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ABSTRACT. We compare the Bessel capacity with the Hausdorff content. For E < R"
we let E',_,= UxeeB(x, c6g(x)’) with ¢>0 and 0 <y <1. If E is an open set and
0<7y<1, then E,_, is larger than E. It is shown that the Bessel capacity of EM is
estimated above by the Hausdorff content of E. This estimation is applied to the
tangential boundary behavior of harmonic functions in the upper half space.

1. Introduction

Let K(r) # 0 be a nonnegative nonincreasing lower semicontinuous (1. s. c.)
function for r > 0. For x € R" we define K(x) = K(|x|), and assume that K(x)
is locally integrable on R". For E — R" we define the capacity Cyx by

Cxk(E)=inf{||u||: K*u>1 on E},

where ||u|| denotes the total mass of a measure pu. Let k,(r)=r*" for
0 <a <n. This is the Riesz kernel of order a. If K(r) = k,(r), then we write
C, for Cx and call it the Riesz capacity of order a.

Let h(r) be a positive nondecreasing function for r > 0 and #(0) = 0. Such
a function is called a measure function. We define the content M, by

M,(E) = inf {3 h(r)): E = | B(x;, 1)},
where B(x,r) stands for the open ball with center at x and radius r. If
h(r) =r?, then we write M; for M, and call it p-content. There is a close

connection between C, and M,;. The following theorem is well-known (cf.
[4, §IV] and [6, Theorems 5.13 and 5.14]).

THEOREM A.
(i) If M,_(E)=0, then C(E)=0.
(ii)) Let n—a<p<n Then C(E)=0 implies My(E) = 0.
(iii) There is a set E such that C,(E)=0 and M,_,(E) > 0.
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It is easy to see that C, and M,_, are both homogeneous of degree n — a.
From this fact, we can easily obtain the above (i). However, in view of (iii),
M,_,(E) = 0 is not characterized by C,(E) = 0. We have only partial compari-
son (ii).

One of the main purposes of this paper is to compare C, with a certain
quantity, which may be regarded as an (n — a)-dimensional quantity. Here-
after we shall use the following notation. By the symbol A we denote an
absolute positive constant whose value is unimportant and may change from
line to line. If necessary, we use 4, 4,, ..., to specify them. We shall say
that two positive quantities f and g are comparable, written f =~ g, if and
only if there exists a constant A4 such that A™'g < f < Ag. By |E| we denote
the Lebesgue measure of E.

For ¢ >0 and 0 <y <1 we define

Ey,c = xteJE B(x9 C(SE(X)Y),
where Jg(x) = dist (x, E°). If E is an open set and 0 <y < 1, then 'E~y,c is a
proper extension of E. Moreover, if E = B(0,r) and r > 0 is small, then EM
is a ball with radius comparable to cr?, so that

My(E, ) ~ 17" ~ My(E).

So, one may regard M,,(Ey,,) as a fy-dimensional quantity. If §=n, then
My(E) is comparable with the Lebesgue measure |E|. Let g, be the Bessel
kernel. The Riesz and the Bessel kernels have the same asymptotics as r — 0.
However, g,(r) decreases rapidly as r — oo and hence g, is integrable on R".
The capacity C, (E) is called the Bessel capacity of index (a, 1) and is denoted
by B, ((E). It is well known that

C.(E) = B, 4(E) for Ec U,

where U is a bounded set. Thus the Riesz capacity C, and the Bessel capacity
B, , have the same null sets. In the previous paper [3] we have proved

THEOREM B. Let 0 <a<n, ¢c=1 and y=(n— a)/n. Then
|E, .| < AB, ,(E),
where A > 0 depends only on n and a.
Here we generalize Theorem B to
THEOREM 1. Let O<n—a<f<n, y=(m—a)/f and ¢ >0. Then
M,(E,,) < 4B, ,(E),

where A > 0 depends only on n, a, § and c.
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Actually, in [3], general kernels and capacities were treated. Our argu-
ment here for Theorem 1 is very different from that of [3] and heavily
depends on the Bessel kernel. The case when = n was dealt with in [3].
We see that Mg(E) and the Lebesgue measure |E| are comparable in this
case. The main idea in [3] was to compare a test measure for the capacity
with the Lebesgue measure on a ball whose volume is equal to its capacity.
In case B <n, a difficulty arises from the lack of a measure corresponding
to the Lebesgue measure. We shall employ the Frostman lemma and the
Besicovitch covering lemma (see Lemmas A and B below). We shall convert
the measure given by the Frostman lemma so that the converted measure
becomes a test measure for the dual definition of B, ; (see Lemma C below).

