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ABSTRACT. Our aim in this paper is to deal with the existence of tangential limits

for monotone functions u in the upper half space Rn+ of Rn satisfying

Igrad u(x)\pω(x)dx < oo for any bounded open set D cz Rn

+1

where p > 1 and ω is a non-negative measurable function on Rn

+. We are mainly

concerned with the case when ω(x) = x£~n, p > n — 1, and show that u has tangential

limits at boundary points except those in a small set. For this purpose, we first

give a fine limit result for BLD (or p-precise) functions on Λ+, and then apply the

estimate of the oscillations of monotone functions by the p-th means of partial deriva-

tives over balls.

In case ω(x) is of the form g(\x\)xj!~n, we give a condition on g for u to have

a tangential limit at the origin; in case ω(x) = g(xn)xξ~n, the same condition on g

will assure that u has a usual boundary limit at any point of dRn+.

1 Introduction

Our aim in this paper is to study the existence of tangential boundary

limits of monotone functions u in the half space Rn+ = {x = (xl9..., xn): xn >

0}, n ^ 2, which satisfy

(1) \Vu(x)\px*~ndx < oo for any bounded open set D a Rn

+9

JD

where V denotes the gradient; note that u is locally p-precise in R\ in the

sense of Ohtsuka [16]; see also Ziemer [21]. Here a continuous function u

is said to be monotone (in the sense of Lebesgue) on an open set G cz Rn if
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max u(x) = max u(x) and min u(x) = min u(x)
D 3D D dD

hold for any relatively compact open set D such that D c G (see [4]).
The class of monotone functions is considerably wide. We give some

examples of monotone functions.

EXAMPLE 1. Harmonic functions on an open set G are monotone in
G. More generally, solutions of a wider class of partial differential equations
are monotone (see Gilbarg-Trudinger [2]).

EXAMPLE 2. Weak solutions for variational problems may be monotone;
in particular, weak solutions of the p-Laplacian are monotone. Moreover,
if / is a quasi-regular mapping on G, then the coordinate functions of /
are monotone in G. For these facts, see Heinonen-Kilpelainen-Martio [3],
Reshetnyak [17], Serrin [18] and Vuorinen [19], [20].

EXAMPLE 3. Let f(r) be a non-increasing (or non-decreasing) continuous
function on (0, oo). If we define u(x) = f(\x — ζ\) for xeRn+ and ξedRn+,
then u is monotone in R\.

To evaluate the size of exceptional sets, we use the capacity

Cα,p,ω(£; G) = inf \f(y)pω(\yn\)dy,

where £ is a subset of an open set G in Rn, ω is a non-negative measurable
function on (0, oo) and the infimum is taken over all non-negative measurable
functions / such that / = 0 outside G and

ί' — y\* nf(y)dy ^ 1 for every xe E;

see [6] and [14] for the basic properties of capacity. We write CΛtPt<o(E) = 0 if

Capω(EΓ\G;G) = 0 for every bounded open set G.

In case ω(r) = rβ, we write Cα>p>j8(£; G) for Cα>p>ω(£; G); if β = 0, then we
simply write Q p ( £ ; G) for CΛiPtβ{E\ G).

For y > 1 and ξ e dRn+, consider the set

Tγ(ξ) = {x = (x 1 ? . . . , xn) e R\: \x - ξ\> < xn}9

which is tangential at ξ. If lim u(x) = ί for every γ > 1, then u is said

to have a 7^-limit { at ξ (cf. [11]).
Our main aim in this paper is to establish the following result.
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THEOREM 1. If u is a monotone function on Rn

+ satisfying (1) for p > n — 1,

then u has a finite T^Ίimit at every boundary point except that in a set

E c dRn

+ such that Cn/PtP(E) = 0.

The case p — n was treated in [15, Theorem 1]. For the non-tangential
case, we refer to the result by Manfredi and Villamor [5]. For harmonic
functions, see [1], [9], [12]; for weak solutions of the p-Laplacian, see [10].

For a proof of Theorem 1, we need the fact that if u is monotone on
B(x, 2r), then

JB(x,2r)
\u(x) - u(y)\p ^ Mrp~n \Fu(z)\pdz whenever y e B(x, r),

JB(x,2r)

where B(x9 r) denotes the open ball centered at x with radius r. This estimate
is obtained by an application of Sobolev's inequality over the spherical
surface. For this purpose, we need the restriction p > n — 1; see Manfredi-
Villamor [5, Remark after Lemma 4.1], which is an extension of [20, Corollary
16.7, Chap. IV]).

