Bessel capacity, Hausdorff content and the tangential boundary behavior of harmonic functions

Hiroaki Aikawa
(Received December 19, 1994)
(Revised April 19, 1995)

Abstract

We compare the Bessel capacity with the Hausdorff content. For $E \subset \boldsymbol{R}^{n}$ we let $\tilde{E}_{\gamma, c}=\bigcup_{x \in E} B\left(x, c \delta_{E}(x)^{\gamma}\right)$ with $c>0$ and $0<\gamma \leq 1$. If E is an open set and $0<\gamma<1$, then $\tilde{E}_{\gamma, c}$ is larger than E. It is shown that the Bessel capacity of $\tilde{E}_{\gamma, c}$ is estimated above by the Hausdorff content of E. This estimation is applied to the tangential boundary behavior of harmonic functions in the upper half space.

1. Introduction

Let $K(r) \not \equiv 0$ be a nonnegative nonincreasing lower semicontinuous (l. s. c.) function for $r>0$. For $x \in R^{n}$ we define $K(x)=K(|x|)$, and assume that $K(x)$ is locally integrable on R^{n}. For $E \subset R^{n}$ we define the capacity C_{K} by

$$
C_{K}(E)=\inf \{\|\mu\|: K * \mu \geq 1 \text { on } E\}
$$

where $\|\mu\|$ denotes the total mass of a measure μ. Let $k_{\alpha}(r)=r^{\alpha-n}$ for $0<\alpha<n$. This is the Riesz kernel of order α. If $K(r)=k_{\alpha}(r)$, then we write C_{α} for C_{K} and call it the Riesz capacity of order α.

Let $h(r)$ be a positive nondecreasing function for $r>0$ and $h(0)=0$. Such a function is called a measure function. We define the content M_{h} by

$$
M_{h}(E)=\inf \left\{\sum h\left(r_{j}\right): E \subset \bigcup B\left(x_{j}, r_{j}\right)\right\}
$$

where $B(x, r)$ stands for the open ball with center at x and radius r. If $h(r)=r^{\beta}$, then we write M_{β} for M_{h} and call it β-content. There is a close connection between C_{α} and M_{β}. The following theorem is well-known (cf. [4, §IV] and [6, Theorems 5.13 and 5.14]).

Theorem A.

(i) If $M_{n-\alpha}(E)=0$, then $C_{\alpha}(E)=0$.
(ii) Let $n-\alpha<\beta \leq n$. Then $C_{\alpha}(E)=0$ implies $M_{\beta}(E)=0$.
(iii) There is a set E such that $C_{\alpha}(E)=0$ and $M_{n-\alpha}(E)>0$.

[^0]It is easy to see that C_{α} and $M_{n-\alpha}$ are both homogeneous of degree $n-\alpha$. From this fact, we can easily obtain the above (i). However, in view of (iii), $M_{n-\alpha}(E)=0$ is not characterized by $C_{\alpha}(E)=0$. We have only partial comparison (ii).

One of the main purposes of this paper is to compare C_{α} with a certain quantity, which may be regarded as an $(n-\alpha)$-dimensional quantity. Hereafter we shall use the following notation. By the symbol A we denote an absolute positive constant whose value is unimportant and may change from line to line. If necessary, we use A_{1}, A_{2}, \ldots, to specify them. We shall say that two positive quantities f and g are comparable, written $f \approx g$, if and only if there exists a constant A such that $A^{-1} g \leq f \leq A g$. By $|E|$ we denote the Lebesgue measure of E.

For $c>0$ and $0<\gamma \leq 1$ we define

$$
\tilde{E}_{\gamma, c}=\bigcup_{x \in E} B\left(x, c \delta_{E}(x)^{\gamma}\right),
$$

where $\delta_{E}(x)=\operatorname{dist}\left(x, E^{c}\right)$. If E is an open set and $0<\gamma<1$, then $\tilde{E}_{\gamma, c}$ is a proper extension of E. Moreover, if $E=B(0, r)$ and $r>0$ is small, then $\widetilde{E}_{\gamma, c}$ is a ball with radius comparable to $c r^{\gamma}$, so that

$$
M_{\beta}\left(\tilde{E}_{\gamma, c}\right) \approx r^{\nu \beta} \approx M_{\beta}(E)^{\gamma}
$$

So, one may regard $M_{\beta}\left(\tilde{E}_{\gamma, c}\right)$ as a $\beta \gamma$-dimensional quantity. If $\beta=n$, then $M_{\beta}(E)$ is comparable with the Lebesgue measure $|E|$. Let g_{α} be the Bessel kernel. The Riesz and the Bessel kernels have the same asymptotics as $r \rightarrow 0$. However, $g_{\alpha}(r)$ decreases rapidly as $r \rightarrow \infty$ and hence g_{α} is integrable on \boldsymbol{R}^{n}. The capacity $C_{g_{a}}(E)$ is called the Bessel capacity of index $(\alpha, 1)$ and is denoted by $B_{\alpha, 1}(E)$. It is well known that

$$
C_{\alpha}(E) \approx B_{\alpha, 1}(E) \quad \text { for } E \subset U
$$

where U is a bounded set. Thus the Riesz capacity C_{α} and the Bessel capacity $B_{\alpha, 1}$ have the same null sets. In the previous paper [3] we have proved

Theorem B. Let $0<\alpha<n, c=1$ and $\gamma=(n-\alpha) / n$. Then

$$
\left|\tilde{E}_{\gamma, c}\right| \leq A B_{\alpha, 1}(E)
$$

where $A>0$ depends only on n and α.
Here we generalize Theorem B to
Theorem 1. Let $0<n-\alpha<\beta \leq n, \gamma=(n-\alpha) / \beta$ and $c>0$. Then

$$
M_{\beta}\left(\tilde{E}_{\gamma, c}\right) \leq A B_{\alpha, 1}(E),
$$

where $A>0$ depends only on n, α, β and c.

Actually, in [3], general kernels and capacities were treated. Our argument here for Theorem 1 is very different from that of [3] and heavily depends on the Bessel kernel. The case when $\beta=n$ was dealt with in [3]. We see that $M_{\beta}(E)$ and the Lebesgue measure $|E|$ are comparable in this case. The main idea in [3] was to compare a test measure for the capacity with the Lebesgue measure on a ball whose volume is equal to its capacity. In case $\beta<n$, a difficulty arises from the lack of a measure corresponding to the Lebesgue measure. We shall employ the Frostman lemma and the Besicovitch covering lemma (see Lemmas A and B below). We shall convert the measure given by the Frostman lemma so that the converted measure becomes a test measure for the dual definition of $B_{\alpha, 1}$ (see Lemma C below).

We can consider a counterpart of Theorem 1 for L^{p}-capacity theory. Let $1<p<\infty$. We define

$$
C_{K, p}(E)=\inf \left\{\|f\|_{p}^{p}: K * f \geq 1 \text { on } E\right\} .
$$

If $K=k_{\alpha}$, then we write $R_{\alpha, p}(E)$ for $C_{K, p}(E)$ and call it the Riesz capacity of index (α, p). If $K=g_{\alpha}$, then we write $B_{\alpha, p}(E)$ for $C_{K, p}(E)$ and call it the Bessel capacity of index (α, p). In case $\alpha p<n$, the Riesz capacity $R_{\alpha, p}$ is homogeneous of degree $n-\alpha p$; the Riesz capacity $R_{\alpha, p}(E)$ and the Bessel capacity $B_{\alpha, p}(E)$ are comparable for $E \subset U$, where U is a bounded set.

Theorem 2. Let $1<p<\infty, 0<n-\alpha p<\beta \leq n, \gamma=(n-\alpha p) / \beta$ and $c>0$. Then

$$
M_{\beta}\left(\tilde{E}_{\gamma, c}\right) \leq A B_{\alpha, p}(E)
$$

where $A>0$ depends only on n, α, p, β and c.
The proof of Theorem 2 will use the same converted measure as in the proof of Theorem 1, the dual definition of $B_{\alpha, p}$ and the Hedberg-Wolff lemma (see Lemmas D and E). We shall later generalize these theorems, in connection with Nagel-Stein approach region ([11]). We shall introduce a notion of "thin sets" and combine it with the generalized version of Theorems 1 and 2 to obtain the tangential boundary behavior of harmonic functions given as the Poisson integral of Bessel potentials.

The plan of this paper is as follows. We shall prove Theorems 1 and 2 in Sections 2 and 3, respectively. A theorem similar to Theorem 2 for the case $\alpha p=n$ will be given also in Section 3. In Section 4 we shall introduce the Nagel-Stein approach region and generalize Theorems 1 and 2. The boundary behavior of harmonic functions will be considered in Section 5. Finally, a norm estimate of tangential maximal functions of Poisson integrals will be given in Section 6. We shall observe that our arguments yield different proofs of Ahern-Nagel [2, Theorem 6.2 and Corollary 6.3].

The author would like to thank Professors K. Hatano, F.-Y. Maeda and Y. Mizuta for helpful comments.

