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ABSTRACT. We have already determined the K,-local types of the real projective
spaces RP" and the stunted real projective spaces RP"/RP™ in [11] and [12]. The
purpose of this note is to determine the K,-local types of the smash products of
these two projective spaces.

0. Introduction

Given a ring spectrum E with unit, a CW-spectrum X is said to be
quasi E_-equivalent to a CW-spectrum Y if there exists an equivalence h: E A
Y > E A X of E-module spectra. A map f:Z — X is said to be quasi E,-
equivalent to a map g: W — Y if there exist equivalences h: EA Y- E A X
and k: E A W— E A Z of E-module spectra such that the equality (1 A f)k =
h(1 Ag):EAW->E A X holds. In this case the cofiber C(f) is quasi E,-
equivalent to the cofiber C(g). In particular, a map f:Z — X is said to be E,-
trivial if it is quasi E,-equivalent to the trivial map, thus 1 A f:EA Z —
E A X is trivial. Let KO and KU be the real and complex K-spectrum,
respectively, and Sy denote the K,-localization of the sphere spectrum S.
Recall that two CW-spectra X and Y have the same K,-local type if and
only if X is quasi S -equivalent to Y (see [3] or [6]). In [9] and [10] we
determined the quasi KO,-equivalent types of the real projective spaces RP"
and the stunted real projective spaces RP,., = RP"/RP™, and then in [11] and
[12] we established to determine completely the K -local types of these projec-
tive spaces after investigating the behavior of their real Adams operations
yk. The purpose of this note is to determine the K,-local types of the smash
products of these two projective spaces, which allows us to compute implicitly
their J-groups as well as their KO-groups (see [16] for the computation of
their KO-groups with y¥).
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According to [12, Theorems 2.7, 2.9 and 3.8] we have

THEOREM. i) The stunted real projective space X'RP3!! has the same

K ,-local type as the small spectrum X,  tabled below when s =4k — 1 or 4k
and the smash product X, ; A C() when s =4k + 1 or 4k + 2:

sn= 0 1 2 3 4 5 6 7
odd SZ™ . SZ/2™ M, V., L& V. M,
even SZ/2" M, V, I V. M, Sz T,

ii) The stunted real projective space X*RP3:*" has the same K ,-local type
as the small spectrum Y, ; tabled below when s =4k or 4k + 1 and the smash
product Y, ; A C(if) when s =4k + 2 or 4k + 3:

s\n= 0 1 2 3 4 5 6 7

S t,S S t,S s t,S s t,s
even I, ML, vl WA vl vMEL Ly TR

odd  yPuvi vIPpiy yPmyn vMPpiy Puyy JPpiy Py MPRY
Here we set m=[n/2] and t =s+ m + 1 in both cases.

See the beginning parts in 1.1, 2.1, 2.2 and 3.1 for the construction of
the small spectra C(7), X, ; and Y, ; appearing in our theorem. In the above
table the small spectra V,,, M., vJi, Poiis vPos1s Int1s vlhe1, vMI;3, and
yJPL3, may be replaced by U, A C(7f), M., yJi A C(i), Z**1Cy A 'M,° A
C@), Z>Y1C, A "M%, Z¥BMC, A U, ZBYIC A VIS, MIES, and PSS, A C®),
respectively, where C,, = C,,,; =2° and C,,,, = C,,,3 = C(if). Moreover
MP;5, A C(7) and ,MP%5, may be also replaced by MPL3,. For our pur-
pose it is sufficient to study the K -local types of the smash products X,, A ¥,
where X,,, Y, =SZ/2", V,, M}, ‘M., J&, ub, Th, vah, MPSS, MILS, JP2°, JILGS
or ,JI;>. These small spectra X,, and Y, are constructed as the cofibers of
certain maps f:Z,— Z, and g: Wy, —» W,. If either of the maps f A 1:Z; A
Y,>Z, AY, and 1 Ag: X, A Wy X,, A W, is Sg,-trivial, then the smash
product X, A Y, admits a K, -local splitting. Even if it is not so, the smash
products Z; A Y, (i=0,1) or X,, A W, (i =0, 1) admit suitable K ,-local split-
tings in most cases. According to our plan we use these splittings so that
either of the maps f A 1 and 1 A g is replaced by a simpler map h, whose
cofiber has the same K, -local type as the smash product X, A ¥,.

In §1 and §2 we give K,-local splittings of the smash products SZ/2" A
SZ/2"m<nand n>2),SZ/2" AV,(m#n), V, AV,(2<m<n)and SZ/2™ A
M;, V, A Mj (m<n), SZ/2™ A MP?*, V,, A MP?* n<n and n>2). In §2
and §3 we construct several small spectra concerned with the smash products
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M. A SZ/2", Mj, AV, (m<n), M, A M4, 'M;, A M2 (m < n) as well as J, A
SZ/2", yJh AV, (m<n), yo ASZ/2" Jy AV, m<n), Jy A M, yJi A ME,
JoANJTL oI ANJY ydi A pJ2 and so on. In §4 we establish to detetmine the
K,-local types of the smash products X, A Y, by using the small spectra
constructed in §2 and §3 where X,, Y,=SZ/2", V,, M., M., ., vl
Ji, or yJi. For the small spectra appearing in our main results (Theorems
4.1-44) we can easily study the KU-homologies with % and the KO-
homologies with % by routine computations (see [16] for details). Similarly
this can be done for the remaining smash products involving MPL®, MIL®,
JP.s, JI® and ,JI:®. But we shall omit to describe them explicitly in this
note.

1. Splittings of the smash products SZ/2™ A V, and V, A V,

1.1. Let SZ/2™ be the Moore spectrum of type Z/2™ (m > 1), and
i:X°>S8Z/2™ and j:SZ/2™ —» X! denote the bottom cell inclusion and the
top cell projection. It is well known [2] that the identity map 1:SZ/2" —
SZ/2™ is of order 2™ when m > 2 and of order 4 when m = 1. This implies
that

(1.1) SZ/2™ A SZ/2" = X'SZ/2™ v SZ/2" if m<nand n>2.

In fact there exist maps

(12) @:8SZ/2™ A SZ/2" > SZ/2™ and Y :X'SZ/2™ - SZ/2™ A SZ/2"

for any m<n and n>2 such that p(1 Ai)=Q Ay =1, o@iAl)=m,
(A =mn io=jAn:SZ2™" ASZ/2">X'SZ/2"™ and VYij=iAmn:
SZ/2"™ > SZ/2™ A SZ/2" where n’s are the obvious maps. Moreover there
hold the relations ijo = 1 Aj+j A 1:SZ/2" A SZ/2" - X1SZ/2" and Yij =1 A
i+in1:8Z/2" > SZ/2" A SZ/2" when m=n > 2 (see [2]).

