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ABSTRACT. We compare the Bessel capacity with the Hausdorff content. For E c Rn

we let EytC = \JxeE

B(χ> C&E(XY) w i t h c > ° a n d 0 < y ^ 1. If £ is an open set and

0 < γ < 1, then £ y c is larger than E. It is shown that the Bessel capacity of EytC is

estimated above by the Hausdorff content of E. This estimation is applied to the

tangential boundary behavior of harmonic functions in the upper half space.

1. Introduction

Let K(r) ψ 0 be a nonnegative nonincreasing lower semicontinuous (1. s. c.)

function for r > 0. For x e Rn we define K(x) = K(|x|), and assume that K(x)

is locally integrable on Rn. For E c Rn we define the capacity Cκ by

Q ( £ ) = i n f { | | μ | | : K : * μ > l on £},

where ||μ|| denotes the total mass of a measure μ. Let fcα(r) = ra~n for

0 < α < n. This is the Riesz kernel of order α. If K(r) = fcα(r), then we write

Cα for Cκ and call it the Riesz capacity of order α.

Let h(r) be a positive nondecreasing function for r > 0 and h(0) = 0. Such

a function is called a measure function. We define the content Mh by

Mh(E) = inf (XΛ(0): £ <= U * ( * * θ)K
where B(x, r) stands for the open ball with center at x and radius r. If

h(r) = rβ, then we write M^ for Mh and call it jS-content. There is a close

connection between Cα and M^. The following theorem is well-known (cf.

[4, §IV] and [6, Theorems 5.13 and 5.14]).

THEOREM A.

( i ) //M π _ α (£) = 0, then Ca(E) = 0.

(ii) Let n - α < j8 < n. Then Ca(E) = 0 implies Mβ(E) = 0.

(iii) There is a set E such that Ca(E) = 0 and MΛ_α(£) > 0.
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It is easy to see that Ca and MM_α are both homogeneous of degree n — <x.

From this fact, we can easily obtain the above (i). However, in view of (iii),

Mπ_α(£) = 0 is not characterized by Ca(E) = 0. We have only partial compari-

son (ii).

One of the main purposes of this paper is to compare CΛ with a certain

quantity, which may be regarded as an (n — α)-dimensional quantity. Here-

after we shall use the following notation. By the symbol A we denote an

absolute positive constant whose value is unimportant and may change from

line to line. If necessary, we use Au A2, . . . , to specify them. We shall say

that two positive quantities / and g are comparable, written / « g, if and

only if there exists a constant A such that A~xg <f<Ag. By | £ | we denote

the Lebesgue measure of E.

For c > 0 and 0 < γ < 1 we define

EytC= U B(x9cδE(xY),
xeE

where δE(x) = dist (x, Ec). If E is an open set and 0 < γ < 1, then E7tC is a

proper extension of E. Moreover, if E = 5(0, r) and r > 0 is small, then E7tC

is a ball with radius comparable to crY

9 so that

Mβ(EγtC) » ryβ » Mβ(Eγ.

So, one may regard Mβ(EγtC) as a /fy-dimensional quantity. If β = n, then

M^ίE) is comparable with the Lebesgue measure |E|. Let ga be the Bessel

kernel. The Riesz and the Bessel kernels have the same asymptotics as r -> 0.

However, ga(r) decreases rapidly as r -> oo and hence ga is integrable on Rn.

The capacity C9a(E) is called the Bessel capacity of index (α, 1) and is denoted

by BaΛ(E). It is well known that

Ca(E)*BaΛ(E) for EaU,

where U is a bounded set. Thus the Riesz capacity Ca and the Bessel capacity

Baί have the same null sets. In the previous paper [3] we have proved

THEOREM B. Let 0 < α < n , c = l and y = (n — α)/n. Then

\EyJ < ABaΛ(E),

where A > 0 depends only on n and α.

Here we generalize Theorem B to

THEOREM 1. Let 0 <n — a < β <n, y = (n — α)/j? and c > 0. 77ιen

vv/ierβ >1 > 0 depends only on n, α, β and c.
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Actually, in [3], general kernels and capacities were treated. Our argu-
ment here for Theorem 1 is very different from that of [3] and heavily
depends on the Bessel kernel. The case when β = n was dealt with in [3].
We see that Mβ(E) and the Lebesgue measure | £ | are comparable in this
case. The main idea in [3] was to compare a test measure for the capacity
with the Lebesgue measure on a ball whose volume is equal to its capacity.
In case β < n, a difficulty arises from the lack of a measure corresponding
to the Lebesgue measure. We shall employ the Frostman lemma and the
Besicovitch covering lemma (see Lemmas A and B below). We shall convert
the measure given by the Frostman lemma so that the converted measure
becomes a test measure for the dual definition of Bat x (see Lemma C below).

