On the existence of tangential limits of monotone BLD functions

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his sixtieth birthday

Shigeki Matsumoto and Yoshihiro Mizuta
(Received January 24, 1995)

Abstract

Our aim in this paper is to deal with the existence of tangential limits for monotone functions u in the upper half space R_{+}^{n} of R^{n} satisfying $$
\int_{D}|\operatorname{grad} u(x)|^{p} \omega(x) d x<\infty \quad \text { for any bounded open set } D \subset R_{+}^{n},
$$ where $p>1$ and ω is a non-negative measurable function on R_{+}^{n}. We are mainly concerned with the case when $\omega(x)=x_{n}^{p-n}, p>n-1$, and show that u has tangential limits at boundary points except those in a small set. For this purpose, we first give a fine limit result for BLD (or p-precise) functions on R_{+}^{n}, and then apply the estimate of the oscillations of monotone functions by the p-th means of partial derivatives over balls.

In case $\omega(x)$ is of the form $g(|x|) x_{n}^{p-n}$, we give a condition on g for u to have a tangential limit at the origin; in case $\omega(x)=g\left(x_{n}\right) x_{n}^{p-n}$, the same condition on g will assure that u has a usual boundary limit at any point of ∂R_{+}^{n}.

1 Introduction

Our aim in this paper is to study the existence of tangential boundary limits of monotone functions u in the half space $R_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{n}\right\rangle$ $0\}, n \geqq 2$, which satisfy

$$
\begin{equation*}
\int_{D}|\nabla u(x)|^{p} x_{n}^{p-n} d x<\infty \quad \text { for any bounded open set } D \subset R_{+}^{n} \tag{1}
\end{equation*}
$$

where ∇ denotes the gradient; note that u is locally p-precise in R_{+}^{n} in the sense of Ohtsuka [16]; see also Ziemer [21]. Here a continuous function u is said to be monotone (in the sense of Lebesgue) on an open set $G \subset R^{n}$ if

[^0]$$
\max _{\bar{D}} u(x)=\max _{\partial D} u(x) \quad \text { and } \quad \min _{\bar{D}} u(x)=\min _{\partial D} u(x)
$$
hold for any relatively compact open set D such that $\bar{D} \subset G$ (see [4]).
The class of monotone functions is considerably wide. We give some examples of monotone functions.

Example 1. Harmonic functions on an open set G are monotone in G. More generally, solutions of a wider class of partial differential equations are monotone (see Gilbarg-Trudinger [2]).

Example 2. Weak solutions for variational problems may be monotone; in particular, weak solutions of the p-Laplacian are monotone. Moreover, if f is a quasi-regular mapping on G, then the coordinate functions of f are monotone in G. For these facts, see Heinonen-Kilpeläinen-Martio [3], Reshetnyak [17], Serrin [18] and Vuorinen [19], [20].

Example 3. Let $f(r)$ be a non-increasing (or non-decreasing) continuous function on $(0, \infty)$. If we define $u(x)=f(|x-\xi|)$ for $x \in R_{+}^{n}$ and $\xi \in \partial R_{+}^{n}$, then u is monotone in R_{+}^{n}.

To evaluate the size of exceptional sets, we use the capacity

$$
C_{\alpha, p, \omega}(E ; G)=\inf \int f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y
$$

where E is a subset of an open set G in R^{n}, ω is a non-negative measurable function on $(0, \infty)$ and the infimum is taken over all non-negative measurable functions f such that $f=0$ outside G and

$$
\int|x-y|^{\alpha-n} f(y) d y \geqq 1 \quad \text { for every } x \in E
$$

see [6] and [14] for the basic properties of capacity. We write $C_{\alpha, p, \omega}(E)=0$ if

$$
C_{\alpha, p, \omega}(E \cap G ; G)=0 \quad \text { for every bounded open set } G
$$

In case $\omega(r)=r^{\beta}$, we write $C_{\alpha, p, \beta}(E ; G)$ for $C_{\alpha, p, \omega}(E ; G)$; if $\beta=0$, then we simply write $C_{\alpha, p}(E ; G)$ for $C_{\alpha, p, \beta}(E ; G)$.

For $\gamma>1$ and $\xi \in \partial R_{+}^{n}$, consider the set

$$
T_{\gamma}(\xi)=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in R_{+}^{n}:|x-\xi|^{\gamma}<x_{n}\right\},
$$

which is tangential at ξ. If $\lim _{x \rightarrow \xi, x \in T_{,}(\xi)} u(x)=\ell$ for every $\gamma>1$, then u is said to have a T_{∞}-limit ℓ at ξ (cf. [11]).

Our main aim in this paper is to establish the following result.

Theorem 1. If u is a monotone function on R_{+}^{n} satisfying (1) for $p>n-1$, then u has a finite T_{∞}-limit at every boundary point except that in a set $E \subset \partial R_{+}^{n}$ such that $C_{n / p, p}(E)=0$.

The case $p=n$ was treated in [15, Theorem 1]. For the non-tangential case, we refer to the result by Manfredi and Villamor [5]. For harmonic functions, see [1], [9], [12]; for weak solutions of the p-Laplacian, see [10].

For a proof of Theorem 1, we need the fact that if u is monotone on $B(x, 2 r)$, then

$$
|u(x)-u(y)|^{p} \leqq M r^{p-n} \int_{B(x, 2 r)}|\nabla u(z)|^{p} d z \quad \text { whenever } y \in B(x, r)
$$

where $B(x, r)$ denotes the open ball centered at x with radius r. This estimate is obtained by an application of Sobolev's inequality over the spherical surface. For this purpose, we need the restriction $p>n-1$; see ManfrediVillamor [5, Remark after Lemma 4.1], which is an extension of [20, Corollary 16.7, Chap. IV]).