We can consider a counterpart of Theorem 1 for LP-capacity theory. Let
1 <p<oo. We define

Ck,,(E) =inf {||f]5: K*f>1 on E}.

If K = k,, then we write R, ,(E) for C¢ ,(E) and call it the Riesz capacity of
index (o, p). If K = g,, then we write B, ,(E) for Cy ,(E) and call it the Bessel
capacity of index («, p). In case ap <n, the Riesz capacity R, , is homoge-
neous of degree n — ap; the Riesz capacity R, ,(E) and the Bessel capacity
B, ,(E) are comparable for E = U, where U is a bounded set.

THEOREM 2. Let 1<p<oo,0<n—ap<f<n,y=(n—ap)/p and c > 0.
Then

My(E, ) < AB, ,(E),
where A > 0 depends only on n, a, p, f and c.

The proof of Theorem 2 will use the same converted measure as in the
proof of Theorem 1, the dual definition of B, , and the Hedberg—Wolff lemma
(see Lemmas D and E). We shall later generalize these theorems, in connec-
tion with Nagel-Stein approach region ([11]). We shall introduce a notion
of “thin sets” and combine it with the generalized version of Theorems 1
and 2 to obtain the tangential boundary behavior of harmonic functions given
as the Poisson integral of Bessel potentials.

The plan of this paper is as follows. We shall prove Theorems 1 and
2 in Sections 2 and 3, respectively. A theorem similar to Theorem 2 for the
case ap = n will be given also in Section 3. In Section 4 we shall introduce
the Nagel-Stein approach region and generalize Theorems 1 and 2. The
boundary behavior of harmonic functions will be considered in Section 5.
Finally, a norm estimate of tangential maximal functions of Poisson integrals
will be given in Section 6. We shall observe that our arguments yield different
proofs of Ahern-Nagel [2, Theorem 6.2 and Corollary 6.3].
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2. Proof of Theorem 1

Let us recall the fundamental lemma due to Frostman (see e.g. [4, Theo-
rem 1 on p. 7] and [6, Lemma 5.4]).

LEMMA A. Let h be a measure function. Suppose F is a compact set
such that M,(F) > 0. Then there is a measure u supported on F such that

lull = My(F),
w(B(x, 1)) < h(r) for all xe R" and r > 0.
We also need the Besicovitch covering lemma (see e.g. [14, Theorem 1.3.5]).

LEMMA B. Let E be a set in R" and suppose that r(x) is a positive
bounded function on E. Then we can select {x;} = E with the following
properties:

(i) E < J;B(x;, r(x;)).
(i) The multiplicity of {B(x;,r(x;))} is bounded by a positive constant N
depending only on the dimension. In other words, Zx,,(xj,,(xj,, <N.

We note the dual definition of Cg.
LEMMA C. Let E be an analytic set. Then
Cx(E) = sup {||u|l : u is concentrated on E, Kxu <1 on R"}.

For each integer v we let G, be the family of cubes

ki ki+1 .
Q={(x1,...,x,,):?$x,~<7—,l=l,...,n},

where ki, ..., k, are integers. We let G = {G,}>>_,. For a cube Q of side
length | we put 1,(Q) = h(l) and define

my(E) = inf{g:l (0):E < ,Q, 0,0¢ G}.
Then it is easy to see that
2.1 M, (E) ~ m,(E) for any set E
([4, (1.3) on p. 7]). We observe that m, has the increasing property.

LemMa 1. Let lim,, h(r)=co. If E;1E, then lim;,,my(E;) = m,(E).
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In particular, if E is an F,-set, then

my(E) = sup  my(F).
F isléoczfpact

Proor. It is clear that lim;,,m,(E;) < m,(E). Hence, it is sufficient to
show the opposite inequality, under the assumption that lim;_,, m,(E;) < c.
Let ¢ > 0. By definition we find cubes Q;; e G such that

E;c ik=)1 Qi

[

Zi 74(Q).:) < my(Ej) + €27,
Since lim;_,,, m,(E;) < co and lim,_, h(r) = oo, it follows that the side lengths
of Q;; are bounded. Hence we can select maximal cubes Q,, Q,, ..., Q,,
... whose union covers E = | J2, E;. Now, in the same way as in [12, Theo-
rem 52], we can show

in 7(Q,) < JILI: my(E;) + 2,

and hence my,(E) <lim;,,m,(E;) + 2¢. Since & >0 is arbitrary, the lemma
follows.