Condition (1) may not assure the existence of T^ -limit at any given point,
which may be assumed to be the origin. In studying the existence of 7^-limit
at the origin, we consider a positive non-increasing function g on the half
interval (0, oo) satisfying the doubling condition

M'xg(t) S 0{2t) ̂  Mg{t) for ί > 0

with a positive constant M and the condition

f
Jo

(2) giή-w-VrUt <oo.
Jo

For ξ e dR\ and r > 0, set

B+(ξ, r) = R\ Π B(ξ, r) and B_(ξ, r) = B(ξ, r)\W+.

THEOREM 2. Let g be as above. If u is a monotone function on B+(0,1)

satisfying

(3) L,
for p > n — 1, then u has a finite T^-limit at the origin.

We shall also show by an example that condition (2) is necessary for u
to have a finite 7^-limit at 0 (see Remark 3 given later).

THEOREM 3. Let g be as above and p > n — 1. If u is a monotone func-

tion on R\ satisfying
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(4) \Fu(x)\pg(xn)xξ~ndx < oo for every bounded open set D c Rn

+9

JD

then u has a finite limit at every boundary point.

2 Preliminary lemmas

Throughout this paper, let M denote various constants independent of

the variables in question.

For a function u on B+(0, N), N > 0, define

Six' x l - H 1 ' 4 xeB+{0,N),

If u is p-precise in B+(0, N), then ΰ is extended to a p-precise function on

B(0, N); see Ziemer [21] for the definition of p-precise functions.

LEMMA 1 (cf. [13, Lemma 3]). Let p > 1 and u be a continuous p-precise

function on B+(0, N). Then there exist a constant c depending only on n and

a harmonic function v on B(0, N) such that

(5) u(x) = ct f ^ |

for almost every x e B+(0, N); in fact, c = ω'1 with ωn denoting the surface

measure of dB(0, 1).

PROOF. We first note that the extension u is p-precise in 5(0, N) as was

remarked above. Consider

We see that U is locally integrable on Rn. If φ e C?(B(0, AT)), then

(uAφdx = Σ ί ( \iΓ
J j=i Jβ(o,N) \J \χ - y

•Ί Λφ{y)u{y)dy

for a constant c Φ 0 depending only on n. With the aid of WeyPs lemma,

we can find a harmonic function v on J5(0, N) such that v = u — cU a.e. on

5(0, JV).
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COROLLARY 1. Let u be a continuous locally p-precise function on

B+(0,N) satisfying

ί \Vu(
JB+(O,N)

(6) \ru(y)\>\ynrdy<«>
JB+(O,N)

for p > 1 and α < p — 1. Then there exists a harmonic function v on B(0, N)

such that

= Σ (*/ - yj)\χ - y\~"uj(y)dy + H
J=l JB(O,N)

for x G B+(0, N)\E' with a set E such that CUp(E) = 0, where (u l 5 . . . , uπ) = cVΰ.

PROOF. By Holder's inequality we have

\Vu(y)\qdy < oo
+(O,JV)

when 1 <q <p and q(l + α) < p. Hence ΰ is g-precise in B(0, N). By Lemma

1, we can find a harmonic function v on B(0, N) such that (5) holds for

almost every x e B+(0, N). Since \B(atir)(χj ~ yj)\χ — y\~Huj(y)dy is p-precise

in Rn whenever B(a, 2r) <= B+(0,N) (cf. [8, Lemma 3.3]), we see that

(Xj - yj)\x - y\-nUj(y)dy = (Xj - yj)\x - y\~nU
JB(0,N) JB(a,2r)

j(y)dy

J B(0,N)\B(a,2r)

is p-precise in B(a, r); note here that the second term on the right hand side

is infinitely differentiable on B(a,r). Since u is continuous on 2?+(0, N), (5)

holds for every x e B+(0, N)\Ef with a set E such that CltP(E') = 0 (cf. [8,

Lemma 2.3]).