Condition (1) may not assure the existence of T_{∞}-limit at any given point, which may be assumed to be the origin. In studying the existence of T_{∞}-limit at the origin, we consider a positive non-increasing function g on the half interval $(0, \infty)$ satisfying the doubling condition

$$
M^{-1} g(t) \leqq g(2 t) \leqq M g(t) \quad \text { for } t>0
$$

with a positive constant M and the condition

$$
\begin{equation*}
\int_{0}^{1} g(t)^{-1 /(p-1)} t^{-1} d t<\infty \tag{2}
\end{equation*}
$$

For $\xi \in \partial R_{+}^{n}$ and $r>0$, set

$$
B_{+}(\xi, r)=R_{+}^{n} \cap B(\xi, r) \quad \text { and } \quad B_{-}(\xi, r)=B(\xi, r) \backslash \overline{R_{+}^{n}} .
$$

Theorem 2. Let g be as above. If u is a monotone function on $B_{+}(0,1)$ satisfying

$$
\begin{equation*}
\int_{B_{+}(0,1)}|\nabla u(x)|^{p} g(|x|) x_{n}^{p-n} d x<\infty \tag{3}
\end{equation*}
$$

for $p>n-1$, then u has a finite T_{∞}-limit at the origin.
We shall also show by an example that condition (2) is necessary for u to have a finite T_{∞}-limit at 0 (see Remark 3 given later).

Theorem 3. Let g be as above and $p>n-1$. If u is a monotone function on R_{+}^{n} satisfying
(4) $\int_{D}|\nabla u(x)|^{p} g\left(x_{n}\right) x_{n}^{p-n} d x<\infty \quad$ for every bounded open set $D \subset R_{+}^{n}$,
then u has a finite limit at every boundary point.

2 Preliminary lemmas

Throughout this paper, let M denote various constants independent of the variables in question.

For a function u on $B_{+}(0, N), N>0$, define

$$
\bar{u}\left(x^{\prime}, x_{n}\right)= \begin{cases}u\left(x^{\prime}, x_{n}\right), & x \in B_{+}(0, N), \\ u\left(x^{\prime},-x_{n}\right), & x \in B_{-}(0, N) .\end{cases}
$$

If u is p-precise in $B_{+}(0, N)$, then \bar{u} is extended to a p-precise function on $B(0, N)$; see Ziemer [21] for the definition of p-precise functions.

Lemma 1 (cf. [13, Lemma 3]). Let $p>1$ and u be a continuous p-precise function on $B_{+}(0, N)$. Then there exist a constant c depending only on n and a harmonic function v on $B(0, N)$ such that

$$
\begin{equation*}
u(x)=c \sum_{j=1}^{n} \int_{B(0, N)} \frac{x_{j}-y_{j}}{|x-y|^{n}} \frac{\partial \bar{u}}{\partial y_{j}}(y) d y+v(x) \tag{5}
\end{equation*}
$$

for almost every $x \in B_{+}(0, N)$; in fact, $c=\omega_{n}^{-1}$ with ω_{n} denoting the surface measure of $\partial B(0,1)$.

Proof. We first note that the extension \bar{u} is p-precise in $B(0, N)$ as was remarked above. Consider

$$
U(x)=\sum_{j=1}^{n} \int_{B(0, N)} \frac{x_{j}-y_{j}}{|x-y|^{n}} \frac{\partial \bar{u}}{\partial y_{j}}(y) d y
$$

We see that U is locally integrable on R^{n}. If $\varphi \in C_{0}^{\infty}(B(0, N))$, then

$$
\begin{aligned}
\int U \Delta \varphi d x & =\sum_{j=1}^{n} \int_{B(0, N)}\left(\int \frac{x_{j}-y_{j}}{|x-y|^{n}} \Delta \varphi(x) d x\right) \frac{\partial \bar{u}}{\partial y_{j}}(y) d y \\
& =-c^{-1} \sum_{j=1}^{n} \int_{B(0, N)} \frac{\partial \varphi}{\partial y_{j}}(y) \frac{\partial \bar{u}}{\partial y_{j}}(y) d y \\
& =c^{-1} \int_{B(0, N)} \Delta \varphi(y) \bar{u}(y) d y
\end{aligned}
$$

for a constant $c \neq 0$ depending only on n. With the aid of Weyl's lemma, we can find a harmonic function v on $B(0, N)$ such that $v=\bar{u}-c U$ a.e. on $B(0, N)$.

Corollary 1. Let u be a continuous locally p-precise function on $B_{+}(0, N)$ satisfying

$$
\begin{equation*}
\int_{B_{+}(0, N)}|\nabla u(y)|^{p}\left|y_{n}\right|^{\alpha} d y<\infty \tag{6}
\end{equation*}
$$

for $p>1$ and $\alpha<p-1$. Then there exists a harmonic function v on $B(0, N)$ such that

$$
u(x)=\sum_{j=1}^{n} \int_{B(0, N)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y+v(x)
$$

for $x \in B_{+}(0, N) \backslash E^{\prime}$ with a set E^{\prime} such that $C_{1, p}\left(E^{\prime}\right)=0$, where $\left(u_{1}, \ldots, u_{n}\right)=c \nabla \bar{u}$.
Proof. By Hölder's inequality we have

$$
\int_{B_{+}(0, N)}|\nabla u(y)|^{q} d y<\infty
$$

when $1<q<p$ and $q(1+\alpha)<p$. Hence \bar{u} is q-precise in $B(0, N)$. By Lemma 1 , we can find a harmonic function v on $B(0, N)$ such that (5) holds for almost every $x \in B_{+}(0, N)$. Since $\int_{B(a, 2 r)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y$ is p-precise in R^{n} whenever $\overline{B(a, 2 r)} \subset B_{+}(0, N)$ (cf. [8, Lemma 3.3]), we see that

$$
\begin{aligned}
\int_{B(0, N)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y= & \int_{B(a, 2 r)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y \\
& +\int_{B(0, N) \backslash B(a, 2 r)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y
\end{aligned}
$$

is p-precise in $B(a, r)$; note here that the second term on the right hand side is infinitely differentiable on $B(a, r)$. Since u is continuous on $B_{+}(0, N)$, (5) holds for every $x \in B_{+}(0, N) \backslash E^{\prime}$ with a set E^{\prime} such that $C_{1, p}\left(E^{\prime}\right)=0$ (cf. [8, Lemma 2.3]).