As a corollary to (2.1) and Lemma 1 we have the following:
COROLLARY 1. Let lim,, h(r)= co. If E is an F,-set, then

M(E)~ sup M,(F).
Fisi:nfpact

ReMARK. The assumption that lim,_ h(r) = oo is essential in Lemma 1.
In fact, suppose that lim,_,, h(r) = a < co. Then, by definition, m,(E) < a for
any bounded set E. On the other hand it is easy to see that m,(R") = o
if liminf,_ o h(r)/r > 0. Thus the increasing property does not hold in general.
This example is suggested by K. Hatano. We observe that [4, (3.2) on p.
9] actually requires some additional assumption like lim,, h(r) = co or the
boundedness of E.

From Lemmas A, C and 1 we show the following lemma.
LEMMA 2. Let O<n—a<pB<n Then
My(E) < AB, ,(E),

where A > 0 depends only on n, o and B.
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Proor. Since B, is an outer capacity, i.e.,

Bu, 1 (E) = L}nf[; Ba, 1 (U)’

U is open

we may assume that E is an open set. Let F be a compact subset of E. By
Lemma A there is a measure u on F such that

22) lull = My(F),
2.3) uBkx,n)<r for all xe R" and r > 0.
Observe from (2.3) that

o)

9o * H(x) = f: 9.(r)du(B(x, r)) = f U(B(x, r))d(—g,(r))

o
< J " (- g,r)) = 4, < co.
0

Hence Lemma C and (2.2) yield
B, 1(E) > A7 |ull & My(F).

Taking the supremum over all F, we obtain the required inequality from
Corollary 1. The lemma follows.

ProOOF OF THEOREM 1. By (2.1) and Lemma 1 we may assume that E
is a bounded set. Since B, ; is an outer capacity, we may furthermore assume
that E is an open set. By Lemma 2 we have only to show that

My(E, \E) < 4B, ,(E).
In view of Corollary 1 it is sufficient to show that
(2.4) My(F) < AB, ,(E)

for any compact subset F of EM\E, since EN\E is an F,-set. By Lemma A
we can find a measure p on F satisfying (2.2) and (2.3).
By definition, for each xe E”\E, there is x*e€ E such that xe

B(x*, cog(x*)?). We let

r(x) = sup Og(x*).

X" €
x e B(x*,coe(x*))

We observe that r(x) is a positive bounded function on EM\E. We invoke
Lemma B and find {x;} = F such that

2.5 F < JB(xj,2cr})  with r;=r(x;),
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(2.6) the multiplicity of {B(x;, 2cr/)} is bounded by N.
By definition we can find x} € E such that

@7 /2 < 850 <7

(2.8) |x; — xF| < cr}.

We put u; = plp, 2er) and observe from (2.5) and (2.6) that

29) B<Y u <N
From y; we construct a measure 4; as follows: for Borel sets S
A(S) = p;(4(S — x¥) + x;) if cr? <,

A(S) = pjder} HS —xH) + x;)  if e >

It is easy to see that

(2.10) 4; is concentrated on B<x}",%min {cr}, rj}>,
(2.11) “/1,” = ||ﬂj||,
(2.12) A{(B(x, p)) = pi(B(x, p)) = liyll

1,
for p > max {Ix — x| + 2cerf, |x — xF| + 5 min {cr}, rj}}.

Moreover, in view of (2.3)

(2.13) 141 = gl < e

for all xeR" and r>0

2.14) Ai(B(x, 1)) < 4ry if er} <,
(2.15) A(B(x, 1)) < (4crj’”1r)" if er} >,

It follows from (2.7) that B(x},r;/2) = E and so from (2.10) that the measure
4; is concentrated on E. Let 1= Z,lj. We claim

(2.16) g.*A<A, on R"

If we have (2.16), then the proof is easy. Since A is concentrated on E, it
follows from Lemma C and (2.11) that

B, 1(E) = A7M1All = A3 X Il = A2 |pll-
This, together with (2.2), yields (2.4).
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Let us prove (2.16). Hereafter we fix x € R". First we claim
(2.17) da*Ai(x) < A

with 4 independent of j and x. Suppose crf <r;. Then by (2.14)

Gur (%) = f " 4B, N)(=g,(r) < f: (rPd(—g,(r)) = A < .

[}

Thus (2.17) follows. Suppose cr} >r;. Then by (2.13) and (2.15)

(* 0

ga* Ai(x) = . 4i(B(x, 1))d(—ga(r))

o

(* o
< | min {Qcr?Y, (4er? P }d(—g,(r))
JO
(fry2 @©

= | e irpa(—g.o) + @eryy J

Ty

d(—g.(r))
/2

o

< ArfrVBpfreTn 4 ArYPri " = 4 < 0.

Thus (2.17) follows in this case, too.
Let us write

Al = Z/ lj, A." = Zu Aj,

where ) (resp. ).") denotes the summation over j for which x e B(x;, 2cr})
(resp. x ¢ B(x;, 2cr})). In view of (2.6), the number of j appearing in ) is
at most N. Hence by (2.17)

(2.18) g X (x) < A.