LEMMA 2. Let E a Rn

+. If CUp{E') = 0, then CUPi(O(E) = 0 for any mea-

surable function ω such that inϊre[ab]ω(r) > 0 whenever 0 < a ^ b < oo.

PROOF. We show that CltPt(0(E Π B(a, r); B(a, 2r)) = 0 whenever B(a, 2r) c

Rn

+. In fact, for A c 5(α, r), we can show that CUPt(O(Λ; 5(α, 2r)) = 0 if and

only if ClfPt(O(A) = 0. By our assumption,

(7) C1)P(

so that we can find a non-negative function / e Lp(B(a, 2r)) such that

ί \x ~ y^fiyίdy = oo for every x e FΠ.Bία, r) (cf. [8, Theorem 3.2]). Since
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•'- y\1~nf(y)co(yn)dy = co

for every xe£'ΠB(a, r), which implies

CUp>ω(E'OB(a9r);B(a,2r)) = 0.

Now the required conclusion follows.

For a positive measurable function ω on the interval (0, oo), define

= ( Γ
for 0 <; r ^ 2" 1; set hω{r) = ftω(2"1) for r > 2"1.

LEMMA 3. Lei ω(r) = g(r)rp~n for a non-increasing function g on (0, oo)

such that

1 ^ #(r) ̂  Mg{2r) for all r > 0.

\Jβ(^2|x-ξ|)\B(x,xn/2) /

where 1/p + 1/p' = 1.

PROOF. For x = (x x , . . . , xn_j, x j , write x' = (x x , . . . , xπ_!, 0). Then we

have

Γ \χ-y\ptil-n)ω(\yn\)~pΊpdy
jB(ξ,2\x-ξ\)\B(x,xn/2)

\χ- y\p'{ί-n)ω(\yn\rpΊpdy
B(x',Z\χ-ξ\)\(B(x,xn/2yJB(x',xn/2))

/2r'<1-"> f
jB(x',xJ2)

Note that \x' - y\ ^ xn + |x - y\ S 3 |x - y\ for y e 5(x', 3 |x - ξ|)\B(x, xM/2).

Since ^(b w | ) ^ flf(|x' - y\) and - p ' ( p — n)/p > — 1, we have for x 6 £+(<!;, 1)

Jβ(jc',3|χ-
\x'-

ξ\)\B(x',xJ2)
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On the other hand, since gir)'1 is non-decreasing, we have

J ^ (xn/2)p'il-n)g(iypΊp I \yn\-p'{p-n)lpdy ^ M.
JB(x',xn/2)

Thus Lemma 3 is established.

Let h be a non-decreasing positive function on the interval (0, oo) sat-

isfying the doubling condition. We use Hh to denote the Hausdorff measure

with the measure function h. For a measurable function /, set

e dRl: f \ξ - yf
JB(ξ,l)

and

AKf = \ξe dR\ : limsup Wr)]"1 ί \f{y)\'ω{yn)dy

The following is easily shown:

LEMMA 4. Let f be a non-negative function on R\ satisfying

(8) f{y)pw(\yn\)dy < oo for any bounded open set G c Rn.
JG

Then

CltPtω(Af) = 0 and Hh{AKf) = 0.

In view of [14, Lemma 12.4], we can show the following (see also [6],

COROLLARY 2. // / satisfies (8) with ω(r) = rp~n for p > n — 1, then

Cn/pJAfUAhtf) = 0,

where h(r) = hω(r) ( = [log (1/r)]1-* for 0 < r < 2"1).

LEMMA 5 (cf. [11, Theorem 2' and Remark 1]). Let ω(r) = g(r)rp~n be

as in Lemma 3. For a positive non-decreasing function h on (0, oo) satisfying

the doubling condition and a > 0, define

Th{ξ, a) = {x e R\ : h(\x - ξ\) < ahω(xn)}.

Let f be a non-negative measurable function on Rn+ satisfying (8) and vanishing

outside a bounded set. For each positive integer j , 1 Sj = n, set
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// ξ e dR+\(AfΌ Λk§f)9 then there exists a set E(ξ) c R\ such that

(i) lim U(x) exists and is finite for any a > 1;
x^ξ,xeTh(ξ,a)\E(ξ)

(ϋ) Mm [Λ(2-k)]-1C l t P t ω(£k({); Bk(ξ)) = 0,
* - * o o

where Ek(ξ) = {x e E(ξ); 2~* g \ξ - x| < 2"*+1} and £k(ξ) = {x 6 Rn; l ^ 1

\ξ-x\<2'k+2}.

