The $\boldsymbol{K}_{\boldsymbol{*}}$-local type of the smash product of real projective spaces

Dedicated to Professor Yasutoshi Nomura on his sixtieth birthday
Zen-ichi Yosimura
(Received October 1, 1994)
(Revised January 13, 1995)

Abstract

We have already determined the K_{*}-local types of the real projective spaces $R P^{n}$ and the stunted real projective spaces $R P^{n} / R P^{m}$ in [11] and [12]. The purpose of this note is to determine the K_{*}-local types of the smash products of these two projective spaces.

0. Introduction

Given a ring spectrum E with unit, a $C W$-spectrum X is said to be quasi E_{*}-equivalent to a $C W$-spectrum Y if there exists an equivalence $h: E \wedge$ $Y \rightarrow E \wedge X$ of E-module spectra. A map $f: Z \rightarrow X$ is said to be quasi $E_{*^{-}}$ equivalent to a map $g: W \rightarrow Y$ if there exist equivalences $h: E \wedge Y \rightarrow E \wedge X$ and $k: E \wedge W \rightarrow E \wedge Z$ of E-module spectra such that the equality $(1 \wedge f) k=$ $h(1 \wedge g): E \wedge W \rightarrow E \wedge X$ holds. In this case the cofiber $C(f)$ is quasi $E_{*^{-}}$ equivalent to the cofiber $C(g)$. In particular, a map $f: Z \rightarrow X$ is said to be $E_{*^{-}}$ trivial if it is quasi E_{*}-equivalent to the trivial map, thus $1 \wedge f: E \wedge Z \rightarrow$ $E \wedge X$ is trivial. Let $K O$ and $K U$ be the real and complex K-spectrum, respectively, and S_{K} denote the K_{*}-localization of the sphere spectrum S. Recall that two $C W$-spectra X and Y have the same K_{*}-local type if and only if X is quasi $S_{K_{*}}$-equivalent to Y (see [3] or [6]). In [9] and [10] we determined the quasi $K O_{*}$-equivalent types of the real projective spaces $R P^{n}$ and the stunted real projective spaces $R P_{m+1}^{n}=R P^{n} / R P^{m}$, and then in [11] and [12] we established to determine completely the K_{*}-local types of these projective spaces after investigating the behavior of their real Adams operations ψ_{R}^{k}. The purpose of this note is to determine the K_{*}-local types of the smash products of these two projective spaces, which allows us to compute implicitly their J-groups as well as their $K O$-groups (see [16] for the computation of their $K O$-groups with ψ_{R}^{k}).

[^0]According to [12, Theorems 2.7, 2.9 and 3.8] we have
Theorem. i) The stunted real projective space $\Sigma^{1} R P_{2 s+1}^{2 s+n}$ has the same K_{*}-local type as the small spectrum $X_{n, s}$ tabled below when $s=4 k-1$ or $4 k$ and the smash product $X_{n, s} \wedge C(\bar{\eta})$ when $s=4 k+1$ or $4 k+2$:

$s \backslash n=$	0	1	2	3	4	5	6	7
odd	$S Z / 2^{m}$	J_{m}^{t}	$S Z / 2^{m}$	M_{m}^{t}	V_{m}	V_{m}^{t}	V_{m}	${ }_{V} M_{m}^{t}$
even	$S Z / 2^{m}$	M_{m}^{t}	V_{m}	$V_{m} J_{m}^{t}$	V_{m}	${ }_{V} M_{m}^{t}$	$S Z / 2^{m}$	J_{m}^{t}

ii) The stunted real projective space $\Sigma^{1} R P_{2 s}^{2 s+n}$ has the same K_{*}-local type as the small spectrum $Y_{n, s}$ tabled below when $s=4 k$ or $4 k+1$ and the smash product $Y_{n, s} \wedge C(\bar{\eta})$ when $s=4 k+2$ or $4 k+3$:

$s \backslash n=$	0	1	2	3	4	5	6	7
even	I_{m+1}^{s}	$M I_{m+1}^{t, s}$	${ }_{V} I_{m+1}^{s}$	${ }_{V} J I_{m+1}^{t, s}$	${ }_{V} I_{m+1}^{s}$	${ }_{V} M I_{m+1}^{t, s}$	I_{m+1}^{s}	$J I_{m+1}^{t, s}$
odd	${ }_{V} P_{m+1}^{s}$	$V_{V} J P_{m+1}^{t, s}$	${ }_{V} P_{m+1}^{s}$	${ }_{V} M P_{m+1}^{t, s}$	P_{m+1}^{s}	$J P_{m+1}^{t, s}$	P_{m+1}^{s}	$M P_{m+1}^{t, s}$

Here we set $m=[n / 2]$ and $t=s+m+1$ in both cases.
See the beginning parts in 1.1, 2.1, 2.2 and 3.1 for the construction of the small spectra $C(\bar{\eta}), X_{n, s}$ and $Y_{n, s}$ appearing in our theorem. In the above table the small spectra $V_{m},{ }_{V} M_{m}^{t}, V_{m}^{J_{m}^{t}}, P_{m+1}^{s}, V_{V+1}^{s}, I_{m+1}^{s}, V_{m+1}^{s}, V_{V} M I_{m+1}^{t, s}$ and ${ }_{V} J_{m+1}^{t, s}$ may be replaced by $U_{m} \wedge C(\bar{\eta}), M_{m}^{t},{ }_{U} J_{m}^{t} \wedge C(\bar{\eta}), \Sigma^{2 s+1} C_{s} \wedge{ }^{\prime} M_{m}^{-s} \wedge$ $C(\bar{\eta}), \Sigma^{2 s+1} C_{s} \wedge^{\prime} M_{m}^{-s}, \Sigma^{2 s+1} C_{s} \wedge{ }^{\prime} J_{m}^{-s}, \Sigma^{2 s+1} C_{s} \wedge v_{V}^{\prime} J_{m}^{-s}, M I_{m+1}^{t, s}$ and $J P_{m+1}^{t, s} \wedge C(\bar{\eta})$, respectively, where $C_{4 r}=C_{4 r+1}=\Sigma^{0}$ and $C_{4 r+2}=C_{4 r+3}=C(\bar{\eta})$. Moreover $M P_{m+1}^{t, s} \wedge C(\bar{\eta})$ and ${ }_{V} M P_{m+1}^{t, s}$ may be also replaced by $M P_{m+1}^{t, s}$. For our purpose it is sufficient to study the K_{*}-local types of the smash products $X_{m} \wedge Y_{n}$ where $X_{m}, Y_{m}=S Z / 2^{m}, V_{m}, M_{m}^{t},{ }^{\prime} M_{m}^{t}, J_{m}^{t},{ }_{U} J_{m}^{t},{ }^{\prime} J_{m}^{t}, V_{V}^{\prime} J_{m}^{t}, M P_{m}^{t, s}, M I_{m}^{t, s}, J P_{m}^{t, s}, J I_{m}^{t, s}$ or ${ }_{V} J I_{m}^{t, s}$. These small spectra X_{m} and Y_{n} are constructed as the cofibers of certain maps $f: Z_{0} \rightarrow Z_{1}$ and $g: W_{0} \rightarrow W_{1}$. If either of the maps $f \wedge 1: Z_{0} \wedge$ $Y_{n} \rightarrow Z_{1} \wedge Y_{n}$ and $1 \wedge g: X_{m} \wedge W_{0} \rightarrow X_{m} \wedge W_{1}$ is $S_{K *}$-trivial, then the smash product $X_{m} \wedge Y_{n}$ admits a K_{*}-local splitting. Even if it is not so, the smash products $Z_{i} \wedge Y_{n}(i=0,1)$ or $X_{m} \wedge W_{i}(i=0,1)$ admit suitable K_{*}-local splittings in most cases. According to our plan we use these splittings so that either of the maps $f \wedge 1$ and $1 \wedge g$ is replaced by a simpler map h, whose cofiber has the same K_{*}-local type as the smash product $X_{m} \wedge Y_{n}$.

In § 1 and $\S 2$ we give K_{*}-local splittings of the smash products $S Z / 2^{m} \wedge$ $S Z / 2^{n}(m \leq n$ and $n \geq 2), S Z / 2^{m} \wedge V_{n}(m \neq n), V_{m} \wedge V_{n}(2 \leq m \leq n)$ and $S Z / 2^{m} \wedge$ $M_{n}^{t}, V_{m} \wedge M_{n}^{t}(m \leq n), S Z / 2^{m} \wedge M P_{n}^{q, t}, V_{m} \wedge M P_{n}^{q, t}(m<n$ and $n \geq 2)$. In §2 and $\S 3$ we construct several small spectra concerned with the smash products
$M_{m}^{t} \wedge S Z / 2^{n}, M_{m}^{t} \wedge V_{n}(m<n), M_{m}^{t} \wedge M_{n}^{q},{ }^{\prime} M_{m}^{t} \wedge M_{n}^{q}(m \leq n)$ as well as $J_{m}^{t} \wedge$ $S Z / 2^{n}, \quad J_{m}^{t} \wedge V_{n}(m<n), \quad J_{m}^{t} \wedge S Z / 2^{n}, J_{m}^{t} \wedge V_{n}(m \leq n), J_{m}^{t} \wedge M_{n}^{q}, \quad J_{m}^{t} \wedge M_{n}^{q}$, $J_{m}^{t} \wedge J_{n}^{q}, J_{m}^{t} \wedge J_{n}^{q}, U_{U}^{t} \wedge J_{U}^{q}{ }_{n}^{q}$ and so on. In §4 we establish to detetmine the K_{*}-local types of the smash products $X_{m} \wedge Y_{n}$ by using the small spectra constructed in $\S 2$ and $\S 3$ where $X_{m}, Y_{m}=S Z / 2^{m}, V_{m}, M_{m}^{t},{ }^{\prime} M_{m}^{t}, J_{m}^{t},{ }_{U} J_{m}^{t}$, ' J_{m}^{t} or ${ }_{V} J_{m}^{t}$. For the small spectra appearing in our main results (Theorems 4.1-4.4) we can easily study the $K U$-homologies with ψ_{c}^{k} and the $K O$ homologies with ψ_{R}^{k} by routine computations (see [16] for details). Similarly this can be done for the remaining smash products involving $M P_{m}^{t, s}, M I_{m}^{t, s}$, $J P_{m}^{t, s}, J I_{m}^{t, s}$ and ${ }_{V} J I_{m}^{t, s}$. But we shall omit to describe them explicitly in this note.

1. Splittings of the smash products $S Z / 2^{m} \wedge V_{n}$ and $V_{m} \wedge V_{n}$

1.1. Let $S Z / 2^{m}$ be the Moore spectrum of type $Z / 2^{m}(m \geq 1)$, and $i: \Sigma^{0} \rightarrow S Z / 2^{m}$ and $j: S Z / 2^{m} \rightarrow \Sigma^{1}$ denote the bottom cell inclusion and the top cell projection. It is well known [2] that the identity map $1: S Z / 2^{m} \rightarrow$ $S Z / 2^{m}$ is of order 2^{m} when $m \geq 2$ and of order 4 when $m=1$. This implies that

$$
\begin{equation*}
S Z / 2^{m} \wedge S Z / 2^{n}=\Sigma^{1} S Z / 2^{m} \vee S Z / 2^{m} \quad \text { if } m \leq n \text { and } n \geq 2 \tag{1.1}
\end{equation*}
$$

In fact there exist maps

$$
\begin{equation*}
\varphi: S Z / 2^{m} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \quad \text { and } \quad \psi: \Sigma^{1} S Z / 2^{m} \rightarrow S Z / 2^{m} \wedge S Z / 2^{n} \tag{1.2}
\end{equation*}
$$

for any $m \leq n$ and $n \geq 2$ such that $\varphi(1 \wedge i)=(1 \wedge j) \psi=1, \varphi(i \wedge 1)=\pi$, $(j \wedge 1) \psi=\pi, \quad i j \varphi=j \wedge \pi: S Z / 2^{m} \wedge S Z / 2^{n} \rightarrow \Sigma^{1} S Z / 2^{n-m} \quad$ and $\quad \psi i j=i \wedge \pi$: $S Z / 2^{n-m} \rightarrow S Z / 2^{m} \wedge S Z / 2^{n}$ where π 's are the obvious maps. Moreover there hold the relations $i j \varphi=1 \wedge j+j \wedge 1: S Z / 2^{n} \wedge S Z / 2^{n} \rightarrow \Sigma^{1} S Z / 2^{n}$ and $\psi i j=1 \wedge$ $i+i \wedge 1: S Z / 2^{n} \rightarrow S Z / 2^{n} \wedge S Z / 2^{n}$ when $m=n \geq 2$ (see [2]).