Next, we consider g,*A1”(x). Let us estimate A"(B(x,r))=)"4/(B(x,r). In
the summation )”, we may consider only j such that A(B(x,r)) >0. By
(2.10) this implies that |x — x}| < r + cr?/2. In view of the definition of ),
we have |x — x;| > 2cr. Using these inequalities and (2.8), we obtain

r+cr?2>|x — x¥ >|x —x;| —|x; — x¥| = 2cr! —cr} =cr},
J J J J J J J J

so that r > crf/2, |x — x}| <2r, |x; — x¥| <2r and |x — x;| < 4r. Hence
|
max<|x — x;| + 2crf, |x — x¥| + 7 min {cr}, r;} ¢ < max {8r, 3r} = 8r.

Therefore, (2.12) implies that A,(B(x, 8r)) = u;(B(x, 8r)), so that
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A"(B(x, 1) = }." A(B(x, 1))
< 2" A(B(x, 8r) = 3" p(B(x, 8r))
< Y. w(B(x, 8r)) < Nu(B(x, 8r)),
where the last inequality follows from (2.9). Hence by (2.3)
(2.19) A'(B(x,r)< N@8r)f  for all r> 0.
Thus

@

ga*x A" (%) = f A"(B(x, r)d(—g,(r)) < A Jw rfd(—g,(r)) = A < co.
0

V]

This, together with (2.18), yields (2.16). The proof is complete.

3. Proof of Theorem 2
Let Il7+ 2 = 1. We have the dual definition of Cg , ([8, Theorem 14]).

LemMMmA D. Let E be an analytic set. Then
Cx,(E) = sup {||ull”: u is concentrated on E, |K *pul, < 1}.
Let ap <n. We put

r

Hedberg and Wolff [7] proved the following lemma (see also [1] and [14,
Theorem 4.7.5)).

LemMA E. Let ap <n. Then

9o * ullg = ‘[ W p(X)dpu(x).
In the same way as in the proof of Lemma 2, we obtain the following
lemma from Lemmas A, D and E.
LEMMA 3. Let 1<p<ooand 0<n—oap<pf<n Then
M,(E) < AB, ,(E),
where A > 0 depends only on n, o, p and B.

ProoF. Since B, , is an outer capacity, we may assume that E is an

open set. Let F be a compact subset of E. By Lemma A there is a measure
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u on F satisfying (2.2) and (2.3). Observe from (2.3) that

L/ oy N1 1gr
Wio(x) < L <;,,—_a—p) - = A < o,

since n —ap < f. Hence Lemma E yields |g,*uli < Allul, or equivalently

q

g, *_#_
RS

Hence Lemma D and (2.2) yield

B> (MY 4yl ~ My()
wr = \dppe) T A

Taking the supremum over all F, we obtain the required inequality from
Corollary 1.

PrOOF OoF THEOREM 2. We may assume that E is a bounded open set. In
view of Lemma 3 and Corollary 1 it is sufficient to show that

3.1) My(F) < AB, ,(E)

for any compact set F 'E.N\E. In the same way as in the proof of Theorem
1 we can find a measure u on F satisfying (2.2) and (2.3). We find balls
B(x;, 2cr}) satisfying (2.5) and (2.6). Let ;= ulB(,j,ZC,}) and let 4;, 4, A’ and
A" be as in the proof of Theorem 1. Observe that (2.9)—(2.15) and (2.19) hold.
In particular A is concentrated on E and

(3.2) Al = llull = My(F).
If cr} <r;, then by (2.14)

mﬁMSAr(@Nyﬂ?=A<w.
0

pnep

If cr} > r;, then by (2.13) and (2.15)

1 ((min {4013::;:, 2crjv})ﬁ)q—1 dr cd<o
r r

mmmSAj

0

Thus W%(x) < A in any case, and hence from (2.6) we have W2 (x)< 4.
From (2.19) we have

1 A\q—1
W (x) < A f (fgf)p) fl; =A< .
0

(x) < A. Hence Lemma E yields |g,*4l|2 < A||A|l, or equivalently

Thus W2}

p
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<L

q

. A
VTPTEC
Since A is concentrated on E, it follows from Lemma D and (3.2) that

41

Ba,p(E) 2 (W) = A‘M“ X Mﬁ(F)

Thus (3.1) follows. The theorem is proved.
Observe that if r > 0 is small, then

rtop if ap<n,
B, ,(B(O,r) ~ 1\t-»
<log ;) if ap =n.