We can consider a counterpart of Theorem 1 for IZ-capacity theory. Let
1 < p < oo. We define

CKtP(E) = mϊ{\\f\\>:K*f>l on £}.

If K = ka9 then we write RΛtP(E) for Cκ p(E) and call it the Riesz capacity of
index (α, p). If K = ga9 then we write Ba p(E) for CKp(E) and call it the Bessel
capacity of index (α,p). In case ocp < n, the Riesz capacity Rap is homoge-
neous of degree n — ocp; the Riesz capacity RafP(E) and the Bessel capacity
Bap(E) are comparable for E c U, where U is a bounded set.

THEOREM 2. Let 1 <p < oo, O<n — ocp<β<n, γ = (n — <xp)/β and c> 0.
Then

Mβ(EγJ < ABaJE\

where A>0 depends only on n, α, p, β and c.

The proof of Theorem 2 will use the same converted measure as in the
proof of Theorem 1, the dual definition of Bap and the Hedberg-Wolff lemma
(see Lemmas D and E). We shall later generalize these theorems, in connec-
tion with Nagel-Stein approach region ([11]). We shall introduce a notion
of "thin sets" and combine it with the generalized version of Theorems 1
and 2 to obtain the tangential boundary behavior of harmonic functions given
as the Poisson integral of Bessel potentials.

The plan of this paper is as follows. We shall prove Theorems 1 and
2 in Sections 2 and 3, respectively. A theorem similar to Theorem 2 for the
case otp = n will be given also in Section 3. In Section 4 we shall introduce
the Nagel-Stein approach region and generalize Theorems 1 and 2. The
boundary behavior of harmonic functions will be considered in Section 5.
Finally, a norm estimate of tangential maximal functions of Poisson integrals
will be given in Section 6. We shall observe that our arguments yield different
proofs of Ahern-Nagel [2, Theorem 6.2 and Corollary 6.3].



366 Hiroaki AIKAWA

The author would like to thank Professors K. Hatano, F.-Y. Maeda and

Y. Mizuta for helpful comments.

2. Proof of Theorem 1

Let us recall the fundamental lemma due to Frostman (see e.g. [4, Theo-

rem 1 on p. 7] and [6, Lemma 5.4]).

LEMMA A. Let h be a measure function. Suppose F is a compact set

such that Mh(F) > 0. Then there is a measure μ supported on F such that

\\μ\\ « Mh(F),

μ(B{x, r)) < h(r) for all xe Rn and r > 0.

We also need the Besicovitch covering lemma (see e.g. [14, Theorem 1.3.5]).

LEMMA B. Let E be a set in Rn and suppose that r(x) is a positive

bounded function on E. Then we can select {x,} c E with the following

properties:

(i) Ecz\JjB(xj9r(xj)).

(ii) The multiplicity of {B(xj9 r(Xj))} is bounded by a positive constant N

depending only on the dimension. In other words, ΣXB(XJ,HXJ)) ^ ^

We note the dual definition of Cκ.

LEMMA C. Let E be an analytic set. Then

CK(E) = sup {||μ|| :μ is concentrated on E, K*μ < 1 on Rn).

For each integer v we let Gv be the family of cubes

fc fe + 1
x ) : ^ < x < ^ i l

where kί9 . . ., kn are integers. We let G = {GjJL.,*,. For a cube Q of side

length / we put τh(Q) = h(l) and define

= inf I£ τh(Qj): E cz Q Qj9 Q.

Then it is easy to see that

(2.1) Mh(E)«mh(E) for any set E

([4, (1.3) on p. 7]). We observe that mh has the increasing property.

LEMMA 1. Let Vunr_+aoh(r) = co. If E^E, then l i m ^ ^ mh(Ej) = mh(E).



Bessel capacity and Hausdorff content 367

In particular, if E is an Fσ-set, then

mh(E) = sup mh(F).

F is compact

PROOF. It is clear that lim^^ mh(Ej) < mh(E). Hence, it is sufficient to

show the opposite inequality, under the assumption that lim^^ mh(Ej) < oo.

Let ε > 0. By definition we find cubes Qjti e G such that

i=ί

Σ *k(Qj.t) < mh(Ej) + a-*.

Since lim^^ mh(Ej) < oo and lim,..^ h(r) = oo, it follows that the side lengths

of Qjti are bounded. Hence we can select maximal cubes Ql9 Q2, ..., Qv9

... whose union covers E = (J^Ej. Now, in the same way as in [12, Theo-

rem 52], we can show

Mm mh(Ej) + 2ε,

and hence mh(E) < limj.,^ mh(Ej) + 2ε. Since ε > 0 is arbitrary, the lemma

follows.