Lemma 2. Let $E^{\prime} \subset R_{+}^{n}$. If $C_{1, p}\left(E^{\prime}\right)=0$, then $C_{1, p, \omega}\left(E^{\prime}\right)=0$ for any measurable function ω such that $\inf _{r \in[a, b]} \omega(r)>0$ whenever $0<a \leqq b<\infty$.

Proof. We show that $C_{1, p, \omega}\left(E^{\prime} \cap B(a, r) ; B(a, 2 r)\right)=0$ whenever $\overline{B(a, 2 r)} \subset$ R_{+}^{n}. In fact, for $A \subset B(a, r)$, we can show that $C_{1, p, \omega}(A ; B(a, 2 r))=0$ if and only if $C_{1, p, \omega}(A)=0$. By our assumption,

$$
\begin{equation*}
C_{1, p}\left(E^{\prime} \cap B(a, r) ; B(a, 2 r)\right)=0 \tag{7}
\end{equation*}
$$

so that we can find a non-negative function $f \in L^{p}(B(a, 2 r))$ such that $\int|x-y|^{1-n} f(y) d y=\infty$ for every $x \in E^{\prime} \cap B(a, r)$ (cf. [8, Theorem 3.2]). Since $\inf _{y \in B(a, 2 r)} \omega\left(y_{n}\right)>0$,

$$
\int|x-y|^{1-n} f(y) \omega\left(y_{n}\right) d y=\infty
$$

for every $x \in E^{\prime} \cap B(a, r)$, which implies

$$
C_{1, p, \omega}\left(E^{\prime} \cap B(a, r) ; B(a, 2 r)\right)=0 .
$$

Now the required conclusion follows.
For a positive measurable function ω on the interval $(0, \infty)$, define

$$
h_{\omega}(r)=\left(\int_{r}^{1}\left[t^{n-p} \omega(t)\right]^{-1 /(p-1)} t^{-1} d t\right)^{1-p}
$$

for $0 \leqq r \leqq 2^{-1}$; set $h_{\omega}(r)=h_{\omega}\left(2^{-1}\right)$ for $r>2^{-1}$.
Lemma 3. Let $\omega(r)=g(r) r^{p-n}$ for a non-increasing function g on $(0, \infty)$ such that

$$
1 \leqq g(r) \leqq M g(2 r) \quad \text { for all } r>0 .
$$

If $x \in B_{+}(\xi, 1)$, then

$$
\left(\int_{B\left(\xi, 2|x-\xi| \backslash B\left(x, x_{n} / 2\right)\right.}|x-y|^{\mid p^{\prime}(1-n)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} \leqq M\left[h_{\omega}\left(x_{n}\right)\right]^{-1 / p},
$$

where $1 / p+1 / p^{\prime}=1$.
Proof. For $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$, write $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}, 0\right)$. Then we have

$$
\begin{aligned}
& \int_{B\left(\xi, 2|x-\xi| \backslash \backslash\left(x, x_{n} / 2\right)\right.}|x-y|^{p^{\prime}(1-n)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y \\
& \quad \leqq \int_{B\left(x^{\prime}, 3|x-\xi| \backslash\left(B\left(x, x_{n} / 2\right) \cup B\left(x^{\prime}, x_{n} / 2\right)\right)\right.}|x-y|^{\mid p^{\prime}(1-n)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y \\
& \quad+\left(x_{n} / 2\right)^{p^{\prime}(1-n)} \int_{B\left(x^{\prime}, x_{n} / 2\right)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y=I+J .
\end{aligned}
$$

Note that $\left|x^{\prime}-y\right| \leqq x_{n}+|x-y| \leqq 3|x-y|$ for $y \in B\left(x^{\prime}, 3|x-\xi|\right) \backslash B\left(x, x_{n} / 2\right)$. Since $g\left(\left|y_{n}\right|\right) \geqq g\left(\left|x^{\prime}-y\right|\right)$ and $-p^{\prime}(p-n) / p>-1$, we have for $x \in B_{+}(\xi, 1)$

$$
\begin{aligned}
I & \leqq M \int_{B\left(x^{\prime}, 3|x-\xi| \backslash B\left(x^{\prime}, x_{n} / 2\right)\right.}\left|x^{\prime}-y\right|^{p^{\prime}(1-n)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y \\
& \leqq M \int_{x_{n} / 2}^{3|x-\xi|} g(t)^{-1 /(p-1)} t^{-1} d t \leqq M h_{\omega}\left(x_{n}\right)^{1 /(1-p)} .
\end{aligned}
$$

On the other hand, since $g(r)^{-1}$ is non-decreasing, we have

$$
J \leqq\left(x_{n} / 2\right)^{p^{\prime}(1-n)} g(1)^{-p^{\prime} / p} \int_{B\left(x^{\prime}, x_{n} / 2\right)}\left|y_{n}\right|^{-p^{\prime}(p-n) / p} d y \leqq M
$$