Therefore, it may be natural to consider a logarithmic expansion in case
op = n. ‘

THEOREM 2. Let 1 <p< oo, ap=n, 0<fB<nand ¢c>0. We put

1\a-py8
(log -) R 0<r<1/2,
(3.3) o(r) = @p,,(r) = r
2(log 2)~PVéy, r>1/2
and
Epe= | Bx, co(3s(x)
Then

Mﬂ(Eq),c) < ABa,p(E)’
where A > 0 depends only on n, a, p, f and c.

Proor. We can prove the theorem in a way similar to Theorem 2. But
for the completeness we give a proof. We observe that ¢(r) is a positive
continuous increasing function. We may assume that E is a bounded open
set. In view of Lemma 3 and Corollary 1 it is sufficient to show that

(3.4) M(F) < AB, ,(E)

for any compact subset F — EW\E. In the same way as in the proof of
Theorem 1 we can find a measure u on F satisfying (2.2) and (2.3). Let

p(x) = sup Op(x*)

x*eE
x€B(x*,co(de(x*))
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and observe that p(x) is a positive bounded function on EM\E. By Lemma
B we find {x;} = F such that

(3.5) F < |JB(x;, 2co(r;))  with r;= p(x;),

(3.6) the multiplicity of {B(x;, 2co(r;))} is bounded by N.

By definition we can find x} € E such that

3.7 /2 < op(x¥) <1y and [x; — x¥| < co(r;).

We put 1 = plpe;, 2co0) and observe from (3.5) and (3.6) that

p<Y u<Np

From p; we construct a measure A; as follows: for Borel sets §
2(S) = p(4(5 ~ xP) + x,) if cp(r) <7,
A(8) = pildco(r)r ' (S — x) + x;)  if co(ry) > 15

It is easy to see that

J

1
A; is concentrated on B (x}", 3 min {co(r;), rj}>,

1450 = llwll < QReo)),
A{(B(x, p)) = pi(B(x, p)) = llpll

1
for p > max {Ix — x| + 2co(r), |x — xF| + 3 min {co(r;), rj}},

and for all xe R" and r >0
A(B(x, 1) < (4r)f if co(r) <,
A(B(x, 1) < (4co(r)r'r)f if co(r) >r;.

Let A=) A;. It follows from (3.7) that B(x},r;/2) = E so that the measure
A; is concentrated on E, and so is .. We claim

(33 Whx)< 4
with A independent of j and x. If co(r;) <r;, then
dr

1
Wh(x) < 4 J @r @-”7 =A< o,
(4]

so that (3.8) follows. If co(r;) > r;, then
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A ! . dr
Wo30) < 4 | min {deom)r'rf, Qepm)y ) —
0

r LLCR
r

1
< Ap(r;)fe? [ min {—, 1
vO T

J

Aqo(rﬁ"“"“( + log 1) ifo<r<l1,

- Bla—1) i
B 1
Aq,(,})ﬂ(q—l)ﬂ(q — 1) rj_”("_” if 2 > 1’

so that in view of the definition of ¢ we have (3.8) in this case, too. Let
us write

2./ = 2/ A’ja An — Z” A’j9
where )" (resp. ).") denotes the summation over j for which x e B(x;, 2co(r;))
(resp. x ¢ B(x;, 2co(r;))). In view of (3.6) the number of j appearing in ) is
at most N. Hence (3.8) implies that

(3.9 Wi (x) < A.

In the same way as in the proof of Theorem 1 we estimate A"(B(x,r)).
Observe that if x ¢ B(x;, 2co(r;)) and Ai(B(x, r)) > 0, then |x — x;| + 2co(r;) < 8r,
so that A,(B(x, 8r)) = u(B(x, 8r)) and (2.19) holds. Therefore

Wi(x)< A J: (8r)”"“”g =A< .
This, together with (3.9), yields
Wi, <A on R"
Hence Lemmas D and E and (2.2) imply
B, (E) = Al Al ~ |lull & My(F).

Thus (3.4) follows. The theorem is proved.

4. Generalization

Let 2 be a set in R%* with QNORY! = {0}. For simplicitly we assume
that @ > {(0,y):y > 0}. Put Q(y) = {x:(x,y) € R2}. We say that Q satisfies
the Nagel-Stein condition (abbreviated to (NS)), if
(i) 12(y)| < Ay" with 4 = A(Q);

(ii) there is ay > 0 such that
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(x1,y)€eQ and  |x — x| <ao(y —yi) = (x,y) e 2.

