{\infty}(U)$. We have $(\omega, d\phi^*)_U = \lim_{n\to\infty} (d\tilde{h}_n, d\phi^*)_U = 0$. On the other hand

$$(\omega, d\phi)_U = (df, d\phi)_{U^+} + (dg, d\phi)_{U^-} = (df, d\phi)_{U^+}$$

holds, where $\tilde{\phi}(z) = \phi(z) - \phi(\bar{z})$ in U. Set $U_{\delta}^+ = \{z; |z| < 1, \Im z > \delta\}$ for $\delta > 0$. From here we use the same argument as in [2, V.13B]. We note

$$(df, d\tilde{\phi})_{U^+} = \lim_{\delta \to 0} (df, d\tilde{\phi})_{U^+_{\delta}} = \lim_{\delta \to 0} \iint_{U^+_{\delta}} d\tilde{\phi} \wedge df^*$$
$$= \lim_{\delta \to 0} \left\{ -\iint_{U^+_{\delta}} \tilde{\phi} \Delta f dx dy + \int_{\partial U^+_{\delta}} \tilde{\phi} df^* \right\}.$$

Since f is harmonic, we have

$$(df, d\tilde{\phi})_{U^+} = -\lim_{\delta \to 0} \int_{-\sqrt{1-\delta^2}}^{\sqrt{1-\delta^2}} \tilde{\phi}(x+i\delta) f_y(x+i\delta) dx.$$

Hence for any $\varepsilon > 0$ there is a positive number δ_0 such that if $0 < y < \delta_0$ then

$$(df, d\tilde{\phi})_{U^+} - \varepsilon < -\int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \tilde{\phi}(x+iy) f_y(x+iy) dx < (df, d\tilde{\phi})_{U^+} + \varepsilon$$

holds. Integrate by y from 0 to δ , $\delta < \delta_0$. We have

$$\delta\{(df, d\tilde{\phi})_{U^+} - \varepsilon\} < -\int_0^\delta dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \tilde{\phi}f_y dx < \delta\{(df, d\tilde{\phi})_{U^+} + \varepsilon\}$$

and

$$(df, d\tilde{\phi})_{U^+} - \varepsilon < -\frac{1}{\delta} \int_0^\delta dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \tilde{\phi}f_y dx < (df, d\tilde{\phi})_{U^+} + \varepsilon.$$

Therefore we have

$$(df, d\tilde{\phi})_{U^+} = -\lim_{\delta\to 0} \frac{1}{\delta} \int_0^\delta dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \tilde{\phi} f_y dx.$$

Since $\tilde{\phi}(x) = 0$ on the real axis and $\tilde{\phi} \in C_0^{\infty}(U)$, we have an estimate $|\tilde{\phi}(x + iy)| \le My$ with constant M. We obtain

$$\begin{split} \left| \frac{1}{\delta} \int_{0}^{\delta} dy \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \tilde{\phi} f_{y} dx \right| &\leq \frac{1}{\delta} \int_{0}^{\delta} dy \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} My |f_{y}| dx \leq \int_{0}^{\delta} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} M |f_{y}| dx dy \\ &\leq M \left(\int_{0}^{\delta} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} dx dy \right)^{1/2} \left(\int_{0}^{\delta} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} |f_{y}|^{2} dx dy \right)^{1/2} \\ &\leq M (2\delta)^{1/2} \|df\|_{R}. \end{split}$$

This shows that $(\omega, d\phi)_U = 0$ for all $\phi \in C_0^{\infty}(U)$. By Weyl's lemma we conclude that ω is a harmonic differential.

Now we show

PROOF OF THEOREM 3. We may assume that ∂V consists of a finite number of mutually disjoint analytic Jordan curves and u is harmonic on ∂V too.

Assume that R is not maximal. Let (\tilde{R}, ι) be an extension of R satisfying properties (1), (2), and (3) in Lemma 4. Set $\tilde{V} = \tilde{R} \setminus \iota(R \setminus V)$. By Lemma 1 (2), there exist \tilde{u}_0 and $\tilde{u}_1 \in KD(\tilde{V})$ such that \tilde{u}_0 and \tilde{u}_1 are equal to $u \circ \iota^{-1}$ on $\partial \tilde{V}$ and \tilde{u}_0 (resp. \tilde{u}_1) has $\Gamma_{he}(\tilde{R})$ (resp. $\Gamma_{hm}(\tilde{R})$)-behavior.