PROOF. For xeRn+, write

vdχ)= ί (χj-yj)\χ-yΓuAy)dy,
J R»\B(ξ.2\x-ξ\)

U2(χ)= ί
jB{ξ,2\x--ξ\)\B(x,xn/2)

= f
If y 6 £WVB(£ 2|x - ξ|), then we have \x-y\^ 2" 1 |y - ξ\, so that

| ( x . _ yj)]x « y|-»/(y)| g |χ - ^ - " / ( y ) ^ 2""1 |y - ξ\χ-nf{y).

Since ξ ̂  Xj, Lebesgue's dominated convergence theorem implies that

lim Ux(x) = U(ξ).
x^ξ,xeRϊ

Next, if x e B+(ξ, 1/4), then we have Holder's inequality and Lemma 3

\χ-y\ι-*f(y)dyύ f
jB)B(ξ,2\χ-ξ\)\B(x,xn/2)

^ ( f Ry)pω{\yn\)dy
\jB(ξ,2\x-~ξ\)

ί
\JB(ξ,2\x-

\1/P'

\χ - y\p'{1-n)ω(\yn\rpΊpdy)
ξ\)\B(x,xJ2) J

f(y)pω(\yn\)dy) .
jB(ξ,2\x-ξ\) J

Since ξ φ Λhtf and [ M ^ ) ] " 1 ^ «[*(l* - f l ) ]" 1 for xeTh(ξ,a), we see that

lim U2(x) = 0.
χ-»ξ,xeΓh(ξ,α)

Finally, let {bk} be a sequence of positive numbers such that ί?k->oo. We

set Ek = {x; 2~k ̂  \x - ξ\ < 2" f c + 1, \U3(x)\ ^ b,1} and E(ξ) = IJ fc^ F o r x e
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Ek, we have

bk' ^ I U3(x)\ ̂  ί \x - y\ί-nf(y)dy ^ f \x - y\1-nf(y)dy,
JB(x,xJ2) JBk

where we set Bk = Bk(ξ) for simplicity. By the definition of C l p c ι Γcapacity,
we have

CίtPtω(Ek;Bk)^bί[ f(yYω(\yn\)dy.
jBk

Here, since ζφAhtf, we can choose the sequence {bk} in such a way that

\h{2-k)Y'bξ ί f(y)pω(\yn\)dy ^ 0 as k ̂  oo.
jBk

With this choice of {bk}, condition (ii) of the lemma is satisfied, while

lim sup IU3 (x) \ ̂  lim sup bk

x = 0.
χ-+ξ,xeR"\E(ξ) k-oo

Thus Lemma 5 is established.

LEMMA 6. There exists a positive constant M such that

ί \z - y\ι~ndy ^ Mrn(r + | x - z\y
B(x,r)

for any x, z e Rn and r > 0.

PROOF. First note that

\z-y\χ-ndy^ \x-y\1~ndy =
JB(x,r) JB(x,r)

for all z. Hence the required inequality holds if \x — z\ ̂  2r. If |x — z\ > 2r,

then \z - y\^\z-x\-\x- y\^ 2"1 \z - x\ for y e B(x, r), so that

\z - yl^dy S 2""1 |x - zl1"" dy ^
Jβ(x,r) JB(x,r)

M|x - zl1""^.

Since r H- |x — z\ ̂  (3/2)|x — z|, we obtain the required inequality in case
|x - z| > 2r.

LEMMA 7 (cf. [14, Lemma 7.3]). Let ω(r) = g(r)rp~n be as in Lemma 3.

Then there exists M > 0 such that

CUp,ω(B(x9 xn/4); B(ξ, 1)) ̂

whenever xeB+(ξ, 2"1).
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PROOF. Let / be a non-negative measurable function such that / = 0
outside B(ξ91) and

— y\1~nf(y)dy ^ 1 for every z e B(x, xπ/4).

