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ABSTRACT. Robustness of variance-balanced designs is investigated, when any number
of observations in a block or any two blocks are lost in a design, in terms of
efficiency of the residual design. The investigation shows that variance-balanced de-
signs are fairly robust against the unavailability of observations in the set-up mentioned
above.

1. Introduction

When some observations become unavailable in a designed experiment
for some reason, it is of interest to examine the unavailability of information,
defined suitably, that is incurred due to missing data. Designs for which this
loss is "small" may be termed robust. The robustness of several kinds of
block designs against the unavailability of data has been investigated in abun-
dance, for example, see Hedayat and John (1974), Dey and Dhall (1988),
Srivastava, Gupta and Dey (1990), Mukerjee and Kageyama (1990), Bhaumik
and Whittinghill (1991), Ghosh, Kageyama and Mukerjee (1992), Das and
Kageyama (1992) and Dey (1993). For variance-balanced (VB) block designs,
Gupta and Srivastava (1992) investigated the robustness of the design against
the unavailability of some disjoint blocks. As a special case, they also showed
that resolvable balanced incomplete block (BIB) designs are fairly robust
against the unavailability of one resolution set consisting of disjoint blocks.
On the other hand, Bhaumik and Whittinghill (1991) discussed the optimality
of VB designs by showing that the optimal design is derived by removing
blocks which have disjoint sets of treatments, and the worst design appears
when identical blocks are removed.

We here pay our attention to the following two situations: (i) any number
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of observations in a block are lost; (ii) all the observations in any two blocks
which are not necessarily disjoint are going to missing. The purpose of this
paper is to investigate the robustness of VB designs against the unavailability
of observations in the patterns mentioned above.

Let d* be the design obtained by removing some observations in the
original design d. Assume d* to be connected [this assumption is given only
for the convenience of general presentation of the eigenvalues of C*, because
the calculation of φx(*) below can be made also for a disconnected design d*].
Let C and C* be the C-matrix of d and d*9 respectively. In this case, the
criterion of robustness against the unavailability of such observations is the
efficiency of the residual design d*, given by

. sum of reciprocals of non-zero eigenvalues of C ( φ2 \ /Λ Λ,
gijjej ^ I ss s a v I 1 1 1 )

sum of reciprocals of non-zero eigenvalues of C* \ Φι(*Y J

(see Das and Kageyama (1992)), which is equivalent to the ratio of the average
variance of all elementary treatment contrasts in the original and the residual
design.

For the evaluation of eigenvalues, the following lemma (Mukerjee and
Kageyama (1990)) is useful. Here J s x ί = 1,1̂ , in which l s denotes an s-dimen-
sional column vector of all unity. Especially JS = JSXS (hereafter, J denotes
such matrix of appropriate size). Is is the identity matrix of order s.

LEMMA 1.1. Let u, s l 5 •••, su be positive integers, and consider the s x s

matrix

b2χJs St ^2^so ~^~ b22^sjs '" b2u^sΎs

A = . . . .

bulJSuSί

 bu2Jsus2 ' ' ' aJsu + KuJsus

where s = sx + s2 + "' + su and the u x u matrix B = (fty) is symmetric. Then
the eigenvalues of A are αf with multiplicity sf — 1 (1 < i < u) and μf, ..., μj,
where μf, ..., μ* are the eigenvalues of A = Da + DS

1/2BDS

1/2 with Da =
diag {al9...9 au}9 Ds = diag {sl9..., 5U} and Z)s

1/2 = diag {s\/2

9..., 5U

1/2}.

A binary connected VB design with parameters v9 b9 r = (rί9..., rv)'9
k = (kί9..., fcb)', n = 5]v=1 rf and θ = (n — b)/(ι; — 1) is only considered here to
show the robustness against the unavailability of data. It is shown that the
C-matrix of the VB design is given by C = Θ(IV — v~xJv)9 in which the non-zero
eigenvalues of C are θ with multiplicity v — 1. Further assume that the
present VB designs are not orthogonal and satisfy fc, > 2 for all j = 1, 2, ..., b.
This is the usual assumption in this field to avoid trivial designs. On account
of Corollary 6 of Kageyama and Tsuji (1980) and Proposition 3.1 of Kageyama



Robustness of VB designs 353

(1984), we can show that 0 = (n - b)/(v - 1) > 1. The property will be used

later.