Thus Lemma 3 is established.
Let h be a non-decreasing positive function on the interval $(0, \infty)$ satisfying the doubling condition. We use H_{h} to denote the Hausdorff measure with the measure function h. For a measurable function f, set

$$
A_{f}=\left\{\xi \in \partial R_{+}^{n}: \int_{B(\xi, 1)}|\xi-y|^{1-n}|f(y)| d y=\infty\right\}
$$

and

$$
A_{h, f}=\left\{\xi \in \partial R_{+}^{n}: \limsup _{r \rightarrow 0}[h(r)]^{-1} \int_{B_{+}(\xi, r)}|f(y)|^{p} \omega\left(y_{n}\right) d y>0\right\} .
$$

The following is easily shown:
Lemma 4. Let f be a non-negative function on R_{+}^{n} satisfying

$$
\begin{equation*}
\int_{G} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y<\infty \quad \text { for any bounded open set } G \subset R^{n} \tag{8}
\end{equation*}
$$

Then

$$
C_{1, p, \omega}\left(A_{f}\right)=0 \quad \text { and } \quad H_{h}\left(A_{h, f}\right)=0
$$

In view of [14, Lemma 12.4], we can show the following (see also [6], [7]).

Corollary 2. If f satisfies (8) with $\omega(r)=r^{p-n}$ for $p>n-1$, then

$$
C_{n / p, p}\left(A_{f} \cup A_{h, f}\right)=0,
$$

where $h(r)=h_{\omega}(r)\left(=[\log (1 / r)]^{1-p}\right.$ for $\left.0<r<2^{-1}\right)$.
Lemma 5 (cf. [11, Theorem 2^{\prime} and Remark 1]). Let $\omega(r)=g(r) r^{p-n}$ be as in Lemma 3. For a positive non-decreasing function h on $(0, \infty)$ satisfying the doubling condition and $a>0$, define

$$
T_{h}(\xi, a)=\left\{x \in R_{+}^{n}: h(|x-\xi|)<a h_{\omega}\left(x_{n}\right)\right\} .
$$

Let f be a non-negative measurable function on R_{+}^{n} satisfying (8) and vanishing outside a bounded set. For each positive integer $j, 1 \leqq j \leqq n$, set

$$
U(x)=\int \frac{x_{j}-y_{j}}{|x-y|^{n}} f(y) d y
$$

If $\xi \in \partial R_{+}^{n} \backslash\left(A_{f} \cup A_{h, f}\right)$, then there exists a set $E(\xi) \subset R_{+}^{n}$ such that
(i) $\quad \lim _{x \rightarrow \xi, x \in T_{h}(\xi, a) \backslash E(\xi)} U(x)$ exists and is finite for any $a>1$;
(ii)

$$
\lim _{k \rightarrow \infty}\left[h\left(2^{-k}\right)\right]^{-1} C_{1, p, \omega}\left(E_{k}(\xi) ; B_{k}(\xi)\right)=0
$$

where $E_{k}(\xi)=\left\{x \in E(\xi) ; 2^{-k} \leqq|\xi-x|<2^{-k+1}\right\}$ and $B_{k}(\xi)=\left\{x \in R^{n} ; 2^{-k-1}<\right.$ $\left.|\xi-x|<2^{-k+2}\right\}$.

Proof. For $x \in R_{+}^{n}$, write

$$
\begin{aligned}
& U_{1}(x)=\int_{\mathbb{R}^{n} \backslash \boldsymbol{B}(\xi, 2|x-\xi|)}\left(x_{j}-y_{j}\right)|x-y|^{-n} f(y) d y \\
& U_{2}(x)=\int_{B(\xi, 2 \mid x-\xi) \backslash \mathbf{B}\left(x, x_{n} / 2\right)}\left(x_{j}-y_{j}\right)|x-y|^{-n} f(y) d y \\
& U_{3}(x)=\int_{B\left(x, x_{n} / 2\right)}\left(x_{j}-y_{j}\right)|x-y|^{-n} f(y) d y
\end{aligned}
$$

If $y \in R^{n} \backslash B(\xi, 2|x-\xi|)$, then we have $|x-y| \geqq 2^{-1}|y-\xi|$, so that

$$
\left|\left(x_{j}-y_{j}\right)\right| x-\left.y\right|^{-n} f(y)\left|\leqq|x-y|^{1-n} f(y) \leqq 2^{n-1}\right| y-\left.\xi\right|^{1-n} f(y)
$$

Since $\xi \notin A_{f}$, Lebesgue's dominated convergence theorem implies that

$$
\lim _{x \rightarrow \xi, x \in R_{+}^{n}} U_{1}(x)=U(\xi) .
$$

Next, if $x \in B_{+}(\xi, 1 / 4)$, then we have Hölder's inequality and Lemma 3

$$
\begin{aligned}
\left|U_{2}(x)\right| \leqq & \int_{B\left(\xi, 2|x-\xi| \backslash B\left(x, x_{n} / 2\right)\right.}|x-y|^{1-n} f(y) d y \\
\leqq & \left(\int_{B(\xi, 2|x-\xi|)} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p} \\
& \times\left(\int_{B\left(\xi, 2|x-\xi| \backslash \backslash\left(x, x_{n} / 2\right)\right.}|x-y|^{p^{\prime}(1-n)} \omega\left(\left|y_{n}\right|\right)^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} \\
\leqq & M\left(\left[h_{\omega}\left(x_{n}\right)\right]^{-1} \int_{B(\xi, 2|x-\xi|)} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p} .
\end{aligned}
$$