2. Proof of Theorem 1

Let us recall the fundamental lemma due to Frostman (see e.g. [4, Theorem 1 on p. 7] and [6, Lemma 5.4]).

Lemma A. Let h be a measure function. Suppose F is a compact set such that $M_{h}(F)>0$. Then there is a measure μ supported on F such that

$$
\begin{aligned}
& \|\mu\| \approx M_{h}(F), \\
& \mu(B(x, r)) \leq h(r) \quad \text { for all } x \in R^{n} \text { and } r>0 .
\end{aligned}
$$

We also need the Besicovitch covering lemma (see e.g. [14, Theorem 1.3.5]).
Lemma B. Let E be a set in \boldsymbol{R}^{n} and suppose that $r(x)$ is a positive bounded function on E. Then we can select $\left\{x_{j}\right\} \subset E$ with the following properties:
(i) $E \subset \bigcup_{j} B\left(x_{j}, r\left(x_{j}\right)\right)$.
(ii) The multiplicity of $\left\{B\left(x_{j}, r\left(x_{j}\right)\right)\right\}$ is bounded by a positive constant N depending only on the dimension. In other words, $\sum \chi_{B\left(x_{j}, r\left(x_{j}\right)\right)} \leq N$.
We note the dual definition of C_{K}.
Lemma C. Let E be an analytic set. Then

$$
C_{K}(E)=\sup \left\{\|\mu\|: \mu \text { is concentrated on } E, K * \mu \leq 1 \text { on } R^{n}\right\}
$$

For each integer v we let G_{v} be the family of cubes

$$
Q=\left\{\left(x_{1}, \ldots, x_{n}\right): \frac{k_{i}}{2^{v}} \leq x_{i}<\frac{k_{i}+1}{2^{v}}, i=1, \ldots, n\right\},
$$

where k_{1}, \ldots, k_{n} are integers. We let $G=\left\{G_{v}\right\}_{v=-\infty}^{\infty}$. For a cube Q of side length l we put $\tau_{h}(Q)=h(l)$ and define

$$
m_{h}(E)=\inf \left\{\sum_{j=1}^{\infty} \tau_{h}\left(Q_{j}\right): E \subset \bigcup_{j=1}^{\infty} Q_{j}, Q_{j} \in G\right\} .
$$

Then it is easy to see that

$$
\begin{equation*}
M_{h}(E) \approx m_{h}(E) \quad \text { for any set } E \tag{2.1}
\end{equation*}
$$

([4, (1.3) on p. 7]). We observe that m_{h} has the increasing property.
Lemma 1. Let $\lim _{r \rightarrow \infty} h(r)=\infty$. If $E_{j} \uparrow E$, then $\lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right)=m_{h}(E)$.

In particular, if E is an F_{σ}-set, then

$$
m_{h}(E)=\sup _{\substack{F \subset E \\ F \text { is compact }}} m_{h}(F) .
$$

Proof. It is clear that $\lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right) \leq m_{h}(E)$. Hence, it is sufficient to show the opposite inequality, under the assumption that $\lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right)<\infty$. Let $\varepsilon>0$. By definition we find cubes $Q_{j, i} \in G$ such that

$$
\begin{gathered}
E_{j} \subset \bigcup_{i=1}^{\infty} Q_{j, i} \\
\sum_{i=1}^{\infty} \tau_{h}\left(Q_{j, i}\right)<m_{h}\left(E_{j}\right)+\varepsilon 2^{-j}
\end{gathered}
$$

Since $\lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right)<\infty$ and $\lim _{r \rightarrow \infty} h(r)=\infty$, it follows that the side lengths of $Q_{j, i}$ are bounded. Hence we can select maximal cubes $Q_{1}, Q_{2}, \ldots, Q_{v}$, \ldots whose union covers $E=\bigcup_{j=1}^{\infty} E_{j}$. Now, in the same way as in [12, Theorem 52], we can show

$$
\sum_{v=1}^{\infty} \tau_{h}\left(Q_{v}\right) \leq \lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right)+2 \varepsilon
$$

and hence $m_{h}(E) \leq \lim _{j \rightarrow \infty} m_{h}\left(E_{j}\right)+2 \varepsilon$. Since $\varepsilon>0$ is arbitrary, the lemma follows.

As a corollary to (2.1) and Lemma 1 we have the following:
Corollary 1. Let $\lim _{r \rightarrow \infty} h(r)=\infty$. If E is an F_{σ}-set, then

$$
M_{h}(E) \approx \sup _{\substack{F \subset E \\ F \text { is compact }}} M_{h}(F) .
$$

Remark. The assumption that $\lim _{r \rightarrow \infty} h(r)=\infty$ is essential in Lemma 1. In fact, suppose that $\lim _{r \rightarrow \infty} h(r)=a<\infty$. Then, by definition, $m_{h}(E) \leq a$ for any bounded set E. On the other hand it is easy to see that $m_{h}\left(\boldsymbol{R}^{n}\right)=\infty$ if $\lim \inf _{r \rightarrow 0} h(r) / r>0$. Thus the increasing property does not hold in general. This example is suggested by K. Hatano. We observe that [4, (3.2) on p. 9] actually requires some additional assumption like $\lim _{r \rightarrow \infty} h(r)=\infty$ or the boundedness of E.

From Lemmas A, C and 1 we show the following lemma.
Lemma 2. Let $0<n-\alpha<\beta \leq n$. Then

$$
M_{\beta}(E) \leq A B_{\alpha, 1}(E),
$$

where $A>0$ depends only on n, α and β.

Proof. Since $B_{\alpha, 1}$ is an outer capacity, i.e.,

$$
B_{\alpha, 1}(E)=\inf _{\substack{E \subset U \\ U \text { is open }}} B_{\alpha, 1}(U),
$$

we may assume that E is an open set. Let F be a compact subset of E. By Lemma A there is a measure μ on F such that

$$
\begin{equation*}
\|\mu\| \approx M_{\beta}(F) \tag{2.2}
\end{equation*}
$$

Observe from (2.3) that

$$
\begin{aligned}
g_{\alpha} * \mu(x) & =\int_{0}^{\infty} g_{\alpha}(r) d \mu(B(x, r))=\int_{0}^{\infty} \mu(B(x, r)) d\left(-g_{\alpha}(r)\right) \\
& \leq \int_{0}^{\infty} r^{\beta} d\left(-g_{\alpha}(r)\right)=A_{1}<\infty
\end{aligned}
$$

Hence Lemma C and (2.2) yield

$$
B_{\alpha, 1}(E) \geq A_{1}^{-1}\|\mu\| \approx M_{\beta}(F) .
$$

Taking the supremum over all F, we obtain the required inequality from Corollary 1. The lemma follows.

Proof of Theorem 1. By (2.1) and Lemma 1 we may assume that E is a bounded set. Since $B_{\alpha, 1}$ is an outer capacity, we may furthermore assume that E is an open set. By Lemma 2 we have only to show that

$$
M_{\beta}\left(\tilde{E}_{\gamma, c} \backslash E\right) \leq A B_{\alpha, 1}(E)
$$

In view of Corollary 1 it is sufficient to show that

$$
\begin{equation*}
M_{\beta}(F) \leq A B_{\alpha, 1}(E) \tag{2.4}
\end{equation*}
$$

for any compact subset F of $\tilde{E}_{\gamma, c} \backslash E$, since $\tilde{E}_{\gamma, c} \backslash E$ is an F_{σ}-set. By Lemma A we can find a measure μ on F satisfying (2.2) and (2.3).

By definition, for each $x \in \widetilde{E}_{\gamma, c} \backslash E$, there is $x^{*} \in E$ such that $x \in$ $B\left(x^{*}, c \delta_{E}\left(x^{*}\right)^{\gamma}\right)$. We let

$$
r(x)=\sup _{\substack{x^{*} \in \in \in \\ x \in \boldsymbol{B}\left(x^{*}, c \delta_{E}\left(x^{*}\right)^{\prime}\right)}} \delta_{E}\left(x^{*}\right) .
$$

We observe that $r(x)$ is a positive bounded function on $\widetilde{E}_{\gamma, c} \backslash E$. We invoke Lemma B and find $\left\{x_{j}\right\} \subset F$ such that

$$
\begin{equation*}
F \subset \bigcup B\left(x_{j}, 2 c r_{j}^{\gamma}\right) \quad \text { with } r_{j}=r\left(x_{j}\right), \tag{2.5}
\end{equation*}
$$

the multiplicity of $\left\{B\left(x_{j}, 2 c r_{j}^{\gamma}\right)\right\}$ is bounded by N.
By definition we can find $x_{j}^{*} \in E$ such that

$$
\begin{gather*}
r_{j} / 2<\delta_{E}\left(x_{j}^{*}\right) \leq r_{j} \tag{2.7}\\
\left|x_{j}-x_{j}^{*}\right|<c r_{j}^{\gamma} \tag{2.8}
\end{gather*}
$$