For the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ there exists its extension $\bar{\eta}: \Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}$ and its coextension $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2^{m}$. Set $\eta_{1, n}=(\bar{\eta} \wedge 1) \psi:$ $\Sigma^{2} S Z / 2 \rightarrow S Z / 2^{n}$ and $\eta_{n, 1}=\varphi(\tilde{\eta} \wedge 1): \Sigma^{2} S Z / 2^{n} \rightarrow S Z / 2$ for any $n \geq 2$. Using these maps we consider the following cofiber sequences

$$
\begin{aligned}
& \Sigma^{1} S Z / 2 \xrightarrow{\tilde{\eta}} \Sigma^{0} \xrightarrow{i} C(\bar{\eta}) \xrightarrow{\bar{j}} \Sigma^{2} S Z / 2, \quad \Sigma^{2} \xrightarrow{\tilde{m}} S Z / 2 \xrightarrow{\tilde{i}} C(\tilde{\eta}) \xrightarrow{\tilde{j}} \Sigma^{3}, \\
& \Sigma^{1} S Z / 2 \xrightarrow{i \eta} S Z / 2^{m-1} \xrightarrow{i_{V}} V_{m} \xrightarrow{j_{V}} \Sigma^{2} S Z / 2, \quad \Sigma^{1} S Z / 2^{m-1} \xrightarrow{\text { 并 }} S Z / 2 \xrightarrow{i_{V}^{\prime}} V_{m}^{\prime} \xrightarrow{j_{v}} \Sigma^{2} S Z / 2, \\
& \Sigma^{2} S Z / 2 \xrightarrow{\eta_{1, m+1}} S Z / 2^{m+1} \xrightarrow{i_{V}} U_{m} \xrightarrow{j_{U}} \Sigma^{3} S Z / 2,
\end{aligned}
$$

Since $\eta_{1, m+1}=(\bar{\eta} \wedge 1) \psi$ and $\eta_{m+1,1}=\varphi(\tilde{\eta} \wedge 1)$ we can choose maps $\bar{\lambda}: C(\bar{\eta}) \rightarrow$
Σ^{0} and $\tilde{\lambda}: \Sigma^{3} \rightarrow C(\tilde{\eta})$ satisfying $\bar{\lambda} \bar{\lambda}=4, \tilde{\lambda} \tilde{j}=4$ and $\bar{\lambda} \bar{i}=\tilde{j} \tilde{\lambda}=4$ (see [13]). Then the small spectra $V_{m}, V_{m}^{\prime}, U_{m}$ and U_{m}^{\prime} are exhibited by the following cofiber sequences

$$
\begin{gather*}
\Sigma^{0} \xrightarrow{2^{m-1} i} C(\bar{\eta}) \xrightarrow{\bar{i}_{V}} V_{m} \xrightarrow{\bar{j}_{V}} \Sigma^{1}, \quad \Sigma^{-1} C(\tilde{\eta}) \xrightarrow{2^{m-1} \tilde{j}} \Sigma^{2} \xrightarrow{\tilde{i}_{V}} V_{m}^{\prime} \xrightarrow{\tilde{j}_{V}} C(\tilde{\eta}), \\
C(\bar{\eta}) \xrightarrow{2 m-1 \bar{\lambda}} \Sigma^{0} \xrightarrow{i_{V}} U_{m} \xrightarrow{\bar{j}_{V}} \Sigma^{1} C(\bar{\eta}) \quad \Sigma^{3} \xrightarrow{2^{m-1} \tilde{\lambda}} C(\tilde{\eta}) \xrightarrow{\tilde{i}_{V}} U_{m}^{\prime} \xrightarrow{j_{V}} \Sigma^{4} . \tag{1.3}
\end{gather*}
$$

Since $\tilde{\eta} \bar{\lambda}: \Sigma^{2} C(\bar{\eta}) \rightarrow S Z / 2, \bar{\lambda} \wedge \bar{\eta}: \Sigma^{1} C(\bar{\eta}) \wedge S Z / 2 \rightarrow \Sigma^{0}$ and $\tilde{\lambda} \wedge \tilde{\eta}: \Sigma^{5} \rightarrow$ $C(\tilde{\eta}) \wedge S Z / 2$ are trivial, there exist K_{*}-equivalences
(1.4) $e: C(\bar{\eta}) \rightarrow \Sigma^{-3} C(\tilde{\eta}), \bar{e}: C(\bar{\eta}) \wedge C(\bar{\eta}) \rightarrow \Sigma^{0}$ and $\tilde{e}: \Sigma^{6} \rightarrow C(\tilde{\eta}) \wedge C(\tilde{\eta})$
satisfying $\tilde{j e}=\bar{\lambda}, e \bar{i}=\tilde{\lambda}, \bar{e}(1 \wedge \bar{i})=\bar{e}(\bar{i} \wedge 1)=\bar{\lambda}$ and $(1 \wedge \tilde{j}) \tilde{e}=(\tilde{j} \wedge 1) \tilde{e}=\tilde{\lambda}$. Hence we notice that $\Sigma^{-3} C(\tilde{\eta})$ has the same K_{*}-local type as $C(\bar{\eta})$, and all of $\Sigma^{-2} V_{m}^{\prime} \wedge C(\bar{\eta}), U_{m} \wedge C(\bar{\eta})$ and $\Sigma^{-3} U_{m}^{\prime}$ have the same K_{*}-local type as V_{m} (cf. [11]).

It is easily computed that $[C(\bar{\eta}), C(\bar{\eta})] \cong Z \oplus Z / 2$ with generators 1 and $\bar{i} v j \bar{j},\left[\Sigma^{1} C(\bar{\eta}), C(\bar{\eta})\right] \cong Z / 2$ with generator $\eta \wedge 1$ and $\left[C(\bar{\eta}), \Sigma^{1} C(\bar{\eta})\right]=0$, and moreover that $\left[C(\bar{\eta}), V_{n}\right] \cong Z / 2^{n+1} \oplus Z / 2$ with generators \bar{i}_{V} and $i_{V} i v j \bar{j}$ in the $n \geq 2$ case and $\left[U_{n}, \Sigma^{1} C(\bar{\eta})\right] \cong Z / 2^{n+1} \oplus Z / 2$ with generators \bar{j}_{U} and $\bar{i} v j j_{U}$ in any case where $v: \Sigma^{3} \rightarrow \Sigma^{0}$ is the stable Hopf map. Let $\alpha: S Z / 2 \wedge S Z / 2^{m} \rightarrow$ Σ^{1} denote the adjoint map to the obvious map $\pi: S Z / 2 \rightarrow S Z / 2^{m}$ with $\alpha(1 \wedge i)=j$, and $\omega: V_{m} \rightarrow V_{n}$ and $\omega: U_{m} \rightarrow U_{n}$ the obvious maps. Then it follows immediately that
(1.5) i) $\left[S Z / 2^{l}, C(\bar{\eta}) \wedge S Z / 2^{n}\right] \cong Z / 2^{n} * Z / 2^{l}$ with generator $\bar{i} \wedge \pi$; [C($\left.\bar{\eta}\right) \wedge$ $\left.S Z / 2^{l}, S Z / 2^{n}\right] \cong\left(Z / 2^{n} * Z / 2^{l}\right) \oplus Z / 2 \oplus Z / 2$ with generators $\bar{\lambda} \wedge \pi, i v \alpha(\bar{j} \wedge 1)$ and $\pi \bar{j} \wedge v j$; and $\left[C(\bar{\eta}) \wedge S Z / 2^{m}, C(\bar{\eta}) \wedge S Z / 2^{n}\right] \cong Z / 4 \oplus Z / 2 \oplus Z / 2$ or $\left(Z / 2^{n} * Z / 2^{m}\right)$ $\oplus Z / 2 \oplus Z / 2 \oplus Z / 2$ according as $m=n=1$ or otherwise, which is generated by $1 \wedge \pi, 1 \wedge i \eta j, \bar{i} \wedge \pi \bar{j} \wedge v j$ and $(\bar{i} \wedge i) v \alpha(\bar{j} \wedge 1)$;
ii) $\left[V_{m}, V_{n}\right] \cong\left(Z / 2^{n+1} * Z / 2^{m+1}\right) \oplus Z / 2$ with generators ω and $i_{V} i v j j_{V}$ for any $n \geq 2$; and $\left[U_{m}, U_{n}\right] \cong\left(Z / 2^{n+1} * Z / 2^{m+1}\right) \oplus Z / 2$ with generators ω and $(v \wedge 1) i_{U} \pi j_{U}$.

Here $A * B$ stands for the torsion product $\operatorname{Tor}(A, B)$. By means of (1.3) and (1.5) we observe that
(1.6) i) $\quad V_{n} \wedge S Z / 2^{m}=\Sigma^{1} S Z / 2^{m} \vee\left(C(\bar{\eta}) \wedge S Z / 2^{m}\right)$ and $U_{n} \wedge S Z / 2^{m}=\left(\Sigma^{1} C(\bar{\eta}) \wedge\right.$ $\left.S Z / 2^{m}\right) \vee S Z / 2^{m}$ whenever $m<n$; and
ii) $V_{m} \wedge S Z / 2^{n}=\Sigma^{1} V_{m} \vee V_{m}$ and $U_{m} \wedge S Z / 2^{n}=\Sigma^{1} U_{m} \vee U_{m}$ whenever $m<n$.

Consider the four cofiber sequences

$$
\begin{gather*}
S Z / 2^{m} \xrightarrow{i_{V} \pi} V_{n} \xrightarrow{\omega_{1}} V_{n-m} \xrightarrow{i_{V}} \Sigma^{1} S Z / 2^{m}, \\
\Sigma^{-1} C(\bar{\eta}) \wedge S Z / 2^{m} \xrightarrow{\bar{i}_{v} \wedge j} V_{n-m} \xrightarrow{\omega_{2}} V_{n} \xrightarrow{\bar{\pi}_{V}} C(\bar{\eta}) \wedge S Z / 2^{m}, \\
C(\bar{\eta}) \wedge S Z / 2^{m} \xrightarrow{\bar{\pi}_{ł}^{\prime}} U_{n} \xrightarrow{\omega_{3}} U_{n-m} \xrightarrow{\bar{j}_{v} \wedge i} \Sigma^{1} C(\bar{\eta}) \wedge S Z / 2^{m}, \tag{1.7}\\
\Sigma^{-1} S Z / 2^{m} \xrightarrow{i_{u j} j} U_{n-m} \xrightarrow{\omega_{0}} U_{n} \xrightarrow{\pi_{H}} S Z / 2^{m}
\end{gather*}
$$

for any $m<n$ where ω_{i} 's are the obvious maps. Since $\omega_{2} \omega_{1}=2^{m}$ and $\omega_{4} \omega_{3}=2^{m}$, we get maps

$$
\begin{gather*}
\varphi_{V}: V_{n} \wedge S Z / 2^{m} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m}, \quad \psi_{V}: \Sigma^{1} S Z / 2^{m} \rightarrow V_{n} \wedge S Z / 2^{m}, \\
\varphi_{U}: U_{n} \wedge S Z / 2^{m} \rightarrow S Z / 2^{m} \quad \text { and } \psi_{U}: \Sigma^{1} C(\bar{\eta}) \wedge S Z / 2^{m} \rightarrow U_{n} \wedge S Z / 2^{m} \tag{1.8}
\end{gather*}
$$

satisfying $\varphi_{V}(1 \wedge i)=\bar{\pi}_{V},\left(\bar{i}_{V} \wedge j\right) \varphi_{V}=\omega_{1} \wedge j,(1 \wedge j) \psi_{V}=i_{V} \pi, \psi_{V} \bar{j}_{V}=\omega_{2} \wedge i$, $\varphi_{U}(1 \wedge i)=\pi_{U}, \bar{i}_{U} j \varphi_{U}=\omega_{3} \wedge j,(1 \wedge j) \psi_{U}=\bar{\pi}_{U}^{\prime}$ and $\psi_{U}\left(\bar{j}_{U} \wedge i\right)=\omega_{4} \wedge i$. The maps ψ_{V} and φ_{U} may be chosen to satisfy $\left(\bar{j}_{V} \wedge 1\right) \psi_{V}=1$ and $\varphi_{U}\left(\bar{i}_{U} \wedge 1\right)=1$. Moreover we can verify by means of (1.5) that the maps φ_{V} and ψ_{U} may be chosen to satisfy $\varphi_{V}\left(\bar{i}_{V} \wedge 1\right)=1$ and $\left(\bar{j}_{U} \wedge 1\right) \psi_{U}=1$.

We next consider the two cofiber sequences

$$
\begin{equation*}
V_{m} \xrightarrow{\pi_{V}} S Z / 2^{n} \xrightarrow{i_{v} \pi} U_{n-m} \xrightarrow{\bar{i}_{\nu} \bar{j}_{V}} \Sigma^{1} V_{m}, \quad U_{n-m} \xrightarrow{\bar{\pi}_{V}} C(\bar{\eta}) \wedge S Z / 2^{n} \xrightarrow{\bar{\pi}_{i}^{\prime}} V_{m} \xrightarrow{\bar{i}_{\nu} \bar{j}_{V}} \Sigma^{1} U_{n-m} \tag{1.9}
\end{equation*}
$$

for any $m<n$. It is easily checked that $\bar{\pi}_{U} i_{U} \pi=2^{m-1}(\bar{i} \wedge 1)$ and $\pi_{V} \bar{\pi}_{V}^{\prime}=$ $2^{n-m-1}(\bar{\lambda} \wedge 1)$. Hence we get maps

$$
\varphi_{V}^{\prime}: V_{m} \wedge S Z / 2^{n} \rightarrow V_{m}, \quad \psi_{V}^{\prime}: \Sigma^{1} V_{m} \rightarrow V_{m} \wedge S Z / 2^{n}
$$

$$
\begin{equation*}
\varphi_{U}^{\prime}: U_{n-m} \wedge S Z / 2^{n} \rightarrow U_{n-m} \quad \text { and } \quad \psi_{U}^{\prime}: \Sigma^{1} U_{n-m} \rightarrow U_{n-m} \wedge S Z / 2^{n} \tag{1.10}
\end{equation*}
$$