Since $\xi \notin A_{h, f}$ and $\left[h_{\omega}\left(x_{n}\right)\right]^{-1} \leqq a[h(|x-\xi|)]^{-1}$ for $x \in T_{h}(\xi$, a), we see that

$$
\lim _{x \rightarrow \xi, x \in T_{h}(\xi, a)} U_{2}(x)=0
$$

Finally, let $\left\{b_{k}\right\}$ be a sequence of positive numbers such that $b_{k} \rightarrow \infty$. We set $E_{k}=\left\{x ; 2^{-k} \leqq|x-\xi|<2^{-k+1},\left|U_{3}(x)\right| \geqq b_{k}^{-1}\right\}$ and $E(\xi)=\bigcup_{k} E_{k}$. For $x \in$
E_{k}, we have

$$
b_{k}^{-1} \leqq\left|U_{3}(x)\right| \leqq \int_{B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y) d y \leqq \int_{B_{k}}|x-y|^{1-n} f(y) d y
$$

where we set $B_{k}=B_{k}(\xi)$ for simplicity. By the definition of $C_{1, p, \omega}$-capacity, we have

$$
C_{1, p, \omega}\left(E_{k} ; B_{k}\right) \leqq b_{k}^{p} \int_{B_{k}} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y .
$$

Here, since $\xi \notin A_{h, f}$, we can choose the sequence $\left\{b_{k}\right\}$ in such a way that

$$
\left[h\left(2^{-k}\right)\right]^{-1} b_{k}^{p} \int_{B_{k}} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

With this choice of $\left\{b_{k}\right\}$, condition (ii) of the lemma is satisfied, while

$$
\limsup _{x \rightarrow \xi, x \in R_{+}^{n} \backslash E(\xi)}\left|U_{3}(x)\right| \leqq \limsup _{k \rightarrow \infty} b_{k}^{-1}=0 .
$$

Thus Lemma 5 is established.
Lemma 6. There exists a positive constant M such that

$$
\int_{B(x, r)}|z-y|^{1-n} d y \leqq M r^{n}(r+|x-z|)^{1-n}
$$

for any $x, z \in R^{n}$ and $r>0$.
Proof. First note that

$$
\int_{B(x, r)}|z-y|^{1-n} d y \leqq \int_{B(x, r)}|x-y|^{1-n} d y=M r
$$

for all z. Hence the required inequality holds if $|x-z| \leqq 2 r$. If $|x-z|>2 r$, then $|z-y| \geqq|z-x|-|x-y| \geqq 2^{-1}|z-x|$ for $y \in B(x, r)$, so that

$$
\int_{B(x, r)}|z-y|^{1-n} d y \leqq 2^{n-1}|x-z|^{1-n} \int_{B(x, r)} d y \leqq M|x-z|^{1-n} r^{n} .
$$

Since $r+|x-z| \leqq(3 / 2)|x-z|$, we obtain the required inequality in case $|x-z|>2 r$.

Lemma 7 (cf. [14, Lemma 7.3]). Let $\omega(r)=g(r) r^{p-n}$ be as in Lemma 3. Then there exists $M>0$ such that

$$
C_{1, p, \omega}\left(B\left(x, x_{n} / 4\right) ; B(\xi, 1)\right) \geqq M h_{\omega}\left(x_{n}\right)
$$

whenever $x \in B_{+}\left(\xi, 2^{-1}\right)$.

Proof. Let f be a non-negative measurable function such that $f=0$ outside $B(\xi, 1)$ and

$$
\int|z-y|^{1-n} f(y) d y \geqq 1 \quad \text { for every } z \in B\left(x, x_{n} / 4\right)
$$

For $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$, where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}, 0\right)$. Since $x_{n}+\left|x^{\prime}-y\right| \leqq$ $2\left(x_{n}+|x-y|\right)$, we have by Fubini's theorem, Lemma 6 and Hölder's inequality

$$
\begin{aligned}
\int_{B\left(x, x_{n} / 4\right)} d z \leqq & \int_{B\left(x, x_{n} / 4\right)}\left(\int|z-y|^{1-n} f(y) d y\right) d z \\
= & \int f(y) d y \int_{B\left(x, x_{n} / 4\right)}|z-y|^{1-n} d z \\
\leqq & M x_{n}^{n} \int_{B(\xi, 1)} f(y)\left\{x_{n}+\left|x^{\prime}-y\right|\right\}^{1-n} d y \\
\leqq & M x_{n}^{n}\left(\int_{B(\xi, 1)} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y\right)^{1 / p} \\
& \times\left(\int_{B(\xi, 1)}\left[\left(x_{n}+\left|x^{\prime}-y\right|\right)^{1-n} \omega\left(\left|y_{n}\right|\right)^{-1 / p}\right]^{p^{\prime}} d y\right)^{1 / p^{\prime}} .
\end{aligned}
$$

Here note that

$$
\begin{aligned}
& \int_{B(\xi, 1)}\left[\left(x_{n}+\left|x^{\prime}-y^{\prime}\right|\right)^{1-n} \omega\left(\left|y_{n}\right|\right)^{-1 / p}\right]^{p^{\prime}} d y \\
& \quad \leqq \int_{B\left(x^{\prime}, 2\right)}\left[\left(x_{n}+\left|x^{\prime}-y\right|\right)^{1-n} \omega\left(\left|y_{n}\right|\right)^{-1 / p}\right]^{p^{\prime}} d y \\
& \leqq \\
& \leqq M \int_{0}^{2}\left(x_{n}+r\right)^{p^{\prime}(1-n)} g(r)^{-p^{\prime} / p} r^{-p^{\prime}(p-n) / p} r^{n-1} d r \\
& \quad \leqq M\left(\int_{x_{n}}^{2} r^{p^{\prime}(1-n)} g(r)^{-1 /(p-1)} r^{p^{\prime}(n-1)-1} d r\right. \\
& \left.\quad+x_{n}^{p^{\prime}(1-n)} g(1)^{-1 /(p-1)} \int_{0}^{x_{n}} r^{p^{\prime}(n-1)-1} d r\right) \\
& \leqq M\left(\int_{x_{n}}^{1} g(r)^{-1 /(p-1)} r^{-1} d r+1\right) \leqq M h_{\omega}\left(x_{n}\right)^{1 /(1-p)}
\end{aligned}
$$

Thus we have

$$
M h_{\omega}\left(x_{n}\right) \leqq \int_{B(\xi, 1)} f(y)^{p} \omega\left(\left|y_{n}\right|\right) d y
$$

which yields the required inequality.