For the stable Hopf map #:X'—>X° there exists its extension
7:X'SZ/2™ > X° and its coextension #j:Z?—SZ/2™. Set n,,=(# A Y:
228Z/2 > SZ/2" and 1, , = @i A 1): Z2SZ/2" > SZ/2 for any n>2. Using
these maps we consider the following cofiber sequences

ziszphrehomd prszp, s hszpdem e,
siszp B sz By, K x5z, szt Bszp b v B sz,
T2z My 7/ By B 5357/,
25z iy 570 B UL B 5357,

Since 7y 41 = (@ A 1)Y and 4,4, ; = @(fi A 1) we can choose maps A:C(H)—
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20 and 1: X3 - C(#) satisfying id = 4, j = 4 and i = ji = 4 (see [13]). Then
the small spectra V,,, V,, U, and U, are exhibited by the following cofiber
sequences

2m-1f ji

X emiy, B, e 2B v, B e,
(13) am-17 iy Ju 2m-17 IU
cm—Zz°3u,B8xchm z*—CcH3U,SB iy 54
Since fiA:Z2C(H)— SZ/2, AATF:Z'CH) A SZ/2—>3° and I Af: 25>
C(#) A SZ/2 are trivial, there exist K -equivalences

(14) e:C@m—>Z7>C(H), e: C@) A C(@)— Z° and &:2° - C(#i) A C(H)

satisfying je=1, ei=1, el Ai)=eial)=1 and 1 Aj)e=( A D=1
Hence we notice that £ 3C(#) has the same K,-local type as C(7), and all
of 272V, A C(), U, A C(if) and X~3U,, have the same K,-local type as ¥,
(cf. [11]).

It is easily computed that [C(7), C(7)] = Z @ Z/2 with generators 1 and
vjj, [Z1C(), C(i)] = Z/2 with generator n A 1 and [C(n) ZC()] =0, and
moreover that [C(7), V,] = Z/2"*' ® Z/2 with generators i, and 1,,1vy in the
n>2 case and [U,, Z'C(%)] = Z/2"*' @ Z/2 with generators j, and ivjj, in
any case where v: X3 — X0 is the stable Hopf map. Let a:SZ/2A SZ/2™—
X1 denote the adjoint map to the obvious map =n:SZ/2—SZ/2™ with
ol Ani)=j, and w:V,—V, and w:U,—> U, the obvious maps. Then it
follows immediately that

1.5 i) [SZ/2',C#H) A SZ/2"] =~ Z/2"+«Z/2' with generator i A m; [C(H) A
SZ/2', SZ/2"] = (Z/2"+« Z/2") ® Z/2 ® Z/2 with generators 4 A =, iva(j A 1) and
nj A vj; and [C() A SZ/2™, C() A SZ/2"] = Z/AD Z/2® Z/)2 or (Z/2"+Z/2™)
DZ2DZ/2® Z/2 according as m =n =1 or otherwise, which is generated
by 1Aam LAinj, inmjaviand (A i)va(j A 1);

il) [V V] =(Z/2"*' %« Z/2™*)@® Z/2 with generators w and iyivjj, for
any n>2; and [U,, U] =(Z/2""'+Z/2"")@® Z/2 with generators w and
v A Digmjy.

Here A4 x B stands for the torsion product Tor (4, B). By means of (1.3) and
(1.5) we observe that

(1.6) i) V, ASZ)2m=X'SZ/2™ v (C(i7) A SZ/2™) and U, A SZ/2™ = (Z'C(H) A
SZ/2™) v SZ/2™ whenever m < n; and

i) V,ASZ/2"=2X'V,vV, and U, SZ/2"=2X'U, v U, whenever
m<n.

Consider the four cofiber sequences
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sz By, %y, B siszm
ZTICEH) A SZ/2m v %y B C@) A SZ/2m,
1.7 -
C@ A SZ2"BU,3 U, ,,,L“& zic@m) A Sz/2m,
Tiszpm iy, mB3U,B885Z/2"

for any m <n where w;s are the obvious maps. Since w,w; =2" and
waw, = 2", we get maps

0y iV, A SZ/2" > C(@H) A SZ/2", Wy : Z'SZ/2™ > V, A SZ/2,
ou:U, A SZ/2™ - SZ/2" and Y,:2'C(H) A SZ/2™ - U, A SZ/2™

(1.8)

satisfying ¢y (1 A i)=7y, (iy Aoy =01 Aj, (1A Yy = iy, Yyljy = 0y A,
o1 A Q) =my, iyjoy = w3 AjJ, (1 A jYy = 7_5_/0 and Yy(jy A Q) = W4 A . The
maps ¥, and ¢y may be chosen to satisfy (j, A )y, =1 and @y(iy A 1) = 1.
Moreover we can verify by means of (1.5) that the maps ¢, and Y, may be
chosen to satisfy @y (iy A 1)=1 and (jy A Dyy = 1.

We next consider the two cofiber sequences

19) v, %szpr%u, s, U Bcm A sz By, sy,

for any m <n. It is easily checked that Zyiym=2""'(i A1) and =, 7}, =
2""m~1(Z A 1). Hence we get maps

( O Vo ASZ/2 V., W EW, oV, A SZ)2",
1.10)
oy:Up_mASZ/2">U,_,, and yYy:2'U,_,,> U, .. A SZ/2"

satisfying oy (iy A 1) = 7'5V, ’U]V(PV =Jjy A iym, (v A DYy = 1y, Yply jiy = Gy A
l)nu, ouliy A 1) = lu7r iy juoy =Ty A 1), (u A Dy =Ty and Yyiyjy =
iy A my. Since [Z!, =[U,,2°]=0 it follows immediately that the
equalities ¢y (1 A i) = 1 and (1 Aj)Yy =1 hold. Note that [V,,C(n)]=Z/2
with generator iyvjj, and [Z'C(%), U,] = Z/2 with generator (v A 1)iymj.
Then we can observe by means of (1.5) that the equalities (1 A j)y, = 1 and
oy(l A i) =1 hold, too.

1.2. Choose maps v.:23C()—»2° and y:X2SZ/2 - C() A C(if) with
vei=v and (1 Aj)y=iA 1. The map y satisfies yin = (i A i)v because of
eyi=n*:2% - 2° for the K, -equivalence &: C(fj) A C(if) > Z° given in (1.4).
Then it is easily shown that [X° C(f) A C(f)] = Z with generator i A i,
[228Z)2, C(f) A C(1)] = Z/4 with generator y, [CO)ACH),Z]=ZDZ2®
Z/2 ® Z/2 with generators e, V¢ A jj, jj A e and v2(jj A jj), and [C(#7) A C(n),
22SZ2) = Z2@® Z/2 with generators  vj A j and j A vj., We moreover
choose a map ¥.:X3SZ/2 — C(f) with ji. =v A 1, which is contained in the
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Toda bracket (i, 7, v A 1) (see [7]). Since {7, v A 1,in)d =v?* in [Z6, Z°] =
Z/2, this map 7, satisfies ¥.in = iv2. Hence we get immediately that

(1.11) [CH),CH) A CH]1=Z D Z/4 with generators 1 Ai and yj; and
[CAHACH,CHIZZDZRDZ2® Z/2@ Z/2 with generators i, ive A Jj,
JJ A ive, Vej AJjoand jj A Ve

Since [C(77), Z2C() A SZ/2] = Z/2 with generator i Aj we may assume
that the equality i A 1 =1 A i+ yj: C(H) > C(@i§) A C(i§) holds. On the other
hand, the map 4 A 1: C(#) A C(5) = C(f) is written to be ie + ai.j A jj + bjj A
#.j for some a, b e Z/2 because 1i = 4 and iA =4. In this case 1 A 1:C(%) A
SZ/2 - SZ/2 is also written to be aj A vj + bvjj A 1 + ¢j A i for some c € Z/2.
Note that vA = 49 : Z3C(if) - Z° because of 4(v A 1) = 4iv. € [Z3C(H), C(7H)]
Using this equality we see that 2 A vj =0:Z2C(H) A SZ/2>Z° and n* A j =
iA:C() > SZ/2. Now it is easily verified that a=b=0 and ¢c=1. Thus
we get the equality 1 A 1 = ie and similarly 1 A 1 = ig in [C(#) A C(%), CH)].