satisfying $\varphi_{V}^{\prime}\left(\bar{i}_{V} \wedge 1\right)=\bar{\pi}_{V}^{\prime}, \bar{i}_{U} \bar{j}_{V} \varphi_{V}^{\prime}=\bar{j}_{V} \wedge i_{U} \pi,\left(\bar{j}_{V} \wedge 1\right) \psi_{V}^{\prime}=\pi_{V}, \psi_{V}^{\prime} \bar{i}_{V} \bar{j}_{U}=\left(\bar{i}_{V} \wedge\right.$ 1) $\bar{\pi}_{U}, \varphi_{U}^{\prime}\left(i_{U} \wedge 1\right)=i_{U} \pi, \bar{i}_{V} \bar{j}_{U} \varphi_{U}^{\prime}=\bar{\pi}_{V}^{\prime}\left(\bar{j}_{U} \wedge 1\right),\left(\bar{j}_{U} \wedge 1\right) \psi_{U}^{\prime}=\bar{\pi}_{U}$ and $\psi_{U}^{\prime} \bar{i}_{U} \bar{j}_{V}=$ $\bar{i}_{U} \wedge \pi_{V}$. Since $\left[\Sigma^{1}, V_{m}\right]=\left[U_{m}, \Sigma^{0}\right]=0$ it follows immediately that the equalities $\varphi_{V}^{\prime}(1 \wedge i)=1$ and $(1 \wedge j) \psi_{U}^{\prime}=1$ hold. Note that $\left[V_{n}, C(\bar{\eta})\right] \cong Z / 2$ with generator $\bar{i}_{V} v j j_{V}$ and $\left[\Sigma^{1} C(\bar{\eta}), U_{m}\right] \cong Z / 2$ with generator $(v \wedge 1) i_{U} \pi \bar{j}$. Then we can observe by means of (1.5) that the equalities $(1 \wedge j) \psi_{V}^{\prime}=1$ and $\varphi_{U}^{\prime}(1 \wedge i)=1$ hold, too.
1.2. Choose maps $\bar{v}_{C}: \Sigma^{3} C(\bar{\eta}) \rightarrow \Sigma^{0}$ and $\gamma: \Sigma^{2} S Z / 2 \rightarrow C(\bar{\eta}) \wedge C(\bar{\eta})$ with $\bar{v}_{c} \bar{i}=v$ and $(1 \wedge \bar{j}) \gamma=\bar{i} \wedge 1$. The map γ satisfies $\gamma i \eta=(\bar{i} \wedge \bar{i}) v$ because of $\bar{e} \gamma i=\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$ for the K_{*}-equivalence $\bar{e}: C(\bar{\eta}) \wedge C(\bar{\eta}) \rightarrow \Sigma^{0}$ given in (1.4). Then it is easily shown that $\left[\Sigma^{0}, C(\bar{\eta}) \wedge C(\bar{\eta})\right] \cong Z$ with generator $\bar{i} \wedge \bar{i}$, $\left[\Sigma^{2} S Z / 2, C(\bar{\eta}) \wedge C(\bar{\eta})\right] \cong Z / 4$ with generator $\gamma,\left[C(\bar{\eta}) \wedge C(\bar{\eta}), \Sigma^{0}\right] \cong Z \oplus Z / 2 \oplus$ $Z / 2 \oplus Z / 2$ with generators $\bar{e}, \bar{v}_{C} \wedge j \bar{j}, j \bar{j} \wedge \bar{v}_{C}$ and $v^{2}(j \bar{j} \wedge j \bar{j})$, and $[C(\bar{\eta}) \wedge C(\bar{\eta})$, $\left.\Sigma^{2} S Z / 2\right] \cong Z / 2 \oplus Z / 2$ with generators $v j \bar{j} \wedge \bar{j}$ and $\bar{j} \wedge v j \bar{j}$. We moreover choose a map $\tilde{v}_{C}: \Sigma^{5} S Z / 2 \rightarrow C(\bar{\eta})$ with $\bar{j} \tilde{v}_{C}=v \wedge 1$, which is contained in the

Toda bracket $\langle\bar{i}, \bar{\eta}, v \wedge 1\rangle$ (see [7]). Since $\langle\bar{\eta}, v \wedge 1, i \eta\rangle=v^{2}$ in $\left[\Sigma^{6}, \Sigma^{0}\right] \cong$ $Z / 2$, this map \tilde{v}_{C} satisfies $\tilde{v}_{C} i \eta=\overline{\boldsymbol{i}} \nu^{2}$. Hence we get immediately that
(1.11) $[C(\bar{\eta}), C(\bar{\eta}) \wedge C(\bar{\eta})] \cong Z \oplus Z / 4$ with generators $1 \wedge \bar{i}$ and $\gamma \bar{j}$; and $[C(\bar{\eta}) \wedge C(\bar{\eta}), C(\bar{\eta})] \cong Z \oplus Z / 2 \oplus Z / 2 \oplus Z / 2 \oplus Z / 2$ with generators $\bar{i} \overline{\bar{e}}, \bar{i}_{\bar{i}}^{C} \wedge^{\wedge} \bar{j}$, $j \bar{j} \wedge \bar{i} \bar{v}_{c}, \tilde{v}_{c} \bar{j} \wedge j \bar{j}$ and $j \bar{j} \wedge \tilde{v}_{c} \bar{j}$.

Since $\left[C(\bar{\eta}), \Sigma^{2} C(\bar{\eta}) \wedge S Z / 2\right] \cong Z / 2$ with generator $\bar{i} \wedge \bar{j}$ we may assume that the equality $\bar{i} \wedge 1=1 \wedge \bar{i}+\gamma \bar{j}: C(\bar{\eta}) \rightarrow C(\bar{\eta}) \wedge C(\bar{\eta})$ holds. On the other hand, the $\operatorname{map} \bar{\lambda} \wedge 1: C(\bar{\eta}) \wedge C(\bar{\eta}) \rightarrow C(\bar{\eta})$ is written to be $\bar{i} \bar{e}+a \tilde{v}_{c} \bar{j} \wedge j \bar{j}+b j \bar{j} \wedge$ $\tilde{v}_{c} \bar{j}$ for some $a, b \in Z / 2$ because $\bar{\lambda} \bar{i}=4$ and $\overline{i \lambda}=4$. In this case $\bar{\lambda} \wedge 1: C(\bar{\eta}) \wedge$ $S Z / 2 \rightarrow S Z / 2$ is also written to be $a \bar{j} \wedge v j+b v j \bar{j} \wedge 1+c \bar{j} \wedge \eta \bar{\eta}$ for some $c \in Z / 2$. Note that $v \bar{\lambda}=4 \bar{v}_{c}: \Sigma^{3} C(\bar{\eta}) \rightarrow \Sigma^{0}$ because of $4(v \wedge 1)=4 \bar{i} \bar{v}_{c} \in\left[\Sigma^{3} C(\bar{\eta}), C(\bar{\eta})\right]$. Using this equality we see that $\bar{\lambda} \wedge v j=0: \Sigma^{2} C(\bar{\eta}) \wedge S Z / 2 \rightarrow \Sigma^{0}$ and $\eta^{2} \wedge \bar{j}=$ $i \bar{\lambda}: C(\bar{\eta}) \rightarrow S Z / 2$. Now it is easily verified that $a=b=0$ and $c=1$. Thus we get the equality $\bar{\lambda} \wedge 1=\bar{i} \bar{e}$ and similarly $1 \wedge \bar{\lambda}=\overline{\bar{e}}$ in $[C(\bar{\eta}) \wedge C(\bar{\eta}), C(\bar{\eta})]$.

From (1.11) it follows immediately that $\left[C(\bar{\eta}), C(\bar{\eta}) \wedge V_{n}\right] \cong Z / 2^{n-1} \oplus Z / 4$ with generators $1 \wedge \bar{i}_{V} \bar{i}$ and $\left(1 \wedge \bar{i}_{V}\right) \gamma \bar{j}$ in the $n \geq 2$ case, and $\left[C(\bar{\eta}) \wedge U_{n}\right.$, $\left.\Sigma^{1} C(\bar{\eta})\right] \cong Z / 2^{n-1} \oplus Z / 2 \oplus Z / 2 \oplus Z / 2 \oplus Z / 2$ with generators $1 \wedge \bar{\lambda}_{j_{U}}, \bar{i}_{\bar{v}}{ }_{c} \wedge j j_{U}$, $j \bar{j} \wedge \bar{i}_{c} \bar{j}_{U}, \tilde{v}_{C} \bar{j} \wedge j j_{U}$ and $j \bar{j} \wedge \tilde{v}_{C} j_{U}$ in any case. On the other hand, it is easily computed that $\left[\Sigma^{1}, C(\bar{\eta}) \wedge V_{n}\right]=0$ and $\left[C(\bar{\eta}) \wedge U_{n}, \Sigma^{0}\right] \cong Z / 2 \oplus Z / 2 \oplus$ $Z / 2 \oplus Z / 2 \oplus Z / 2$ because $\left[\Sigma^{1} C(\bar{\eta}) \wedge C(\bar{\eta}), \Sigma^{0}\right] \cong\left[\Sigma^{3} S Z / 2 \wedge C(\bar{\eta}), \Sigma^{0}\right] \cong Z / 2$ $\oplus Z / 2 \oplus Z / 2 \oplus Z / 2$. Further it is shown that $\left[C(\bar{\eta}) \wedge U_{n}, C(\bar{\eta})\right] \cong Z / 2 \oplus Z / 2$ with generators $\overline{i j} \bar{v}_{U}(\bar{j} \wedge 1)$ and $\bar{i} \sigma\left(j \bar{j} \wedge j j_{U}\right)$ because $\left[\Sigma^{1} C(\bar{\eta}) \wedge C(\bar{\eta}), C(\bar{\eta})\right] \cong$ $Z / 2$ with generator $\bar{i} \sigma(j \bar{j} \wedge j \bar{j})$. Here $\sigma: \Sigma^{7} \rightarrow \Sigma^{0}$ is the stable Hopf map and $\bar{v}_{U}: \Sigma^{3} S Z / 2 \wedge U_{n} \rightarrow S Z / 2$ is a map satisfying $\bar{v}_{U}\left(1 \wedge \bar{i}_{U}\right)=v \wedge 1$. Using the equality $\bar{v} \lambda=4 \bar{v}_{c}$ we notice that the composite map $\bar{\lambda} \tilde{v}_{c}: \Sigma^{5} S Z / 2 \rightarrow \Sigma^{0}$ is trivial. By these computations we immediately get that
(1.12) i) $\left[V_{m}, C(\bar{\eta}) \wedge V_{n}\right] \cong\left(Z / 2^{n-1} * Z / 2^{m-1}\right) \oplus Z / 4$ for any $n \geq 2$, which is generated by $\left(1 \wedge i_{V} \pi\right) \bar{\pi}_{V}$ and $\left(1 \wedge \bar{i}_{V}\right) \gamma j_{V}$; and
ii) $\left[C(\bar{\eta}) \wedge U_{m}, U_{n}\right] \cong\left(Z / 2^{n-1} * Z / 2^{m-1}\right) \oplus\left(\bigoplus_{9} Z / 2\right)$, which is generated by $\bar{\pi}_{U}^{\prime}\left(1 \wedge \pi \pi_{U}\right)$ and nine elements of order 2.

Here the maps $\bar{\pi}_{V}: V_{m} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m-1}, \pi_{U}: U_{m} \rightarrow S Z / 2^{m-1}$ and $\bar{\pi}_{U}^{\prime}: C(\bar{\eta}) \wedge$ $S Z / 2^{n-1} \rightarrow U_{n}$ are given in (1.7).

Set ${ }_{V} \eta_{1, n}=(1 \wedge \bar{\eta}) \psi_{V}: \Sigma^{2} S Z / 2 \rightarrow V_{n}$ for any $n \geq 2$, and then write ${ }_{V} \eta_{1, n}=$ $\omega+a_{n} i_{V} i v j$ for some $a_{n} \in Z / 2$. Since $\omega j_{V}=2^{n-1}: V_{n} \rightarrow V_{n}$, we get the equality $2^{n-1} \bar{i}_{V} \tilde{v}_{C}=a_{n} i_{V} i v^{2} j$, which asserts that $a_{2}=1$ and $a_{n}=0$ if $n \geq 3$. Moreover this implies that $\bar{i} \wedge 1: V_{n} \rightarrow C(\bar{\eta}) \wedge V_{n}$ has order 2^{n-1} whenever $n \geq 3$, but $2(\bar{i} \wedge 1)=\bar{i} \wedge i_{V} i v j j_{V}: V_{2} \rightarrow C(\bar{\eta}) \wedge V_{2}$. Notice that the composite map $\bar{i} v j j_{V}$: $V_{n} \rightarrow C(\bar{\eta})$ is always $S_{K_{*}}$-trivial because $\left[C(\bar{\eta}), S_{K}\right] \cong Z$ and $\left[\Sigma^{1}, S_{K} \wedge C(\bar{\eta})\right]=0$.

Hence it is observed that
(1.13) i) $V_{m} \wedge V_{n}=\Sigma^{1} V_{m} \vee\left(C(\bar{\eta}) \wedge V_{m}\right)$ if $m \leq n$ and $n \geq 3$, and the smash product on the left side has the same K_{*}-local type as the wedge sum on the right side even if $m=n=2$; and
ii) $\quad U_{m} \wedge U_{n}=\left(\Sigma^{1} C(\bar{\eta}) \wedge U_{m}\right) \vee U_{m}$ if $m \leq n$ and $n \geq 2$.

For the maps $\bar{\pi}_{V}: V_{n} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{n-m}, \pi_{U}: U_{n} \rightarrow S Z / 2^{n-m}$ and $\bar{\pi}_{U}^{\prime}: C(\bar{\eta}) \wedge$ $S Z / 2^{n-m} \rightarrow U_{n}$ there holds the following equality $2^{m-1}(\bar{i} \wedge 1)=\left(1 \wedge i_{V} \pi\right) \bar{\pi}_{V}: V_{n} \rightarrow$ $C(\bar{\eta}) \wedge V_{n}$ when $m \geqq 3$ and $2^{m-1}(\bar{\lambda} \wedge 1)=\bar{\pi}_{U}^{\prime}\left(1 \wedge \pi_{U}\right): C(\bar{\eta}) \wedge U_{n} \rightarrow U_{n}$ when $m \geq 2$. Hence we get maps

$$
\begin{gather*}
\psi_{V}^{\prime \prime}: \Sigma^{1} V_{m} \rightarrow V_{m} \wedge V_{n} \quad \text { for } 3 \leq m \leq n, \quad \text { and } \\
\varphi_{U}^{\prime \prime}: U_{m} \wedge U_{n} \rightarrow U_{m} \quad \text { for } 2 \leq m \leq n \tag{1.14}
\end{gather*}
$$

satisfying $\left(\bar{j}_{V} \wedge 1\right) \psi_{V}^{\prime \prime}=\omega, \psi_{V}^{\prime \prime}\left(\bar{i}_{V} \wedge j\right)=\bar{i}_{V} \wedge i_{V} \pi, \varphi_{U}^{\prime \prime}\left(\bar{i}_{U} \wedge 1\right)=\omega$ and $\left(\bar{j}_{U} \wedge i\right) \varphi_{U}^{\prime \prime}$ $=\bar{j}_{U} \wedge \pi_{U}$. If $m<n$ we can verify that the equalities $\left(1 \wedge \bar{j}_{V}\right) \psi_{V}^{\prime \prime}=1$ and $\varphi_{U}^{\prime \prime}\left(1 \wedge \bar{i}_{U}\right)=1$ hold. Even if $m=n$ the maps $\psi_{V}^{\prime \prime}$ and $\varphi_{U}^{\prime \prime}$ can be taken to satisfy the same equalities because they may be replaced by $\psi_{V}^{\prime \prime}+i_{V} i v \wedge i_{V} \pi j_{V}$ and $\varphi_{U}^{\prime \prime}+i_{U} \pi \bar{v}_{U}\left(j_{U} \wedge 1\right)$. On the other hand, it is evident that there exist maps

$$
\psi_{V}^{\prime \prime}: \Sigma^{1} V_{2} \rightarrow V_{2} \wedge V_{n} \text { for } n \geq 3 \quad \text { and } \quad \varphi_{U}^{\prime \prime}: U_{1} \wedge U_{n} \rightarrow U_{1} \text { for } n \geq 2
$$

with $\left(1 \wedge \bar{j}_{V}\right) \psi_{V}^{\prime \prime}=1$ and $\varphi_{U}^{\prime \prime}\left(1 \wedge \bar{i}_{U}\right)=1$. These maps are also taken to satisfy $\left(\bar{j}_{V} \wedge 1\right) \psi_{V}^{\prime \prime}=\omega$ and $\varphi_{U}^{\prime \prime}\left(\bar{i}_{U} \wedge 1\right)=\omega$ because they may be replaced by $\psi_{V}^{\prime \prime}+$ $i_{V} j_{V} \wedge i_{V} i v$ and $\varphi_{U}^{\prime \prime}+i_{U} \pi \bar{v}_{U}\left(j_{U} \wedge 1\right) T$ where T denotes the twisted map.