3 Proof of Theorem 1

Let $\omega(r)=r^{p-n}$. Then $h_{\omega}(r)=[\log (1 / r)]^{1-p}$ for $0<r<2^{-1}$. In view of (1), we see that $f=|\nabla \bar{u}|$ satisfies (8). Consider A_{f} and $A_{h, f}$ with $h(r)=h_{\omega}(r)$. In what follows we show that u has a finite T_{∞}-limit at every $\xi \in \partial R_{+}^{n} \backslash$ $\left(A_{f} \cup A_{h, f}\right)$.

For $N>0$, in view of Corollary $1, u$ is of the form

$$
u(x)=\sum_{j=1}^{n} \int_{B(0, N)}\left(x_{j}-y_{j}\right)|x-y|^{-n} u_{j}(y) d y+v_{N}(x)
$$

for $x \in B_{+}(0, N) \backslash E^{\prime}$, where $C_{1, p}\left(E^{\prime}\right)=0$ and v_{N} is a harmonic function on $B(0, N)$. Note that

$$
T_{\gamma}(\xi) \subset T_{h}\left(\xi, \gamma^{p-1}\right) \quad \text { whenever } \gamma>1
$$

Further Lemma 2 implies that $C_{1, p, \omega}\left(E^{\prime}\right)=0$. By Lemma 5 , for $\xi \in(B(0, N) \cap$ $\left.\partial R_{+}^{n}\right) \backslash\left(A_{f} \cup A_{h, f}\right)$, there exists a set $E(\xi) \subset R_{+}^{n}$ such that

$$
\lim _{x \rightarrow \xi, x \in T_{h}(\xi, a) \backslash E(\xi)} u(x) \text { exists and is finite for any } a>1
$$

and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} j^{p-1} C_{1, p, p-n}\left(E(\xi) \cap B_{j}(\xi) ; B(\xi, 1)\right)=0 \tag{9}
\end{equation*}
$$

If $x \in T_{\gamma}(\xi)$ and $2^{-j} \leqq|x-\xi|<2^{-j+2}$, then $B\left(x, x_{n} / 2\right) \subset B_{j}(\xi)$. Since $2^{-j \gamma} \leqq$ $|x-\xi|^{\gamma}<x_{n}$ for $x \in T_{\gamma}(\xi)$, Lemma 7 gives

$$
j^{p-1} C_{1, p, p-n}\left(B\left(x, x_{n} / 4\right) ; B(\xi, 1)\right) \geqq M_{1} j^{p-1}\left[\log \left(1 / x_{n}\right)\right]^{1-p} \geqq M_{2}
$$

for some positive constants M_{1} and M_{2}. Hence it follows from (9) that there is j_{0} such that $B\left(x, x_{n} / 4\right) \notin E(\xi)$, so that there exists $y(x) \in B\left(x, x_{n} / 4\right) \backslash E(\xi)$, whenever $x \in T_{\gamma}(\xi) \cap B\left(\xi, 2^{-j_{0}}\right)$. Since u is monotone on R_{+}^{n},

$$
|u(x)-u(y)|^{p} \leqq M x_{n}^{p-n} \int_{B\left(x, x_{n} / 2\right)}|\nabla u(z)|^{p} d z
$$

for $y \in B\left(x, x_{n} / 4\right) \subset R_{+}^{n}$ (see [5]). Thus we infer that

$$
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi)}|u(x)-u(y(x))|=0,
$$

from which it follows that

$$
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi)} u(x)=\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi)} u(y(x)) .
$$

Note that there is $a>0$ such that $y(x) \in T_{h}(\xi, a)$ if $x \in T_{y}(\xi)$. Hence the limit on the left exists and is finite. Now, in view of Corollary 2, we see that $E=A_{f} \cup A_{h, f}$ has all the required properties.

4 Proofs of Theorems 2 and 3

First suppose u satisfies (3) with g satisfying (2). If we set $f=|\nabla \bar{u}|$ as before, then

$$
\begin{aligned}
\int_{B(0,1)} & |y|^{1-n} f(y) d y \\
& \leqq\left(\int_{B(0,1)}|y|^{p^{\prime}(1-n)}\left[g(|y|)\left|y_{n}\right|^{p-n}\right]^{-p^{\prime} \mid p} d y\right)^{1 / p^{\prime}}\left(\int_{B(0,1)} f(y)^{p} g(|y|)\left|y_{n}\right|^{p-n} d y\right)^{1 / p} \\
& \leqq M\left(\int_{0}^{1} g(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int_{B(0,1)} f(y)^{p} g(|y|)\left|y_{n}\right|^{p-n} d y\right)^{1 / p}<\infty .
\end{aligned}
$$

Now let $\omega(r)=r^{p-n}$. Then $h_{\omega}(r)=[\log (1 / r)]^{1-p}$ for $0<r<2^{-1}$ as before. Since

$$
M \geqq \int_{r}^{\sqrt{r}} g(t)^{-p^{\prime} / p} t^{-1} d t \geqq g(r)^{-p^{\prime} / p} \log (1 / \sqrt{r})
$$

we see that $\left[h_{\omega}(r)\right]^{-1} \leqq M g(r)$. Hence (3) implies

$$
\underset{r \rightarrow 0}{\limsup }\left[h_{\omega}(r)\right]^{-1} \int_{B_{+}(0, r)} f(y)^{p} y_{n}^{p-n} d y \leqq \limsup _{r \rightarrow 0} \int_{B_{+}(0, r)} f(y)^{p} g(|y|) y_{n}^{p-n} d y=0
$$

Thus $0 \notin A_{f} \cup A_{h_{o}, f}$, and the proof of Theorem 1 implies that u has a finite T_{∞}-limit at the origin.