From (1.11) it follows immediately that [C(), C(if) A V,] = Z/2" ' ® Z/4
with generators 1 A iyi and (1 A iy)yj in the n>2 case, and [C(H) A U,,
SICMI=Z2" '@ ZR2DZ2® Z/2® Z/2 with generators 1 A Ajy, i A jjy,
Jj A cjy, ¥cj Ajjy and jj A Tcjy in any case. On the other hand, it is
easily computed that [Z!,C(7) A V,] =0 and [C({) A U,, Z°]1=Z2®Z2®
ZR2®Z2® Z/2 because [Z1C(H) A C(), Z°]1 = [Z35Z/2 A C(7), 2°] = Z/)2
®Z2®Z/2®Z/2. Further it is shown that [C(H) A U,, CH)] = Z/2 @ Z/2
with generators ijv,(j A 1) and io(jj A jjy) because [Z1C(#H) A C(H), C(H)] =
Z/2 with generator ig(jj A jj). Here 0:27 —» X° is the stable Hopf map and
Vy:X38Z/2 A U,— SZ/2 is a map satisfying ,(1 A iy)=v A 1. Using the
equality ¥A = 4¥; we notice that the composite map ii;:Z5SZ/2 -2 is
trivial. By these computations we immediately get that

112) i) [V,,C) A V,]=(Z/2"'xZ/2" )@ Z/4 for any n > 2, which is
generated by (1 A iym)%, and (1 A iy)yjy; and

i) [CH) AU, UlxZ/2"xZ2" Yo <<—B Z/2>, which is generated
9
by 7y(l A mny) and nine elements of order 2.

Here the maps 7, :V,,—» C(@) A SZ/2"*, ny:U, —»SZ/2™* and 7y:C(7) A
SZ/2" ! -» U, are given in (1.7).

Set yny . =1 ANy :22SZ/2 >V, for any n > 2, and then write ,n, , =
 + a,iyivj for some a,€ Z/2. Since wj, =2""1:V, - V,, we get the equality
2" 71§, ¥ = a,iyiv?j, which asserts that a, =1 and a, =0 if n > 3. Moreover
this implies that i A 1: ¥, —» C(%) A V, has order 2"! whenever n> 3, but
2( A 1) =i A iyivji,: V, > C(H) A V,. Notice that the composite map ivjjy :
V, — C(i) is always Sy -trivial because [C(i), Sx] = Z and [Z 1.8S¢ A C(@H] =0.
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Hence it is observed that

113) i) V,AV,=2W,v(C@ AV,) if m<n and n>3, and the smash
product on the left side has the same K,-local type as the wedge sum on
the right side even if m =n=2; and

i) U,AU,=Z'CiHAU,)v U, if m<nand n>2.

For the maps @, :V,—»> Cn) A SZ/2"™, ny: U, » SZ/2"™™ and 7y : C(7) A
SZ/2"™ — U, there holds the following equality 2" 1(i A 1) = (1 A iy )Ty : V, >
CH) AV, when m=3 and 2" (1 A 1) = Ty(1 A my): C(H) A U, » U, when
m > 2. Hence we get maps

Yy:EW > VAV, for3<m<n  and
(1.14)
oy U, AU ->U, for2<m<n

satisfying (jy A DYy = @, Yp(iy A j) =1y A iyn, @pliy A 1) = o and (jy A ey
=jyAmny. If m<n we can verify that the equalities (1 A j, )Yy =1 and
oy(1 Ady)=1 hold. Even if m =n the maps ¥, and ¢ can be taken to
satisfy the same equalities because they may be replaced by Yy + iyiv A i, 7jy
and g + iynvy(jy A 1). On the other hand, it is evident that there exist maps

v ZW, >V, AV, forn>3 and o@}:U, AU,-U; for n>2

with (1 A ju)¥y =1 and @}(1 A iy) = 1. These maps are also taken to satisfy
(v A DYy = @ and @}(iy A 1) = © because they may be replaced by yj +
iyjy Adyiv and @p + iynvy(jy A 1)T where T denotes the twisted map.

Denote by X,, and X, , the cofibers of the maps (i A D)Vjjy: Vo> C@) A
C(#) and (i A iyi)vjjy:V,, = C@H) A V,. These spectra are related by the fol-
lowing cofiber sequence

CiH TS0 X, B X, B Z1CH)

in which iy : C(#) A C(7) - X,, denotes the canonical inclusion. Since the map
vjj, is Sk, -trivial, there exists a map yy: 2 W, =S¢ A X, with (1 A jy)Yy =
ix A1 for the K,-localization map 1,:2°— S¢ in which jy: X, —» 2V,
denotes the canonical projection. Recall that 2(i A 1) = (i A iyi)vjjy € [Va,
C(#) A V,]. This implies that X, , =V, AV, and the map px:V, A V, >
Z1C(7) satisfies py(iy A 1) =1 Aj, and 2(1 A i)px =Jjy A ( A D)vjj,. In this
case we can assume that the equality 1 A j, =j, A 1 + iypy holds since py
may be replaced by py + j, A ivjj,. Setting

Yy =L A ox)Yx: 2V, 5S¢ AV, AV,

it satisfies (1 A j, A DYy = (1 A 1 A Jp)¥p = 1x A 1 because of (jy A Doy = jy.
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2. Spectra derived from M}, and 'M}

2.1. Let us fix an Adams’ K, -equivalence A,: Z®SZ/m(4s) » SZ/m(4s)
for s > 1 such that the composite map jA4,i: X8 ! —» X0 is exactly the genera-
tor p, of order m(4s) in the J-image. Set ps =jA,: 2* 1SZ/m(4s) - X° and
Py = A,i: Z® — SZ/m(4s), whose cofibers C(p,) and C(p;) have the same K,-
local type as X° and X8*!) respectively. Consider the map k:ZX2C(#) —
29 of order 2 with ki = 57, which admits an extension k:X2C(f) A SZ/2™ —
2° satisfying k(i A 1) =7 A 77 and ik = 0. As in [14] (or [11]) we now intro-
duce the following maps of order 2 (cf. [1]):

U = ﬁAsl : J8s+1 __)20, Uog = '—’ls : E—Ss+1c([—)s) - 20’
ky=k(1 A Agi): Z5P2C@H) - 2°  k_g=k(l A i): Z782C@H) A C(p,) > Z°

in which i : C(p,) » 28SZ/m(4s) is the bottom cell collapsing. For conve-
nience’ sake we put uo =n:2! > X% and ky = k: Z2C(§) » Z°. The cofibers
of the maps u, and k, are denoted by P**! and P**3. Since 2(1 A 7)):
Z'P' A SZ/2 > P' is S -trivial, there exists a K,-equivalence ep: P* A C(7) -
Sg A P* with e,(1 A i)=2(x A 1). This gives rise to a K,-equivalence
epm: P AV, > Sx A P'ASZ/2". Thus we observe that

(2.1) P' A C(i7) has the same K-local type as P, and P' A V,, has the same
K ,-local type as P' A SZ/2™ for any m > 1.