2. Unavailability of any number of observations in a block

The investigation, when one block is lost, has been done, in terms of

efficiency, by Gupta and Srivastava (1992). Now suppose that s (1 < s < kj)

observations in any one block of size kj are lost in d. Let kmax =

max {fel5..., kb}, kmin = min {kl9..., kb}. It follows that the C-matrix of the

residual design d* is given by C*, where

with

(0
— \p

-K-

= ^31

c* =

θ
kj v v-kj>

= c 2 3 = C32 =

C 2 iJ

Cl2 ^

C 2 2

C32J

c22

= C 2 1 =

Cl3 ^

C23J

Q3_

(θ 1

"s 11; + fc, - s

33

Hence we can obtain the following through Lemma 1.1.

LEMMA 2.1. The v — 1 non-zero eigenvalues of C*, 1 < s < kj — 1, are

given by

0 — 1 wΐίft multiplicity (w.m.) s,

θ w.m, v — s — 1.

REMARK 2.1. When s = kj in the original design, the C-matrices for s = k}

and s = k; - 1 become identical. Hence the eigenvalues and their multiplici-

ties of C* for s = kj can be given by Lemma 2.1 with s = kj— 1.

Recall that φx(s, kj) and φ2 are the sum of reciprocals of non-zero eigen-

values of C* and C, respectively. Hence, in (1.1),

* , , v s v — s — 1
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which yield the efficiency of the residual design d* as in

Concerning behaviour of the values of efficiencies, we have the following.

THEOREM 2.1. In a VB design with parameters υ, b, r = (rί,...,rv)',

k = (ku ..., kbγ, n = ΣUn and θ = (n- b)/(v - 1), for j = 1, 2, ..., b,

e(l, *,) > e(2, kj)> > e(kj - 1, *,) = e(kp kj).

PROOF. For any integers s', s such that s' < s ^ kj — I, it follows from

(2.1) that

eis' k)-e(s k)-e(s , k j ) e(s, kj) - {{v

which is positive, since θ > 1. It is obvious that e(kj — 1, kj) = e(kp kj). This

completes the proof. •

THEOREM 2.2. In a VB design with parameters v, b9 r = (r l 5 ...,rv)'9

k = (ku..., kb)\ n = ΣU r{ and θ = (n - b)/(v - 1), if kr < fej5 then

PROOF. AS in the proof of Theorem 2.1, let s' = ky — 1 and s = kj— 1,

then it follows from (2.1) that

e%, - 1, kj) - e(kj - 1, kj) = {(υ

 V ' J

which is positive, since 0 > 1. This completes the proof. •

T H E O R E M 2.3. In a VB design with parameters v, b, r = ( r l 9 . . . , rv)
f,

k = (fc l 5..., k j , " = Σ i - i n α w d θ = (n- b)/(v - 1),

e(s, kr) = e(s, kj)

for any \ <s < min {kr, kj} — 1.

PROOF. It is clear from (2.1). •

If the loss of information in a design against the unavailability of some

observations is not more than 1 — α, then it is assumed that the design is

said to be robust, i.e. e(s9 kj) > α, in general, α = 0.9 or 0.8. In this sense,

we have the following.

T H E O R E M 2.4. In a VB design with parameters v, ί>, r = (rl9 . . . , r v ) ' ,
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k = (kl9..., kb)[, n = Yj=χ r{ and θ = (n — b)/(v — 1), the design is robust against

the unavailability of any number of observations in a block, if

1 — α

for a given positive number α (< 1).

PROOF. Through Theorems 2.1 and 2.2, it is clear that the minimum of

e(s, kj) is given by e(kmax - 1, kmax). If n > b + υ + (αfcmflJC - 1)/(1 - α) for a

given positive number α (< 1), then it can be shown that

This completes the proof. •

Theorems 2.1 and 2.2 imply that the behaviour of e(kmax — 1, femβJC) is

important to judge whether the design is robust or not. Hence it is enough

to evaluate the value of e(kmax — 1, fc^J to show the robustness of VB designs

in the present case. For all VB designs listed in Kageyama (1976), Gupta

and Jones (1983), Jones, Sinha and Kageyama (1987), and Gupta and Kageyama

(1992), the evaluation of e(kmax — 1, kmax) has been worked out. It reveals

that except for a few, all the VB designs have high values of e(kmax — 1, femαx).