Denote by X_{m} and $X_{n, m}$ the cofibers of the maps $(\bar{i} \wedge \bar{i}) v j_{V}: V_{m} \rightarrow C(\bar{\eta}) \wedge$ $C(\bar{\eta})$ and $\left(\bar{i} \wedge \bar{i}_{v} \bar{i}\right) v j j_{V}: V_{m} \rightarrow C(\bar{\eta}) \wedge V_{n}$. These spectra are related by the following cofiber sequence

$$
\left.C(\bar{\eta}) \xrightarrow{2^{n-1} i_{X}(1 \wedge} \stackrel{i}{ }{ }^{i}\right) X_{m} \xrightarrow{\omega_{X}} X_{n, m} \xrightarrow{\rho_{X}} \Sigma^{1} C(\bar{\eta})
$$

in which $i_{X}: C(\bar{\eta}) \wedge C(\bar{\eta}) \rightarrow X_{m}$ denotes the canonical inclusion. Since the map $\bar{i} v j j_{V}$ is $S_{K_{*}}$-trivial, there exists a map $\psi_{X}: \Sigma^{1} V_{m} \rightarrow S_{K} \wedge X_{m}$ with $\left(1 \wedge j_{X}\right) \psi_{X}=$ $\imath_{K} \wedge 1$ for the K_{*}-localization map $\imath_{K}: \Sigma^{0} \rightarrow S_{K}$ in which $j_{X}: X_{m} \rightarrow \Sigma^{1} V_{m}$ denotes the canonical projection. Recall that $2(\bar{i} \wedge 1)=\left(\bar{i} \wedge \bar{i}_{V} \bar{i}\right) v j_{V} \in\left[V_{2}\right.$, $\left.C(\bar{\eta}) \wedge V_{2}\right]$. This implies that $X_{2,2}=V_{2} \wedge V_{2}$ and the map $\rho_{X}: V_{2} \wedge V_{2} \rightarrow$ $\sum^{1} C(\bar{\eta})$ satisfies $\rho_{X}\left(\bar{i}_{V} \wedge 1\right)=1 \wedge \bar{j}_{V}$ and $2(1 \wedge \bar{i}) \rho_{X}=\bar{j}_{V} \wedge(\bar{i} \wedge \bar{i}) v j_{V}$. In this case we can assume that the equality $1 \wedge \bar{j}_{V}=\bar{j}_{V} \wedge 1+\bar{i}_{V} \rho_{X}$ holds since ρ_{X} may be replaced by $\rho_{X}+\bar{j}_{V} \wedge \bar{i}_{i v j j_{V}}$. Setting

$$
\psi_{V}^{\prime \prime}=\left(1 \wedge \omega_{X}\right) \psi_{X}: \Sigma^{1} V_{2} \rightarrow S_{K} \wedge V_{2} \wedge V_{2}
$$

it satisfies $\left(1 \wedge \bar{j}_{V} \wedge 1\right) \psi_{V}^{\prime \prime}=\left(1 \wedge 1 \wedge \bar{j}_{V}\right) \psi_{V}^{\prime \prime}=l_{K} \wedge 1$ because of $\left(\bar{j}_{V} \wedge 1\right) \omega_{X}=j_{X}$.

2. Spectra derived from M_{m}^{t} and ' $M_{m}^{\boldsymbol{t}}$

2.1. Let us fix an Adams' K_{*}-equivalence $A_{s}: \Sigma^{8 s} S Z / m(4 s) \rightarrow S Z / m(4 s)$ for $s \geq 1$ such that the composite map $j A_{s} i: \Sigma^{8 s-1} \rightarrow \Sigma^{0}$ is exactly the generator ρ_{s} of order $m(4 s)$ in the J-image. Set $\bar{\rho}_{S}=j A_{s}: \Sigma^{8 s-1} S Z / m(4 s) \rightarrow \Sigma^{0}$ and $\tilde{\rho}_{s}=A_{s} i: \Sigma^{8 s} \rightarrow S Z / m(4 s)$, whose cofibers $C\left(\bar{\rho}_{s}\right)$ and $C\left(\tilde{\rho}_{s}\right)$ have the same $K_{*}-$ local type as Σ^{0} and $\Sigma^{8 s+1}$, respectively. Consider the map $k: \Sigma^{2} C(\tilde{\eta}) \rightarrow$ Σ^{0} of order 2 with $k \tilde{i}=\eta \bar{\eta}$, which admits an extension $\bar{k}: \Sigma^{2} C(\tilde{\eta}) \wedge S Z / 2^{m} \rightarrow$ Σ^{0} satisfying $\bar{k}(\tilde{i} \wedge 1)=\bar{\eta} \wedge \bar{\eta}$ and $\overline{i k}=0$. As in [14] (or [11]) we now introduce the following maps of order 2 (cf. [1]):

$$
\begin{gathered}
\mu_{s}=\bar{\eta} A_{s} i: \Sigma^{8 s+1} \rightarrow \Sigma^{0}, \quad \mu_{-s}=\bar{\eta} i_{s}: \Sigma^{-8 s+1} C\left(\bar{\rho}_{s}\right) \rightarrow \Sigma^{0}, \\
k_{s}=\bar{k}\left(1 \wedge A_{s} i\right): \Sigma^{8 s+2} C(\tilde{\eta}) \rightarrow \Sigma^{0}, \quad k_{-s}=\bar{k}\left(1 \wedge i_{s}\right): \Sigma^{-8 s+2} C(\tilde{\eta}) \wedge C\left(\bar{\rho}_{s}\right) \rightarrow \Sigma^{0}
\end{gathered}
$$

in which $i_{s}: C\left(\bar{\rho}_{s}\right) \rightarrow \Sigma^{8 s} S Z / m(4 s)$ is the bottom cell collapsing. For convenience' sake we put $\mu_{0}=\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ and $k_{0}=k: \Sigma^{2} C(\tilde{\eta}) \rightarrow \Sigma^{0}$. The cofibers of the maps μ_{r} and k_{r} are denoted by $P^{4 r+1}$ and $P^{4 r+3}$. Since $2(1 \wedge \bar{\eta})$: $\Sigma^{1} P^{t} \wedge S Z / 2 \rightarrow P^{t}$ is $S_{K_{*}}$-trivial, there exists a K_{*}-equivalence $e_{P}: P^{t} \wedge C(\bar{\eta}) \rightarrow$ $S_{K} \wedge P^{t}$ with $e_{p}(1 \wedge \bar{i})=2\left(l_{K} \wedge 1\right)$. This gives rise to a K_{*}-equivalence $e_{P, m}: P^{t} \wedge V_{m} \rightarrow S_{K} \wedge P^{t} \wedge S Z / 2^{m}$. Thus we observe that
(2.1) $P^{t} \wedge C(\bar{\eta})$ has the same K_{*}-local type as P^{t}, and $P^{t} \wedge V_{m}$ has the same K_{*}-local type as $P^{t} \wedge S Z / 2^{m}$ for any $m \geq 1$.

Denote by M_{m}^{t} and ${ }_{V} M_{m}^{t}$ for $t=4 r+1$ the cofibers of the maps $i \mu_{r}$ and $\bar{i}_{V}\left(\mu_{r} \wedge 1\right)$ composed with $i: \Sigma^{0} \rightarrow S Z / 2^{m}$ and $\bar{i}_{V}: C(\bar{\eta}) \rightarrow V_{m}$, and dually by ${ }^{\prime} M_{m}^{t}$ and $V_{V}^{\prime} M_{m}^{t}$ for $t=4 r+1$ those of the maps $\mu_{r} j$ and $\mu_{r}\left(1 \wedge \bar{j}_{V}\right)$ composed with $j: S Z / 2^{m} \rightarrow \Sigma^{1}$ and $\bar{j}_{V}: V_{m} \rightarrow \Sigma^{1}$. Use the map k_{r} instead of the map μ_{r} to construct small spectra denoted by the same symbols for $t=4 r+3$. By virtue of (2.1) it is easily seen that ${ }_{V} M_{m}^{t}$ and $v_{V} M_{m}^{t}$ have the same K_{*}-local types as M_{m}^{t} and ' $M_{m}^{t} \wedge C(\bar{\eta})$, respectively (see [15, Theorem 3.1]). The spectra M_{m}^{t} and ${ }^{\prime} M_{m}^{t}$ are related to P^{t} by the following cofiber sequences

$$
\begin{equation*}
\Sigma^{0} \xrightarrow{2^{m_{i p}}} P^{t} \xrightarrow{l_{M}} M_{m}^{t} \xrightarrow{h_{M}} \Sigma^{1} \quad \text { and } \quad \Sigma^{2 t-1} C_{t} \xrightarrow{h_{M}^{\prime}} M_{m}^{t} \xrightarrow{l_{M}^{\prime}} P^{t} \xrightarrow{2^{m_{j}}} \Sigma^{2 t} C_{t} \tag{2.2}
\end{equation*}
$$

in which $i_{P}: \Sigma^{0} \rightarrow P^{t}$ and $j_{P}: P^{t} \rightarrow \Sigma^{2 t} C_{t}$ denote the canonical inclusion and projection, respectively. Here $C_{4 s+1}=\Sigma^{0}, C_{4 s+3}=\Sigma^{-3} C(\tilde{\eta}), C_{-4 s-3}=C\left(\bar{\rho}_{s+1}\right)$ and $C_{-4 s-1}=\Sigma^{-3} C(\tilde{\eta}) \wedge C\left(\bar{\rho}_{s+1}\right)$ for $s \geq 0$.

Since $\left[\Sigma^{1}, S_{K} \wedge P^{t}\right] \cong Z$ or $Z / m(t-1)$ depending if $t=1$ or not, the composite map $i_{P} \eta: \Sigma^{1} \rightarrow P^{t}$ is at least divisible by 4 in [$\left.\Sigma^{1}, S_{K} \wedge P^{t}\right]$. This implies that the map $i_{P} \wedge i \eta: \Sigma^{1} \rightarrow P^{t} \wedge S Z / 2$ is $S_{K_{*}}$-trivial. By virtue of (2.1), (2.2) and this fact it is immediately observed that
(2.3) i) $M_{n}^{t} \wedge S Z / 2^{m}=\Sigma^{1} S Z / 2^{m} \vee\left(P^{t} \wedge S Z / 2^{m}\right)$ and ${ }^{\prime} M_{n}^{t} \wedge S Z / 2^{m}=\left(P^{t} \wedge\right.$ $\left.S Z / 2^{m}\right) \vee\left(\Sigma^{2 t-1} C_{t} \wedge S Z / 2^{m}\right)$ if $m \leq n$ and $n \geq 2$, and the smash products on the left sides have the same K_{*}-local types as the wedge sums on the right sides, respectively, even if $m=n=1$; and
ii) $M_{n}^{t} \wedge V_{m}$ and ' $M_{n}^{t} \wedge V_{m}$ have the same K_{*}-local types as the wedge sums $\Sigma^{1} V_{m} \vee\left(P^{t} \wedge S Z / 2^{m}\right)$ and $\left(P^{t} \wedge S Z / 2^{m}\right) \vee\left(\Sigma^{2 t-1} C_{t} \wedge V_{m}\right)$, respectively, whenever $2 \leq m \leq n$.