Denote by M;, and ,M;, for t = 4r + 1 the cofibers of the maps iy, and
iy(4, A 1) composed with i: X° — SZ/2™ and i, : C(5j) > V,,, and dually by ‘M,
and /M, for t = 4r + 1 those of the maps p,j and p,(1 A j,) composed with
j:8Z/2" > %' and j,:V, > X! Use the map k, instead of the map u, to
construct small spectra denoted by the same symbols for t=4r + 3. By
virtue of (2.1) it is easily seen that ,M;, and /M, have the same K,-local
types as M}, and ‘M’, A C(7), respectively (see [15, Theorem 3.1]). The spectra
M;, and 'M;, are related to P* by the following cofiber sequences

2) X plape Myt oand zroic¥ome s pr 2 s

in which ip:2Z°— P* and jp: P' - X% C, denote the canonical inclusion and
projection, respectively. Here C,,,; = X% C,..3 = Z73C(#), C_45-3 = C(Pys1)
and C_,,_, = Z73C(#) A C(p,4,) for s >0.

Since [Z!,Sx A P']~Z or Z/m(t — 1) depending if t =1 or not, the
composite map ipn: X! — P* is at least divisible by 4 in [Z?, S A P']. This
implies that the map ip A in: X' — P' A SZ/2 is S -trivial. By virtue of (2.1),
(2.2) and this fact it is immediately observed that
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(23) i) M!ASZ]2™ = Z'SZ/2" v (P' A SZ/2™) and ‘M A SZ)2™ = (P' A
SZ/2™) v (Z*71C, A SZ/2™) if m <n and n > 2, and the smash products on
the left sides have the same K,-local types as the wedge sums on the right
sides, respectively, even if m=n=1; and

ii) M, AV, and ‘M, A V,, have the same K,-local types as the wedge
sums X'V, v (P' A SZ)2™) and (P' A SZ/2™) v (Z¥7'C, A V,,), respectively,
whenever 2 <m < n.

When m < n we have the following cofiber sequences

ZT1SZ/om A PPN A 2% ARy Sz /om A P
(24 , . Al
Z1SZ/om A P A Spge | N g7 om A pt,
where M}, and 'M} stand for X*'C, and X°, respectively. According to (2.3)
there exist maps

2.5) @y:SZ/2" A ML Sy A SZ/2™ A P, iy Z1SZ/2™ — Sy A SZ/2" A ML,
vOPum:Un A Mo Sy ASZ/2" AP and Yy : U, - Sg A U, A M},

for any m <n satisfying (L Aly)=1x AL AL AALAMRINy=1xA1,
vom(l Aly)=ep,, and (1 A1 A hy)ypy =1 A 1 where ep ,,: U, A P> Sg A
SZ/2™ A P' is a K,-equivalence with ep,(iy A 1)=1x Ai Al As is easily
seen, we can find maps f:X!SZ/2™ — Sx A SZ/2™ A P' and fy:Z'U, - Sk A
SZ/2™ A P' such that @p(i A 1) = 1x A Ay + filpe and y@piy A 1) = 1 A Ay +
fuivhy. Hence the maps ¢, and y@, are chosen to satisfy @,(i A1) =
v@uliy A 1) =15 A Ay Similarly the maps y,, and yy,, are chosen to satisfy
A AjADYy =1 Aiymand (1 Ajy A D = 1x A (1 A iy)Ty for the canon-
ical inclusion iy, :SZ/2" - M. In fact we may take Y,y =(1 A ip)y f m<n
and n > 2, and gy, = (1 A i)Yy if m <n where Y and Yy, are given in (1.2)
and (1.10).

2.2. Note that 2 A 7 = 0 and hence 1 A k = 0 since [Z'C(%) A SZ/2, 2°] =
0. Choose maps {p: P' = X% ,{p: P> C([@), yip: P' A C(i) » 2°, Ep: 22C, >
P, Ep:Z%C,» P AC(H) and yép:Z%C, A C(if)—> P* satisfying (pip = 2,
vipip =1, olplip A1) =4, jelp=2, (jpAylp=1Ai and jplp=1A41
The cofibers of the maps 2" '{p, 2" 1,{p, 2" 1ylp, 2" 1&p, 2" 1 Ep and 2" 1 &,
are denoted by Pi, ,Pi, P, 'Pi, /P: and ,Pi, respectively. For the map u,
we can suitably choose its coextensions f,, yf,, yfi, and its extensions f,,
vl,, uli, so that their cofibers coincide with P;, ,Pi ,Pi 'Pi, ,/P; and P}
(t = 4r + 1), respectively Similarly this can be done for the map k, (t = 4r + 3).
By means of (2.1) we observe that ,P; A C(7) and P, have the same K ,-local
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type as P;, and dually that /P, and yP, A C(7) have the same K,-local type
as 'P,. Moreover we notice that ‘P; and P; have the same K,-local types
as C(f) and Z**'C, A C(77), and more generally ‘P! and P! have the same
K ,-local types as Z2C, A M, and Z?*!C, A 'M;*; A C(7), respectively (see
[15, Theorem 3.1]).

Using the maps l,,, hy, and 4, in (2.2) and (2.4) we consider the following
mixed maps

(2.6) (i, iug A j): Z%4ID, A SZ/2" — SZ/2m v Z8r-8s+igz ot
(v A byiptg A Jy): Z8D, o A V, = (C(H) A SZ[2™) v Z8~8*15Z/2',
(5, A 1)(L A Apg)y it A Bp): Z8741D, A M2 —> (SZ/2™ A P9) v Z88s¥15Z/)L
(e AJ A L) Voing(fi A J):(E®D, A SZ/2™ A PT) v (Z%*1D, A SZ/2) > M!

whose cofibers are denoted by 'PM;7% ,, yPM}F ,, 'PMM;7% and MP'MZP;,
for (t, p) = (4r + 1, 4s + 1), respectively. Here we set D, = 2° D_,_, = C(P,+;)
for s>0 and D, ,= X% C(p_,), C(p_,) or C(p,) depending if Min {r, s} >0,
r<0<s, s<0<r or Max {r,s} <0. In addition the maps 4, y#, and u,
are the composed ones with a suitable K -equivalence ¢,: D, ;— D, or &: D, ;-
D, as given in [15, (1.3)]. When i, or fi, A j is replaced by i, + fi, A j, we
substitute “P for ‘P or P in the above notations. Next we use the maps k;,
k., vk, and k, as well as p,, [, v, and i, to construct small spectra denoted
by the same symbols for the other pairs (¢, p) of odd integers.

Denote by MP?' and ,MPZ* for t = 4r + 1 the small spectra constructed
as the cofibers of the composite maps

i, Z8*2D, > M2  and iy i, Z%2D, -  M?

in which i,’s are the canonical inclusions (see [8] or [12]). Use the maps
k, and yk, instead of fi, and ,jfi, to construct small spectra denoted by the
same symbols for ¢ =4r + 3. Evidently these spectra are exhibited by the
following cofiber sequences

P 2n1iplp P4 ip,MP MP,',I" Jmp,p ZIPI,
2.7 et . .