Next suppose u satisfies (4). Since $g(|\xi-x|) \leqq g\left(x_{n}\right)$ for $\xi \in \partial R_{+}^{n}$ and $x \in R_{+}^{n}$, the above considerations show that

$$
\int_{B(\xi, 1)}|\xi-y|^{1-n} f(y) d y<\infty
$$

In the present case, let $\omega(r)=g(r) r^{p-n}$. Then $h_{\omega}(0)>0$ by (2). Hence

$$
\lim _{r \rightarrow 0}\left[h_{\omega}(r)\right]^{-1} \int_{B_{+}(\xi, r)} f(y)^{p} g\left(y_{n}\right) y_{n}^{p-n} d y=0
$$

for every $\xi \in \partial R_{+}^{n}$, so that

$$
A_{f}=A_{h_{o}, f}=\varnothing
$$

For $\xi \in \partial R_{+}^{n}$ and $h=h_{\omega}$, consider $E(\xi)$ as in Lemma 5; here note that $T_{h}(\xi, a)=R_{+}^{n}$ for large a. With the aid of Lemma 7, we infer that

$$
B\left(x, x_{n} / 4\right) \notin E(\xi) \quad \text { whenever } x \in B_{+}\left(\xi, 2^{-j_{0}}\right) \text { for some } j_{0}
$$

Thus, as in the proof of Theorem 1 , we see that u has a finite limit at ξ.

5 Remarks

Now we give some remarks on our theorems.
Remark 1. In this paper, we have assumed that $p>n-1$. In this connection, we remark the following: if u is harmonic in $B_{+}(0, N)$ and satisfies

$$
\begin{equation*}
\int_{B_{+}(0, N)}|\nabla u(x)|^{p} x_{n}^{p-n} d x<\infty \tag{10}
\end{equation*}
$$

for $1 \leqq p \leqq n-1$, then u is constant.
For this, we first show that the extension \bar{u} is harmonic in $B(0, N)$. If $\varphi \in C_{0}^{\infty}(B(0, N))$ and $\varepsilon>0$, then we have by Green's formula

$$
\begin{aligned}
\int_{\left\{x:\left|x_{n}\right|>\varepsilon\right\}} \bar{u} \Delta \varphi d x= & \int u\left(x^{\prime}, \varepsilon\right)\left\{-\frac{\partial \varphi}{\partial x_{n}}\left(x^{\prime}, \varepsilon\right)+\frac{\partial \varphi}{\partial x_{n}}\left(x^{\prime},-\varepsilon\right)\right\} d x^{\prime} \\
& +\int \frac{\partial u}{\partial x_{n}}\left(x^{\prime}, \varepsilon\right)\left\{\varphi\left(x^{\prime}, \varepsilon\right)+\varphi\left(x^{\prime},-\varepsilon\right)\right\} d x^{\prime}=I_{1}+I_{2}
\end{aligned}
$$

Note that

$$
u\left(x^{\prime}, \varepsilon\right)=u\left(x^{\prime}, a\right)-\int_{\varepsilon}^{a}\left(\partial / \partial x_{n}\right) u\left(x^{\prime}, x_{n}\right) d x_{n}, \quad\left(0<\varepsilon, a<\sqrt{N^{2}-\left|x^{\prime}\right|^{2}}\right)
$$

so that

$$
\left|u\left(x^{\prime}, \varepsilon\right)\right| \leqq\left|u\left(x^{\prime}, a\right)\right|+M\left(\int_{\varepsilon}^{a}\left|\left(\partial / \partial x_{n}\right) u\left(x^{\prime}, x_{n}\right)\right|^{p} x_{n}^{p-n} d x_{n}\right)^{1 / p}
$$

Hence, by (10) we see that $\int_{\left\{x^{\prime}:\left|x^{\prime}\right|<N^{\prime}\right\}}\left|u\left(x^{\prime}, \varepsilon\right)\right|^{p} d x^{\prime}$ is bounded when $0<\varepsilon<a$ $\left(0<a<N-N^{\prime}\right)$, which in turn implies

$$
\lim _{\varepsilon \rightarrow 0} I_{1}=0
$$

Since $p-n \leqq-1$, (10) implies

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\left\{x^{\prime}:\left|x^{\prime}\right|<N^{\prime}\right\}}\left|\nabla u\left(x^{\prime}, \varepsilon\right)\right|^{p} d x^{\prime}=0
$$

which gives

$$
\liminf _{\varepsilon \rightarrow 0} I_{2}=0
$$

Now it follows that

$$
\int \bar{u} \Delta \varphi d x=0
$$

and thus \bar{u} is harmonic in $B(0, N)$. The above considerations also show that

$$
\int_{\left\{x^{\prime}:\left|x^{\prime}\right|<N\right\}}\left|\nabla \bar{u}\left(x^{\prime}, 0\right)\right|^{p} d x^{\prime}=0 .
$$

Thus \bar{u} is constant on $B(0, N) \cap \partial R_{+}^{n}$, say, $\bar{u}=C$ on $B(0, N) \cap \partial R_{+}^{n}$. This implies that the function

$$
u^{*}(x)= \begin{cases}u\left(x^{\prime}, x_{n}\right) & \text { if } x \in B_{+}(0, N), \\ 2 C-u\left(x^{\prime},-x_{n}\right) & \text { if } x \in B_{-}(0, N)\end{cases}
$$

is also harmonic in $B(0, N)$. Thus

$$
u\left(x^{\prime},-x_{n}\right)=2 C-u\left(x^{\prime},-x_{n}\right)
$$

and hence $u=C$ on $B_{+}(0, N)$.
Remark 2. Let $p>n-1$. If $E \subset \partial R_{+}^{n}$ and $C_{n / p, p}(E)=0$, then we can find a harmonic function u satisfying (1) such that

$$
\lim _{x \rightarrow \xi, x \in R_{+}^{n}} u(x)=\infty \quad \text { for every } \xi \in E
$$

(see [9, Theorem 2] and [12, Remark 3]).
Remark 3. In Theorem 2, if g does not satisfy (2), then there exists a monotone function u which satisfies (3) but fails to have a finite T_{∞}-limit at the origin.