We put $\mu_{j}=\left.\mu\right|_{B\left(x_{j}, 2 c r_{j}\right)}$ and observe from (2.5) and (2.6) that

$$
\begin{equation*}
\mu \leq \sum \mu_{j} \leq N \mu \tag{2.9}
\end{equation*}
$$

From μ_{j} we construct a measure λ_{j} as follows: for Borel sets S

$$
\begin{array}{ll}
\lambda_{j}(S)=\mu_{j}\left(4\left(S-x_{j}^{*}\right)+x_{j}\right) & \text { if } c r_{j}^{\gamma} \leq r_{j} \\
\lambda_{j}(S)=\mu_{j}\left(4 c r_{j}^{\gamma-1}\left(S-x_{j}^{*}\right)+x_{j}\right) & \text { if } c r_{j}^{\gamma}>r_{j}
\end{array}
$$

It is easy to see that

$$
\begin{equation*}
\lambda_{j} \text { is concentrated on } B\left(x_{j}^{*}, \frac{1}{2} \min \left\{c r_{j}^{\gamma}, r_{j}\right\}\right), \tag{2.10}
\end{equation*}
$$

$$
\begin{gather*}
\left\|\lambda_{j}\right\|=\left\|\mu_{j}\right\|, \tag{2.11}\\
\lambda_{j}(B(x, \rho))=\mu_{j}(B(x, \rho))=\left\|\mu_{j}\right\| \tag{2.12}\\
\text { for } \rho \geq \max \left\{\left|x-x_{j}\right|+2 c r_{j}^{\gamma},\left|x-x_{j}^{*}\right|+\frac{1}{2} \min \left\{c r_{j}^{\gamma}, r_{j}\right\}\right\} .
\end{gather*}
$$

Moreover, in view of (2.3)

$$
\begin{equation*}
\left\|\lambda_{j}\right\|=\left\|\mu_{j}\right\| \leq\left(2 c r_{j}^{\gamma}\right)^{\beta} \tag{2.13}
\end{equation*}
$$

for all $x \in R^{n}$ and $r>0$

$$
\begin{array}{ll}
\lambda_{j}(B(x, r)) \leq(4 r)^{\beta} & \text { if } c r_{j}^{\gamma} \leq r_{j} \\
\lambda_{j}(B(x, r)) \leq\left(4 c r_{j}^{\gamma-1} r\right)^{\beta} & \text { if } c r_{j}^{y}>r_{j} \tag{2.15}
\end{array}
$$

It follows from (2.7) that $B\left(x_{j}^{*}, r_{j} / 2\right) \subset E$ and so from (2.10) that the measure λ_{j} is concentrated on E. Let $\lambda=\sum \lambda_{j}$. We claim

$$
\begin{equation*}
g_{\alpha} * \lambda \leq A_{2} \quad \text { on } \boldsymbol{R}^{n} \tag{2.16}
\end{equation*}
$$

If we have (2.16), then the proof is easy. Since λ is concentrated on E, it follows from Lemma C and (2.11) that

$$
B_{\alpha, 1}(E) \geq A_{2}^{-1}\|\lambda\|=A_{2}^{-1} \sum\left\|\mu_{j}\right\| \geq A_{2}^{-1}\|\mu\| .
$$

This, together with (2.2), yields (2.4).

Let us prove (2.16). Hereafter we fix $x \in \boldsymbol{R}^{n}$. First we claim

$$
\begin{equation*}
g_{\alpha} * \lambda_{j}(x) \leq A \tag{2.17}
\end{equation*}
$$

with A independent of j and x. Suppose $c r_{j}^{\gamma} \leq r_{j}$. Then by (2.14)

$$
g_{\alpha} * \lambda_{j}(x)=\int_{0}^{\infty} \lambda_{j}(B(x, r)) d\left(-g_{\alpha}(r)\right) \leq \int_{0}^{\infty}(4 r)^{\beta} d\left(-g_{\alpha}(r)\right)=A<\infty .
$$

Thus (2.17) follows. Suppose $c r_{j}^{\gamma}>r_{j}$. Then by (2.13) and (2.15)

$$
\begin{aligned}
g_{\alpha} * \lambda_{j}(x) & =\int_{0}^{\infty} \lambda_{j}(B(x, r)) d\left(-g_{\alpha}(r)\right) \\
& \leq \int_{0}^{\infty} \min \left\{\left(2 c r_{j}^{\gamma}\right)^{\beta},\left(4 c r_{j}^{\gamma-1} r\right)^{\beta}\right\} d\left(-g_{\alpha}(r)\right) \\
& =\int_{0}^{r_{j} / 2}\left(4 c r_{j}^{\gamma-1} r\right)^{\beta} d\left(-g_{\alpha}(r)\right)+\left(2 c r_{j}^{\gamma}\right)^{\beta} \int_{r_{j} / 2}^{\infty} d\left(-g_{\alpha}(r)\right) \\
& \leq A r_{j}^{(\gamma-1) \beta} r_{j}^{\beta+\alpha-n}+A r_{j}^{\gamma \beta} r_{j}^{\alpha-n}=A<\infty
\end{aligned}
$$

Thus (2.17) follows in this case, too.
Let us write

$$
\lambda^{\prime}=\sum^{\prime} \lambda_{j}, \quad \lambda^{\prime \prime}=\sum^{\prime \prime} \lambda_{j},
$$

where \sum^{\prime} (resp. $\sum^{\prime \prime}$) denotes the summation over j for which $x \in B\left(x_{j}, 2 c r_{j}^{\gamma}\right)$ (resp. $x \notin B\left(x_{j}, 2 c r_{j}^{\gamma}\right)$). In view of (2.6), the number of j appearing in Σ^{\prime} is at most N. Hence by (2.17)

$$
\begin{equation*}
g_{\alpha} * \lambda^{\prime}(x) \leq A \tag{2.18}
\end{equation*}
$$

Next, we consider $g_{\alpha} * \lambda^{\prime \prime}(x)$. Let us estimate $\lambda^{\prime \prime}(B(x, r))=\sum^{\prime \prime} \lambda_{j}(B(x, r))$. In the summation $\sum^{\prime \prime}$, we may consider only j such that $\lambda_{j}(B(x, r))>0$. By (2.10) this implies that $\left|x-x_{j}^{*}\right| \leq r+c r_{j}^{\gamma} / 2$. In view of the definition of $\sum^{\prime \prime}$, we have $\left|x-x_{j}\right| \geq 2 c r_{j}^{\gamma}$. Using these inequalities and (2.8), we obtain

$$
r+c r_{j}^{\gamma} / 2 \geq\left|x-x_{j}^{*}\right| \geq\left|x-x_{j}\right|-\left|x_{j}-x_{j}^{*}\right| \geq 2 c r_{j}^{\gamma}-c r_{j}^{\gamma}=c r_{j}^{\gamma},
$$

so that $r \geq c r_{j}^{\gamma} / 2,\left|x-x_{j}^{*}\right| \leq 2 r,\left|x_{j}-x_{j}^{*}\right| \leq 2 r$ and $\left|x-x_{j}\right| \leq 4 r$. Hence

$$
\max \left\{\left|x-x_{j}\right|+2 c r_{j}^{\gamma},\left|x-x_{j}^{*}\right|+\frac{1}{2} \min \left\{c r_{j}^{\gamma}, r_{j}\right\}\right\} \leq \max \{8 r, 3 r\}=8 r
$$

Therefore, (2.12) implies that $\lambda_{j}(B(x, 8 r))=\mu_{j}(B(x, 8 r))$, so that

$$
\begin{aligned}
\lambda^{\prime \prime}(B(x, r)) & =\sum^{\prime \prime} \lambda_{j}(B(x, r)) \\
& \leq \sum^{\prime \prime} \lambda_{j}(B(x, 8 r))=\sum^{\prime \prime} \mu_{j}(B(x, 8 r)) \\
& \leq \sum \mu_{j}(B(x, 8 r)) \leq N \mu(B(x, 8 r)),
\end{aligned}
$$

where the last inequality follows from (2.9). Hence by (2.3)

$$
\begin{equation*}
\lambda^{\prime \prime}\left(B(x, r) \leq N(8 r)^{\beta} \quad \text { for all } r>0 .\right. \tag{2.19}
\end{equation*}
$$

Thus

$$
g_{\alpha} * \lambda^{\prime \prime}(x)=\int_{0}^{\infty} \lambda^{\prime \prime}\left(B(x, r) d\left(-g_{\alpha}(r)\right) \leq A \int_{0}^{\infty} r^{\beta} d\left(-g_{\alpha}(r)\right)=A<\infty .\right.
$$

This, together with (2.18), yields (2.16). The proof is complete.