When $m \leq n$ we have the following cofiber sequences

$$
\begin{align*}
& \Sigma^{-1} S Z / 2^{m} \wedge P^{t} \xrightarrow{j \wedge l_{M}} M_{n-m}^{t} \xrightarrow{\omega_{M}} M_{n}^{t} \xrightarrow{\lambda_{M}} S Z / 2^{m} \wedge P^{t}, \\
& \Sigma^{-1} S Z / 2^{m} \wedge P^{t} \xrightarrow{\lambda_{M}^{\prime}} M_{n}^{\omega_{n}^{\prime}} \xrightarrow{\omega_{M}^{\prime}} M_{n-m}^{t} \xrightarrow{i \wedge l_{M}^{\prime}} S Z / 2^{m} \wedge P^{t}, \tag{2.4}
\end{align*}
$$

where M_{0}^{t} and M_{0}^{t} stand for $\Sigma^{2 t} C_{t}$ and Σ^{0}, respectively. According to (2.3) there exist maps

$$
\begin{gather*}
\varphi_{M}: S Z / 2^{m} \wedge M_{n}^{t} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{t}, \quad \psi_{M}: \Sigma^{1} S Z / 2^{m} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge M_{n}^{t} \tag{2.5}\\
{ }_{v} \varphi_{M}: U_{m} \wedge M_{n}^{t} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{t} \quad \text { and }{ }_{v} \psi_{M}: \Sigma^{1} U_{m} \rightarrow S_{K} \wedge U_{m} \wedge M_{n}^{t}
\end{gather*}
$$

for any $m \leq n$ satisfying $\varphi_{M}\left(1 \wedge l_{M}\right)=l_{K} \wedge 1 \wedge 1,\left(1 \wedge 1 \wedge h_{M}\right) \psi_{M}=l_{K} \wedge 1$, ${ }_{U} \varphi_{M}\left(1 \wedge l_{M}\right)=e_{P, m}$ and $\left(1 \wedge 1 \wedge h_{M}\right)_{U} \psi_{M}=l_{K} \wedge 1$ where $e_{P, m}: U_{m} \wedge P^{t} \rightarrow S_{K} \wedge$ $S Z / 2^{m} \wedge P^{t}$ is a K_{*}-equivalence with $e_{P, m}\left(\bar{i}_{U} \wedge 1\right)=l_{K} \wedge i \wedge 1$. As is easily seen, we can find maps $f: \Sigma^{1} S Z / 2^{m} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{t}$ and $f_{U}: \Sigma^{1} U_{m} \rightarrow S_{K} \wedge$ $S Z / 2^{m} \wedge P^{t}$ such that $\varphi_{M}(i \wedge 1)=l_{K} \wedge \lambda_{M}+\operatorname{fih}_{M}$ and ${ }_{U} \varphi_{M}\left(\bar{i}_{U} \wedge 1\right)=l_{K} \wedge \lambda_{M}+$ $f_{U} \bar{i}_{U} h_{M}$. Hence the maps φ_{M} and ${ }_{U} \varphi_{M}$ are chosen to satisfy $\varphi_{M}(i \wedge 1)=$ ${ }_{U} \varphi_{M}\left(\bar{i}_{U} \wedge 1\right)=\imath_{K} \wedge \lambda_{M}$. Similarly the maps ψ_{M} and ${ }_{U} \psi_{M}$ are chosen to satisfy $(1 \wedge j \wedge 1) \psi_{M}=l_{K} \wedge i_{M} \pi$ and $\left(1 \wedge \bar{j}_{U} \wedge 1\right)_{U} \psi_{M}=l_{K} \wedge\left(1 \wedge i_{M}\right) \bar{\pi}_{U}$ for the canonical inclusion $i_{M}: S Z / 2^{n} \rightarrow M_{n}^{t}$. In fact we may take $\psi_{M}=\left(1 \wedge i_{M}\right) \psi$ if $m \leq n$ and $n \geq 2$, and ${ }_{U} \psi_{M}=\left(1 \wedge i_{M}\right) \psi_{U}^{\prime}$ if $m<n$ where ψ and ψ_{U}^{\prime} are given in (1.2) and (1.10).
2.2. Note that $\bar{\lambda} \wedge \bar{\eta}=0$ and hence $\bar{\lambda} \wedge \bar{k}=0$ since $\left[\Sigma^{1} C(\bar{\eta}) \wedge S Z / 2, \Sigma^{0}\right]=$ 0 . Choose maps $\zeta_{P}: P^{t} \rightarrow \Sigma^{0},{ }_{V} \zeta_{P}: P^{t} \rightarrow C(\bar{\eta}),{ }_{U} \zeta_{P}: P^{t} \wedge C(\bar{\eta}) \rightarrow \Sigma^{0}, \xi_{P}: \Sigma^{2 t} C_{t} \rightarrow$ $P^{t}, \quad{ }_{V} \xi_{P}: \Sigma^{2 t} C_{t} \rightarrow P^{t} \wedge C(\bar{\eta})$ and ${ }_{U} \xi_{P}: \Sigma^{2 t} C_{t} \wedge C(\bar{\eta}) \rightarrow P^{t}$ satisfying $\zeta_{P} i_{P}=2$, ${ }_{V} \zeta_{P} i_{P}=\bar{i}, \quad{ }_{U} \zeta_{P}\left(i_{P} \wedge 1\right)=\bar{\lambda}, j_{P} \xi_{P}=2, \quad\left(j_{P} \wedge 1\right)_{V} \xi_{P}=1 \wedge \bar{i}$ and $j_{P U} \xi_{P}=1 \wedge \bar{\lambda}$. The cofibers of the maps $2^{n-1} \zeta_{P}, 2^{n-1}{ }_{V} \zeta_{P}, 2^{n-1}{ }_{U} \zeta_{P}, 2^{n-1} \xi_{P}, 2^{n-1}{ }_{V} \xi_{P}$ and $2^{n-1}{ }_{U} \xi_{P}$ are denoted by $P_{n}^{t},{ }_{V} P_{n}^{t},{ }_{U} P_{n}^{t}, P_{n}^{t},{ }_{V} P_{n}^{t}$ and ${ }_{U}^{\prime} P_{n}^{t}$, respectively. For the map μ_{r} we can suitably choose its coextensions $\tilde{\mu}_{r},{ }_{V} \tilde{\mu}_{r},{ }_{U} \tilde{\mu}_{r}$ and its extensions $\bar{\mu}_{r}$, ${ }_{v} \bar{r}_{r},{ }_{U} \bar{\mu}_{r}$ so that their cofibers coincide with $P_{n}^{t},{ }_{V} P_{n}^{t},{ }_{U} P_{n}^{t}, P_{n}^{t},{ }_{v} P_{n}^{t}$ and ${ }_{U}{ }^{\prime} P_{n}^{t}$ $(t=4 r+1)$, respectively Similarly this can be done for the map $k_{r}(t=4 r+3)$. By means of (2.1) we observe that ${ }_{V} P_{n}^{t} \wedge C(\bar{\eta})$ and ${ }_{U} P_{n}^{t}$ have the same K_{*}-local
type as P_{n}^{t}, and dually that ${ }_{V} P_{n}^{t}$ and ${ }_{v} P_{n}^{t} \wedge C(\bar{\eta})$ have the same K_{*}-local type as ' P_{n}^{t}. Moreover we notice that ' P_{1}^{t} and P_{1}^{t} have the same K_{*}-local types as $C(\bar{\eta})$ and $\Sigma^{2 t+1} C_{t} \wedge C(\bar{\eta})$, and more generally ' P_{n}^{t} and P_{n}^{t} have the same K_{*}-local types as $\Sigma^{2 t} C_{t} \wedge M_{n-1}^{-t}$ and $\Sigma^{2 t+1} C_{t} \wedge^{\prime} M_{n-1}^{-t} \wedge C(\bar{\eta})$, respectively (see [15, Theorem 3.1]).

Using the maps l_{M}, h_{M} and λ_{M} in (2.2) and (2.4) we consider the following mixed maps

$$
\begin{gather*}
\left(i \bar{\mu}_{r}, i \mu_{s} \wedge j\right): \Sigma^{8 r+1} D_{r, s} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \vee \Sigma^{8 r-8 s+1} S Z / 2^{l} \tag{2.6}\\
\left({ }_{V} \bar{\mu}_{r} \wedge i, i \mu_{s} \wedge \bar{j}_{V}\right): \Sigma^{8 r+1} D_{r, s} \wedge V_{n} \rightarrow\left(C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee \Sigma^{8 r-8 s+1} S Z / 2^{l}
\end{gather*}
$$

$$
\left(\left(i \bar{\mu}_{r} \wedge 1\right)\left(1 \wedge \lambda_{M}\right), i \mu_{s} \wedge h_{M}\right): \Sigma^{8 r+1} D_{r, s} \wedge M_{n}^{q} \rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee \Sigma^{8 r-8 s+1} S Z / 2^{l}
$$

$$
\left(\mu_{r} \wedge j \wedge l_{M}\right) \vee i_{M}\left(\tilde{\mu}_{s} \wedge j\right):\left(\Sigma^{8 r} D_{r} \wedge S Z / 2^{m} \wedge P^{q}\right) \vee\left(\Sigma^{8 s+1} D_{s} \wedge S Z / 2^{l}\right) \rightarrow M_{n}^{q}
$$

whose cofibers are denoted by $\quad P M_{m, l, n}^{t, p}, V_{V}^{\prime} P M_{m, l, n}^{t, p}, \quad P M M_{m, i, n}^{t, p, q}$ and $M P^{\prime} M_{n, l, m}^{q, p, t}$ for $(t, p)=(4 r+1,4 s+1)$, respectively. Here we set $D_{s}=\Sigma^{0}, D_{-s-1}=C\left(\bar{\rho}_{s+1}\right)$ for $s \geq 0$ and $D_{r, s}=\Sigma^{0}, C\left(\bar{\rho}_{-r}\right), C\left(\bar{\rho}_{-s}\right)$ or $C\left(\bar{\rho}_{r s}\right)$ depending if Min $\{r, s\} \geq 0$, $r<0 \leq s, s<0 \leq r$ or $\operatorname{Max}\{r, s\}<0$. In addition the maps $\bar{\mu}_{r},{ }_{V} \bar{\mu}_{r}$ and μ_{s} are the composed ones with a suitable K_{*}-equivalence $\varepsilon_{r}: D_{r, s} \rightarrow D_{r}$ or $\varepsilon_{s}: D_{r, s} \rightarrow$ D_{s} as given in $[15,(1.3)]$. When $i \bar{\mu}_{r}$ or $\tilde{\mu}_{r} \wedge j$ is replaced by $i \bar{\mu}_{r}+\tilde{\mu}_{r} \wedge j$, we substitute " P for ' P or P in the above notations. Next we use the maps k_{s}, $\bar{k}_{r}, v \bar{k}_{r}$ and \tilde{k}_{r} as well as $\mu_{s}, \bar{\mu}_{r}, v \bar{\mu}_{r}$ and $\tilde{\mu}_{r}$ to construct small spectra denoted by the same symbols for the other pairs (t, p) of odd integers.

Denote by $M P_{n}^{q, t}$ and ${ }_{V} M P_{n}^{q, t}$ for $t=4 r+1$ the small spectra constructed as the cofibers of the composite maps

$$
i_{M} \tilde{\mu}_{r}: \Sigma^{8 r+2} D_{r} \rightarrow M_{n}^{q} \quad \text { and } \quad i_{M V} \tilde{\mu}_{r}: \Sigma^{8 r+2} D_{r} \rightarrow{ }_{V} M_{n}^{q}
$$

in which i_{M} 's are the canonical inclusions (see [8] or [12]). Use the maps \tilde{k}_{r} and ${ }_{v} \tilde{k}_{r}$ instead of $\tilde{\mu}_{r}$ and ${ }_{v} \tilde{\mu}_{r}$ to construct small spectra denoted by the same symbols for $t=4 r+3$. Evidently these spectra are exhibited by the following cofiber sequences

$$
\begin{gather*}
P^{t} \xrightarrow{2^{n-1} i_{P S} \zeta_{P}} P^{q} \xrightarrow{i_{P, M P}} M P_{n}^{q, t} \xrightarrow{j_{M P, P}} \Sigma^{1} P^{t}, \\
P^{t^{2-1} i_{P} \wedge{ }_{P} \zeta_{P}} P^{q} \tag{2.7}
\end{gather*} C(\bar{\eta}) \xrightarrow{i_{P, M P}}{ }_{V} M P_{n}^{q, t} \xrightarrow{j_{M P, P}} \Sigma^{1} P^{t} .
$$

By means of (2.1) and (2.7) we observe that ${ }_{V} M P_{n}^{q, t}$ has the same K_{*}-local type as $M P_{n}^{q, t}$. Moreover it is immediately shown that
(2.8) $\quad M P_{n}^{q, t} \wedge S Z / 2^{m}=\left(\Sigma^{1} P^{t} \wedge S Z / 2^{m}\right) \vee\left(P^{q} \wedge S Z / 2^{m}\right)$ if $m<n$ and $n \geq 3$, and the smash product on the left side has the same K_{*}-local type as the wedge sum on the right side even if $m=1$ and $n=2$.

Note that $\left[\Sigma^{3} M P_{n}^{q, t}, K O \wedge M P_{n}^{q, t}\right] \cong Z \oplus Z / 2^{n-1}$ and ψ_{R}^{k} behaves as $k^{2}\left(\begin{array}{cc}k^{t-q} & 0 \\ k^{t-q}-1 / 2 & 1\end{array}\right)$ on $\left(Z \oplus Z / 2^{n-1}\right) \otimes Z[1 / k]$, because there exists an isomorphism $j_{M P, P}^{*}:\left[\Sigma^{4} P^{t}, K O \wedge M P_{n}^{q, t}\right] \cong\left[\Sigma^{3} M P_{n}^{q, t}, K O \wedge M P_{n}^{q, t}\right]$. Since $\eta^{2} \wedge 1$: $\Sigma^{2} M P_{n}^{q, t} \rightarrow M P_{n}^{q, t}$ becomes $K O_{*}$-trivial, we can easily check that it is divisible by 2 in $\left[\Sigma^{2} M P_{n}^{q, t}, S_{K} \wedge M P_{n}^{q, t}\right]$ whenever $n \geq 3$. On the other hand, we recall that $\left[\Sigma^{2} P^{q}, K O \wedge P^{q}\right] \cong Z \oplus Z$ and ψ_{R}^{k} behaves as $k^{q+1}\left(\begin{array}{cc}1 / k^{2 q} & 0 \\ 1-k^{2 q} / 2 k^{2 q} & 1\end{array}\right)$ on $(Z \oplus Z) \oplus Z[1 / k]$. Then it is also checked that $\eta \wedge 1: \Sigma^{1} P^{q} \rightarrow P^{q}$ is divisible by 2 in $\left[\Sigma^{1} P^{q}, S_{K} \wedge P^{q}\right]$ and $\eta \wedge i_{P, M P}: \Sigma^{1} P^{q} \rightarrow M P_{n}^{q, t}$ is divisible by 4 in [$\left.\Sigma^{1} P^{q}, S_{K} \wedge M P_{n}^{q, t}\right]$ under the assumption that $n=1$ or 2 . Hence it follows that $1 \wedge \eta^{2} j: \Sigma^{1} M P_{n}^{q, t} \wedge S Z / 4 \rightarrow M P_{n}^{q, t}$ is divisible by 2 in $\left[\Sigma^{1} M P_{n}^{q, t} \wedge S Z / 4\right.$, $\left.S_{K} \wedge M P_{n}^{q, t}\right]$ if $n=1$ or 2 . Consequently we verify that $1 \wedge \eta^{2} j: \Sigma^{1} M P_{n}^{q, t} \wedge$ $S Z / 2 \rightarrow M P_{n}^{q, t}$ is always $S_{K_{*}}$-trivial. Therefore there exists a K_{*}-equivalence $e_{M P}: M P_{n}^{q, t} \wedge C(\bar{\eta}) \rightarrow S_{K} \wedge M P_{n}^{q, t}$ satisfying $e_{M P}(1 \wedge \bar{i})=2\left(l_{K} \wedge 1\right)$, which gives rise to a K_{*}-equivalence $e_{M P, m}: M P_{n}^{q, t} \wedge V_{m} \rightarrow S_{K} \wedge M P_{n}^{q, t} \wedge S Z / 2^{m}$. Thus we observe that
(2.9) $M P_{n}^{q, t} \wedge C(\bar{\eta})$ has the same K_{*}-local type as $M P_{n}^{q, t}$, and $M P_{n}^{q, t} \wedge V_{m}$ and $M P_{n}^{q, t} \wedge U_{m}$ have the same K_{*}-local type as $M P_{n}^{q, t} \wedge S Z / 2^{m}$ for any $m \geq 1$.