In fact, 315 designs satisfy e > 0.90, 6 designs get 0.90 > e > 0.80, 2 designs

satisfy 0.80 > e > 0.70 and only one design of series number 1 in Kageyama

(1976) has e(3, 4) = 0.67.

Thus, it appears that VB designs are fairly robust against the unavailabil-

ity of any number of observations in a block.

3. Unavailability of any two blocks

Now suppose that all the observations in any two blocks, th and / t h ,

say, of respective sizes fey and kr are lost in d. Let w be the number of

treatments common to two such blocks. Then 0 < w < min {fey, kr}. In this

case the C-matrix of the residual design d* can be given by C*, where

-Ίl C 12 J C 13 J

C34J

C44

with
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= (θ - 7)K - (°- - i ; - 1 ) Jw, C22 - (0 - l ) V w

1/ V /

θ 1 0 1
- —- + r-» C 1 3 - c 3 1 - - - + —,

7 j '

The situation can be treated by separating it into three cases of w = 0

(disjoint), 1 < w < min {kp kr} — 1 and w = min {kp kr}. Hence by Lemma

1.1, we have the following.

LEMMA 3.1. The v — 1 non-zero eigenvalues of C*(w) are given by

(1) for w = 0

(2)

(3)

(4)

for

for

for

W — Kj — Kji

w = kj < kj-

ί^w<,k —

θ-ί

θ

θ

(7 -""" x>

0

0 - 1

0 - 2

1 and kj = ky =

0

0 - 1

0 - 2

0-w/fe

w.m.

w.m.

w.m.

w.m.

w.m.

w.m.

w.m.

k

w.m.

w.m.

w.m.

w.m.

kj +

v —

v —

w —

v —

kr-

kj-

v —

2k-

w —

ί,

kf-

kj~

l;

ky,

•kj,

l;

2k +

-2w

1,

-2,

ky + 1;

and

w,

-2,

0 - 2 + w/fc w.m. 1.

Let us consider the final case, i.e. 1 < w < min {fe; , ky} — 1. In this case,
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Lemma 1.1 shows that the eigenvalues of C* are given by

θ - 2 w.m. w - 1,

θ - 1 w.m. kj + kr - 2w - 2,

θ w.m. v — kj — ky + w — 1

and the remaining four eigenvalues of Δ = Da + DS

1/2UDS

1/2 with

Da = diag {0 - 2, 0 - 1, 0 - 1, 0},

Ds = diag {w, fcj — w, k̂  — w,v — kj- kr + w},

357

where JA = l 4 i ; , F = (1, 1,0,0)'(l, 1,0,0) and ξ = (1,0, 1,0)'.

Now, for Δ = Da + Dll2BDlβ, it follows that Js112 = 0, where s1 / 2 =

(w1/2, {kj - w)1/2, (fc, . - w)1/2, (r - kj - kj. + w)112). Hence 0 is an eigenvalue of

Δ with the corresponding orthonormal eigenvector being by ξ0 = v~1/2slβ.

Letting μ0 = 0, μl3 μ2 and μ3 be the eigenvalues of Δ and defining Δo = Δ +

(θ/r)Ds

1/2J4Ds

1/2, we can show that the eigenvalues of Δo are θ, μx, μ2 and μ3.

Thus, we have

Δ = Da

Λ θ
Δo = Δ + -s

v

where

Θ-2 +
- w)/kj

0
0

w(kj - w)/kj

θ - w/kj

0
0

0 0'
0 0

0 - 1 0
0 0

If = Dlt2ξ = (w1/2, 0, (kj. - w)1'2,0)'.