3. Proof of Theorem 2

Let $\frac{1}{p}+\frac{1}{q}=1$. We have the dual definition of $C_{K, p}$ ([8, Theorem 14]).
Lemma D. Let E be an analytic set. Then

$$
C_{K, p}(E)=\sup \left\{\|\mu\|^{p}: \mu \text { is concentrated on } E,\|K * \mu\|_{q} \leq 1\right\} .
$$

Let $\alpha p \leq n$. We put

$$
W_{\alpha, p}^{\mu}(x)=\int_{0}^{1}\left(\frac{\mu(B(x, r))}{r^{n-\alpha p}}\right)^{q-1} \frac{d r}{r} .
$$

Hedberg and Wolff [7] proved the following lemma (see also [1] and [14, Theorem 4.7.5]).

Lemma E. Let $\alpha p \leq n$. Then

$$
\left\|g_{\alpha} * \mu\right\|_{q}^{q} \approx \int W_{\alpha, p}^{\mu}(x) d \mu(x)
$$

In the same way as in the proof of Lemma 2, we obtain the following lemma from Lemmas A, D and E.

Lemma 3. Let $1<p<\infty$ and $0 \leq n-\alpha p<\beta \leq n$. Then

$$
M_{\beta}(E) \leq A B_{\alpha, p}(E),
$$

where $A>0$ depends only on n, α, p and β.
Proof. Since $B_{\alpha, p}$ is an outer capacity, we may assume that E is an open set. Let F be a compact subset of E. By Lemma A there is a measure
μ on F satisfying (2.2) and (2.3). Observe from (2.3) that

$$
W_{\alpha, p}^{\mu}(x) \leq \int_{0}^{1}\left(\frac{r^{\beta}}{r^{n-\alpha p}}\right)^{q-1} \frac{d r}{r}=A<\infty,
$$

since $n-\alpha p<\beta$. Hence Lemma E yields $\left\|g_{\alpha} * \mu\right\|_{q}^{q} \leq A\|\mu\|$, or equivalently

$$
\left\|g_{\alpha} * \frac{\mu}{A\|\mu\|^{1 / q}}\right\|_{q} \leq 1 .
$$

Hence Lemma D and (2.2) yield

$$
B_{\alpha, p}(E) \geq\left(\frac{\|\mu\|}{A\|\mu\|^{1 / q}}\right)^{p}=A\|\mu\| \approx M_{\beta}(F) .
$$

Taking the supremum over all F, we obtain the required inequality from Corollary 1.

Proof of Theorem 2. We may assume that E is a bounded open set. In view of Lemma 3 and Corollary 1 it is sufficient to show that

$$
\begin{equation*}
M_{\beta}(F) \leq A B_{\alpha, p}(E) \tag{3.1}
\end{equation*}
$$

for any compact set $F \subset \tilde{E}_{\gamma, c} \backslash E$. In the same way as in the proof of Theorem 1 we can find a measure μ on F satisfying (2.2) and (2.3). We find balls $B\left(x_{j}, 2 c r_{j}^{\gamma}\right)$ satisfying (2.5) and (2.6). Let $\mu_{j}=\left.\mu\right|_{B\left(x_{j}, 2 c r_{r}^{\gamma}\right)}$ and let $\lambda_{j}, \lambda, \lambda^{\prime}$ and $\lambda^{\prime \prime}$ be as in the proof of Theorem 1. Observe that (2.9)-(2.15) and (2.19) hold. In particular λ is concentrated on E and

$$
\begin{equation*}
\|\lambda\| \approx\|\mu\| \approx M_{\beta}(F) \tag{3.2}
\end{equation*}
$$

If $c r_{j}^{\gamma} \leq r_{j}$, then by (2.14)

$$
W_{\alpha, p}^{\lambda_{j}}(x) \leq A \int_{0}^{1}\left(\frac{(4 r)^{\beta}}{r^{n-\alpha p}}\right)^{q-1} \frac{d r}{r}=A<\infty .
$$

If $c r_{j}^{\gamma}>r_{j}$, then by (2.13) and (2.15)

$$
W_{\alpha, p}^{\lambda_{j}}(x) \leq A \int_{0}^{1}\left(\frac{\left(\min \left\{4 c r_{j}^{\gamma-1} r, 2 c r_{j}^{\gamma}\right\}\right)^{\beta}}{r^{n-\alpha p}}\right)^{q-1} \frac{d r}{r} \leq A<\infty .
$$

Thus $W_{\alpha, p}^{\lambda_{j}}(x) \leq A$ in any case, and hence from (2.6) we have $W_{\alpha, p}^{\lambda^{\prime}}(x) \leq A$. From (2.19) we have

$$
W_{\alpha, p}^{\lambda^{\prime \prime}(x)} \leq A \int_{0}^{1}\left(\frac{(8 r)^{\beta}}{r^{n-\alpha p}}\right)^{q-1} \frac{d r}{r}=A<\infty .
$$

Thus $W_{\alpha, p}^{\lambda}(x) \leq A$. Hence Lemma E yields $\left\|g_{\alpha} * \lambda\right\|_{q}^{q} \leq A\|\lambda\|$, or equivalently

$$
\left\|g_{\alpha} * \frac{\lambda}{A\|\lambda\|^{1 / q}}\right\|_{q} \leq 1
$$

Since λ is concentrated on E, it follows from Lemma D and (3.2) that

$$
B_{\alpha, p}(E) \geq\left(\frac{\|\lambda\|}{A\|\lambda\|^{1 / q}}\right)^{p}=A\|\lambda\| \approx M_{\beta}(F) .
$$

Thus (3.1) follows. The theorem is proved.
Observe that if $r>0$ is small, then

$$
B_{\alpha, p}(B(0, r)) \approx \begin{cases}r^{n-\alpha p} & \text { if } \alpha p<n \\ \left(\log \frac{1}{r}\right)^{1-p} & \text { if } \alpha p=n\end{cases}
$$

Therefore, it may be natural to consider a logarithmic expansion in case $\alpha p=n$.

Theorem 2'. Let $1<p<\infty, \alpha p=n, 0<\beta \leq n$ and $c>0$. We put

$$
\varphi(r)=\varphi_{\beta, p}(r)= \begin{cases}\left(\log \frac{1}{r}\right)^{(1-p) / \beta}, & 0<r<1 / 2 \tag{3.3}\\ 2(\log 2)^{(1-p) / \beta} r, & r \geq 1 / 2\end{cases}
$$

and

$$
\tilde{E}_{\varphi, c}=\bigcup_{x \in E} B\left(x, c \varphi\left(\delta_{E}(x)\right)\right) .
$$

Then

$$
M_{\beta}\left(\tilde{E}_{\varphi, c}\right) \leq A B_{\alpha, p}(E),
$$

where $A>0$ depends only on n, α, p, β and c.
Proof. We can prove the theorem in a way similar to Theorem 2. But for the completeness we give a proof. We observe that $\varphi(r)$ is a positive continuous increasing function. We may assume that E is a bounded open set. In view of Lemma 3 and Corollary 1 it is sufficient to show that

$$
\begin{equation*}
M_{\beta}(F) \leq A B_{\alpha, p}(E) \tag{3.4}
\end{equation*}
$$

for any compact subset $F \subset \tilde{E}_{\varphi, c} \backslash E$. In the same way as in the proof of Theorem 1 we can find a measure μ on F satisfying (2.2) and (2.3). Let

$$
\rho(x)=\sup _{\substack{x \in B\left(x^{*}, \epsilon \varphi \in \\ x_{E}, \epsilon\left(\delta_{E}\left(x^{*}\right)\right)\right)}} \delta_{E}\left(x^{*}\right)
$$

and observe that $\rho(x)$ is a positive bounded function on $\tilde{E}_{\varphi, c} \backslash E$. By Lemma B we find $\left\{x_{j}\right\} \subset F$ such that

$$
\begin{equation*}
F \subset \bigcup B\left(x_{j}, 2 c \varphi\left(r_{j}\right)\right) \quad \text { with } r_{j}=\rho\left(x_{j}\right), \tag{3.5}
\end{equation*}
$$

By definition we can find $x_{j}^{*} \in E$ such that

$$
\begin{equation*}
r_{j} / 2<\delta_{E}\left(x_{j}^{*}\right) \leq r_{j} \quad \text { and } \quad\left|x_{j}-x_{j}^{*}\right|<c \varphi\left(r_{j}\right) . \tag{3.7}
\end{equation*}
$$

We put $\mu_{j}=\left.\mu\right|_{B\left(x_{j}, 2 c \varphi\left(r_{j}\right)\right)}$ and observe from (3.5) and (3.6) that

$$
\mu \leq \sum \mu_{j} \leq N \mu
$$

From μ_{j} we construct a measure λ_{j} as follows: for Borel sets S

$$
\begin{array}{ll}
\lambda_{j}(S)=\mu_{j}\left(4\left(S-x_{j}^{*}\right)+x_{j}\right) & \text { if } c \varphi\left(r_{j}\right) \leq r_{j} \\
\lambda_{j}(S)=\mu_{j}\left(4 c \varphi\left(r_{j}\right) r_{j}^{-1}\left(S-x_{j}^{*}\right)+x_{j}\right) & \text { if } c \varphi\left(r_{j}\right)>r_{j}
\end{array}
$$