As a corollary to (2.1) and Lemma 1 we have the following:

COROLLARY 1. Let limr^O0h(r)= oo. // E is an Fσ-set, then

Mh(E)« sup Mh(F).
FczE

F is compact

REMARK. The assumption that lim^^ h(r) = oo is essential in Lemma 1.

In fact, suppose that lim,..^ h(r) = a < oo. Then, by definition, mh(E) < a for

any bounded set E. On the other hand it is easy to see that mh(Rn) = oo

if liminf^o h(r)/r > 0. Thus the increasing property does not hold in general.

This example is suggested by K. Hatano. We observe that [4, (3.2) on p.

9] actually requires some additional assumption like lim,..^ h(r) = oo or the

boundedness of E.

From Lemmas A, C and 1 we show the following lemma.

LEMMA 2. Let 0 <n — OL< β <n. Then

Mβ(E) < ABaΛ(E%

where A > 0 depends only on n, α and β.
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PROOF. Since BΛΛ is an outer capacity, i.e.,

BX>1(E)= mf BtΛ(U),

U is open

we may assume that E is an open set. Let F be a compact subset of E. By
Lemma A there is a measure μ on F such that

(2.2) ||μ|| » Mβ(F\

(2.3) μ(B(x9 r)) < r for all x e Rn and r > 0.

Observe from (2.3) that

#α*μ(x)= ga(r)dμ(B(x9 r)) = μ(B(x, r))d(-gfa(r))
Jo Jo

ί°
Jo

o

Hence Lemma C and (2.2) yield

Taking the supremum over all F, we obtain the required inequality from
Corollary 1. The lemma follows.

PROOF OF THEOREM 1. By (2.1) and Lemma 1 we may assume that E
is a bounded set. Since Ba x is an outer capacity, we may furthermore assume
that E is an open set. By Lemma 2 we have only to show that

Mβ(Eγ,c\E)<ABΛΛ(E).

In view of Corollary 1 it is sufficient to show that

(2.4) Mβ(F)<ABaΛ(E)

for any compact subset F of EVtC\E9 since E7tC\E is an Fff-set. By Lemma A
we can find a measure μ on F satisfying (2.2) and (2.3).

By definition, for each x e EγtC\E9 there is x* e E such that x e
B(x*9 cδE(x*f). We let

r(x)= sup δE(x*).
x*eE

xeB(x*,cδE{x*)y)

We observe that r(x) is a positive bounded function on E7tC\E. We invoke
Lemma B and find {xj a F such that

(2.5) F a U ^(x,., 2crJ) with η = r(x, ),
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(2.6) the multiplicity of {B(xp 2cr/)} is bounded by N.

By definition we can find xf e E such that

(2.7) 0/2 < δE(xf) < rp

(2.8) \xj-xf\<crj.

We put μj = μ\B(Xj,2crX) a n d observe from (2.5) and (2.6) that

(2.9) μ<Σμj^Nμ.

From μj we construct a measure λj as follows: for Borel sets S

λj(S) = μj(4(S - xf) + x,) if crj < rj9

λj(S) = μμcrJ-\S - xf) + x}) if crj > 15.

It is easy to see that

(2.10) λj is concentrated on By xf, -min {crj, η} 1,

(2.H) μ, ll = \\μjl

(2.12) λj(B(x, p)) = μ/Bίx, p)) = \\μj\\

for p > max<\x — Xj\ + 2cr/, |x — x/| H- - min {crj, η}>.

Moreover, in view of (2.3)

(2.13) \\λj\\ = \\μj\\ < (2cr/Y;

for all xeRn and r > 0

(2.14) λ;(l*(x,r))<(4r/ if cr/ < r,,

(2.15) λj(B(x9 r)) < (AcrJ-hY if crj > η.

It follows from (2.7) that B{xf, η/2) a E and so from (2.10) that the measure

λj is concentrated on E. Let λ = ]£ Aj. We claim

(2.16) 0 α * Λ < Λ 2 on /?n.

If we have (2.16), then the proof is easy. Since λ is concentrated on E9 it

follows from Lemma C and (2.11) that

BaΛ(E) > A?\\λ\\ = Aϊ1 Σ \\μj\\ > A?\\μ\\.