P¢2 lpAvCqu A C(ﬁ) ip,MP VMP:" Jmp,p sipt

By means of (2.1) and (2.7) we observe that ,MPZ' has the same K,-local
type as MP®'. Moreover it is immediately shown that

(2.8) MP** A SZ/2™ = (Z'P' A SZ/2™) v (P* A SZ/2™) if m<n and n >3,
and the smash product on the left side has the same K,-local type as the
wedge sum on the right side even if m=1 and n=2.
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Note that [Z3MP%', KO A MP#']1 = Z@® Z/2"' and yf behaves as
t—q
k? (k“":— 12 (1)) on (Z® Z/2"')® Z[1/k], because there exists an isomor-
phism j¥p p:[Z*P, KO A MP?'] = [23MP%', KO A MP®']. Since n*> A l:
22MP2' - MP2* becomes KO,-trivial, we can easily check that it is divisible
by 2 in [Z2MP%!, Sx A MP®'] whenever n > 3. On the other hand, we recall
2q

that [Z?P%, KO A P11~ Z @® Z and y§ behaves as k?*! (1 —lli f“/Zkz" (1)) on
(Z®Z)® Z[1/k]. Then it is also checked that n A 1: X'P?— P is divisible
by 2 in [Z'P% Sg A P?] and n A ip pp: 2 P?— MP?' is divisible by 4 in
[Z1P9, Sy A MP%'] under the assumption that n =1 or 2. Hence it follows
that 1 A #%j: Z*MP2' A SZ/4 - MP%' is divisible by 2 in [Z'MP®*' A SZ/4,
Sx A MP®'] if n=1 or 2. Consequently we verify that 1 A #%j: Z*MP2* A
SZ/2 - MP}' is always Sy -trivial. Therefore there exists a K,-equivalence
eyr: MP2' A C(if) > Sy A MP2* satisfying epp(1 A i) = 2(2x A 1), which gives
rise to a K, -equivalence eyp ,,: MPF' A V,, = S¢ A MP}' A SZ/2™. Thus we
observe that

(29) MPZ' A C(7) has the same K -local type as MP?*, and MP?' A V,, and
MP}* A U,, have the same K ,-local type as MP}* A SZ/2™ for any m > 1.

3. Spectra derived from J3%, (J%° ‘J4* and yJ4*
3.1. We now use the following maps
p,:Z8%1D, - X% and  n):X¥*3C(H) - Dy4q

introduced in [14] where D,=D,=2%2° D_,_,=C(p,s;) and D ,_, =
27879C(ps4,) for s>0. These maps p, and n, represent generators of
[Z81 1= Z/m(4r) and [Z8*3C(7), Sx] = Z/m(4r + 2), respectively. The
cofibers of the maps ap, and an, (a>1) are denoted by J*"* and
J4r+Z.a  Consider the following maps

a(p, A i): Z8 71D, > SZ/2"  a(p, A j): ¥ 2D, A SZ/2m - 2°,
a(pr A ;V) : Zsr_lDr A C(ﬁ) i Vrm a(pr A ]-V) : ESr—ZD' A Vm - 20’
a(p, A iy): Z% 7D, > Uy, alp, A ju): Z¥72D, A U, — C(H)

whose cofibers are denoted by J5% Jrn® Jn°, w54, oJu® and yJ5® (a > 1) for
t =4r # 0, respectively. Use the map n/ instead of p, to construct small
spectra denoted by the same symbols for ¢t = 4r + 2. Note that ,J;* and
vJu® have the same K,-local types as yJ;° A C(if) and yJ;* A C(H),
respectively.
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The spectra J3% ,Ji° and (J;° are exhibited by the following cofiber
sequences

G2 g B Jhe B 51,
3.1) XM usd e n C) e 510G,

2m- ‘(l,Al)

G A CHZT=5D Jve B Jue B 21C) A C(F)

in which C,, = X° C,,,, = D),,; and i,: C, = J** denotes the canonical inclu-
sion. By means of (1.5) and (1.12) it is evident that

(32) i) J* A SZ/2" = (Z1C A SZ/2™) v (J*° A SZ/2") and b0 A U, =
i ACmAU)v(I*"AU,) if m<n and n>2; and

i) J*AU,=Z'CAU)YIAU,) and ,Jo° A SZ/2" = (Z'C A
C@) A SZ/2™) v (J** A SZ/2") if m < n.

When a = m(t)/2 we shall drop the superscript “a” in J*%, J5°, Ju% J5°
vJi? and so on for simplicity. We are only interested in the small spectra
JE, T, ot and LU as treated in the introduction. Choose a map {,:J' - C|
with {,i; =2, whose cofiber I{ has the same K,-local type as Z**!C, with
Ci, =D, and C,,,, = C(if). Then there exists a map &:2%C,— C, A SZ/2
whose cofiber coincides with I] where &,, and d,,,, are coextensions of ap,
and an, with a = m(t)/2. Denote by I} and ,I!,, (n > 1) the cofibers of the
composite maps (1 A n)d,: Z%C, - C, A SZ/2" and (1 A iym)&,:Z%C,—>C, A
V,+1. By means of (1.7) we can show that I, and ,I;,, have the same

K,-local types as Z**1C, A J;*; and Z#*'C, A J;", respectively (cf. [12,
Lemma 1.4]).

The spectra I, and ,I;,; may be regarded as the cofibers of the
maps 2"71{,:J' > C, and 2"1({; A i):J* > C, A C(7j), respectively. Similarly
to MP®' and ,MP%* in (2.7) we construct small spectra MI%*, ,MI%/,, JP%',
yJP&Y JIP' and ,JI%, as the cofibers of the maps 2" Y(ip A {,):J' > P2 A C,,
2" Yip AL A D) T > PIAC A C(), 277 iy A Lp): Cy A PP J% 277y A yLp):
CoAP —TIACH), 277Ny AL):CoAT 5T A C and 2772 A L A i):C A
J’—-»J“ A C A C(77), respectively. By means of (2.1) it is easily shown that
yMI% and ,JP?' have the same K -local types as MI%!, and JP*' A C(%)),
respectively.

3.2. Consider the maps 7,, @y and =, given in (1.7) and (1.9) for m < n,
and then set T, =(1AmT, : ¥, > CH)ASZ/2"'>CH)ASZ/2", Ty=Ty(1Am):
C(@) A SZ/2™" - C(H) A SZ/2"1 - U, and n, = nny,: V,, - SZ/2"*1 - SZ/2" in
case m > n. We denote by SJ;5%P, [, SILEob [ SJLES and SILESP (a,b > 1)
for (t, p) = (4r, 4s), respectively, the small spectra constructed as the cofibers
of the following mixed maps
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(ap, A m, bipy A j): 287D, A SZ/2" - SZ/2m v X8 8st1gZ /0l

(@p, A Ty, bip, A jy): Z7'D, , A V, = (C(7) A SZ/27) v Z88*18Z)2,
(33) ]
(ap, A iym, biypy A j): Z¥ 7D, A SZ[2" - U,, v Z¥ 841,

(ap, A @, blTUps /\fy) : ESr—ll)”s A Vn N Vm N, ESr—Ss-%l(]l'

Use the maps n, and n, as well as p, and p, to construct small spectra
denoted by the same symbols for the other pairs (¢, p) of non-zero even
integers.