3.1. We now use the following maps

$$
\rho_{r}: \Sigma^{8 r-1} D_{r} \rightarrow \Sigma^{0} \quad \text { and } \quad n_{r}^{\prime}: \Sigma^{8 r+3} C(\bar{\eta}) \rightarrow D_{2 r+1}^{\prime}
$$

introduced in [14] where $D_{s}=D_{s}^{\prime}=\Sigma^{0}, D_{-s-1}=C\left(\bar{\rho}_{s+1}\right)$ and $D_{-s-1}^{\prime}=$ $\Sigma^{-8 s-9} C\left(\tilde{\rho}_{s+1}\right)$ for $s \geq 0$. These maps ρ_{r} and n_{r}^{\prime} represent generators of [$\left.\Sigma^{8 r-1}, S_{K}\right] \cong Z / m(4 r)$ and $\left[\Sigma^{8 r+3} C(\bar{\eta}), S_{K}\right] \cong Z / m(4 r+2)$, respectively. The cofibers of the maps $a \rho_{r}$ and $a n_{r}^{\prime}(a \geq 1)$ are denoted by $J^{4 r, a}$ and $J^{4 r+2, a}$. Consider the following maps

$$
\begin{gathered}
a\left(\rho_{r} \wedge i\right): \Sigma^{8 r-1} D_{r} \rightarrow S Z / 2^{m}, \quad a\left(\rho_{r} \wedge j\right): \Sigma^{8 r-2} D_{r} \wedge S Z / 2^{m} \rightarrow \Sigma^{0}, \\
a\left(\rho_{r} \wedge \bar{i}_{V}\right): \Sigma^{8 r-1} D_{r} \wedge C(\bar{\eta}) \rightarrow V_{m}, \quad a\left(\rho_{r} \wedge \bar{j}_{V}\right): \Sigma^{8 r-2} D_{r} \wedge V_{m} \rightarrow \Sigma^{0}, \\
a\left(\rho_{r} \wedge \bar{i}_{U}\right): \Sigma^{8 r-1} D_{r} \rightarrow U_{m}, \quad a\left(\rho_{r} \wedge \bar{j}_{U}\right): \Sigma^{8 r-2} D_{r} \wedge U_{m} \rightarrow C(\bar{\eta})
\end{gathered}
$$

whose cofibers are denoted by $J_{m}^{t, a}, J_{m}^{t, a}, V_{m}^{t, a}, v_{m}^{\prime} J_{m}^{t, a}, J_{m}^{t, a}$ and ${ }_{U}^{\prime} J_{m}^{t, a}(a \geq 1)$ for $t=4 r \neq 0$, respectively. Use the map n_{r}^{\prime} instead of ρ_{r} to construct small spectra denoted by the same symbols for $t=4 r+2$. Note that $v J_{m}^{t, a}$ and $v_{j}^{J_{m}^{l, a}}$ have the same K_{*}-local types as $U_{m}^{J_{m}^{t, a}} \wedge C(\bar{\eta})$ and $U_{m}^{J_{m}^{t, a}} \wedge C(\bar{\eta})$, respectively.

The spectra $J_{m}^{t, a}, V_{m}^{t, a}$ and $U_{m}^{t, a}$ are exhibited by the following cofiber sequences

$$
\begin{align*}
& C_{t}^{\prime} \xrightarrow{2 m_{i}} J^{t, a} \xrightarrow{l_{s}} J_{m}^{t, a} \xrightarrow{h_{f}} \Sigma^{1} C_{t}^{\prime}, \tag{3.1}
\end{align*}
$$

in which $C_{4 r}^{\prime}=\Sigma^{0}, C_{4 r+2}^{\prime}=D_{2 r+1}^{\prime}$ and $i_{J}: C_{t}^{\prime} \rightarrow J^{t, a}$ denotes the canonical inclusion. By means of (1.5) and (1.12) it is evident that
(3.2) i) $J_{n}^{t, a} \wedge S Z / 2^{m}=\left(\Sigma^{1} C_{t}^{\prime} \wedge S Z / 2^{m}\right) \vee\left(J^{t, a} \wedge S Z / 2^{m}\right)$ and $U_{n}^{J_{n}^{t, a}} \wedge U_{m}=$ $\left(\Sigma^{1} C_{t}^{\prime} \wedge C(\bar{\eta}) \wedge U_{m}\right) \vee\left(J^{t, a} \wedge U_{m}\right)$ if $m \leq n$ and $n \geq 2$; and
ii) $J_{n}^{t, a} \wedge U_{m}=\left(\Sigma^{1} C_{t}^{\prime} \wedge U_{m}\right) \vee\left(J^{t, a} \wedge U_{m}\right)$ and ${ }_{U} J_{n}^{t, a} \wedge S Z / 2^{m}=\left(\Sigma^{1} C_{t}^{\prime} \wedge\right.$ $\left.C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee\left(J^{t, a} \wedge S Z / 2^{m}\right)$ if $m<n$.

When $a=m(t) / 2$ we shall drop the superscript " a " in $J^{t, a}, J_{m}^{t, a}, J_{m}^{t, a}, J_{m}^{t, a}$, $v^{\prime} J_{m}^{t, a}$ and so on for simplicity. We are only interested in the small spectra $J_{m}^{t}, J_{m}^{t}, J_{m}^{t}$ and $V_{V}^{\prime} J_{m}^{t}$ as treated in the introduction. Choose a map $\zeta_{J}: J^{t} \rightarrow C_{t}^{\prime}$ with $\zeta_{J} i_{J}=2$, whose cofiber I_{1}^{t} has the same K_{*}-local type as $\Sigma^{2 t+1} C_{t}$ with $C_{4 r}=D_{r}$ and $C_{4 r+2}=C(\bar{\eta})$. Then there exists a map $\tilde{\alpha}_{t}: \Sigma^{2 t} C_{t} \rightarrow C_{t}^{\prime} \wedge S Z / 2$ whose cofiber coincides with I_{1}^{t} where $\tilde{\alpha}_{4 r}$ and $\tilde{\alpha}_{4 r+2}$ are coextensions of $a \rho_{r}$ and $a n_{r}^{\prime}$ with $a=m(t) / 2$. Denote by I_{n}^{t} and ${ }_{V} I_{n+1}^{t}(n \geq 1)$ the cofibers of the composite maps $(1 \wedge \pi) \tilde{\alpha}_{t}: \Sigma^{2 t} C_{t} \rightarrow C_{t}^{\prime} \wedge S Z / 2^{n}$ and $\left(1 \wedge i_{V} \pi\right) \tilde{\alpha}_{t}: \Sigma^{2 t} C_{t} \rightarrow C_{t}^{\prime} \wedge$ V_{n+1}. By means of (1.7) we can show that I_{n}^{t} and V_{n+1}^{t} have the same K_{*}-local types as $\Sigma^{2 t+1} C_{t} \wedge{ }^{\prime} J_{n-1}^{-t}$ and $\Sigma^{2 t+1} C_{t} \wedge \nu^{\prime} J_{n}^{-t}$, respectively (cf. [12, Lemma 1.4]).

The spectra I_{n}^{t} and ${ }_{V} I_{n+1}^{t}$ may be regarded as the cofibers of the maps $2^{n-1} \zeta_{J}: J^{t} \rightarrow C_{t}^{\prime}$ and $2^{n-1}\left(\zeta_{J} \wedge \bar{i}\right): J^{t} \rightarrow C_{t}^{\prime} \wedge C(\bar{\eta})$, respectively. Similarly to $M P_{n}^{q, t}$ and ${ }_{V} M P_{n}^{q, t}$ in (2.7) we construct small spectra $M I_{n}^{q, t},{ }_{V} M I_{n+1}^{q, t}$, $J P_{n}^{q, t}$, ${ }_{V} J P_{n}^{q, t}, J I_{n}^{q, t}$ and ${ }_{V} J I_{n+1}^{q, t}$ as the cofibers of the maps $2^{n-1}\left(i_{P} \wedge \zeta_{J}\right): J^{t} \rightarrow P^{q} \wedge C_{t}^{\prime}$, $2^{n-1}\left(i_{P} \wedge \zeta_{J} \wedge \bar{i}\right): J^{t} \rightarrow P^{q} \wedge C_{t}^{\prime} \wedge C(\bar{\eta}), 2^{n-1}\left(i_{J} \wedge \zeta_{P}\right): C_{q}^{\prime} \wedge P^{t} \rightarrow J^{q}, 2^{n-1}\left(i_{J} \wedge{ }_{\nu} \zeta_{P}\right):$ $C_{q}^{\prime} \wedge P^{t} \rightarrow J^{q} \wedge C(\bar{\eta}), 2^{n-1}\left(i_{J} \wedge \zeta_{J}\right): C_{q}^{\prime} \wedge J^{t} \rightarrow J^{q} \wedge C_{t}^{\prime}$ and $2^{n-1}\left(i_{J} \wedge \zeta_{J} \wedge \bar{i}\right): C_{q}^{\prime} \wedge$ $J^{t} \rightarrow J^{q} \wedge C_{t}^{\prime} \wedge C(\bar{\eta})$, respectively. By means of (2.1) it is easily shown that ${ }_{V} M I_{n+1}^{q, t}$ and ${ }_{V} J P_{n}^{q, t}$ have the same K_{*}-local types as $M I_{n+1}^{q, t}$ and $J P_{n}^{q, t} \wedge C(\bar{\eta})$, respectively.
3.2. Consider the maps $\bar{\pi}_{V}, \bar{\pi}_{U}^{\prime}$ and π_{V} given in (1.7) and (1.9) for $m<n$, and then set $\bar{\pi}_{V}=(1 \wedge \pi) \bar{\pi}_{V}: V_{n} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{n-1} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m}, \bar{\pi}_{U}^{\prime}=\bar{\pi}_{U}^{\prime}(1 \wedge \pi)$: $C(\bar{\eta}) \wedge S Z / 2^{m} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{n-1} \rightarrow U_{n}$ and $\pi_{V}=\pi \pi_{V}: V_{m} \rightarrow S Z / 2^{m+1} \rightarrow S Z / 2^{n}$ in case $m \geq n$. We denote by $S J_{m, l, n}^{t, p, a, b},{ }_{V} S J_{m, l, n}^{t, p, a, b},{ }_{U} S J_{m, l, n}^{t, p, a, b}$ and ${ }_{W} S J_{m, l, n}^{t, p, a, b}(a, b \geq 1)$ for $(t, p)=(4 r, 4 s)$, respectively, the small spectra constructed as the cofibers of the following mixed maps

$$
\left(a \rho_{r} \wedge \pi, b i \rho_{s} \wedge j\right): \Sigma^{8 r-1} D_{r, s} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \vee \Sigma^{8 r-8 s+1} S Z / 2^{l}
$$

$$
\begin{equation*}
\left(a \rho_{r} \wedge \bar{\pi}_{V}, b i \rho_{s} \wedge \bar{j}_{V}\right): \Sigma^{8 r-1} D_{r, s} \wedge V_{n} \rightarrow\left(C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee \Sigma^{8 r-8 s+1} S Z / 2^{l} \tag{3.3}
\end{equation*}
$$

$$
\begin{gathered}
\left(a \rho_{r} \wedge i_{U} \pi, b \bar{i}_{U} \rho_{s} \wedge j\right): \Sigma^{8 r-1} D_{r, s} \wedge S Z / 2^{n} \rightarrow U_{m} \vee \Sigma^{8 r-8 s+1} U_{l}, \\
\left(a \rho_{r} \wedge \omega, b \bar{i}_{U} \rho_{s} \wedge \bar{j}_{V}\right): \Sigma^{8 r-1} D_{r, s} \wedge V_{n} \rightarrow V_{m} \vee \Sigma^{8 r-8 s+1} U_{l} .
\end{gathered}
$$

Use the maps n_{r}^{\prime} and n_{s}^{\prime} as well as ρ_{r} and ρ_{s} to construct small spectra denoted by the same symbols for the other pairs (t, p) of non-zero even integers.

Compose the map $\lambda_{M}: M_{n}^{q} \rightarrow S Z / 2^{n} \wedge P^{q}$ given in (2.4) before the obvious map $\pi \wedge 1: S Z / 2^{n} \wedge P^{q} \rightarrow S Z / 2^{m} \wedge P^{q}$ and denote it again by $\lambda_{M}: M_{n}^{q} \rightarrow$ $S Z / 2^{m} \wedge P^{q}$. Using the maps h_{M} and l_{M}^{\prime} in (2.2) we consider the following mixed maps

$$
\begin{aligned}
&\left(a \rho_{r} \wedge \lambda_{M}, b i \rho_{s} \wedge h_{M}\right): \Sigma^{8 r-1} D_{r, s} \wedge M_{n}^{q} \rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee \Sigma^{8 r-8 s+1} S Z / 2^{l} \\
&\left(a \rho_{r} \wedge \lambda_{M}, b \bar{i}_{U} \rho_{s} \wedge h_{M}\right): \Sigma^{8 r-1} D_{r, s} \wedge M_{n}^{q} \rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee \Sigma^{8 r-8 s+1} U_{l} \\
&\left(a i \rho_{r} \wedge l_{M}^{\prime}, b \rho_{s} \wedge(1 \wedge \pi) j_{M}^{\prime}\right): \Sigma^{8 r-1} D_{r, s} \wedge M_{n}^{q} \\
& \rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee\left(\Sigma^{8 r-8 s+2 q-1} C_{q} \wedge S Z / 2^{l}\right)
\end{aligned}
$$

$\left(a i \rho_{r} \wedge l_{M}^{\prime}, b \rho_{s} \wedge\left(1 \wedge i_{U} \pi\right) j_{M}^{\prime}\right): \Sigma^{8 r-1} D_{r, s} \wedge^{\prime} M_{n}^{q}$

$$
\rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee\left(\Sigma^{8 r-8 s+2 q-1} C_{q} \wedge U_{l}\right)
$$

whose cofibers are denoted by $S J M_{m, i, n}^{t, p, q, a, b},{ }_{U} S J M_{m, i, n}^{t, p, q, a, b}, J S^{\prime} M_{m, l, n}^{t, p, q, a, b}$ and ${ }_{U} J S^{\prime} M_{m, i, n}^{t, p, a, b}(a, b \geq 1)$ for $(t, p)=(4 r, 4 s)$, respectively. Use the maps n_{r}^{\prime} and n_{s}^{\prime} as well as ρ_{r} and ρ_{s} to construct small spectra denoted by the same symbols for the other pairs (t, p) of non-zero even integers.