It is easy to see that Q(y) is an increasing set function of y, ie., if y; <y,,
then Q(y,) = Q(y,). For E we put

E, o= (x + 2(coex)).

xeE

We have a generalization of Theorems 1, 2 and 2'.
THEOREM 3. Let 1 <p< 0,0<a<n 0<n—ap<f<n y=([n-—ap)p,
c>0and let o(r) = @ ,(r) be as in (3.3) if ap =n. Let Q satisfy (NS). Then
My(E,..0) < AB,,(E)  if ap<nm,
My(Eq,c,0) < AB, ,(E)  if ap=n,
where A > 0 depends only on n, a, p, B, ¢ and Q.

We shall prove this theorem as a corollary to Theorems 1, 2 and 2’ and
the following lemma.

LEMMA 4. Let 0 < B <n and let 2 satisfy (NS). If V is an open subset
of R", then

M, (xUV (x + Q(éy(x))) < AMg(V),

where d,(x) = dist (x, V) and A > 0 depends only on B, Q and n.
If we assume Lemma 4, then the proof of Theorem 3 is easy.

PRrOOF OF THEOREM 3. We prove the theorem only in the case ap <n,
since the case ap = n is similarly proved. First we claim that

@.1) E,oc | (x+Q0%, ()

x€eE, .
Suppose x € E. By definition B(x, cdgz(x)’) = Em, so that cdg(x)’ < oz, ().
Hence
E o= UE (x + 2(coe(x))) = UE (x + 20, (N <= | &+ 2%, (%)

xeE, .

~

Thus (4.1) follows. Combining (4.1), Lemma 4 with V =E, . and Theorems
1 and 2, we obtain

My(E, . o) < M,,( U G+ g(@ﬁﬂ(x))) < AMy(E,,) < AB, ,(E).

xek, .

Thus the theorem is proved.
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For a proof of Lemma 4 we consider the Whitney decomposition of V,
ie. Q, are closed cubes with sides parallel to the axes with the following
properties:

(1) U ="V,

(ii) the interiors of Q, are mutually disjoint;

(iii)

“4.2) diam (Q,) < dist (Q,, V*) < 4 diam (Q,)

([13, Theorem 1 on p. 167]). Let J, be the cube which has the same center
as @, but is expanded by the factor 9/8. Then

4.3) the multiplicity of J, is bounded by N;,

where N; depends only on the dimension n ([13, Proposition 3 on p. 169]).
In view of (4.2) we can choose a constant ¢y, 0 < ¢, < 1, with the property that

(44) B(x, cody()) N Q # & = B(x, ¢o6y(x)) = Oy
Using these facts, we can prove the following lemma.

LEMMA 5. Suppose V is an open subset of R". Then there is a covering
B = {B(x;,r;)} of V such that

4.5) 1 2 op(x;),
(4.6) 2l < AM(V),

where A > 0 depends only on the dimension n and p.

PrOOF. Since V' is an open set, it follows that Mg(V) > 0. By definition
we can find a covering {B({;, p)} of V such that

4.7) Y. of <2My(V).
J
From this covering we construct a covering # with the required properties.

Let ( J; Qi be the Whitney decomposition of V and let 0, be the expanded
cube as before the lemma. We let

A, = {k: there is B({;, p;) meeting Q, such that p; > c,d,())},
A, = {k: if B(&;, p;)) meets Q,, then p; < cody(&))},

where ¢, is the constant appearing in (4.4).
First suppose ke );. We can find j = j(k) such that B(;, p)NQ, # &
and p; > coy(;). Let e B(E;, p)N Q. We have from (4.2)

diam (Q,) < dist (Qi, V°) < 6y(8) < 6y(§) + o < (1 + ¢5")py;-
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Hence Q, = B(¢;, (2 + c5')p;), so that

4.8) U [~ U B(uy, 2 + co! )Pia)s
keX, ken,
4.9 2+co 1)Pj(k) =22 +c¢ l)coéV(éj(k)) > Oy (&iny)-

Second suppose ke ;. Since p; < cody(¢;) for B(E;, p)NQy # &, we
obtain from (4.4) that

%< U B p) <=y
B Qi # &

From the first inclusion we have

p n
Ol < A4 o = A|Qyl (——J—)
y B(é,.p,;ckség ’ . B(gj.p,;qkaeg diam (Q,)

p; )‘“
<A -,
12 B(&,.p,;ck;éz (dlam (%)

so that the second inclusion yields

diam (Q,)f < 4 Yy pf<a Y _pf

B(Sj, pNQu# & B({y.ﬂj)‘:ék !
Hence
(4.10) Y diam(Q)f<4 ) Y _ pf<AN,Y pf,
ke X, ke X, B, p5) Qs i

where the last inequality follows from (4.3). Note that Q, = B(xg,, diam (Q,))
with x, being the center of Q,. We have from (4.2)

4.11) Oy(xg,) < dist (Qy, V°) + diam (Q,) < 5 diam (Q,).
We observe from (4.7), (4.8) and (4.10) that

B = {B(&jpy (2 + cal)p,-(k)) ke AU {B(ka, 5 diam (Q)): ke A3}
is a covering of V and

. Zf (2 + oMo’ <R+ 'V Y pf <22+ cg' Y My(V),
€Ny J

3, (S diam Q)Y < AT pf < AM,(V).

ke X5

Thus (4.6) follows. We obtain from (4.9) and (4.11) that our covering #
satisfies (4.5). The lemma is proved.