Compose the map 4,,: M? — SZ/2" A P? given in (2.4) before the obvious
map w A 1:SZ/2" A P2 SZ/2™ A P? and denote it again by A, :MI-
SZ/2™ A P4 Using the maps h,, and I;, in (2.2) we consider the following
mixed maps

(@p, A Ay, bipg A hyg) 1 Z8771D, ( A M2 > (SZ/2™ A P) v Z88s*ig7 /2L
(@p, A Apgs bigpg A hpg): 281D, (A M2 — (SZ/2™ A PY) v Z¥ 8ty
(aip, A Ly, bpg A (1 A m)jpg): 287D, o A 'M2
(3.4)
S (SZ/2™ A PY) v (Z¥-85+2471C, A SZ/2Y,
(@ip, A Iy, bps A (1 A iym)jag) : 281D, o A "M
—(SZ/2" A PY) v (E5H271C, A 1)

whose cofibers are denoted by SJMLA %P, [SIMLRE®P JS'MLE®®® and
IS MEE2%P (g, b > 1) for (t, p) = (4r, 4s), respectively. Use the maps n, and
ng as well as p, and p, to construct small spectra denoted by the same symbols
for the other pairs (¢, p) of non-zero even integers.

For any m < n there exist the following cofiber sequences

ZISZ/m A Jeaitly, jaa 2 jaa X gzom N jea
ZTISZ/om A Jee ity jaa vy gaa v gzom . Jaa
(3.5) - :
I, A J99 I @) A Joo D JeemB U A Joe,

— LGual) A Al
I, A Jeeery) gaa  vR gaa iy A gaa

in which ;4 = (iy A 1)4; and J§* stands for 22¢C,. Using the maps h,, I,
vhy and yl; in (3.1) and 4;:J2%— SZ/2" A J*° and yd;: xJ@° = SZ/2"1 A J2°
we consider the following mixed maps
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(8, A 1)1 A Ay), ipg A By): Z8741D, o A J2°
S (SZ/2m A J4%) v (Z¥S1ISZ2 A CY),
(7, A DA A phy), ipg A ghy): 297D, o A e
(3.6) —(SZ/2™ A J2°) v (X8 8stISZ /2t A C, A C(@)),

BAAB AV (s AjAL):
(Z8*C, A D, A SZ[2™) v (28D, A SZ/2" A J®%) - J24,

(LA gl AV (s AJ A Gly):
(Z8*1C, A D, A C() A SZ/2"™) v (Z8D, A SZ/2" A J*%) - yJ&°

in which i,’s are the canonical inclusions. These cofibers are denoted by
'PMJgh%e, oPMJphbe, JMPEPne and (J'MPEE? (a>1) for (t,p)=
(4r + 1,4s + 1), respectively. Use the maps k,, k,, k, and .k, as well as g,
I, f, and yfi, to construct small spectra denoted by the same symbols for
the other pairs (¢, p) of odd integers.

Next we take the maps A;:J% — SZ/2" A J%2, (A, yJ&b — SZ/2" A J*?,
oAy JEE 5 U, A J%® and wi;: yJ2% - U, A J*® given in (3.5) and then com-
pose them before the obvious map n A 1:SZ/2" A J*® — SZ/2™ A J%® or @ A
1:U, A J** > U, A J*%. This compositions are again denoted by the same
symbols A;, yA;, yA; and wA;. Using the maps hy, I;, yh; and yl; in (3.1)
we consider the following mixed maps

(@p, A Ay, cipy A hy): Z87ID, A JEP — (SZ/2™ A JEP) v (Z8ISZ2 A C)),
(ap, A yhy, cigp, A hy): Z87ID, A JEP > (U, A J2P) v (Z88*1U, A C)),
(ap, A yhy, cipg A yhy) : Z¥ 71D, A GJEP
S (SZ/2™ A JUP) v (EF81SZ)2 A C, A C(),
(@p, A why, Ciyps A yhy): Z8 71D, A (JO°
67 = Uy A J2P) v (Z8 841, A C, A C(7)),

(ap, AL AT) V(epsAjAL:

(%D, A C, A SZ/2™) v (572D, A SZ/2' A Job) - Jo,
@p, A (L A my)) v (cos AJy A ly):

(Z87ID, A Cy A V) v (Z872D, A V; A JOP) - JE,
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(ap, A i;(1L A TY)) v (cps AJ A uly):

(Z8 71D, A C, A C@H) A SZ/2™) v (Zss—ZDs A SZ/2' A J¥P) UJ,‘.I'b,

@p, A i(1 A @)V (cps Ay A )
(%D, A Cy A Up) v (Z872Dg A W A JO0) > J2P

whose cofibers are denoted by SJJLE2%%b, SyJIpRa®cb  SJ JnEascb
SyJyJiBamct JSEpLbed  JJSpLbed JJSEpbbea and o J JSEPLb¢a (g, b,
c=>1) for (t,p) = (4r 4s) respectlvely. Use the maps n, and n. as well as p,
and p, to construct small spectra denoted by the same symbols for the other

pairs (¢, p) of non-zero even integers.

33. Denote by M., and M, the cofibers of the maps inj:SZ/2' >
SZ/2" and iynjy:V;—> U,, and by MS}{a and 5 MSHi2 (a> 1) with t = 4r
those of the following mixed maps

(ap, A ) v inj:(Z%1D, A SZ/2") v SZ/2 - SZ/2",

(3.8) .
(apr A CO) \ iUrU.V : (Zsr_lDr A Um) v V;_) Um

respectively. Use the map n, instead of p, to construct small spectra denoted
by the same symbols for ¢t = 4r + 2. By definition it is evident that

(39) SZ/2 A SZ/2 = M}L,, Jb° A SZ/2 = MSL4% and 4Jt° A U, has the same
K,-local type as zMS}:14.

Choose maps ky: X' —> M}, kj: My, > 2, wky:2'C(H) - wM,, and
wkie - wM,,; — Z1C(7)) satisfying jyky = i, 2'ky = ipgin, kigine = Jj, 2"kie = njjngs
Juwhkae =Ty, 27 kgl = ipgipn, whigiy =jy and 2"7'Ayki = njy jpe in which
iy's and j,’s are the canonical inclusions and projections. Then the small
spectra M, , and M, are exhibited by the following cofiber sequences

§z/2' 2, §z/om Tt pq1 IutRie, p1gz ot
Vl iynjy Un iv—wknjv WM'}JJ'M*'EVW";U st v
which give rise to the following cofiber sequences

’ " ’
Jt,a I Jta —'MS: lt':_’zl‘]lt,a,

(3.10)
JtaW'U Jta - M lta_’zl Jta

respectively, where a’ = Max {a, 2" "a} and a” = Max {a, 2" ™a}.
Denote by L), yL;, and yL;, the cofibers of the maps k_, A ffj:
3C(11) A SZ/2'-SZ/2", 2*w:V, >V, and 2*w:U,— U,, and by LS}/2 and

LS, % (a>1) for t = 4r those of the following mixed maps
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(ap, AT) v 25 YA A ) (Z%ID, A SZ/2™) v (C(H) A SZ/2") — SZ/2",
(3.11)
(ap, A @) A 2w (Z8 D, A V,) v Vi V,,
respectively, where k = Min {n,1}. Use the map n, instead of p, to construct
small spectra denoted by the same symbols for ¢t = 4r + 2.