For any $m \leq n$ there exist the following cofiber sequences
in which ${ }_{U} \lambda_{J}^{\prime}=\left(i_{U} \wedge 1\right) \lambda_{J}$ and $J_{0}^{q, a}$ stands for $\Sigma^{2 q} C_{q}$. Using the maps h_{J}, l_{J}, ${ }_{U} h_{J}$ and ${ }_{U} l_{J}$ in (3.1) and $\lambda_{J}: J_{n}^{q, a} \rightarrow S Z / 2^{n} \wedge J^{q, a}$ and ${ }_{U} \lambda_{J}:_{U} J_{n}^{q, a} \rightarrow S Z / 2^{n-1} \wedge J^{q, a}$ we consider the following mixed maps

$$
\begin{aligned}
& \Sigma^{-1} S Z / 2^{m} \wedge J^{q, a} \xrightarrow{j \wedge l_{L}} J_{n-m}^{q, a} \xrightarrow{\omega_{C}} J_{n}^{q, a} \xrightarrow{\lambda_{j}} S Z / 2^{m} \wedge J^{q, a},
\end{aligned}
$$

$$
\begin{align*}
& \Sigma^{-1} U_{m} \wedge J^{q, a} \xrightarrow{\bar{j}_{V} \wedge l_{j}} C(\bar{\eta}) \wedge J_{n-m}^{q, a} \xrightarrow{U}{ }_{U}^{\bar{\lambda}_{j}^{\prime}} J_{n}^{j, a} \xrightarrow{m} U_{m} \wedge J^{q, a}, \tag{3.5}
\end{align*}
$$

$\left(\left(i \bar{\mu}_{r} \wedge 1\right)\left(1 \wedge \lambda_{J}\right), i \mu_{s} \wedge h_{J}\right): \Sigma^{8 r+1} D_{r, s} \wedge J_{n}^{q, a}$

$$
\rightarrow\left(S Z / 2^{m} \wedge J^{q, a}\right) \vee\left(\Sigma^{8 r-8 s+1} S Z / 2^{l} \wedge C_{q}^{\prime}\right)
$$

$\left(\left(i \bar{\mu}_{r} \wedge 1\right)\left(1 \wedge{ }_{U} \lambda_{J}\right), i \mu_{s} \wedge_{U} h_{J}\right): \Sigma^{8 r+1} D_{r, s} \wedge_{U} J_{n}^{q, a}$

$$
\begin{equation*}
\rightarrow\left(S Z / 2^{m} \wedge J^{q, a}\right) \vee\left(\Sigma^{8 r-8 s+1} S Z / 2^{l} \wedge C_{q}^{\prime} \wedge C(\bar{\eta})\right) \tag{3.6}
\end{equation*}
$$

$$
i_{J}\left(1 \wedge \tilde{\mu}_{r} \wedge j\right) \vee\left(\mu_{s} \wedge j \wedge l_{J}\right)
$$

$$
\left(\Sigma^{8 r+1} C_{q}^{\prime} \wedge D_{r} \wedge S Z / 2^{m}\right) \vee\left(\Sigma^{8 s} D_{s} \wedge S Z / 2^{l} \wedge J^{q, a}\right) \rightarrow J_{n}^{q, a}
$$

$$
i_{J}\left(1 \wedge{ }_{U} \tilde{\mu}_{r} \wedge j\right) \vee\left(\mu_{s} \wedge j \wedge_{U} l_{J}\right):
$$

$$
\left(\Sigma^{8 r+1} C_{q}^{\prime} \wedge D_{r} \wedge C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee\left(\Sigma^{8 s} D_{s} \wedge S Z / 2^{l} \wedge J^{q, a}\right) \rightarrow_{U} J_{n}^{q, a}
$$

in which i_{J} 's are the canonical inclusions. These cofibers are denoted by ${ }^{\prime} P M J_{m, l, n}^{t, p, q, a}, \quad{ }_{U}^{\prime} P M J_{m, l, n}^{t, p, q, a}, J^{\prime} M P_{n, l, m}^{q, p, t, a}$ and ${ }_{U} J^{\prime} M P_{n, l, m}^{q, p, t, a}(a \geq 1)$ for $(t, p)=$ $(4 r+1,4 s+1)$, respectively. Use the maps $k_{r}, \bar{k}_{r}, \tilde{k}_{r}$ and ${ }_{U} \tilde{k}_{r}$ as well as μ_{r}, $\bar{\mu}_{r}, \tilde{\mu}_{r}$ and ${ }_{u} \tilde{\mu}_{r}$ to construct small spectra denoted by the same symbols for the other pairs (t, p) of odd integers.

Next we take the maps $\lambda_{J}: J_{n}^{q, b} \rightarrow S Z / 2^{n} \wedge J^{q, b}{ }_{U} \lambda_{J}:{ }_{U} J_{n+1}^{q, b} \rightarrow S Z / 2^{n} \wedge J^{q, b}$, $U^{\lambda_{J}^{\prime}}: J_{n+1}^{q, b} \rightarrow U_{n} \wedge J^{q, b}$ and ${ }_{W} \lambda_{J}:{ }_{U} J_{n}^{q, b} \rightarrow U_{n} \wedge J^{q, b}$ given in (3.5) and then compose them before the obvious map $\pi \wedge 1: S Z / 2^{n} \wedge J^{q, b} \rightarrow S Z / 2^{m} \wedge J^{q, b}$ or $\omega \wedge$ $1: U_{n} \wedge J^{q, b} \rightarrow U_{m} \wedge J^{q, b}$. This compositions are again denoted by the same symbols $\lambda_{J}, U_{J} \lambda_{J},{ }_{U} \lambda_{J}^{\prime}$ and ${ }_{W} \lambda_{J}$. Using the maps $h_{J}, l_{J},{ }_{U} h_{J}$ and ${ }_{U} l_{J}$ in (3.1) we consider the following mixed maps

$$
\begin{aligned}
& \left(a \rho_{r} \wedge \lambda_{J}, c i \rho_{s} \wedge h_{J}\right): \Sigma^{8 r-1} D_{r, s} \wedge J_{n}^{q, b} \rightarrow\left(S Z / 2^{m} \wedge J^{q, b}\right) \vee\left(\Sigma^{8 r-8 s+1} S Z / 2^{l} \wedge C_{q}^{\prime}\right), \\
& \left(a \rho_{r} \wedge{ }_{U} \lambda_{J}^{\prime}, c \bar{i}_{U} \rho_{s} \wedge h_{J}\right): \Sigma^{8 r-1} D_{r, s} \wedge J_{n}^{q, b} \rightarrow\left(U_{m} \wedge J^{q, b}\right) \vee\left(\Sigma^{8 r-8 s+1} U_{l} \wedge C_{q}^{\prime}\right), \\
& \left(a \rho_{r} \wedge{ }_{U} \lambda_{J}, c i \rho_{s} \wedge{ }_{U} h_{J}\right): \Sigma^{8 r-1} D_{r, s} \wedge U_{U}^{q, b} \\
& \\
& \rightarrow\left(S Z / 2^{m} \wedge J^{q, b}\right) \vee\left(\Sigma^{8 r-8 s+1} S Z / 2^{l} \wedge C_{q}^{\prime} \wedge C(\bar{\eta})\right), \\
& \left(a \rho_{r} \wedge W_{W} \lambda_{J}, \bar{i}_{U} \rho_{s} \wedge{ }_{U} h_{J}\right): \Sigma^{8 r-1} D_{r, s} \wedge U_{U}^{q, b} \\
& \rightarrow\left(U_{m} \wedge J^{q, b}\right) \vee\left(\Sigma^{8 r-8 s+1} U_{l} \wedge C_{q}^{\prime} \wedge C(\bar{\eta})\right), \\
& 3.7) \quad\left(a \rho_{r} \wedge i_{J}(1 \wedge \pi)\right) \vee\left(c \rho_{s} \wedge j \wedge l_{J}\right): \\
& \quad\left(\Sigma^{8 r-1} D_{r} \wedge C_{q}^{\prime} \wedge S Z / 2^{m}\right) \vee\left(\Sigma^{8 s-2} D_{s} \wedge S Z / 2^{l} \wedge J^{q, b}\right) \rightarrow J_{n}^{q, b}, \\
& \left(a \rho_{r} \wedge i_{J}\left(1 \wedge \pi_{V}\right)\right) \vee\left(c \rho_{s} \wedge \bar{j}_{V} \wedge l_{J}\right): \\
& \left(\Sigma^{8 r-1} D_{r} \wedge C_{q}^{\prime} \wedge V_{m}\right) \vee\left(\Sigma^{8 s-2} D_{s} \wedge V_{l} \wedge J^{q, b}\right) \rightarrow J_{n}^{q, b},
\end{aligned}
$$

$$
\begin{aligned}
& \left(a \rho_{r} \wedge i_{J}\left(1 \wedge \bar{\pi}_{U}^{\prime}\right)\right) \vee\left(c \rho_{s} \wedge j \wedge_{U} l_{J}\right): \\
& \quad\left(\Sigma^{8 r-1} D_{r} \wedge C_{q}^{\prime} \wedge C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee\left(\Sigma^{8 s-2} D_{s} \wedge S Z / 2^{l} \wedge J^{q, b}\right) \rightarrow_{U} J_{n}^{q, b} \\
& \left(a \rho_{r} \wedge\right. \\
& \left.\quad i_{J}(1 \wedge \omega)\right) \vee\left(c \rho_{s} \wedge \bar{j}_{V} \wedge_{U} l_{J}\right): \\
& \quad\left(\Sigma^{8 r-1} D_{r} \wedge C_{q}^{\prime} \wedge U_{m}\right) \vee\left(\Sigma^{8 s-2} D_{s} \wedge V_{l} \wedge J^{q, b}\right) \rightarrow_{U} J_{n}^{q, b}
\end{aligned}
$$

whose cofibers are denoted by $S J_{m, i, n}^{t, p, q, a, c, b}, S_{U} J J_{m, i, n}^{t, p, q, a, c, b}, S J_{U} J_{m, l, n}^{t, p, q, a, c, b}$, $S_{U} J_{U} J_{m, l, n}^{t, p, a, a, c, b}, J^{\prime} J S_{n, l, m}^{q, p, t, b, c, a},{ }_{V} J^{\prime} J S_{n, l, m}^{q, p, t, c, c, a},{ }_{U} J^{\prime} J S_{n, l, m}^{q, p, t, b, c, a}$ and ${ }_{W} J^{\prime} J S_{n, l, m}^{q, p, t, b, c, a}(a, b$, $c \geq 1)$ for $(t, p)=(4 r, 4 s)$, respectively. Use the maps n_{r}^{\prime} and n_{s}^{\prime} as well as ρ_{r} and ρ_{s} to construct small spectra denoted by the same symbols for the other pairs (t, p) of non-zero even integers.
3.3. Denote by $M_{n, l}^{1}$ and ${ }_{W} M_{n, l}^{1}$ the cofibers of the maps $i \eta j: S Z / 2^{l} \rightarrow$ $S Z / 2^{n}$ and $\bar{i}_{U} \eta \bar{j}_{V}: V_{l} \rightarrow U_{n}$, and by $M S_{n, l, m}^{1, t, a}$ and ${ }_{W} M S_{n, l, m}^{1, t, a}(a \geq 1)$ with $t=4 r$ those of the following mixed maps

$$
\begin{gather*}
\left(a \rho_{r} \wedge \pi\right) \vee i \eta j:\left(\Sigma^{8 r-1} D_{r} \wedge S Z / 2^{m}\right) \vee S Z / 2^{l} \rightarrow S Z / 2^{n} \\
\quad\left(a \rho_{r} \wedge \omega\right) \vee \bar{i}_{U} \eta \bar{j}_{V}:\left(\Sigma^{8 r-1} D_{r} \wedge U_{m}\right) \vee V_{l} \rightarrow U_{n} \tag{3.8}
\end{gather*}
$$

respectively. Use the map n_{r}^{\prime} instead of ρ_{r} to construct small spectra denoted by the same symbols for $t=4 r+2$. By definition it is evident that
(3.9) $S Z / 2 \wedge S Z / 2=M_{1,1}^{1}, J_{1}^{t, a} \wedge S Z / 2=M S_{1,1,1}^{1, t, a}$ and ${ }_{U} J_{1}^{t, a} \wedge U_{1}$ has the same K_{*}-local type as ${ }_{W} M S_{1,1,1}^{1, t, a}$.