ProOOF OF LEMMA 4. First we claim

4.12) Q0) e x + Q(y 4 3|x1),
Ao
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where a, is the constant appearing in (NS). We may assume that x # 0.
Suppose ¢ € 2(y). Then (& y)e 2 and

2
(€ —x) = &l = |x] < 2x]| =ao(y+a—|xl —Y)-
0

Hence (NS) implies that & — xe Q(y + 2|x|/a,), or equivalently £ex +
Q(y + 2|x|/ay). The claim is proved.

By Lemma 5 we find a covering # = {B(x;,r;)} of V satisfying (4.5) and
(4.6). Suppose x € B(x;, ;). Then |x — x;| < r; and dy(x) < 2r; by (4.5), so that

Q(by(x)) = x; — x + Q(éy(x) + ailx - ij> < x;—x + 2(A;3r)
0

with 43 =2 + 2/a, by (4.12). Hence x + 2(dy(x)) = x; + 2(A;3r;), so that
U+ Q06y(x)) = x; + 2(431).

x € B(xj,r;)

By [11, Lemma 1 (d)] we find points u;, (v=1,..., M) such that
M
Q(A:&rj) < L_)l B(uj,w 3A3’:])’
where the number M depends only on Q. Therefore

M
gi (x + Q(y(x)) = kl) !1 B(x; + u;,,, 3437;).

Hence by (4.6)

eV v=1

M"<xU (x + Q(ay(x))> <X f (3A3r))P < AMy(V).

The lemma is proved.

5. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic
functions in R7*'. In [3] we introduced the notion of thinness at the boundary.
For a set E< R}™ we put E, = {(x,)) € E:0 <y <t} and E* = | J(x,,)c B(X, Y)-
We recall that B(x, y) is the n-dimensional ball with center at x and radius
y, so that E* is a set on the boundary R" = dR"*'. We shall combine the
above notation and write simply E¥ for (E,)*, i.e.,

E¥= ) B(x ).

(x,y)eE
O<y<t
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DEFINITION. Let E = R}*'. We say that E is B, ,-thin at oR}™ if
lim B, ,(E¥) = 0.
-0
For a function f on R" = dR"*' we denote by PI(f) its Poisson integral,
ie.

PI(f)(x’ y) = J;" (lx _ zle_:_yyz)(,,-o-n/zf(Z)dz,

where A4, > 0 is such that PI(1)=1. In [3] we have proved

THEOREM C. Let 1<p< oo and ap<n. Let Q c R and suppose
QNOR"! = {0}. Suppose f e LP(R"). Then there is a set E = R"*! such that
E is B, ,-thin at OR%' and that

(-1 lim — PI(g,*f)(P) = g.* f(x)

X
Pe(x+Q)\E

for B, ae. x€0RY, ie. there is a set F < R} such that B, ,(F)=0 and
(5.1) holds at every x € OR%'\F.

Using Theorem 3, we can show

THEOREM 4. Let 1 <p<o0,0<a<n O0<n—ap<pB<n,y=(n—ap)p,
c>0 and let o(r) = @,,(r) be as in (3.3) if ap =n. Suppose Q satisfies (NS).
Let

Q,c={(x)):xeQ(cy)} and  Q,.={(x,y):x€Q(co()}.

If E is B, ,-thin at R, then

Mﬁ(zOo {x:(x+Qy_c)ﬂE,;éQ}>=0 if ap<n,

Mﬂ<Q{x:(x+Q¢,c)ﬂE,¢Q}>=0 if ap=n.

In other words, there is a set F < OR"*! of PB-dimensional Hausdorff measure
zero such that for x € ORY*'\F, Q,. and Q,, lie eventually outside E, i.e.,
there is t =t, >0 such that EEN(x + 2,.)= and EN(x + 2, )= J.

Proor. We prove the theorem only in the case ap < n, since the case
ap = n is similarly proved. We can easily show that

{xeR":(x+Q, )NE # &} < q:. (x — Q(cdgs(x)")),
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where 6g.(x) = dist (x, E*) ([3, Lemma 2]). We apply Theorem 3 with E
replaced by E*. Then

(5.2)
My({xeR":(x + 2, )NE # &}) < M,,( U‘ (x — Q(céE.(x)"))> < AB, (E¥).