Since \tilde{R} has the property (3) in Lemma 4, $\tilde{u}_0 \circ i$ and $\tilde{u}_1 \circ i$ also belong to KD(V). Since u has $\Gamma_{he}(\tilde{R})$ - and $\Gamma_{hm}(\tilde{R})$ -behaviors, from Lemma 1 (1-1) and (1-2) it follows that

$$(du, d(\tilde{u}_i \circ \iota))_V = \int_{\partial V} u d(\tilde{u}_i \circ \iota)^* = \int_{\partial V} (\tilde{u}_i \circ \iota) du^* = ||du||_V^2.$$

We have by Lemma 4 (1) $\|d\tilde{u}_i\|_{\tilde{V}}^2 = \|d(\tilde{u}_i \circ i)\|_{V}^2$ and by Lemma 1 (1-1)

$$\|d\tilde{u}_i\|_{\tilde{V}}^2 = \int_{\partial \tilde{V}} \tilde{u}_i d\tilde{u}_i^* = \int_{\partial V} u d(\tilde{u}_i \circ \iota)^* = \|du\|_{V}^2.$$

Therefore

 $\|d(\tilde{u}_i \circ i) - du\|_{\mathcal{V}}^2 = \|d(\tilde{u}_i \circ i)\|_{\mathcal{V}}^2 + \|du\|_{\mathcal{V}}^2 - 2(d(\tilde{u}_i \circ i), du)_{\mathcal{V}}$ = 0 for i = 0, 1

and we have $\tilde{u}_0 \circ i = \tilde{u}_1 \circ i = u$ on V. So $\tilde{u}_0(=\tilde{u}_1)$ has $\Gamma_{he}(\tilde{R})$ - and $\Gamma_{hm}(\tilde{R})$ behaviors. Now represent $d\tilde{u}_0$ as follows

$$\begin{cases} d\tilde{u}_0 = \omega_1 + df, \, \omega_1 \in \Gamma_{hm}(\tilde{R}), \, df \in \Gamma_{e0}(\tilde{R}) \\ d\tilde{u}_0^* = \omega_2 + dg, \, \omega_2 \in \Gamma_{h0}(\tilde{R}), \, dg \in \Gamma_{e0}(\tilde{R}) \end{cases}$$

By [1, Lemma 3 on p. 158] ω_1 and ω_2 are extended to be harmonic on a border γ of \tilde{R} and zero along γ . By Lemma 5 df and dg are zero along γ . Then $d\tilde{u}_0$ and $d\tilde{u}_0^*$ are also extended to be harmonic on a border γ of \tilde{R} and zero along γ . Hence $d\tilde{u}_0$ must be 0 on some component of \tilde{V} . But this contradicts that u is non-constant on each component of V. Therefore R is maximal. \Box

To prove Theorem 2' and Theorem 3' we construct an extension \tilde{R} of R such that \tilde{R} has no planar ends as follows: Let $\{R_n\}_{n=0,1,2,...}$ be a canonical exhaustion of R. Let $G_n^{(1)}, \ldots, G_n^{(k_n)}$ be the planar components of $R \setminus \overline{R_n}$ each of which is not included in any planar component of $R \setminus \overline{R_{n-1}}$. Map $G_n^{(j)}$ conformally into the unit disc $U_n^{(j)} = \{|z| < 1\}$ so that $\partial G_n^{(j)}$ corresponds to $\partial U_n^{(j)}$, and denote by $E_n^{(j)}$ the inner boundary of the image of $G_n^{(j)}$. We obtain a new Riemann surface as the union of R and $\bigcup_{n \ge 1, j \ge 1, \dots \le n} U_n^{(j)}$ by identifying

Naondo Jin

 $G_n^{(j)}$ with $U_n^{(j)} \setminus E_n^{(j)}$. There is a natural inclusion mapping ι of R into \tilde{R} . In this way we obtain an extension (\tilde{R}, ι) of R which has no planar ends. We use the extension (\tilde{R}, ι) in the proofs of Theorem 2' and 3'.