It is easy to see that

$$
\begin{gathered}
\lambda_{j} \text { is concentrated on } B\left(x_{j}^{*}, \frac{1}{2} \min \left\{c \varphi\left(r_{j}\right), r_{j}\right\}\right), \\
\left\|\lambda_{j}\right\|=\left\|\mu_{j}\right\| \leq\left(2 c \varphi\left(r_{j}\right)\right)^{\beta}, \\
\lambda_{j}(B(x, \rho))=\mu_{j}(B(x, \rho))=\left\|\mu_{j}\right\| \\
\text { for } \rho \geq \max \left\{\left|x-x_{j}\right|+2 c \varphi\left(r_{j}\right),\left|x-x_{j}^{*}\right|+\frac{1}{2} \min \left\{c \varphi\left(r_{j}\right), r_{j}\right\}\right\},
\end{gathered}
$$

and for all $x \in \boldsymbol{R}^{n}$ and $r>0$

$$
\begin{array}{ll}
\lambda_{j}(B(x, r)) \leq(4 r)^{\beta} & \text { if } c \varphi\left(r_{j}\right) \leq r_{j} \\
\lambda_{j}(B(x, r)) \leq\left(4 c \varphi\left(r_{j}\right) r_{j}^{-1} r\right)^{\beta} & \text { if } c \varphi\left(r_{j}\right)>r_{j}
\end{array}
$$

Let $\lambda=\sum \lambda_{j}$. It follows from (3.7) that $B\left(x_{j}^{*}, r_{j} / 2\right) \subset E$ so that the measure λ_{j} is concentrated on E, and so is λ. We claim

$$
\begin{equation*}
W_{\alpha, p}^{\lambda_{j}}(x) \leq A \tag{3.8}
\end{equation*}
$$

with A independent of j and x. If $c \varphi\left(r_{j}\right) \leq r_{j}$, then

$$
W_{\alpha, p}^{\lambda_{j}}(x) \leq A \int_{0}^{1}(4 r)^{\beta(q-1)} \frac{d r}{r}=A<\infty,
$$

so that (3.8) follows. If $c \varphi\left(r_{j}\right)>r_{j}$, then

$$
\begin{aligned}
W_{\alpha, p}^{\lambda_{j}}(x) & \leq A \int_{0}^{1} \min \left\{\left(4 c \varphi\left(r_{j}\right) r_{j}^{-1} r\right)^{\beta},\left(2 c \varphi\left(r_{j}\right)\right)^{\beta}\right\}^{q-1} \frac{d r}{r} \\
& \leq A \varphi\left(r_{j}\right)^{\beta(q-1)} \int_{0}^{1} \min \left\{\frac{r}{r_{j}}, 1\right\}^{\beta(q-1)} \frac{d r}{r} \\
& \leq \begin{cases}A \varphi\left(r_{j}\right)^{\beta(q-1)}\left(\frac{1}{\beta(q-1)}+\log \frac{1}{r_{j}}\right) & \text { if } 0<r_{j}<1, \\
A \varphi\left(r_{j}\right)^{\beta(q-1)} \frac{1}{\beta(q-1)^{2}} r_{j}^{-\beta(q-1)} & \text { if } r_{j} \geq 1,\end{cases}
\end{aligned}
$$

so that in view of the definition of φ we have (3.8) in this case, too. Let us write

$$
\lambda^{\prime}=\sum^{\prime} \lambda_{j}, \quad \lambda^{\prime \prime}=\sum^{\prime \prime} \lambda_{j}
$$

where \sum^{\prime} (resp. $\sum^{\prime \prime}$) denotes the summation over j for which $x \in B\left(x_{j}, 2 c \varphi\left(r_{j}\right)\right)$ (resp. $x \notin B\left(x_{j}, 2 c \varphi\left(r_{j}\right)\right)$). In view of (3.6) the number of j appearing in \sum^{\prime} is at most N. Hence (3.8) implies that

$$
\begin{equation*}
W_{a, p}^{\lambda^{\prime}}(x) \leq A . \tag{3.9}
\end{equation*}
$$

In the same way as in the proof of Theorem 1 we estimate $\lambda^{\prime \prime}(B(x, r))$. Observe that if $x \notin B\left(x_{j}, 2 c \varphi\left(r_{j}\right)\right)$ and $\lambda_{j}(B(x, r))>0$, then $\left|x-x_{j}\right|+2 c \varphi\left(r_{j}\right)<8 r$, so that $\lambda_{j}(B(x, 8 r))=\mu_{j}(B(x, 8 r))$ and (2.19) holds. Therefore

$$
W_{\alpha, p}^{\lambda^{\prime \prime}(x)} \leq A \int_{0}^{1}(8 r)^{\beta(q-1)} \frac{d r}{r}=A<\infty .
$$

This, together with (3.9), yields

$$
W_{\alpha, p}^{\lambda} \leq A \quad \text { on } R^{n}
$$

Hence Lemmas D and E and (2.2) imply

$$
B_{\alpha, p}(E) \geq A\|\lambda\| \approx\|\mu\| \approx M_{\beta}(F) .
$$

Thus (3.4) follows. The theorem is proved.

4. Generalization

Let Ω be a set in R_{+}^{n+1} with $\bar{\Omega} \cap \partial R_{+}^{n+1}=\{0\}$. For simplicitly we assume that $\Omega \supset\{(0, y): y>0\}$. Put $\Omega(y)=\{x:(x, y) \in \Omega\}$. We say that Ω satisfies the Nagel-Stein condition (abbreviated to (NS)), if
(i) $|\Omega(y)| \leq A y^{n}$ with $A=A(\Omega)$;
(ii) there is $a_{0}>0$ such that

$$
\left(x_{1}, y_{1}\right) \in \Omega \quad \text { and } \quad\left|x-x_{1}\right|<a_{0}\left(y-y_{1}\right) \Rightarrow(x, y) \in \Omega
$$

It is easy to see that $\Omega(y)$ is an increasing set function of y, i.e., if $y_{1}<y_{2}$, then $\Omega\left(y_{1}\right) \subset \Omega\left(y_{2}\right)$. For E we put

$$
\tilde{E}_{\gamma, c ; \Omega}=\bigcup_{x \in E}\left(x+\Omega\left(c \delta_{E}(x)^{\gamma}\right)\right) .
$$

We have a generalization of Theorems 1,2 and 2^{\prime}.
Theorem 3. Let $1 \leq p<\infty, 0<\alpha<n, 0 \leq n-\alpha p<\beta \leq n, \gamma=(n-\alpha p) / \beta$, $c>0$ and let $\varphi(r)=\varphi_{\beta, p}(r)$ be as in (3.3) if $\alpha p=n$. Let Ω satisfy (NS). Then

$$
\begin{array}{ll}
M_{\beta}\left(\tilde{E}_{\gamma, c ; \Omega}\right) \leq A B_{\alpha, p}(E) & \text { if } \alpha p<n, \\
M_{\beta}\left(\tilde{E}_{\varphi, c ; \Omega}\right) \leq A B_{\alpha, p}(E) & \text { if } \alpha p=n,
\end{array}
$$

where $A>0$ depends only on n, α, p, β, c and Ω.
We shall prove this theorem as a corollary to Theorems 1,2 and 2^{\prime} and the following lemma.

Lemma 4. Let $0<\beta \leq n$ and let Ω satisfy ($N S$). If V is an open subset of \boldsymbol{R}^{n}, then

$$
M_{\beta}\left(\bigcup_{x \in V}\left(x+\Omega\left(\delta_{V}(x)\right)\right) \leq A M_{\beta}(V),\right.
$$

where $\delta_{V}(x)=\operatorname{dist}\left(x, V^{c}\right)$ and $A>0$ depends only on β, Ω and n.
If we assume Lemma 4, then the proof of Theorem 3 is easy.
Proof of Theorem 3. We prove the theorem only in the case $\alpha p<n$, since the case $\alpha p=n$ is similarly proved. First we claim that

$$
\begin{equation*}
\tilde{E}_{\gamma, c ; \Omega} \subset \bigcup_{x \in \tilde{E}_{, c}}\left(x+\Omega\left(\delta_{\tilde{E}_{\gamma, c}}(x)\right)\right) . \tag{4.1}
\end{equation*}
$$

Suppose $x \in E$. By definition $B\left(x, c \delta_{E}(x)^{\gamma}\right) \subset \tilde{E}_{\gamma, c}$, so that $c \delta_{E}(x)^{\gamma} \leq \delta_{\tilde{E}_{,, c}}(x)$. Hence

$$
\tilde{E}_{\gamma, c ; \Omega}=\bigcup_{x \in E}\left(x+\Omega\left(c \delta_{E}(x)^{\gamma}\right)\right) \subset \bigcup_{x \in E}\left(x+\Omega\left(\delta_{\tilde{E}_{y, c}}(x)\right)\right) \subset \bigcup_{x \in \tilde{E}_{\gamma, c}}\left(x+\Omega\left(\delta_{\tilde{E}_{\gamma, c}}(x)\right)\right) .
$$

Thus (4.1) follows. Combining (4.1), Lemma 4 with $V=\widetilde{E}_{\gamma, c}$ and Theorems 1 and 2 , we obtain

$$
M_{\beta}\left(\tilde{E}_{\gamma, c ; \Omega}\right) \leq M_{\beta}\left(\bigcup_{x \in \tilde{E}_{\tilde{p}, c}}\left(x+\Omega\left(\delta_{\tilde{E}_{r, c}}(x)\right)\right) \leq A M_{\beta}\left(\tilde{E}_{\gamma, c}\right) \leq A B_{\alpha, p}(E) .\right.
$$

Thus the theorem is proved.