This, together with (2.2), yields (2.4).
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Let us prove (2.16). Hereafter we fix xeRn. First we claim

(2.17) ga*λj(x)<A

with A independent of and x. Suppose crj < η. Then by (2.14)

ga * λj(x) = f °° λj(B(x, r))d{-gΛ{r)) < Γ ( W ( - 0 α ( r ) ) = A < oo.
Jo Jo

Thus (2.17) follows. Suppose crj > η. Then by (2.13) and (2.15)

ga*λj(x)= Γ λj(B(x,r))d(-gΛ(r))
Jo

< f °° min {(2cr/Y, (4crj~hY}d(-ga(r))
Jo

ryγ f°° d(-
Jrj/2

Γ gΛ(r))
O Jrj/2

Aήy-1)βrf+a

Thus (2.17) follows in this case, too.
Let us write

where £ ' (resp. J]w) denotes the summation over j for which x e B(xj9 2crj)
(resp. x φ B(xp 2crj)). In view of (2.6), the number of j appearing in £ ' is
at most N. Hence by (2.17)

(2.18) ga*λ'(x)<A.

Next, we consider ga*λ"(x). Let us estimate λ"(B(x, r)) = £"λj(B(x, r)). In
the summation J]", we may consider only j such that ^(^(x, r)) > 0. By
(2.10) this implies that \x — xf\<r + crf/2. In view of the definition of £",
we have \x - Xj\> 2crJ. Using these inequalities and (2.8), we obtain

r + crj/2 > |x - xf\ >\x- x, | - \xj - xf\ > 2crJ - crj = crj,

so that r > crj/29 \x - xf\ < 2r, \xj - xf\ < 2r and |x - Xj\ < 4r. Hence

max < \x — Xj\ + 2crj, |x — x^| + — min {crj, r j > < max {8r, 3r} = 8r.

Therefore, (2.12) implies that λj(B(x, 8r)) = μj(B(x, 8r)), so that



Bessel capacity and Hausdorff content 371

" λj(B(x, 8r)) = Σ " μj(B(x, 8r))

oo.

where the last inequality follows from (2.9). Hence by (2.3)

(2.19) λ"(B(x, r) < N(8r)" for all r > 0.

Thus

ga*λ"(x) = f°° λ"(B(x, r)d(-gΛ(r)) < A ί°° r«d(-gΛ(r)) = A
Jo Jo

This, together with (2.18), yields (2.16). The proof is complete.

3. Proof of Theorem 2

Let - + - = 1. We have the dual definition of CKp ([8, Theorem 14]).

LEMMA D. Let E be an analytic set Then

Q,p(£) = s u P{l lμl l P : μ is concentrated on E, \\K*μ\\q< 1}.

Let (xp < n. We put

rn-*p

Hedberg and Wolff [7] proved the following lemma (see also [1] and [14,

Theorem 4.7.5]).

LEMMA E. Let ocp < n. Then

\\ga*μ\\q

q*\Wa>p(x)dμ(x).

In the same way as in the proof of Lemma 2, we obtain the following

lemma from Lemmas A, D and E.

LEMMA 3. Let 1 < p < oo and 0 < n — otp < β <>n. Then

Mβ(E) ^ ABaJE),

where A > 0 depends only on n, α, p and β.

PROOF. Since Bap is an outer capacity, we may assume that E is an

open set. Let F be a compact subset of E. By Lemma A there is a measure
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μ on F satisfying (2.2) and (2.3). Observe from (2.3) that

since n — otp<β. Hence Lemma E yields ||flfβ*μ||J < A\\μ\\, or equivalently

μ

Hence Lemma D and (2.2) yield

Taking the supremum over all F, we obtain the required inequality from
Corollary 1.

PROOF OF THEOREM 2. We may assume that £ is a bounded open set. In
view of Lemma 3 and Corollary 1 it is sufficient to show that

(3.1) Mβ(F) < ABaJE)

for any compact set F c EytC\E. In the same way as in the proof of Theorem
1 we can find a measure μ on F satisfying (2.2) and (2.3). We find balls
B(xj92cr]) satisfying (2.5) and (2.6). Let μi = μ\B(Xj,2cry) and let Aj5 A, A' and
A" be as in the proof of Theorem 1. Observe that (2.9)-(2.15) and (2.19) hold.
In particular A is concentrated on E and

(3.2) ||A|| » ||μ|| » Mβ(F).

If at] < rj9 then by (2.14)

f i / ί 4 r y * y - i d r

— = A < oo.

If cr] > rp then by (2.13) and (2.15)

y-χr. ?/T7WV"1 dr
— < A < oo.

Thus Wίf£(x) < A in any case, and hence from (2.6) we have
From (2.19) we have

Thus Wa

λ

tP{x)<A. Hence Lemma E yields ||flfβ*^IIJ ^ ^||A||, or equivalently
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λ

Since λ is concentrated on E, it follows from Lemma D and (3.2) that

Thus (3.1) follows. The theorem is proved.