The small spectra ,L}, and yL,, are also obtained as the cofibers of
the maps 2¢71(i A m):SZ/2' > C(H) A SZ/2" and 2*"'(A A m): C(H) A SZ/2' -
SZ/2", respectively. Therefore we observe that ,L., A C(fj) and L}, have
the same K,-local type as L}, By definition it is now evident that

(3.12) the smash product ¥, A SZ/2" has the same K,-local type as L, , A
C@), and yJp® A SZ/2" = LS}:k2 and JP® A V, = 5 LS} ,,‘,,‘:

More generally there exist the following cofiber sequences

UJta ™ Jta _’leta_’z'lUJta
(3.13)
Jlt.a’W_"gC(ﬁ) A J’:,a” Sl ,t,a s ZIJIt,a’
in which a’ = Max {a, 2" ™"a} and a” = Max {a, 2" ™a}.
Using the maps 7;, w1, ©; and wn; given in (3.10) and (3.13) we consider
the following maps

Ny ANdpi P A Coo T ATy A iy PY A Cy o g A JO,
Ty Adpigdp® A Cpo b AT,y At JPY A Cp C@) A Tp T A T2,
i —lJt,a’ q,b 2q—1 yt,a”
Ny Ajp: Z70JPT AP = 224700 A Cy,

(3.14)

Wiy Ay E70JPY A JP = 2270 A C,

Ty AJy: ZTIPE A JEP o 22T g8 A C,

Wity Ay Z7NPY A JEP o Z2TICH) A Y A C,

whose cofibers are denoted by MSJ heeb LMSJLE®b  LSJLLeeb
WLSILot, TMSELLba, | IMSELLsa, JLS80e and I LSELED (a, b= 1)
respectlvely.

4. K,-local types of some smash products

41. The K,-local types of the smash products SZ/2™ A SZ/2", V,, A
S$Z/2" and V,, A V, have been determined in (1.1), (1.6), (1.13), (3.9) and (3.12).
On the other hand, the determination of K,-local types of M;, A SZ/2"
M, AV, 'M;, A SZ/2" and ‘M, A V, is established by (2.3) and the following
result and its dual
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THEOREM 4.1. The smash products M, A SZ/2" and M, A V, have the
same K,-local types as 'PMy;!, , and yPMy;!, ., respectively, if m < n.

Proor. Use the splitting maps ¢ :SZ/2™ A SZ/2" - SZ/2™ and ¢, :V, A
SZ/2™ — C(n) A SZ/2™ given in (1.2) and (1.8) for m < n. Then the maps iy, A
1:X8*D A SZ/2" > SZ/2™ A SZ/2" and ip, A 1:Z%*ID AV, >SZ2" AV,
are rewritten to be (u, A 7, ip, A j): Z8*D, A SZ/2" - SZ/2™ v X'SZ/2™ and
(W A Ty, ity A Jy): Z8D, A V, > (C() A SZ/2™) v Z1SZ/2™, respectively, when
m < n. In this case we may assume that the maps u, A = and u, A @, are
quasi Sy -equivalent to the composite maps if, and yfi, A i, respectively.
Therefore our result for ¢t =4r + 1 is immediate from (2.6). Use the map
k,:Z8*2C(f) A D, » X° instead of u, in case t = 4r + 3.

The determination of the K,-local types of M;, A MZ 'M, A M} and
'M!, A 'M? is established by the following result and its dual.

THEOREM 4.2. The smash products M}, A M2 and ‘M, A M? have the same
K ,-local types as 'PMM,51, and MP' MLt respectively, if m <n; and they
have the same K -local types as "PMM;'% . and M"P'M%"! ., respectively, if

m,m,m
m = n.

Proor. Use the splitting maps @y, :SZ/2™ A M2 > Sg A SZ/2™ A P? and
Up i Z1SZ2™ — Sy A SZ/2™ A M2 given in (2.5) for m <n. Then the maps
iu, A1:Z%*D A M35 SZ/2" A M? and p, AjA1:Z%D, A SZ2™ A M3 >
M¢ may be, respectively, rewritten to be ((ifi, A 1)(1 A Ay), i, A hyg): 281D, A
M2 (SZ/2™ A PY) v Z1SZ/2™ and (u, A j A byy) v iy(fi, A j):(Z8D, A SZ/2™ A
P%) v (Z8*D, A SZ/2™) > M? when m < n, and to be the ones we obtain by
substituting ifi, + fi, A j for ifi, or fi, A j when m = n. Combining these facts
with (2.6) we get our result for ¢t = 4r + 1. Use the map k, instead of u, in
case t =4r + 3.

When X, =J3% (Ji% Jn¢ or yJ°% the determination of the K,-local
types of the smash products X,, A SZ/2" and X,, A V, is established by (3.2),
(3.9), (3.12) and the following result and their duals.

THEOREM 4.3. The smash products J3;* A SZ/2", Ji* A V,, yJu® A SZ/2"
and yJy* AV, have the same K -local types as SJ;500, vSIyhit, vSTyimn and
wSJyhit, respectively, if m < n.

Proor. Consider the maps ip, A 1: X8 71D, A SZ/2" - SZ/2™ A SZ/2",
ip, A1:Z8 71D AV, > SZ/2" A V,, iyp, A 1: Z871D, A SZ/2" - U, A SZ/2"
and iyp, A 1: 287D, A U,» U, A U, when m <n. By use of the splitting
maps @:SZ/2™ A SZ/2" > SZ/2™, @y :V, A SZ/2™" > C(i) A SZ/2™ and ¢y
U, A SZ/2" - U, given in (1.2), (1.8) and (1.10) the first three of them can
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be rewritten as the first three maps in (3.3) witha=b=1,r=sandm=1<n,
respectively. On the other hand, the fourth map is rewritten to be (p, A @,
iyp, AJu): 287D, A U, » U, v (Z'U,, A C(i)) by use of the splitting map ¢f;:
U, A U,-» U, given in (1.14). Therefore our result for ¢t = 4r is immediate.
Use the map n,: X8 *3C(f) - Dj,., instead of p, in case t = 4r + 2.