For a proof of Lemma 4 we consider the Whitney decomposition of V, i.e. Q_{k} are closed cubes with sides parallel to the axes with the following properties:
(i) $\bigcup Q_{k}=V$;
(ii) the interiors of Q_{k} are mutually disjoint;
(iii)

$$
\begin{equation*}
\operatorname{diam}\left(Q_{k}\right) \leq \operatorname{dist}\left(Q_{k}, V^{c}\right) \leq 4 \operatorname{diam}\left(Q_{k}\right) \tag{4.2}
\end{equation*}
$$

($[13$, Theorem 1 on p .167$]$). Let \tilde{Q}_{k} be the cube which has the same center as Q_{k} but is expanded by the factor $9 / 8$. Then

$$
\begin{equation*}
\text { the multiplicity of } \tilde{Q}_{k} \text { is bounded by } N_{1} \tag{4.3}
\end{equation*}
$$

where N_{1} depends only on the dimension n ([13, Proposition 3 on p. 169]). In view of (4.2) we can choose a constant $c_{0}, 0<c_{0}<1$, with the property that

$$
\begin{equation*}
B\left(x, c_{0} \delta_{V}(x)\right) \cap Q_{k} \neq \varnothing \Rightarrow B\left(x, c_{0} \delta_{V}(x)\right) \subset \tilde{Q}_{k} \tag{4.4}
\end{equation*}
$$

Using these facts, we can prove the following lemma.
Lemma 5. Suppose V is an open subset of \boldsymbol{R}^{n}. Then there is a covering $\mathscr{B}=\left\{B\left(x_{j}, r_{j}\right)\right\}$ of V such that

$$
\begin{gather*}
r_{j} \geq \delta_{V}\left(x_{j}\right), \tag{4.5}\\
\sum_{j} r_{j}^{\beta} \leq A M_{\beta}(V), \tag{4.6}
\end{gather*}
$$

where $A>0$ depends only on the dimension n and β.
Proof. Since V is an open set, it follows that $M_{\beta}(V)>0$. By definition we can find a covering $\left\{B\left(\xi_{j}, \rho_{j}\right)\right\}$ of V such that

$$
\begin{equation*}
\sum_{j} \rho_{j}^{\beta} \leq 2 M_{\beta}(V) . \tag{4.7}
\end{equation*}
$$

From this covering we construct a covering \mathscr{B} with the required properties.
Let $\bigcup_{k} Q_{k}$ be the Whitney decomposition of V and let \tilde{Q}_{k} be the expanded cube as before the lemma. We let

$$
\begin{aligned}
& \mathscr{K}_{1}=\left\{k: \text { there is } B\left(\xi_{j}, \rho_{j}\right) \text { meeting } Q_{k} \text { such that } \rho_{j} \geq c_{0} \delta_{V}\left(\xi_{j}\right)\right\}, \\
& \mathscr{K}_{2}=\left\{k: \text { if } B\left(\xi_{j}, \rho_{j}\right) \text { meets } Q_{k}, \text { then } \rho_{j}<c_{0} \delta_{V}\left(\xi_{j}\right)\right\},
\end{aligned}
$$

where c_{0} is the constant appearing in (4.4).
First suppose $k \in \mathscr{K}_{1}$. We can find $j=j(k)$ such that $B\left(\xi_{j}, \rho_{j}\right) \cap Q_{k} \neq \varnothing$ and $\rho_{j} \geq c_{0} \delta_{V}\left(\xi_{j}\right)$. Let $\xi \in B\left(\xi_{j}, \rho_{j}\right) \cap Q_{k}$. We have from (4.2)

$$
\operatorname{diam}\left(Q_{k}\right) \leq \operatorname{dist}\left(Q_{k}, V^{c}\right) \leq \delta_{V}(\xi) \leq \delta_{V}\left(\xi_{j}\right)+\rho_{j} \leq\left(1+c_{0}^{-1}\right) \rho_{j}
$$

Hence $Q_{k} \subset B\left(\xi_{j},\left(2+c_{0}^{-1}\right) \rho_{j}\right)$, so that

$$
\begin{gather*}
\bigcup_{k \in \mathscr{x}_{1}} Q_{k} \subset \bigcup_{k \in \mathscr{X}_{1}} B\left(\xi_{j(k)},\left(2+c_{0}^{-1}\right) \rho_{j(k)}\right), \tag{4.8}\\
\left(2+c_{0}^{-1}\right) \rho_{j(k)} \geq\left(2+c_{0}^{-1}\right) c_{0} \delta_{V}\left(\xi_{j(k)}\right) \geq \delta_{V}\left(\xi_{j(k)}\right) . \tag{4.9}
\end{gather*}
$$

Second suppose $k \in \mathscr{K}_{2}$. Since $\rho_{j}<c_{0} \delta_{V}\left(\xi_{j}\right)$ for $B\left(\xi_{j}, \rho_{j}\right) \cap Q_{k} \neq \varnothing$, we obtain from (4.4) that

$$
Q_{k} \subset \bigcup_{B\left(\xi_{j}, \rho_{j}\right) \cap Q_{k} \neq \varnothing} B\left(\xi_{j}, \rho_{j}\right) \subset \tilde{Q}_{k} .
$$

From the first inclusion we have

$$
\begin{aligned}
& \left|Q_{k}\right| \leq A \sum_{B\left(\xi_{j}, \rho_{j}\right) \cap \sum_{k} \neq \varnothing} \rho_{j}^{n}=A\left|Q_{k}\right| \left\lvert\, \sum_{B\left(\xi_{j}, \rho_{j} \sum_{Q_{k}} \neq \varnothing\right.}\left(\frac{\rho_{j}}{\operatorname{diam}\left(Q_{k}\right)}\right)^{n}\right. \\
& \leq A\left|Q_{k}\right| \sum_{B\left(\xi_{j}, \rho_{j} \sum_{Q_{k}} \neq \varnothing\right.}\left(\frac{\rho_{j}}{\operatorname{diam}\left(Q_{k}\right)}\right)^{\beta},
\end{aligned}
$$

so that the second inclusion yields

$$
\operatorname{diam}\left(Q_{k}\right)^{\beta} \leq A \sum_{B\left(\xi_{j}, \rho_{j}\right) \cap_{Q_{k}} \neq \varnothing} \rho_{j}^{\beta} \leq A \sum_{B\left(\xi_{j}, \rho_{j}\right)<\tilde{Q}_{k}} \rho_{j}^{\beta} .
$$

Hence

$$
\begin{equation*}
\sum_{k \in \mathscr{X}_{2}} \operatorname{diam}\left(Q_{k}\right)^{\beta} \leq A \sum_{k \in \mathscr{X}_{2}} \sum_{B\left(\xi_{j}, \rho_{j}\right) \subset \tilde{\mathbf{Q}}_{k}} \rho_{j}^{\beta} \leq A N_{1} \sum_{j} \rho_{j}^{\beta}, \tag{4.10}
\end{equation*}
$$

where the last inequality follows from (4.3). Note that $Q_{k} \subset B\left(x_{Q_{k}}, \operatorname{diam}\left(Q_{k}\right)\right)$ with $x_{Q_{k}}$ being the center of Q_{k}. We have from (4.2)

$$
\begin{equation*}
\delta_{V}\left(x_{Q_{k}}\right) \leq \operatorname{dist}\left(Q_{k}, V^{c}\right)+\operatorname{diam}\left(Q_{k}\right) \leq 5 \operatorname{diam}\left(Q_{k}\right) . \tag{4.11}
\end{equation*}
$$

We observe from (4.7), (4.8) and (4.10) that

$$
\mathscr{B}=\left\{B\left(\xi_{j(k)},\left(2+c_{0}^{-1}\right) \rho_{j(k)}\right): k \in \mathscr{K}_{1}\right\} \cup\left\{B\left(x_{Q_{k}}, 5 \operatorname{diam}\left(Q_{k}\right)\right): k \in \mathscr{K}_{2}\right\}
$$

is a covering of V and

$$
\begin{gathered}
\sum_{k \in \mathscr{x}_{1}}\left(\left(2+c_{0}^{-1}\right) \rho_{j(k)}\right)^{\beta} \leq\left(2+c_{0}^{-1}\right)^{\beta} \sum_{j} \rho_{j}^{\beta} \leq 2\left(2+c_{0}^{-1}\right)^{\beta} M_{\beta}(V), \\
\sum_{k \in \mathscr{x}_{2}}\left(5 \operatorname{diam}\left(Q_{k}\right)\right)^{\beta} \leq A \sum_{j} \rho_{j}^{\beta} \leq A M_{\beta}(V) .
\end{gathered}
$$

Thus (4.6) follows. We obtain from (4.9) and (4.11) that our covering \mathscr{B} satisfies (4.5). The lemma is proved.