Observe that if r > 0 is small, then

{ rn'ap if αp < n,

I log - 1 if αp = n.
Therefore, it may be natural to consider a logarithmic expansion in case
αp = n.

THEOREM 2'. Let l < p < o o , αp = n, 0 < β <n and c > 0. We put

log-) P)'\ 0<r<l/2,{
r > l / 2

and

Kc = U B(*> cφ(δE(x))).

Then

Mβ(EφtC) < ΛBaJE),

where A>0 depends only on n, α, p, β and c.

PROOF. We can prove the theorem in a way similar to Theorem 2. But
for the completeness we give a proof. We observe that φ(r) is a positive
continuous increasing function. We may assume that £ is a bounded open
set. In view of Lemma 3 and Corollary 1 it is sufficient to show that
(3.4) Mβ(F) < ΛBaJE)
for any compact subset F a EψfC\E. In the same way as in the proof of
Theorem 1 we can find a measure μ on F satisfying (2.2) and (2.3). Let

p(x) = sup δE(x*)
x*eE

xeB(x*,cφ(δE(x*)))
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and observe that p(x) is a positive bounded function on EφtC\E. By Lemma

B we find {x,} c F such that

(3.5) F c U 2*(xj5 2cφ(i))) with Γ j = pfy),

(3.6) the multiplicity of {£(*,., 2cφ(rJ))} is bounded by N.

By definition we can find xf e E such that

(3.7) ij/2 < δE(xf) < rj and |x, - xf\ < cφiη).

We put μj = μ\B(xj,2cφ(rj)) a n ^ observe from (3.5) and (3.6) that

μ < Σ μj £ xμ

From μj we construct a measure λj as follows: for Borel sets S

λj(S) = μ</(4(S - xf) + x, ) if cφ(ij) < o,

^(S) = μμcφirfc^S - xf) + x,) if cφ{η) > η.

It is easy to see that

λj is concentrated on Byxf9- min {cφ(rj\ η} I,

ll̂ ll = \\μj\\ < (2cφ(rj)Y,

for p > max j |x - Xj\ + 2 ^ ^ ) , |x - xf | + - min {cφiη), η} >,

and for all xe Rn and r > 0

λj(B(x,r))<(4rY iϊcφ^Kη,

λj(B(x9 r)) < (4cφ(r,.)rrVy if Cφ(η) > η.

Let λ = Σλj. It follows from (3.7) that B(xf9 η/2) a E so that the measure

λj is concentrated on £, and so is λ. We claim

(3.8) Vfc(x) < A

with A independent of j and x. If c φ ^ ) < r , then

Wi^(x) < A I ( 4 r ) ^ " 1 ) - = A < oo,
Jo r

so that (3.8) follows. If cφiη) > rj9 then
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ί1

Jo
min «-*

/^\ minf,l *
Jo (.0 J r

if O

so that in view of the definition of φ we have (3.8) in this case, too. Let
us write

where £ ' (resp. £") denotes the summation over j for which x e B(xj9 2cφ(η))
(resp. x φ B(xp Icφiη))). In view of (3.6) the number of j appearing in £ ' is
at most N. Hence (3.8) implies that

(3.9) < A.

In the same way as in the proof of Theorem 1 we estimate λ"(B(x, r)).
Observe that if x φ B(xp 2cφ(r})) and λj(B(x9 r)) > 0, then \x - Xj\ + 2cφ(η) < 8r,
so that λj(B(x, 8r)) = μj(B(x9 8r)) and (2.19) holds. Therefore

Jo

Ar
}— = A < oo.

r

This, together with (3.9), yields

Wίfp < A on Λ".

Hence Lemmas D and E and (2.2) imply

BaJE)>A\\λ\\x\\μ\\*Mβ(F).

Thus (3.4) follows. The theorem is proved.

4. Generalization

Let Ω be a set in Rl+1 with Ω Π dRl+1 = {0}. For simplicity we assume
that Ω ^ {(0, y): y > 0}. Put Ω(y) = {x: (x, y) e Ω}. We say that Ω satisfies
the Nagel-Stein condition (abbreviated to (NS)), if
(i) \Ω(y)\ < Ayn with A = A(Ω);
(ii) there is a0 > 0 such that
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(x l 5 yx) eΩ and \x - xx\ < ao(y - yx) => (x, y) e Ω.

It is easy to see that Ω(y) is an increasing set function of y, i.e., if yx < y2,

then Ω(y1) c Ω{y2). For E we put

Eγ,CiΩ= U (x + Ω(cδE(xY)).
x<=E

We have a generalization of Theorems 1, 2 and 2'.