For x = (xl9..., x π _ l 5 xπ), where x' = ( x 1 ? . . . , x n _ l 5 0). Since xn + \x' -y\ύ
2(xn H- |x — y\), we have by Fubini's theorem, Lemma 6 and Holder's inequality

ί dzrgf
jB(x,xJ4) JB(X,XJ

= {f(y)dy{
J jB(x,

\z-y\
χ-"dz

xJ4)

ίMx
B(ξ,l)

AyYω(\yn\)dy)
B(ξΛ) /

([ [ ( χ + | X '_y|)l-

Here note that

Γ [(XΛ+|x,
Jβ(^i)

Jβ(Jc',2)

Jo

\χ' -

(xn

I

Jo

VJχn /

Thus we have
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f(yYω(\yn\)dy,ύ f
JB(ξ,l)

which yields the required inequality.

3 Proof of Theorem 1

Let ω(r) = rp~n. Then hω(r) = [log (1/r)]1-" for 0 < r < 2"1. In view of

(1), we see that / = \Vΰ\ satisfies (8). Consider Af and Ahf with h(r) = hω(r).

In what follows we show that u has a finite 7^-limit at every ζedRn+\

For N > 0, in view of Corollary 1, u is of the form

w(χ) = Σ (*/ - yj)\* - y\~Huj(y)dy +
J=l JB(0,N)

for x G B+(0, N)\E\ where C l p ( F ) = 0 and % is a harmonic function on

B(0, N). Note that

Th(ξ, y'-1) whenever y > 1.

Further Lemma 2 implies that CltPt(O(E') = 0. By Lemma 5, for { e (B(0, AT) Π

there exists a set £(ξ) c Λ^ such that

lim u(x) exists and is finite for any a > 1

and

(9) lim Γ'C^-niEiξ) Π Bj(ξ); B(ξ9 1)) = 0.

If x G Γy({) and 2~j ^ \x - ξ\ < 2~j+2, then B(x, xn/2) a Bj(ξ). Since 2~jy ^

|x — ξ\γ < xn for x G Ty(£), Lemma 7 gives

;'p~lcΊ,j>,p-π(£(x> xπ/4); B(ξ, 1)) ^ M i / ' ^ l o g (l/x,,)]1"11 ^ M 2

for some positive constants Mί and M2. Hence it follows from (9) that there

is jo such that B(x, xn/4) φ E(ξ), so that there exists y(x) e B(x, xn/4)\E(ξ),

whenever x G Tγ(ξ) Π B(ξ, 2~jo). Since u is monotone on Rn

+,

\u(x) - u(y)\p ^ Mxp~n I I Vu(z)\*iz
JB(X,XJ2)

for y G B(x, xJ4) cz Λ^ (see [5]). Thus we infer that

lim |tφc)-iι(y(x))|=0,
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from which it follows that

lim u(x) = lim u(y(x)).

Note that there is a > 0 such that y(x) e Th(ξ, a) if x e Tγ(ξ). Hence the limit

on the left exists and is finite. Now, in view of Corollary 2, we see that

E = AfUAhtf has all the required properties.

4 Proofs of Theorems 2 and 3

First suppose u satisfies (3) with g satisfying (2). If we set / = \FU\ as

before, then

f \y\ι-"f(y)dy
JB(O,D

^ f f \y\'lί-")lg(\y\)\ym\'-nr'"dy)t" ( ί f(yY9{\y\)\y.rudy)1"
\Jfl(O,l) / \Jβ(O,l) /

^ M( ί1 g(r)-p'lpr-ιdr\/P ( f fiyYgiMWdyX* < oo.

Now let ω(r) = rp~n. Then hω(r) = [log {l/r)y~p for 0 < r < 2" 1 as before.

Since

M ^ g{t)-plpt-ιdt ^ g(r)~pΊplog(1/Jr)9

Jr

we see that [hω(r)']~ί ^ Mgf(r). Hence (3) implies

lim sup [Mr)]"1 ί f(y)pyΓndy ύ lim sup f f(yYg(\y\)yrHdy = 0.
»-*O Jβ+(O,r) r - 0 jB+(O,r)

Thus 0 ^ Af\JAhωff, and the proof of Theorem 1 implies that u has a finite

7^-limit at the origin.