Proof of Lemma 4. First we claim

$$
\begin{equation*}
\Omega(y) \subset x+\Omega\left(y+\frac{2}{a_{0}}|x|\right), \tag{4.12}
\end{equation*}
$$

where a_{0} is the constant appearing in (NS). We may assume that $x \neq 0$. Suppose $\xi \in \Omega(y)$. Then $(\xi, y) \in \Omega$ and

$$
|(\xi-x)-\xi|=|x|<2|x|=a_{0}\left(y+\frac{2}{a_{0}}|x|-y\right) .
$$

Hence (NS) implies that $\xi-x \in \Omega\left(y+2|x| / a_{0}\right)$, or equivalently $\xi \in x+$ $\Omega\left(y+2|x| / a_{0}\right)$. The claim is proved.

By Lemma 5 we find a covering $\mathscr{B}=\left\{B\left(x_{j}, r_{j}\right)\right\}$ of V satisfying (4.5) and (4.6). Suppose $x \in B\left(x_{j}, r_{j}\right)$. Then $\left|x-x_{j}\right|<r_{j}$ and $\delta_{V}(x) \leq 2 r_{j}$ by (4.5), so that

$$
\Omega\left(\delta_{V}(x)\right) \subset x_{j}-x+\Omega\left(\delta_{V}(x)+\frac{2}{a_{0}}\left|x-x_{j}\right|\right) \subset x_{j}-x+\Omega\left(A_{3} r_{j}\right)
$$

with $A_{3}=2+2 / a_{0}$ by (4.12). Hence $x+\Omega\left(\delta_{V}(x)\right) \subset x_{j}+\Omega\left(A_{3} r_{j}\right)$, so that

$$
\bigcup_{x \in B\left(x_{j}, r_{j}\right)}\left(x+\Omega\left(\delta_{V}(x)\right)\right) \subset x_{j}+\Omega\left(A_{3} r_{j}\right) .
$$

By [11, Lemma 1 (d)] we find points $u_{j, v}(v=1, \ldots, M)$ such that

$$
\Omega\left(A_{3} r_{j}\right) \subset \bigcup_{v=1}^{M} B\left(u_{j, v}, 3 A_{3} r_{j}\right),
$$

where the number M depends only on Ω. Therefore

$$
\bigcup_{x \in V}\left(x+\Omega\left(\delta_{V}(x)\right)\right) \subset \bigcup_{j} \bigcup_{v=1}^{M} B\left(x_{j}+u_{j, v}, 3 A_{3} r_{j}\right) .
$$

Hence by (4.6)

$$
M_{\beta}\left(\bigcup_{x \in V}\left(x+\Omega\left(\delta_{V}(x)\right)\right) \leq \sum_{j} \sum_{v=1}^{M}\left(3 A_{3} r_{j}\right)^{\beta} \leq A M_{\beta}(V)\right.
$$

The lemma is proved.

5. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic functions in R_{+}^{n+1}. In [3] we introduced the notion of thinness at the boundary. For a set $E \subset R_{+}^{n+1}$ we put $E_{t}=\{(x, y) \in E: 0<y<t\}$ and $E^{*}=\bigcup_{(x, y) \in E} B(x, y)$. We recall that $B(x, y)$ is the n-dimensional ball with center at x and radius y, so that E^{*} is a set on the boundary $\boldsymbol{R}^{n}=\partial R_{+}^{n+1}$. We shall combine the above notation and write simply E_{t}^{*} for $\left(E_{t}\right)^{*}$, i.e.,

$$
E_{t}^{*}=\bigcup_{\substack{(x, y) \in E \\ 0<y<t}} B(x, y)
$$

Definition. Let $E \subset \boldsymbol{R}_{+}^{n+1}$. We say that E is $B_{\alpha, p}$-thin at $\partial \boldsymbol{R}_{+}^{n+1}$ if

$$
\lim _{t \rightarrow 0} B_{\alpha, p}\left(E_{t}^{*}\right)=0
$$

For a function f on $\boldsymbol{R}^{n}=\partial \boldsymbol{R}_{+}^{n+1}$ we denote by $\operatorname{PI}(f)$ its Poisson integral, i.e.

$$
P I(f)(x, y)=\int_{R^{n}} \frac{A_{n} y}{\left(|x-z|^{2}+y^{2}\right)^{(n+1) / 2}} f(z) d z,
$$

where $A_{n}>0$ is such that $P I(1)=1$. In [3] we have proved
Theorem C. Let $1 \leq p<\infty$ and $\alpha p \leq n$. Let $\Omega \subset R_{+}^{n+1}$ and suppose $\bar{\Omega} \cap \partial \boldsymbol{R}_{+}^{n+1}=\{0\}$. Suppose $f \in L^{p}\left(\boldsymbol{R}^{n}\right)$. Then there is a set $E \subset \boldsymbol{R}_{+}^{n+1}$ such that E is $B_{\alpha, p}-$ thin at ∂R_{+}^{n+1} and that

$$
\begin{equation*}
\lim _{\substack{P \rightarrow x \\ P \in(x+\Omega) \backslash E}} P I\left(g_{\alpha} * f\right)(P)=g_{\alpha} * f(x) \tag{5.1}
\end{equation*}
$$

for $B_{\alpha, p}$-a.e. $x \in \partial R_{+}^{n+1}$, i.e. there is a set $F \subset \partial R_{+}^{n+1}$ such that $B_{\alpha, p}(F)=0$ and (5.1) holds at every $x \in \partial R_{+}^{n+1} \backslash F$.

Using Theorem 3, we can show
Theorem 4. Let $1 \leq p<\infty, 0<\alpha<n, 0 \leq n-\alpha p<\beta \leq n, \gamma=(n-\alpha p) / \beta$, $c>0$ and let $\varphi(r)=\varphi_{\beta, p}(r)$ be as in (3.3) if $\alpha p=n$. Suppose Ω satisfies (NS). Let

$$
\Omega_{\gamma, c}=\left\{(x, y): x \in \Omega\left(c y^{\nu}\right)\right\} \quad \text { and } \quad \Omega_{\varphi, c}=\{(x, y): x \in \Omega(c \varphi(y))\} .
$$

If E is $B_{\alpha, p}-t h i n$ at ∂R_{+}^{n+1}, then

$$
\begin{array}{ll}
M_{\beta}\left(\bigcap_{t>0}\left\{x:\left(x+\Omega_{\gamma, c}\right) \cap E_{t} \neq \varnothing\right\}\right)=0 & \text { if } \alpha p<n \\
M_{\beta}\left(\bigcap_{t>0}\left\{x:\left(x+\Omega_{\varphi, c}\right) \cap E_{t} \neq \varnothing\right\}\right)=0 & \text { if } \alpha p=n
\end{array}
$$

In other words, there is a set $F \subset \partial \boldsymbol{R}_{+}^{n+1}$ of β-dimensional Hausdorff measure zero such that for $x \in \partial R_{+}^{n+1} \backslash F, \Omega_{\gamma, c}$ and $\Omega_{\varphi, c}$ lie eventually outside E, i.e., there is $t=t_{x}>0$ such that $E_{t} \cap\left(x+\Omega_{\gamma, c}\right)=\varnothing$ and $E_{t} \cap\left(x+\Omega_{\varphi, c}\right)=\varnothing$.