Apply this inequality with E replaced by E,. Then the definition of thinness
implies that

My({xeR":(x + 2, )NE, # &}) < AB, ,(E})>0  as t—>0.
Thus the theorem follows.
As a corollary to Theorems C and 4 we have

THEOREM 5. Let 1<p<o0,0<a<n O0<n—ap<pf<n,y=(n—ap)p,
¢ >0 and let ¢(r) = @4 ,(r) be as in (3.3) if ap =n. Suppose Q satisfies (NS)
and let Q,. and Q, . be as in Theorem 4. If fe L?(R"), then there is a set
F c 0R"*! of B-dimensional Hausdorff measure zero such that

lim PI(g,* f)(P)=g,*f(x) for all ¢c>0 if ap <n,

P-x
Pex+Q, .

lim PI(g,* f)(P) = g,*f(x) for all ¢>0 if ap=n
P-x
Pex+Q, .

at every x € ORT*\F.

Let Q be the nontangential cone {(x,y):|x| <y}. Then the approach
regions in Theorem 5 are represented as 2, ., = {(x, y):|x| <cy’} and Q,, =
{(x,y):|x] < co(y)}. Hence our Theorem 5 particularly yields the following
corollary.

COROLLARY 2. Let 1<p<o, O<a<n O<n—ap<f<n y=
(n —ap)/B, ¢ >0 and let ¢(r) = @; ,(r) be as in (3.3) if ap=n. If fe LP(R"),
then there is a set F = ORY™" such that My(F) =0 and
lim PI(g,* f)(P) = g,*f(x) for all ¢ >0 if ap <n,

P-x
Pex+Q, .

lim PI(g,*f)(P) =g, * f(x) for all ¢ >0 if ap=n,
P-x
Pex+Q, .

at every x € OR"*!\F.

REMARK. Ahern and Nagel [2, Corollary 6.3] showed that the above
corollary for ap <n by using a different method. Mizuta [9] studied the
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tangential boundary behavior of harmonic functions with gradient in L?. If
p = 2, then his result improves Corollary 2. Ahern and Nagel [2, Corollary
7.3] also gave the same result.

6. Integration with respect to Hausdorff content

For a function F on R" = 0R"*' we denote by NF(x) the nontangential
maximal function of the Poisson integral of F, i.e.

NF(x) = sup |PI(F)|,
x+I

where I' = {(x, y):|x| < y} is the nontangential cone with vertex at the origin.
Similarly, we define the tangential maximal functions by

M, F(x)= sup |PI(F)| and M, F(x)= sup |PI(F),
x+Q, . x+8,

where 2, . and @, are as in Theorem 4. We define the integral of u >0
with respect to the Hausdorff content M, by

ju"dMn = fw M({x : u(x) > t})dt".
0

If B = n, then the above integral is comparable to the usual Lebesgue integral.

THEOREM 6. Let 1 <p< 0,0<a<n 0<n—ap<pB<ny=(n—ap)/p,
¢ >0 and let o(r) = @4 ,(r) be as in (3.3) if ap =n. Suppose Q satisfies (NS).
If f e LP(R"™), then

fﬂr,c(ga*f)’de <Alfl; ¥ ap<n,

J‘“Il(p,c(ga*f)PdMﬁ < A"f”g lf ap =n,

where A > 0 depends only on n, o, p, ¢, B and Q.

Proor. We prove the theorem only in the case ap < n, since the case
ap =n is similarly proved. Let t >0, E = {(x, y):|PI(g,*f)(x, y)| >t} and
E* be as in Section 5. It is easy to see that E* = {x:N(g,*f)(x) >t} and
{x: M, (g.*f)x) >t} ={xeR":(x + 2, )NE # &}. Hence, by (52) and
Hansson’s theorem ([5] and [10, 3.7]),
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Jﬁy,c(ga*f)’de = Lw My({x: M, (g, * f)(x) > t})dt”

<4 j " B (% NG+ ) > )de?
0

<A J‘w B, ({x: g, * Nf(x) > t})dt?

0

< A|INfII7 < Al f1I3

where the second inequality follows from the obvious inequality N(g,*f) <
g.* Nf (cf. [10, p. 344]). The theorem is proved.

REMARK. If B = n, then Theorem 6 is included in [10, Theorem 3.8]. If

B < n, then Theorem 6 improves [10, Theorem 3.12]. Ahern and Nagel [2,
Theorem 6.2] showed Theorem 6 for ap < n by using a different method.
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