THEOREM 3. Let 1 < p < oo, 0 < α < n, 0 < n — ap < β < n, y = (n — αp)/jS,

c>Q and let φ(r) = φ^,p(r) fee as in (3.3) ι/ αp = n. Let Ω satisfy (NS). Then

Mβ(EγtCiΩ)<ABaJE) if αp<n,

Mβ(EφtCiΩ)<ABΛfP(E) if ocp = n,

where A > 0 depends only on n, α, p, j8, c and ίλ

We shall prove this theorem as a corollary to Theorems 1, 2 and 2' and

the following lemma.

LEMMA 4. Let 0 < β <n and let Ω satisfy (NS). If V is an open subset

of Rn, then

Mβ([j (x + Ω(δy(x))) < AMβ(V),

where δv(x) = dist (x, Vc) and A > 0 depends only on β, Ω and n.

If we assume Lemma 4, then the proof of Theorem 3 is easy.

PROOF OF THEOREM 3. We prove the theorem only in the case αp < n,

since the case αp = n is similarly proved. First we claim that

(4.1) EytCiΩcz y (x + Ω(δ~EJx))).
xeEytC

Suppose xeE. By definition B(x, cδE(x)y) c EγtC9 so that cδE(x)y < δEyc(x).

Hence

£y,c;β= U (* + O(cδE(Xγ)) C U (X + O(ίfτe(x)))cz U (X + fl(^ » ) ) .
xe£ xe£ ' χ e E y c

Thus (4.1) follows. Combining (4.1), Lemma 4 with F = Ey>c and Theorems

1 and 2, we obtain

U (x + Ω(δEJx))) < AMβ(Eγ,c) < ABaJE).
£y,c /

Thus the theorem is proved.
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For a proof of Lemma 4 we consider the Whitney decomposition of K,
i.e. Qk are closed cubes with sides parallel to the axes with the following
properties:

(ii) the interiors of Qk are mutually disjoint;
(iii)

(4.2) diam (Qk) < dist (Qk, Vc) < 4 diam (Qk)

([13, Theorem 1 on p. 167]). Let Qk be the cube which has the same center
as Qk but is expanded by the factor 9/8. Then

(4.3) the multiplicity of Qk is bounded by Nί9

where Nt depends only on the dimension n ([13, Proposition 3 on p. 169]).
In view of (4.2) we can choose a constant c0, 0 < c0 < 1, with the property that

(4.4) B(x, c0Sy(x)) f]QkΦ0=> B(x9 coδv(x)) a Qk.

Using these facts, we can prove the following lemma.

LEMMA 5. Suppose V is an open subset of Rn. Then there is a covering
J> = {B(χj9 η)} of V such that

(4.5) η > δv(xj),

(4.6)

where A > 0 depends only on the dimension n and β.

PROOF. Since V is an open set, it follows that Mβ(V) > 0. By definition
we can find a covering {B(ξj9 p,)} of V such that

(4.7)

From this covering we construct a covering ^ with the required properties.
Let \Jk Qk be the Whitney decomposition of V and let Qk be the expanded

cube as before the lemma. We let

Jfi = {fe: there is B(ξp pj) meeting Qk such that p} > coδv(ξj)},

JΓ2 = {k: if B(ξp pj) meets Qk9 then Pj < coδy(ξj)}9

where c0 is the constant appearing in (4.4).

First suppose keX^. We can find j = ;(fe) such that B{ξp Pj)Γ\Qk φ 0
and Pj > coδv(ξj). Let ξ e B(ξj9 pj)ΓlQk. We have from (4.2)

diam (Qk) < dist (Qk, Vc) < δv{ξ) < δv(ξj) + Pj < (1 + c^Pj.
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Hence Qk c B(ξj9 (2 + c^pj), so that

(4.8) U & C U

(4.9) (2 + cZx)pm > (2

Second suppose fceJf2- Since p, < coδv(ξj) for B(ξj9 Pj)ΠQk^ 0, we
obtain from (4.4) that

From the first inclusion we have

Σ Pϊ = mk\ Σ
* 0

so that the second inclusion yields

k ^ 0

Hence

(4.10) Σ diam (βk)* < ,4 Σ Σ Pf -
keX2 keX2B(ξj,pj)c:Q}c

where the last inequality follows from (4.3). Note that Qk c B(xQk, diam (Qk))
with xQk being the center of Qk. We have from (4.2)

(4.11) δv(xQk) < dist (ρ k , Vc) + diam (Qk) < 5 diam (βk).

We observe from (4.7), (4.8) and (4.10) that

@ = {B(ξm, (2 + Co1)^): fc G Jfx} U {B(xQk, 5 diam (Qk)) \ketf2}

is a covering of V and

Σ ((2 + c?)pmγ < (2 + coψ Σ P/ ̂  2 ( 2 + c ϊ ' / ^ ί n

Σ (5 diam (Qk))β < A Σ p/ < ^M^(F).