In fact, letting

$$
G(r)=\int_{r}^{2} g(t)^{-1 /(p-1)} t^{-1} d t,
$$

we consider

$$
u(x)=\log [G(|x|) / G(1)]
$$

for $x \in B(0,1)$; set $u=0$ outside $B(0,1)$. Then u is monotone on R_{+}^{n}, as was pointed out in Example 3. Since $|\nabla u(x)|=-G^{\prime}(|x|) / G(|x|)$ for $x \in B_{+}(0,1)$, we have

$$
\begin{aligned}
\int_{R_{+}^{n}}|\nabla u(x)|^{p} g(|x|) x_{n}^{p-n} d x & =M \int_{0}^{1}\left[G(r)^{-1} g(r)^{-1 /(p-1)} r^{-1}\right]^{p} g(r) r^{p-n} r^{n-1} d r \\
& =M \int_{0}^{1} G(r)^{-p}\left[-G^{\prime}(r)\right] d r<\infty,
\end{aligned}
$$

but

$$
\lim _{x \rightarrow 0} u(x)=\infty
$$

Remark 4. For any g considered in Theorem 2, we can find a monotone function u which satisfies (3) but fails to have a finite limit at the origin.

For this purpose, we modify the function in Remark 3 as follows: let $\mathbf{e}_{j}=\left(2^{-j}, 0, \ldots, 0\right)$ and consider

$$
u_{j}(x)= \begin{cases}\log \frac{\log \left(1 /\left|x-\mathbf{e}_{j}\right|\right)}{\log \left(1 / r_{j}\right)} & \text { on } B_{+}\left(\mathbf{e}_{j}, r_{j}\right) \\ 0 & \text { elsewhere }\end{cases}
$$

Set

$$
u(x)=\sum_{j=1}^{\infty} u_{j}(x)
$$

where $\left\{r_{j}\right\}$ is a sequence of positive numbers satisfying $r_{j}<2^{-j-2}$ and

$$
\sum_{j=1}^{\infty} g\left(2^{-j}\right)\left[\log \left(1 / r_{j}\right)\right]^{1-p}<\infty
$$

Since $\left\{B_{+}\left(\mathbf{e}_{j}, r_{j}\right)\right\}$ is disjoint, we see that u is monotone on R_{+}^{n}. Moreover,

$$
\limsup _{x \rightarrow 0, x \in R_{+}^{n}} u(x)=\infty
$$

and

$$
\begin{aligned}
\int_{R_{+}^{n}}|\nabla u(x)|^{p} g(|x|) x_{n}^{p-n} d x & \leqq M \sum_{j=1}^{\infty} g\left(2^{-j}\right) \int\left|\nabla u_{j}(x)\right|^{p} x_{n}^{p-n} d x \\
& =M \sum_{j=1}^{\infty} g\left(2^{-j}\right) \int_{0}^{r_{j}}[\log (1 / t)]^{-p} t^{-1} d t \\
& =M \sum_{j=1}^{\infty} g\left(2^{-j}\right)\left[\log \left(1 / r_{j}\right)\right]^{1-p}<\infty
\end{aligned}
$$

References

[1] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans R^{d} de la classe de Sobolev W_{1}^{d}, C. R. Acad. Sci. Paris 294 (1982), 71-74.
[2] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Second Edition, Springer-Verlag, 1983.
[3] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, 1993.
[4] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Circ. Mat. Palermo 24 (1907), 371-402.
[5] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, to appear in J. Geometric Analysis.
[6] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[7] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
[8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[9] Y. Mizuta, On the existence of non-tangential limits of harmonic functions, Hiroshima Math. J. 7 (1977), 161-164.
[10] Y. Mizuta, Existence of non-tangential limits of solutions of non-linear Laplace equation, Hiroshima Math. J. 10 (1980), 365-368.
[11] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
[12] Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier 34 (1984), 99-109.
[13] Y. Mizuta, Boundary behavior of p-precise functions on a half space of R^{n}, Hiroshima Math. J. 18 (1988), 73-94.
[14] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J. 23 (1993), 79-153.
[15] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 315-326.
[16] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes at Hiroshima University, 1972.
[17] Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs Vol. 73, Amer. Math. Soc., 1989.
[18] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302.
[19] M. Vuorinen, On functions with a finite or locally bounded Dirichlet integral, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 177-193.
[20] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math. 1319, Springer-Verlag, 1988.
[21] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

Department of Mathematics
 Faculty of Science
 Hiroshima University
 Higashi-Hiroshima, 739 Japan 1

[^1]and
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima, 739 Japan

[^0]: This research was partially supported by Research-in-Aid for Co-operative Research, No. 06302011, Ministry of Education, Science and Culture.

 1991 Mathematics Subject Classification. 31B25.
 Key words and phrases. tangential limits, monotone BLD functions, capacity.

[^1]: ${ }^{1}$ Present address of the first author: Notre Dame Seishin High School, Hiroshima, 733 Japan