PROOF OF THEOREM 2'. By Proposition 2 $E_n^{(j)}$ is an N_D -set. Let σ be an arbitrary differential in $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$. Since $\Gamma_{h0} \subset \Gamma_{hse}$ holds, σ and σ^* are exact in $G_n^{(j)}$. Since $\int (\sigma + i\sigma^*)$ belongs to $AD(G_n^{(j)})$, it can be extended to be analytic on $U_n^{(j)}$. Then σ is extended to be harmonic on $U_n^{(j)}$. Therefore σ , more precisely the differential $(i^{-1})^*(\sigma)$ on i(R), is extended to be harmonic over \tilde{R} . We denote the extended one by $\tilde{\sigma}$. Since $\tilde{R} \setminus i(R)$ is a set of two dimensional Lebesgue measure 0 (cf. [9, I. Theorem 8C]), $(d\tilde{u}, \tilde{\sigma}^*)_{\tilde{R}} =$ $(d(\tilde{u} \circ i), \sigma^*)_R = 0$ and $(d\tilde{u}, \tilde{\sigma})_{\tilde{R}} = (d(\tilde{u} \circ i), \sigma)_R = 0$ hold for any $\tilde{u} \in HD(\tilde{R})$. Hence we have $\tilde{\sigma} \in \Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})$. Therefore $i^*(\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})) \supset \Gamma_{h0}(R) \cap$ $\Gamma_{h0}^*(R) \neq \{0\}$. By Theorem 2 we conclude that \tilde{R} is a maximal Riemann surface. Hence R has a maximal extension \tilde{R} such that $\tilde{R} \setminus i(R)$ is a closed N_D -set. By Theorem A, R has a unique maximal extension.

Let $\tilde{\omega}$ be an arbitrary element in $\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})$. Since each boundary component of ∂R_n is a dividing curve on \tilde{R} or homologous to 0 on \tilde{R} , $\iota^{\#}(\tilde{\omega})$ belongs to $\Gamma_{hse}(R) \cap \Gamma_{hse}^*(R)$. In $G_n^{(j)}$ any $u \in KD(R)$ has a single-valued conjugate harmonic function u^* . Since $u + iu^*$ belongs to $AD(G_n^{(j)})$, it can be extended to be analytic on $U_n^{(j)}$. Then u is extended to be harmonic on $U_n^{(j)}$. Therefore u, more precisely $u \circ \iota^{-1}$, is extended to be harmonic over \tilde{R} . We denote the extended one by \tilde{u} . It is easily seen that \tilde{u} belongs to $HD(\tilde{R})$. We have

$$(\iota^{\#}(\tilde{\omega}), du^*)_R = (\tilde{\omega}, d\tilde{u}^*)_{\tilde{R}} = 0$$
 and $(\iota^{\#}(\tilde{\omega}^*), du^*)_R = (\tilde{\omega}^*, d\tilde{u}^*)_{\tilde{R}} = 0.$

By the orthogonal decomposition $\Gamma_{hse} = \Gamma_{h0} + \Gamma_{hse} \cap \Gamma_{he}^*$ we conclude that $\iota^{\#}(\tilde{\omega})$ belongs to $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$. We have shown the relation $\iota^{\#}(\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})) =$ $\Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$ for the special maximal extension (\tilde{R}, ι) . Let (\tilde{R}', ι') be another maximal extension of R. By [7, Lemma 4] the conformal mapping $\iota' \circ \iota^{-1}$ is extended to that of \tilde{R} onto \tilde{R}' . We denote the extended one by F. Then the pull back $F^{\#}$ induced by F is a bijection of $\Gamma_{h}(\tilde{R}')$ onto $\Gamma_{h}(\tilde{R})$. It is easily seen that $\tilde{\omega}' \in \Gamma_{h0}(\tilde{R}') \cap \Gamma_{h0}^*(\tilde{R}')$ if and only if the pull back $F^{\#}(\tilde{\omega}') \in \Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^*(\tilde{R})$. Since $\iota'^{\#}(\tilde{\omega}') = \iota^{\#}(F^{\#}(\tilde{\omega}'))$ holds, we conclude that $\iota'^{\#}(\Gamma_{h0}(\tilde{R}') \cap \Gamma_{h0}^*(\tilde{R}')) = \Gamma_{h0}(R) \cap \Gamma_{h0}^*(R)$. This completes the proof. \Box

PROOF OF THEOREM 3'. We may assume $\partial V \subset R_0$. Since *u* has Γ_{he} - and Γ_{hm} -behaviors, by Lemma 1,

$$(du, dv)_{G_n^{(j)}} = \int_{\partial G_n^{(j)}} v du^*$$
 for every $v \in HD(G_n^{(j)})$

and

$$(du, dv)_{G_n^{(j)}} = \int_{\partial G_n^{(j)}} u dv^*$$
 for every $v \in KD(G_n^{(j)})$.