Proof. We prove the theorem only in the case $\alpha p<n$, since the case $\alpha p=n$ is similarly proved. We can easily show that

$$
\left\{x \in R^{n}:\left(x+\Omega_{\gamma, c}\right) \cap E \neq \varnothing\right\} \subset \bigcup_{x \in E^{*}}\left(x-\Omega\left(c \delta_{E^{*}}(x)^{\gamma}\right)\right),
$$

where $\delta_{E^{*}}(x)=\operatorname{dist}\left(x, E^{* c}\right)([3$, Lemma 2]). We apply Theorem 3 with E replaced by E^{*}. Then

$$
\begin{equation*}
M_{\beta}\left(\left\{x \in \boldsymbol{R}^{n}:\left(x+\Omega_{\gamma, c}\right) \cap E \neq \varnothing\right\}\right) \leq M_{\beta}\left(\bigcup_{x \in E^{*}}\left(x-\Omega\left(c \delta_{E^{*}}(x)^{\gamma}\right)\right)\right) \leq A B_{\alpha, p}\left(E^{*}\right) \tag{5.2}
\end{equation*}
$$

Apply this inequality with E replaced by E_{t}. Then the definition of thinness implies that

$$
M_{\beta}\left(\left\{x \in R^{n}:\left(x+\Omega_{\gamma, c}\right) \cap E_{t} \neq \varnothing\right\}\right) \leq A B_{\alpha, p}\left(E_{t}^{*}\right) \rightarrow 0 \quad \text { as } t \rightarrow 0 .
$$

Thus the theorem follows.
As a corollary to Theorems C and 4 we have
Theorem 5. Let $1 \leq p<\infty, 0<\alpha<n, 0 \leq n-\alpha p<\beta \leq n, \gamma=(n-\alpha p) / \beta$, $c>0$ and let $\varphi(r)=\varphi_{\beta, p}(r)$ be as in (3.3) if $\alpha p=n$. Suppose Ω satisfies (NS) and let $\Omega_{\gamma, c}$ and $\Omega_{\varphi, c}$ be as in Theorem 4. If $f \in L^{p}\left(\boldsymbol{R}^{n}\right)$, then there is a set $F \subset \partial \boldsymbol{R}_{+}^{n+1}$ of β-dimensional Hausdorff measure zero such that

$$
\begin{array}{ll}
\lim _{\substack{P \rightarrow x \\
P \in x+\Omega_{1, c}}} P I\left(g_{\alpha} * f\right)(P)=g_{\alpha} * f(x) \text { for all } c>0 & \text { if } \alpha p<n, \\
\lim _{\substack{P \rightarrow x \\
P \in x+\Omega_{q, c}}} P I\left(g_{\alpha} * f\right)(P)=g_{\alpha} * f(x) \text { for all } c>0 & \text { if } \alpha p=n
\end{array}
$$

at every $x \in \partial R_{+}^{n+1} \backslash F$.
Let Ω be the nontangential cone $\{(x, y):|x|<y\}$. Then the approach regions in Theorem 5 are represented as $\Omega_{\gamma, c}=\left\{(x, y):|x|<c y^{\nu}\right\}$ and $\Omega_{\varphi, c}=$ $\{(x, y):|x|<c \varphi(y)\}$. Hence our Theorem 5 particularly yields the following corollary.

Corollary 2. Let $1 \leq p<\infty, \quad 0<\alpha<n, \quad 0 \leq n-\alpha p<\beta \leq n, \quad \gamma=$ $(n-\alpha p) / \beta, c>0$ and let $\varphi(r)=\varphi_{\beta, p}(r)$ be as in (3.3) if $\alpha p=n$. If $f \in L^{p}\left(\boldsymbol{R}^{n}\right)$, then there is a set $F \subset \partial R_{+}^{n+1}$ such that $M_{\beta}(F)=0$ and

$$
\begin{array}{ll}
\lim _{\substack{P \rightarrow x \\
P \in x+\Omega_{1, c}}} \operatorname{PI}\left(g_{\alpha} * f\right)(P)=g_{\alpha} * f(x) \text { for all } c>0 & \text { if } \alpha p<n, \\
\lim _{\substack{P \rightarrow x \\
P \in x+\Omega_{q, c}}} \operatorname{PI}\left(g_{\alpha} * f\right)(P)=g_{\alpha} * f(x) \text { for all } c>0 & \text { if } \alpha p=n,
\end{array}
$$

at every $x \in \partial \boldsymbol{R}_{+}^{n+1} \backslash F$.
Remark. Ahern and Nagel [2, Corollary 6.3] showed that the above corollary for $\alpha p<n$ by using a different method. Mizuta [9] studied the
tangential boundary behavior of harmonic functions with gradient in L^{p}. If $p \geq 2$, then his result improves Corollary 2. Ahern and Nagel [2, Corollary 7.3] also gave the same result.

6. Integration with respect to Hausdorff content

For a function F on $R^{n}=\partial R_{+}^{n+1}$ we denote by $N F(x)$ the nontangential maximal function of the Poisson integral of F, i.e.

$$
N F(x)=\sup _{x+\Gamma}|P I(F)|,
$$

where $\Gamma=\{(x, y):|x|<y\}$ is the nontangential cone with vertex at the origin. Similarly, we define the tangential maximal functions by

$$
\mathscr{M}_{\gamma, c} F(x)=\sup _{x+\Omega_{, c}}|P I(F)| \quad \text { and } \quad \mathscr{M}_{\varphi, c} F(x)=\sup _{x+\Omega_{\rho, c}}|P I(F)|,
$$

where $\Omega_{\gamma, c}$ and $\Omega_{\varphi, c}$ are as in Theorem 4. We define the integral of $u \geq 0$ with respect to the Hausdorff content M_{β} by

$$
\int u^{p} d M_{\beta}=\int_{0}^{\infty} M_{\beta}(\{x: u(x)>t\}) d t^{p} .
$$

If $\beta=n$, then the above integral is comparable to the usual Lebesgue integral.
Theorem 6. Let $1<p<\infty, 0<\alpha<n, 0 \leq n-\alpha p<\beta \leq n, \gamma=(n-\alpha p) / \beta$, $c>0$ and let $\varphi(r)=\varphi_{\beta, p}(r)$ be as in (3.3) if $\alpha p=n$. Suppose Ω satisfies (NS). If $f \in L^{p}\left(\boldsymbol{R}^{n}\right)$, then

$$
\begin{array}{ll}
\int \mathscr{M}_{\gamma, c}\left(g_{\alpha} * f\right)^{p} d M_{\beta} \leq A\|f\|_{p}^{p} & \text { if } \alpha p<n, \\
\int \mathscr{M}_{\varphi, c}\left(g_{\alpha} * f\right)^{p} d M_{\beta} \leq A\|f\|_{p}^{p} & \text { if } \alpha p=n,
\end{array}
$$

where $A>0$ depends only on n, α, p, c, β and Ω.
Proof. We prove the theorem only in the case $\alpha p<n$, since the case $\alpha p=n$ is similarly proved. Let $t>0, E=\left\{(x, y):\left|P I\left(g_{\alpha} * f\right)(x, y)\right|>t\right\}$ and E^{*} be as in Section 5. It is easy to see that $E^{*}=\left\{x: N\left(g_{\alpha} * f\right)(x)>t\right\}$ and $\left\{x: \mathscr{M}_{\gamma, c}\left(g_{\alpha} * f\right)(x)>t\right\}=\left\{x \in R^{n}:\left(x+\Omega_{\gamma, c}\right) \cap E \neq \varnothing\right\}$. Hence, by (5.2) and Hansson's theorem ([5] and [10, 3.7]),

$$
\begin{aligned}
\int \mathscr{M}_{\gamma, c}\left(g_{\alpha} * f\right)^{p} d M_{\beta} & =\int_{0}^{\infty} M_{\beta}\left(\left\{x: \mathscr{M}_{\gamma, c}\left(g_{\alpha} * f\right)(x)>t\right\}\right) d t^{p} \\
& \leq A \int_{0}^{\infty} B_{\alpha, p}\left(\left\{x: N\left(g_{\alpha} * f\right)(x)>t\right\}\right) d t^{p} \\
& \leq A \int_{0}^{\infty} B_{\alpha, p}\left(\left\{x: g_{\alpha} * N f(x)>t\right\}\right) d t^{p} \\
& \leq A\|N f\|_{p}^{p} \leq A\|f\|_{p}^{p}
\end{aligned}
$$

where the second inequality follows from the obvious inequality $N\left(g_{\alpha} * f\right) \leq$ $g_{\alpha} * N f$ (cf. [10, p. 344]). The theorem is proved.

Remarí. If $\beta=n$, then Theorem 6 is included in [10, Theorem 3.8]. If $\beta<n$, then Theorem 6 improves [10, Theorem 3.12]. Ahern and Nagel [2, Theorem 6.2] showed Theorem 6 for $\alpha p<n$ by using a different method.

References

[1] D. R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), 73-94.
[2] P. Ahern and A. Nagel, Strong L^{p} estimates for maximal functions with respect to singular measures; with applications to exceptional sets, Duke Math. J. 53 (1986), 359-393.
[3] H. Aikawa and A. A. Borichev, Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 1013-1030.
[4] L. Carleson, Selected problems on exceptional sets, Van Nostrand, 1967.
[5] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102.
[6] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, 1976.
[7] L.-I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), no. 4, 161-187.
[8] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[9] Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier Grenoble 34 (1984), no. 1, 99-109.
[10] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
[11] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83-106.
[12] C. A. Rogers, Hausdorff measures, Cambridge University Press, 1970.
[13] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
[14] W. P. Ziemer, Weakly differentiable functions, Springer, 1989.

Department of Mathematics
Faculty of Science
Kumamoto University
Kumamoto 860, Japan

[^1]
[^0]: 1991 Mathematics Subject Classification. Primary 31B15, 31B25.
 Key words and phrases. Bessel capacity, Hausdorff content, tangential boundary behavior of harmonic functions.

[^1]: Present address. Department of Mathematics, Shimane University, Matsue 690, Japan