Hence
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_ 2 2(0 - 1)

θ θ2 - 20 + w/kj + w/kr - w2/(kjkyy

Since Δo has eigenvalues θ, μγ, μ2 and μ3, it follows that

= 1 2(0-1)

0 θ2-2θ + w/kj + w/kr-w2/(kjkfy

Recall that Φi(kj9kj>9w) and φ2 are the sum of reciprocals of non-zero eigen-

values of C* and C, respectively. Hence, in (1.1),

, „ , v w — 1 ki + kv — 2w — 2 v — k, — kv + w

+ 2 ( 9 - 1 )

02 - 20 + w/fe,. 4- w/fe,. - w2/(kjkr)
 y ' ;

which yields the efficiency of the residual design d* as

e(kj, kr; w) = φ2lφ1(k}9 kr, w). (3.2)

REMARK 3.1. In fact, for the calculation of (3.1), θ — 2 > 0 is implicitly

assumed. Note that the expression, e(kp kr; w), of efficiency mentioned above

also holds for w = 0 and w = min {fe,-, kr] as a consequence.

Concerning behaviour of the values of efficiencies, we have the following.

T H E O R E M 3.1. In a VB design with parameters v, ft, r = ( r l 5 . . . , rv)\

k = (kl9...,kby9 n = Y}=1ri and θ = (n - b)/(v - 1), for j , / = 1, 2, . . . , b,

Φmax> kmax; w) < e(kp kr; w) < e(kmin, kmin; w)

for a fixed nonnegative integer w such that 0 < w < m i n {kj9 kr}.

PROOF. The situation can be treated by separating it into three cases

of 0 < w < min {kj9 kr} — 1, w = min {kj9 kr} (kj > kr) and w = min {kj9 kr)

(kj=kr).

Case 1: 0 < w < min {kj9 kr} — 1. First note that φι(kj9 kr, w) is a sym-

metric function of kj and ky. The partial derivatives of φ^{kj9 kr,w) with

respect to k} and kr can be given by
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j , kr, w) __ 1 2(0 - l)(w/fc/)(l - w/fc,)
dkj 0(0 - 1) {02 - 20 + w/fc, + w/fy - w 2/(*A)} 2 '

fcy> *», w) _ 1 2(0 -

Sfy 0(0 - 1) {θ2 - 20 + w/kj + w/fc, - w 2 /(kΛ)} 2 >

respectively, which are positive, since 0 > 2 and 0 < w < min {kj9 kr} — 1.
Case 2: w = min {fc,., fy} (kj < kr). It follows from Lemma 3.1 that 0 — 2

is a non-zero eigenvalue of C-matrix of the residual design d*. Since C*
is positive semidefinite, 0 — 2 > 0. In this case, the partial derivatives of
ΦΛkp kr, w) with respect to kj and kr can be given by

kp kr, w) =

l ) ' dky 0 ( 0 - 1 ) '

respectively, which are positive, since 0 > 2.
Case 3: w = min {fcy, kr) (kj = fc7). In this case, the partial derivatives

of Φι(kj9kr,w) with respect to kj and kr can be given by

dφx(kj, kr, w) = 3 ^ (fc,., fc/? w) = 2
δfc,. δfê  0(0 - 2)'

which is positive, since 0 — 2 > 0. Thus, φι(kj, kr, w) is an increasing function
of kj and kr. It follows that

x, kmaχ, W) > φ^kj, kr, W) > Φdkmin, kmin9 w),

which through (3.2) implies that

Φmax, kmax; w) < e(kj, kr; w) < e(kmin9 kmin; w).

This completes the proof. •

Theorem 3.1 implies that the behaviour of e(kmax9 fc^; w) is important
to judge whether the design is robust or not for a fixed w. On the other
hand, Bhaumik and Whittinghill (1991) have proved that the optimal design
in some class of VB designs is derived by removing some equal-sized blocks
which have disjoint sets of treatments (w = 0), and the worst design appears
when identical blocks (w = k) are removed. Hence we have the following.