By Lemma 2 we conclude that $E_n^{(j)}$ is an N_D -set. Since du and du^* are exact in $G_n^{(j)}$, u can be extended to be harmonic over $E_n^{(j)}$. By the same argument as in the proof of Theorem 3 we can show that the extended u has $\Gamma_{he}(\tilde{R})$ - and $\Gamma_{hm}(\tilde{R})$ -behaviors. By Theorem 3 \tilde{R} is maximal. By Theorem A, R has a unique maximal extension. Denote the extended u over \tilde{R} by \tilde{u} . Let (\tilde{R}', ι') be another maximal extension of R. Then $\iota' \circ \iota^{-1}$ is extended to the conformal mapping F of \tilde{R} onto \tilde{R}' . It is easily seen that $\tilde{u} \circ F^{-1}$ has $\Gamma_{he}(\tilde{R}')$ - and $\Gamma_{hm}(\tilde{R}')$ -behaviors simultaneously. Since $u \circ \iota'^{-1} = \tilde{u} \circ F^{-1}$ holds on $\iota'(R)$, $u \circ$ ι'^{-1} is extended to $\tilde{u} \circ F^{-1}$. This completes the proof. \Box

The last one is

PROOF OF COROLLARY 1. Let (\tilde{R}, ι) be an extension of R, not necessarily maximal. There is a maximal extension (\hat{R}, ι') of \tilde{R} . Then $(\hat{R}, \iota' \circ \iota)$ is a maximal extension of R. By Theorem 2' $\hat{R} \setminus (\iota' \circ \iota)(R)$ is an N_D -set and there exists a non-zero element $\hat{\omega}$ in $\Gamma_{h0}(\hat{R}) \cap \Gamma_{h0}^*(\hat{R})$. Since $\tilde{R} \setminus \iota(R)$ is also an N_D -set, we have for any $\tilde{u} \in HD(\tilde{R})$

$$(\iota'^{\#}(\hat{\omega}), d\tilde{u})_{\tilde{R}} = (\iota^{\#}(\iota'^{\#}(\hat{\omega})), d(\tilde{u} \circ \iota))_{R} = 0$$

and

$$(\iota'^{\#}(\hat{\omega}^{*}), d\tilde{u})_{\tilde{R}} = (\iota^{\#}(\iota'^{\#}(\hat{\omega}^{*})), d(\tilde{u} \circ \iota))_{R} = 0$$

because $\iota^{\#}(\iota'^{\#}(\hat{\omega})) = (\iota' \circ \iota)^{\#}(\hat{\omega})$ and $\iota^{\#}(\iota'^{\#}(\hat{\omega}^{*})) = (\iota' \circ \iota)^{\#}(\hat{\omega}^{*})$ belong to $\Gamma_{h0}(R) \cap \Gamma_{h0}^{*}(R)$. Therefore a non-zero element $\iota'^{\#}(\hat{\omega})$ exists in $\Gamma_{h0}(\tilde{R}) \cap \Gamma_{h0}^{*}(\tilde{R})$. Again by Theorem 2'

$$\iota'^{\#}(\Gamma_{h0}(\widehat{R})\cap\Gamma_{h0}^{*}(\widehat{R}))=\Gamma_{h0}(\widetilde{R})\cap\Gamma_{h0}^{*}(\widetilde{R})$$

holds. Since $(\iota' \circ \iota)^{\#} = \iota^{\#} \circ \iota'^{\#}$ holds, we have a conclusion. \Box

References

- [1] R. Accola, The bilinear relation on open Riemann surfaces, T. A. M. S. 96 (1960), 143-161.
- [2] L. Ahlfors and L. Sario, Riemann surface, Princeton University Press, Princeton, 1960.
- [3] S. Bochner, Fortsetzung Riemannscher Flächen, Math. Ann. 98 (1928), 406-421.
- [4] N. Jin, Some remarks on the class of the Riemann surfaces with (W)-property, Proc. Japan Acad. Ser. A. Math. Sci. 69 (1993), 322-326.

- [5] N. Jin and Y. Kusunoki, On a class of Riemann surfaces characterized by period reproducing differentials, Pitman Research Notes in Math., vol. 212, 1989, pp. 13-20.
- [6] K. Oikawa, On the uniqueness of the prolongation of an open Riemann surface of finite genus, P. A. M. S. 11 (1960), 785-787.
- [7] H. Renggli, Structural instability and extensions of Riemann surfaces, Duke Math. J. 42 (1975), 211-224.
- [8] M. Sakai, Continuations of Riemann surfaces, Canad. J. Math. 44 (1992), 357-367.
- [9] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer, Berlin-Heidelberg-New York, 1970.
- [10] L. Sario and K. Oikawa, Capacity functions, Springer, Berlin-Heidelberg-New York, 1969.
- [11] M. Yoshida, The method of orthogonal decomposition for differentials on open Riemann surfaces, J. Sci. Hiroshima Univ. Sci. A-I 32 (1968), 181-210.

Department of Mathematics Gakushuin University Toshima-ku, Tokyo 171, Japan