Thus (4.6) follows. We obtain from (4.9) and (4.11) that our covering 3d
satisfies (4.5). The lemma is proved.

PROOF OF LEMMA 4. First we claim

(4.12) Ω(y)czχ + Ω[y + — \
a0
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where α 0 is the constant appearing in (NS). We may assume that x φ 0.

Suppose { e Ω(y). Then (ξ, y)eΩ and

|({ - x) - ξ\ = |x| < 2|x| = aQ(y + -\x\ - Λ
\ flo /

Hence (NS) implies that ξ — x e Ω(y + 2|x|/α0), or equivalently ξ e x +

ί2(>> + 2|x|/α0). The claim is proved.

By Lemma 5 we find a covering OS = {B(xp η)} of V satisfying (4.5) and

(4.6). Suppose x e B(xj9 η). Then |x - Xj\ < η and δv(x) < 2η by (4.5), so that

Ω{δv{x)) ( δv(x) + — |x - x, | ) c x̂  -
\ ao /

with A3 = 2 4- 2/α0 by (4.12). Hence x + Ω(δv(x)) a Xj + ^(^3^) , so that

U (x + Ω(δv(x))) cz Xj +

By [11, Lemma 1 (d)] we find points ujy (v = 1, . . . ,M) such that

β μ 3 i } ) cz U B(M J > 5 3A 3 θ),
v = l

where the number M depends only on Ω. Therefore

U (x + Ω(δr(x))) c y ( j B{Xj + «,.„
xeK j v=l

Hence by (4.6)

Mβ( U (x + Oί^ίx))) < Σ Σ
\xeK / j v=l

The lemma is proved.

5. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic

functions in Jf"+1. In [3] we introduced the notion of thinness at the boundary.

For a set E a Rn

+

+ΐ we put Et = {(x, y) e E: 0 < y < ή and £ * = {Jix,y)eEB(x> y)

We recall that B(x, y) is the n-dimensional ball with center at x and radius

y, so that £ * is a set on the boundary Rn — dR++1. We shall combine the

above notation and write simply Ef for (Et)*9 i.e.,

E*= (J B(x,y).
(x,y)eE
0<y<t
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DEFINITION. Let E c Rl+1. We say that E is 5αp-thin at dRl+1 if

lim *„(£•) = ().
f->0

For a function / on Rn = dRf1 we denote by PI{f) its Poisson integral,

i.e.

where An > 0 is such that P/(l) = 1. In [3] we have proved

THEOREM C. Let 1 < p < oo and oφ < n. Lei Ώ c Rf1 and suppose

Ωf)dRl+1 = {0}. Suppose feLp(Rn). Then there is a set E cz Rn

+

+ί such that

E is BatP-thin at dRf1 and that

(5.1) lim PI(ga*f)(P) = ga*f(χ)
P->x

Pe(x+Ω)\E

for BafP-a.e. x e δ/?++1, i.e. there is a set F c dRf1 such that Bap(F) = 0 and

(5.1) holds at every xedRn

+

+ί\F.

Using Theorem 3, we can show

THEOREM 4. Let 1 <p < oo, 0 < α < n , 0 <n — ocp < β <n, γ = (n — <xp)/β,

c > 0 and let φ(r) = φβ,p(r) be as in (3.3) if ocp = n. Suppose Ω satisfies (NS).

Let

Ωy,c = {(x, y ) : x e Q i c y ? ) } and Ωφ,c = { ( * , y ) : x e Ω(cφ(y))}.

If E is BatP-thin at dRn++1, then

Mβ ( ( ) {x: (x + ί2 y c) Π £ t / 0 } ) = 0 if cap < n,
ί>0

έ 0 } I = 0 if ocp = n.

In other words, there is a set F a dR++ί of β-dimensional Hausdorff measure

zero such that for xe δR++1\F, Ωγc and Ωφc lie eventually outside E, i.e.,

there is t = tx>0 such that Etf)(x + ΩyJ = 0 and EtΠ{x + Ωφc) = 0 .

PROOF. We prove the theorem only in the case ocp < n, since the case

ccp = n is similarly proved. We can easily show that

.<= U (x - Ω(cδE.(xY)),
xeE*
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where δE*(x) = dist (x, E*c) ([3, Lemma 2]). We apply Theorem 3 with E
replaced by £*. Then

(5.2)

Mβ({x eRn:(x + ΩγJ Π E Φ 0}) < Mβ ( \J (x - Ω(cδE.(xγ))) < ABaJE*).
\xeE* J

Apply this inequality with E replaced by Et. Then the definition of thinness
implies that

Mβ({x eR*:(x + ΩyJ f)EtΦ0})< ABatP{E*) ̂  0 as t -> 0.