4.2. Choose maps
©r:SZ2™M A TP SZ2™ A TV, Y, i XIC A SZ2™ - JP® A SZ/2M,

4.1)
W Un A pli®>Up A J** and iy Z1C A Voo S A I A Ty

satisfying @;(1 A L)) =1, (hy A DYy, =1, po,(1 A yl;)=1 and (1 A yhy A 1)
w¥y=1x A1 Al when m<n and n > 2, and moreover

v0s i SZJ2" A GJi® = SZ/2™ A T4,
@.2) oy Z1C A C() A SZ/2™ > yJo° A SZ/2™,
v@) Uy AJP > U, AJ" and W;:2'C AU, - I AU,

satisfying y@,(1 A yl)) =1, (vhy A Doy = 1, @51 A L) =1 and (h; A DYy =
1 when m<n. For these maps ¢;, w¢;, y@; and y@; we can find
maps f:X'SZ/2™ A C - SZ/2™ A J*%, fg:Z'U, A C; A C([@) = U, A J¥% fy:
Z1SZ/2™ A C, A C() > SZ/2™ A J** and f: 21U, A C, - U, A J"* such that
@0 A1) =25+ [ A hy), wos(iv A 1) = why + fwliy A vhy), vps(i A 1) = ph; +
Juli A ghy) and @iy A 1) = yAs + filiy A ;) in which the maps A;:
Jpt > SZ2™ ATV Ay gt o Uy A JYY Ay gJi® = SZ/2™ A J5° and yd):
Jpt—> U, A J"® are given in (3.5. When m>2 our assertion is easily
verified. Note that the map Z A 1:C(i) A U, - U, is factorized as the com-
posite map iy 8(1 A j,) for some e [Z'C(H) A C#H), Z°]1 = ZRDZRDZ2®
Z/2 because of AA1=1A1:C(#H ACH —C@#H). When m=1 it follows
that 24; = 2"7Y(in A iyhy) = 0, 244, = 2" 2(in A (iy A Dphy) = 0, 2 A wi; =
2" G, A i) A Tyhy) =0 and 71 A yA); = 27720 A i,)(L A (G A 1)hy) = 0.
By means of this result we can easily show that our assertion is also valid
even if m=1. Consequently the maps ¢;, y@;, y¢, and y¢; are chosen
to satisfy @,(i A 1) = 45, wo,(iy A 1) = wiy, y@s(i A 1) = y4; and y@j(iy A 1) =
vA;. On the other hand, the maps y;, w¥,;, y¥; and yY); may be taken
to be the composite maps (i; A 1)(1 A ¥), (1 A yi; A DA A ), (iy A DL A
1 A Yy) and (i; A 1)(1 A Yy), respectively, where  : £1SZ/2™ — SZ/2" A SZ/2™,
Yy: 2C@) A SZ/2m > U, A SZ/2™, Yy, : Z*U,, —» SZ/2" A U,, and Yy : 2V, >
Sk AV, AV, are given in (1.2), (1.8), (1.10) and (1.14). Therefore they
satisfy (1 AWy =4,(1 A7), (1AL AJ)wYs =1k Apifl A@"), (LAY, =
visf A Ty) and (1 A jy)u¥s =i;(1 A TRy) where ©” =w +iyivj or o de-
pending if (m, n) = (1,2) or not.
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When X, =J;?% ¢Jn° Ju° or ,J;% the determination of the K,-local
types of the smash products X, A MZ and X,, A 'M{ is established by the
following result and its dual.

THEOREM 4.4. i) The smash products J5° A M3, ,Ji® A M2, Jh% A 'M2 and
v A'MJ have the same K ,-local types as SIM 250 (SIMyLE5e JS' My 2 8e
and (JS'M;5254 respectively, if m < n; and

il) the smash products M, A J*°, M}, A yJ2° ‘M, A J2° and ‘M, A (J2°
have the same K,-local types as 'PMJ;5Ee, yPMJLLEE  JMPLVhe and
vJ'MPE:54 respectively, if m < n.

Proor. i) Use the splitting maps @, :SZ/2™ A M2 — Sg A SZ/2™ A P2
and y@p: U, A M2 Sy A SZ/2™ A P2 given in (2.5) and their dualized split-
ting maps @y :SZ/2™ A'MZ > S A £27ISZ/2™" A C, and ¢ U, A 'ME—>
S A 27U, AC, for m<n Then the maps ip A1:Z%7'D, A MZ—
SZ/2™ A M3, iyp, A1:Z8 71D, A M2 - U, A M3, ip, A 1:Z%71D, A 'M? —
SZ/2™ A 'M? and iyp, A 1:Z% 71D, A 'M2 - U,, A 'M? may be rewritten as in
(34) with a=b=1, r=5 and m=1<n, respectively. Our result is now
immediate.

ii) Use the splitting maps ¢;: SZ/2™ A J&@* - SZ/2™ A J%°, y@;:SZ/2™ A
oI = SZ)2™ A J%4, Y 1 Z1Cy A SZ/2™ > J2° A SZJ2™ and ;1 21C, A C(7)
A SZ/2™ — yJ2° A SZ/2™ given in (4.1) and (4.2) for m < n. Then the maps
ig, A 1:Z8 41D A J2 o SZ/2™ A JE ip, A 1:Z8HD, A yJ2 o SZ/2™ A
@ U AjAL:ZD, ASZ2™" A J2 > J%% and u, AjA1:2%D, A SZ)2™ A
8% > (J&¢ are rewritten as in (3.6) with r=5s and m=1<n. Our result
is now immediate.

When X,,, Y, =J3% oJi? 'Ju® or yJ3° the determination of the K -local
types of the smash products X,, A Y, is established by the following result
and its dual

THEOREM 4.5. i) The smash products J5° A J&b, (J5° A yJ2b, "JL° A JBP
and ,J5° A yJ®® have the same K ,-local types as SJJ5a5%b SyJyJihaeab,
JJSgLubad gnd L J'JSELUP4A respectively, if m<n and n>2, and they
have the same K ,-local types as MSJ} 4P, wMSJE1%®?, JMSYL%™® and
wIMSy 2 %%% A C(7)), respectively, if m=n=1; and

ii) the smash products yJ5i° A JEb, 8% A yJEP, VIR A J2P and 'S0 A yJEP
have the same K ,-local types as SyJJ5Lao%b SJ Jhbamab | J jSbbtbas gpd
pJ ISELLEa8 respectively, if m < n, and they have the same K -local types as
LSJLbaab LI SJLbasb A C@), wJLSLL%SY and JLSLLE®P, respectively, if
m=n.
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Proor. i) Use the splitting maps @, : SZ/2™ A J#° — SZ/2™ A J®°, mo,:
Up A gJ2P 5> U, A J%P, Y, Z1C) A SZ)2™ - J2P A SZ/2™ and w¥,: Z'C) A
Vyu— Sx A yJP® AV, given in (4.1) for m<n and n>2. Then the maps
ip, A 1:Z8 71D, A J2P = SZ/2™ A J2E iyp, A 1: Z877ID, A (J%° > U, A yJob
and p, AjA1:X8%72D, A SZ/2™ A J¥ — J2 are rewritten as the first, forth
and fifth maps in (3.7) with a=c=1, r=5s and m=1<n, respectively.
On the other hand, the map p, A j, A 1:Z% 72D, A V,, A J®P > ,J%® may
be rewritten to be (p, A yis(1 A @)V (o, Ajy A yly) i (Z3 D, A Cy A V) v
(Z% 72D, A V,, A J®% A C())) > yJ®°. Hence the first half of our result is
immediate. When n=I/=m =1 in (3.10) the map #n;, may be taken to be
2:J0% > Ji% and the map w7, may be replaced by the map 1 A 1:C(H) A
b = pJiv? if LJp? is replaced by C() A yJi®. Therefore the latter half of
our result is now obvious.

ii) The first half of our result is similarly shown as i) by use of the
splitting maps y@;, y@j, y¥; and yy¥; given in (4.2). When n=1=m in (3.13)
the maps 7, and wn, may be taken to be 2™: ,J4% - ,Ji% and 2™71(i A 1):
Jhe > C(p) A J5° respectively. Therefore the latter half of our result is now
obvious.
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