THEOREM 3.2. In a VB design with parameters v, b, r = ( r 1 ? . . . , rv)\
k = (kl9..., kh)\ n = Σi=i rf and θ = (n — b)/(v — 1), the design is robust against
the unavailability of any two blocks, if

1 — α

for a given positive number α ( < 1).
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PROOF. Through Theorem 3.1 in this paper and Theorem 2 in Bhaumik

and Whittinghill (1991), the possible minimum of e(kp kf; w) is given by

Φmax> kmax; kmax). If n > b + 2v + 2(ockmax - 1)/(1 - α) for a given positive
number α (< 1), then it can be shown that

, . n-b-2v + 2

n - b - 2v + 2k
max

This completes the proof. •

All VB designs listed in Kageyama (1976), Gupta and Jones (1983), Jones,

Sinha and Kageyama (1987), and Gupta and Kageyama (1992) were worked

out. The evaluation reveals that except for a few, all the VB designs have

high values of β(fcmαjc, kmax; kmax). In fact, 282 designs satisfy e > 0.90, 29

designs get 0.90 > e > 0.80, 7 designs satisfy 0.80 > e > 0.70 and only 5 designs

of series numbers 2, 4, 7, 9 in Kageyama (1976) and 2 in Gupta and Kageyama

(1992) have e(4, 4; 4) = 0.67, e(4, 4; 4) = 0.45, e(6, 6; 6) = 0.47, e(4, 4; 4) = 0.58,

and e(4,4; 4) = 0.60, respectively.

REMARK 3.2. In the design of series number 1 in Kageyama (1976), if

we remove two identical blocks of size 4, the residual design becomes discon-

nected. Thus, the efficiency of the design is not discussed for this case.

Thus, it appears that VB designs are fairly robust against the unavailabil-

ity of any two blocks in a design.

REMARK 3.3. It is well known that a BIB design is a binary proper

and equireplicate VB design. This case is noted below. For a BIB(v, b, r, fe, λ)

design, the number w of treatments common to any two blocks satisfies

- ( r - λ-k)< w<2λk/r + (r- λ-k) ( = w m α x , say) (see Connor (1952)).

Thus, Theorem 3.1 implies that the behaviour of e(wmax) ( = e(k, k; w^^)) is

important to judge whether the design is robust or not. The values of eiw^J

for 168 existing BIB designs listed in Hall (1986) and Raghavarao (1971) were

worked out. The evaluation reveals that, except for some cases, all the BIB

designs have high values of e(wmαjc). In fact, 128 designs satisfy e(wmαjc) > 0.90,

23 designs get 0.90 > e(wmax) > 0.80, 10 designs satisfy 0.80 > e{wmax) > 0.70

and 7 designs of series numbers 1, 2, 3, 4, 8 and 11 in Raghavarao (1971)

and of series number 1 in Hall (1986) have e(l) = 0.47, e(2) = 0.41, e(l) = 0.69,

e(3) = 0.57, e(4) = 0.65, e(2) = 0.69 and e(l) = 0.59, respectively. Thus, it

appears that BIB designs are fairly robust against the unavailability of any

two blocks in a design.
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4. Some remarks on numerical comparison

For a given VB design, we here consider how the efficiency of residual
designs changes as a function of w, when any two blocks are lost.

An example is presented as an illustration. For a VB design with 6
treatments, 18 blocks of size k1 = 2 and fc2 = 4, respectively, having 8 rep-
licates, all values of efficiency for the residual design d* are shown in Table 1.
Here "—" means that such case does not exist.

Case i

e(k2,k2,w)

e(k1, k2, w)

Table 1.

w = 0

0.9259
0.8065
0.8621

e(w) for 0 ^

w = 1

0.9218
0.7993
0.8567

w ^ min {/

w = 2

0.9091
0.7906
0.8475

cuk2}

w = 3

0.7805

w = 4

0.7692

It is known through Bhaumik and Whittinghill (1991) that the optimal
design is derived by removing some blocks of the same size which have
disjoint sets of treatments (w = 0). In Table 1, the optimal design with
e(2, 2; 0) = 0.9259 is derived by removing two disjoint blocks of size kmin = 2,
the worst design with e(4, 4; 4) = 0.7692 is derived by removing two identical
blocks of size kmax = 4. When any two unequal-sized blocks are lost, the
best design is derived by removing two disjoint blocks (w = 0), which keeps
the largest efficiency value as e(2, 4; 0) = 0.8621. This fact is also true for
other VB designs. Hence, through Theorem 3.1 and our investigation for
other examples, we may say more. When there is possibility that two arbi-
trary blocks may become unavailable, the design obtained by removing two
repeated blocks of size kmax is the worst, and the best design is derived by
removing two disjoint blocks of size kmin.
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