Thus the theorem follows.

As a corollary to Theorems C and 4 we have

THEOREM 5. Let 1 < p < oo, 0 < oc < n, 0 < n — ocp < β < n, y = (n — ocp)/β,

c > 0 and let φ(r) = ψβtP(r) be as in (3.3) if ocp = n. Suppose Ω satisfies (NS)

and let Ωγc and Ωφc be as in Theorem 4. Iffe Lp(Rn), then there is a set

F <= dR++1 of β-dimensional Hausdorff measure zero such that

lim PI(ga*f)(P) = ga*f(x) for all c> 0 if ocp < n,

Pex+Ωy,c

l i m P I ( g a * f ) ( P ) = gΛ*f(x) for all c > 0 if <xp = n

Pex+Ωφ,c

at every xedRl+1\F.

Let Ω be the nontangential cone {(x, y): \x\ < y}. Then the approach
regions in Theorem 5 are represented as Ωγ c = {(x, y): \x\ < cyγ} and Ωφc =
{(x, y): \x\ < cφ(y)}. Hence our Theorem 5 particularly yields the following
corollary.

COROLLARY 2. Let l < p < o o , 0 < α < n , 0 <n — ocp < β <n, γ =
(n - ocp)/β, c > 0 and let φ(r) = φβfP(r) be as in (3.3) if ocp = n. Iffe Lp{Rn\

then there is a set F c dRf1 such that Mβ{F) = 0 and

lim PI(ga*f)(P) = ga+f{x) for all c>Q if ocp < n,
P^x

Pex+ΩγtC

lim PI(ga*f)(P) = gΛ*f(x) for all c> 0 if ocp = n,
P-*x

Pex+Ωφ,c

at every xe dRl+ί\F.

REMARK. Ahern and Nagel [2, Corollary 6.3] showed that the above
corollary for ocp <n by using a different method. Mizuta [9] studied the
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tangential boundary behavior of harmonic functions with gradient in Lp. If
p > 2, then his result improves Corollary 2. Ahern and Nagel [2, Corollary
7.3] also gave the same result.

6. Integration with respect to Hausdorff content

For a function F on Rn = dRl+1 we denote by NF(x) the nontangential
maximal function of the Poisson integral of F, i.e.

NF(x) = sup \PI(F)\9

x+Γ

where Γ= {(x, y): |x| < y) is the nontangential cone with vertex at the origin.
Similarly, we define the tangential maximal functions by

JίycF(x) = sup \PI(F)\ and J*ψtCF(x) = sup \PI(F)\9
x+Ωy,c x+ΩψtC

where Ωyc and Ωφc are as in Theorem 4. We define the integral of u > 0
with respect to the Hausdorff content Mβ by

= 1 Mβ({x:u(x)>t})dt>.

If β = n, then the above integral is comparable to the usual Lebesgue integral.

THEOREM 6. Let 1 < p < oo, 0 < α < n, 0 < n — cap < β < n, γ = (n — αp)//?,
c > 0 and let φ(r) = φ^iP(r) be as in (3.3) ι/ αp = n. Suppose Ω satisfies (NS).
If feLp(Rn), then

ί
ί

JίyA9a*f)pdMβ < A\\f\\* if αp < n,

JtφΛga*f)pdMβ < A\\fVp if oφ = n,

where A > 0 depends only on n, α, p, c, β and Ω.

PROOF. We prove the theorem only in the case αp < n, since the case
αp = n is similarly proved. Let t > 0, E = {(x, y): |i>/(<7α*/)(x, y)| > ί} and
E* be as in Section 5. It is easy to see that E* = {x:N(ga*f)(x) > t] and
{x:Jίy,c{ga*f)(x)>t} = {xeRn:(x + ΩyiC)(λEΦ0}. Hence, by (5.2) and
Hansson's theorem ([5] and [10, 3.7]),
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= I* Mβ({x:J(yte(g^f)(x) > ή)dt'

<Λ f BaJ{x:N(gΛ*f)(x)>t})dt>
Jo

J
<A Γ BatP({x:ga*Nf(x)>t})dt>

J P
o

£A\\Nf\\>£A\\f\\>9

where the second inequality follows from the obvious inequality N(ga*f)<
ga*Nf (cf. [10, p. 344]). The theorem is proved.

REMARK. If β = n, then Theorem 6 is included in [10, Theorem 3.8]. If
β < n, then Theorem 6 improves [10, Theorem 3.12]. Ahern and Nagel [2,
Theorem 6.2] showed Theorem 6 for oφ <n by using a different method.
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