Next suppose u satisfies (4). Since g(\ξ — x\) ^ g(xn) for ξedRn+ and

x € Rn
+9 the above considerations show that

ί \ξ - y\1~nf(y)dy < oo.
JB(ξ,l)

In the present case, let ω(r) = g(r)rp~n. Then hω(0) > 0 by (2). Hence

lim [MΌΓ1 £ ̂  /(y^ίyjyr^y = o



Tangential limits of monotone BLD functions 335

for every ξedR\, so that

For {6 dRn+ and h = hω9 consider E(ζ) as in Lemma 5; here note that

Th{ξ, a) = R\ for large a. With the aid of Lemma 7, we infer that

B{x, xJ4) φ E(ξ) whenever x e B+(ξ9 2~jo) for some ; 0 .

Thus, as in the proof of Theorem 1, we see that u has a finite limit at ξ.

5 Remarks

Now we give some remarks on our theorems.

REMARK 1. In this paper, we have assumed that p > n — 1. In this con-

nection, we remark the following: if u is harmonic in J3+(0, N) and satisfies

Γ \Fu((10) Γ \Fu(x)\pχP-ndx<oo

for 1 ^ p ^ n — 1, then u is constant.

For this, we first show that the extension ΰ is harmonic in £(0, N). If

φ e CQ(B(09 N)) and ε > 0, then we have by Green's formula

ί uΔφdx = [u(x'9 ε ) ί -^V, ε) + |̂ -(x', -
J{x:|xn|>ε} J I °Xn Vχn

Note that

u(x\ ε) = u(x\ a) - Γ (d/dxn)u(x'> **)<**„, (0 < ε, α < JN2 - |x' |2)

so that

\u(x',ε)\£\u(x\a)\ + l

Hence, by (10) we see that l{x>.\x>\<w)\u(x'9 ε)\pdx' is bounded when 0 < ε < a

(0 < a < N — N'), which in turn implies

lim Ix = 0.

Since p — n ^ — 1 , (10) implies
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liminf ί \Fu(x', ε)\pdx' = 0,
ε-0 J{χ'.\χ>\<N'}

which gives

liminf I2 = 0.
ε-0

Now it follows that

UAφdx = 0

and thus ΰ is harmonic in 5(0, N). The above considerations also show that

\FU(xf,0)\pdx' = 0.ί:x':\x'\<N}

Thus ΰ is constant on £(0, N)Γ\dR\, say, U = C on B(0, N)ΠδR^. This
implies that the function

x', xn) if x G B+(0, N),

2C - u(x', -xn) if x e £_(0, N),

is also harmonic in B(0,N). Thus

W^X , ~"~Xii) ~" ^v> WlX , "~~X.I

and hence u = C on £+(0, N).

REMARK 2. Let p > n — 1. If £ c £K+ and Cn/PtP(E) = 0, then we can
find a harmonic function w satisfying (1) such that

lim u(x) = oo for every ξ e E

(see [9, Theorem 2] and [12, Remark 3]).

REMARK 3. In Theorem 2, if g does not satisfy (2), then there exists a
monotone function u which satisfies (3) but fails to have a finite 7^ -limit at
the origin.

In fact, letting

= Π
we consider

u{x) = log [G(|x|)/G(l)]
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for x e B(09 1); set u = 0 outside £(0,1). Then u is monotone on R\9 as was
pointed out in Example 3. Since \Fu(x)\ = -G'(\x\)/G(\x\) for x e £+(0,1), we
have

ί \Fu(x)\>g(\x\)xΓΛdx = M Γ
JR\ Jθ

= M
Jo

G{r)-p[-G'{r)]dr < oo,
Jo

but

lim u(x) = oo.
x-0

REMARK 4. For any g considered in Theorem 2, we can find a monotone
function u which satisfies (3) but fails to have a finite limit at the origin.

For this purpose, we modify the function in Remark 3 as follows: let
e, = (2~J, 0,..., 0) and consider

[ l o g 1 ^ ^ on iUe,,,),
u,(x)= J log (l/o)

^0 elsewhere.

Set

00

w(x) = X u/x),

where {r,.} is a sequence of positive numbers satisfying η < 2~j~2 and

Since {B+(ej9 η)} is disjoint, we see that u is monotone on Rn+. Moreover,

lim sup M(X) = oo

and

I \Fu(x)\pg(\x\)xΓndx ^ M £ 0(2"') | |FWj.(x)rxΓwdx
I o n f—1 I

= MΣί(2-J) pDogίl/tW-'Γ1*
Jo
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