Choose maps $k_{M}: \Sigma^{1} \rightarrow M_{n, l}^{1}, k_{M}^{\prime}: M_{n, l}^{1} \rightarrow \Sigma^{1},{ }_{W} k_{M}: \Sigma^{1} C(\bar{\eta}) \rightarrow{ }_{W} M_{n, l}^{1}$ and ${ }_{W} k_{M}^{\prime}:{ }_{W} M_{n, l}^{1} \rightarrow \Sigma^{1} C(\bar{\eta})$ satisfying $j_{M} k_{M}=i, 2^{l} k_{M}=i_{M} i \eta, k_{M}^{\prime} i_{M}=j, 2^{n} k_{M}^{\prime}=\eta j j_{M}$, $j_{M W} k_{M}=\bar{i}_{V}, 2^{l-1}{ }_{W} k_{M} \bar{i}=i_{M} \bar{i}_{U} \eta,{ }_{W} k_{M}^{\prime} i_{M}=\bar{j}_{U}$ and $2^{n-1} \bar{\lambda}_{W} k_{M}^{\prime}=\eta \bar{j}_{V} j_{M}$ in which i_{M} 's and j_{M} 's are the canonical inclusions and projections. Then the small spectra $M_{n, l}^{1}$ and ${ }_{W} M_{n, l}^{1}$ are exhibited by the following cofiber sequences

$$
\begin{aligned}
& S Z / 2^{l} \xrightarrow{i \eta j} S Z / 2^{n} \xrightarrow{i_{M}-k_{M j}} M_{n, l}^{1} \xrightarrow{j_{M}+i k_{M}^{\prime}} \Sigma^{1} S Z / 2^{l}, \\
& V_{l} \xrightarrow{\bar{i}_{V} \eta \bar{j}_{V}} U_{n} \xrightarrow{i_{M}-{ }_{W} k_{M} \bar{j}_{V}}{ }_{W} M_{n, l}^{1} \xrightarrow{j_{M}+\bar{i}_{V} k_{M}} \Sigma^{1} V_{l},
\end{aligned}
$$

which give rise to the following cofiber sequences

$$
\begin{align*}
& J_{l}^{t, a^{\prime}} \xrightarrow{\eta_{H}} J_{n}^{t, a^{\prime \prime}} \rightarrow M S_{n, l, m}^{1, t, a} \rightarrow \Sigma^{1} J_{l}^{t^{t, a^{\prime}}}, \tag{3.10}\\
& { }_{V} J_{l}^{t, a^{\prime}} \xrightarrow{\Pi_{J}}{ }_{U} J_{n}^{t, a^{\prime \prime}} \rightarrow{ }_{W} M S_{n, l, m}^{1, t, a} \rightarrow \Sigma^{1}{ }_{V} J_{l}^{t, a^{\prime}},
\end{align*}
$$

respectively, where $a^{\prime}=\operatorname{Max}\left\{a, 2^{m-n} a\right\}$ and $a^{\prime \prime}=\operatorname{Max}\left\{a, 2^{n-m} a\right\}$.
Denote by $L_{n, l}^{1},{ }_{V} L_{n, l}^{1}$ and ${ }_{U} L_{n, l}^{1}$ the cofibers of the maps $k_{-1} \wedge \tilde{\eta} \bar{\eta}$: $\Sigma^{-3} C(\tilde{\eta}) \wedge S Z / 2^{l} \rightarrow S Z / 2^{n}, 2^{k} \omega: V_{l} \rightarrow V_{n}$ and $2^{k} \omega: U_{l} \rightarrow U_{n}$, and by $L S_{n, l, m}^{1, t, a}$ and ${ }_{W} L S_{n, l, m}^{1, t, a}(a \geq 1)$ for $t=4 r$ those of the following mixed maps

$$
\begin{gather*}
\left(a \rho_{r} \wedge \pi\right) \vee 2^{k-1}(\bar{\lambda} \wedge \pi):\left(\Sigma^{8 r-1} D_{r} \wedge S Z / 2^{m}\right) \vee\left(C(\bar{\eta}) \wedge S Z / 2^{l}\right) \rightarrow S Z / 2^{n} \\
\left(a \rho_{r} \wedge \omega\right) \wedge 2^{k} \omega:\left(\Sigma^{8 r-1} D_{r} \wedge V_{m}\right) \vee V_{l} \rightarrow V_{n} \tag{3.11}
\end{gather*}
$$

respectively, where $k=\operatorname{Min}\{n, l\}$. Use the map n_{r}^{\prime} instead of ρ_{r} to construct small spectra denoted by the same symbols for $t=4 r+2$.

The small spectra ${ }_{V} L_{n, l}^{1}$ and ${ }_{U} L_{n, l}^{1}$ are also obtained as the cofibers of the maps $2^{k-1}(\bar{i} \wedge \pi): S Z / 2^{l} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{n}$ and $2^{k-1}(\bar{\lambda} \wedge \pi): C(\bar{\eta}) \wedge S Z / 2^{l} \rightarrow$ $S Z / 2^{n}$, respectively. Therefore we observe that ${ }_{V} L_{n, l}^{1} \wedge C(\bar{\eta})$ and ${ }_{U} L_{n, l}^{1}$ have the same K_{*}-local type as $L_{n, l}^{1}$. By definition it is now evident that
(3.12) the smash product $V_{n} \wedge S Z / 2^{n}$ has the same K_{*}-local type as $L_{n, n}^{1} \wedge$ $C(\bar{\eta})$, and $U_{n}^{J_{n}^{t, a}} \wedge S Z / 2^{n}=L S_{n, n, n}^{1, t, a}$ and $J_{n}^{t, a} \wedge V_{n}={ }_{W} L S_{n, n, n}^{1, t, a}$.

More generally there exist the following cofiber sequences

$$
\begin{gather*}
U_{l}^{J_{l}^{t, a^{\prime}}} \xrightarrow{\pi_{J}} J_{n}^{t, a^{\prime \prime}} \rightarrow L S_{n, l, m}^{1, t, a} \rightarrow \Sigma^{1}{ }_{U} J_{l}^{t, a^{\prime}}, \\
J_{l}^{t, a^{\prime}} \xrightarrow{\pi_{J}} C(\bar{\eta}) \wedge J_{n}^{t, a^{\prime \prime}} \rightarrow{ }_{W} L S_{n, l, m}^{1, t, a} \rightarrow \Sigma^{1} J_{l}^{t, a^{\prime}} \tag{3.13}
\end{gather*}
$$

in which $a^{\prime}=\operatorname{Max}\left\{a, 2^{m-n} a\right\}$ and $a^{\prime \prime}=\operatorname{Max}\left\{a, 2^{n-m} a\right\}$.
Using the maps $\eta_{J},{ }_{W} \eta_{J}, \pi_{J}$ and ${ }_{W} \pi_{J}$ given in (3.10) and (3.13) we consider the following maps

$$
\begin{align*}
& \eta_{J} \wedge i_{J}: J_{l}^{t, a^{\prime}} \wedge C_{q}^{\prime} \rightarrow J_{n}^{t, a^{\prime \prime}} \wedge J^{q, b}, \quad{ }_{W} \eta_{J} \wedge i_{J}:{ }_{V} J_{l}^{t^{, a^{\prime}}} \wedge C_{q}^{\prime} \rightarrow{ }_{U} J_{n}^{t^{\prime, a^{\prime \prime}}} \wedge J^{q, b}, \\
& \pi_{J} \wedge i_{J}: J_{l}^{t, a^{\prime}} \wedge C_{q}^{\prime} \rightarrow{ }_{U} J_{n}^{t, a^{\prime \prime}} \wedge J^{q, b}, \quad{ }_{W} \pi_{J} \wedge i_{J}: J_{l}^{J^{t, a^{\prime}}} \wedge C_{q}^{\prime} \rightarrow C(\bar{\eta}) \wedge J_{n}^{t, a^{\prime \prime}} \wedge J^{q, b}, \\
& \eta_{J} \wedge j_{J}: \Sigma^{-1} J_{l}^{t, a^{\prime}} \wedge J^{q, b} \rightarrow \Sigma^{2 q-1} J_{n}^{t, a^{\prime \prime}} \wedge C_{q}, \tag{3.14}\\
& { }_{W} \eta_{J} \wedge j_{J}: \Sigma^{-1}{ }_{V} J_{l}^{t, a^{\prime}} \wedge J^{q, b} \rightarrow \Sigma^{2 q-1}{ }_{U} J_{n}^{t, a^{\prime \prime}} \wedge C_{q}, \\
& \pi_{J} \wedge j_{J}: \Sigma^{-1}{ }_{U} J_{l}^{t, a^{\prime}} \wedge J^{q, b} \rightarrow \Sigma^{2 q-1}{ }_{U} J_{n}^{t, a^{\prime \prime}} \wedge C_{q}, \\
& { }_{W} \pi_{J} \wedge j_{J}: \Sigma^{-1} J_{l}^{t, a^{\prime}} \wedge J^{q, b} \rightarrow \Sigma^{2 q-1} C(\bar{\eta}) \wedge J_{n}^{t, a^{\prime \prime}} \wedge C_{q}
\end{align*}
$$

whose cofibers are denoted by $M S J_{n, l, m}^{1, t, q, a, b}{ }_{W} M S J_{n, l, m}^{1, t, q, a, b}, L S J_{n, l, m}^{1, t, q, a, b}$, ${ }_{W} L S J_{n, l, m}^{1, t, q, a, b}, J M S_{n, l, m}^{q, 1, t, b, a},{ }_{W} J M S_{n, l, m}^{a, 1, t, b, a}, J L S_{n, l, m}^{q, 1, t, b, a}$ and ${ }_{W} J L S_{n, l, m}^{q, 1, t, b, a}(a, b \geq 1)$, respectively.

4. $\boldsymbol{K}_{\boldsymbol{*}}$-local types of some smash products

4.1. The K_{*}-local types of the smash products $S Z / 2^{m} \wedge S Z / 2^{n}, V_{m} \wedge$ $S Z / 2^{n}$ and $V_{m} \wedge V_{n}$ have been determined in (1.1), (1.6), (1.13), (3.9) and (3.12). On the other hand, the determination of K_{*}-local types of $M_{m}^{t} \wedge S Z / 2^{n}$, $M_{m}^{t} \wedge V_{n},{ }^{\prime} M_{m}^{t} \wedge S Z / 2^{n}$ and ${ }^{\prime} M_{m}^{t} \wedge V_{n}$ is established by (2.3) and the following result and its dual.

Theorem 4.1. The smash products $M_{m}^{t} \wedge S Z / 2^{n}$ and $M_{m}^{t} \wedge V_{n}$ have the same K_{*}-local types as ${ }^{\prime} P M_{m, m, n}^{t, t}$ and ${ }_{V}^{\prime} P M_{m, m, n}^{t, t}$, respectively, if $m<n$.

Proof. Use the splitting maps $\varphi: S Z / 2^{m} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m}$ and $\varphi_{V}: V_{n} \wedge$ $S Z / 2^{m} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m}$ given in (1.2) and (1.8) for $m<n$. Then the maps $i \mu_{r} \wedge$ $1: \Sigma^{8 r+1} D_{r} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \wedge S Z / 2^{n}$ and $i \mu_{r} \wedge 1: \Sigma^{8 r+1} D_{r} \wedge V_{n} \rightarrow S Z / 2^{m} \wedge V_{n}$ are rewritten to be $\left(\mu_{r} \wedge \pi, i \mu_{r} \wedge j\right): \Sigma^{8 r+1} D_{r} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \vee \Sigma^{1} S Z / 2^{m}$ and $\left(\mu_{r} \wedge \bar{\pi}_{V}, i \mu_{r} \wedge \bar{j}_{V}\right): \Sigma^{8 r+1} D_{r} \wedge V_{n} \rightarrow\left(C(\bar{\eta}) \wedge S Z / 2^{m}\right) \vee \Sigma^{1} S Z / 2^{m}$, respectively, when $m<n$. In this case we may assume that the maps $\mu_{r} \wedge \pi$ and $\mu_{r} \wedge \bar{\pi}_{V}$ are quasi $S_{K_{*}}$ equivalent to the composite maps $i \bar{\mu}_{r}$ and ${ }_{V} \bar{\mu}_{r} \wedge i$, respectively. Therefore our result for $t=4 r+1$ is immediate from (2.6). Use the map $k_{r}: \Sigma^{8 r+2} C(\tilde{\eta}) \wedge D_{r} \rightarrow \Sigma^{0}$ instead of μ_{r} in case $t=4 r+3$.

The determination of the K_{*}-local types of $M_{m}^{t} \wedge M_{n}^{q},{ }^{\prime} M_{m}^{t} \wedge M_{n}^{q}$ and ' $M_{m}^{t} \wedge{ }^{\prime} M_{n}^{q}$ is established by the following result and its dual.

Theorem 4.2. The smash products $M_{m}^{t} \wedge M_{n}^{q}$ and ${ }^{\prime} M_{m}^{t} \wedge M_{n}^{q}$ have the same K_{*}-local types as ${ }^{\prime} P M_{m, m, n}^{t, t, q}$ and $M P^{\prime} M_{n, m, m}^{q, t, t}$, respectively, if $m<n$; and they have the same K_{*}-local types as " $P M_{m, m, m}^{t, t, q}$ and $M^{\prime \prime} P^{\prime} M_{m, m, m}^{q, t, t}$, respectively, if $m=n$.

Proof. Use the splitting maps $\varphi_{M}: S Z / 2^{m} \wedge M_{n}^{q} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{q}$ and $\psi_{M}: \Sigma^{1} S Z / 2^{m} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge M_{n}^{q}$ given in (2.5) for $m \leq n$. Then the maps $i \mu_{r} \wedge 1: \Sigma^{8 r+1} D_{r} \wedge M_{n}^{q} \rightarrow S Z / 2^{m} \wedge M_{n}^{q}$ and $\mu_{r} \wedge j \wedge 1: \Sigma^{8 r} D_{r} \wedge S Z / 2^{m} \wedge M_{n}^{q} \rightarrow$ M_{n}^{q} may be, respectively, rewritten to be $\left(\left(i \bar{\mu}_{r} \wedge 1\right)\left(1 \wedge \lambda_{M}\right), i \mu_{r} \wedge h_{M}\right): \Sigma^{8 r+1} D_{r} \wedge$ $M_{n}^{q} \rightarrow\left(S Z / 2^{m} \wedge P^{q}\right) \vee \Sigma^{1} S Z / 2^{m}$ and $\left(\mu_{r} \wedge j \wedge l_{M}\right) \vee i_{M}\left(\tilde{\mu}_{r} \wedge j\right):\left(\Sigma^{8 r} D_{r} \wedge S Z / 2^{m} \wedge\right.$ $\left.P^{q}\right) \vee\left(\Sigma^{8 r+1} D_{r} \wedge S Z / 2^{m}\right) \rightarrow M_{n}^{q}$ when $m<n$, and to be the ones we obtain by substituting $i \bar{\mu}_{r}+\tilde{\mu}_{r} \wedge j$ for $i \bar{\mu}_{r}$ or $\tilde{\mu}_{r} \wedge j$ when $m=n$. Combining these facts with (2.6) we get our result for $t=4 r+1$. Use the map k_{r} instead of μ_{r} in case $t=4 r+3$.

When $X_{m}=J_{m}^{t, a},{ }_{U} J_{m}^{t, a},{ }_{m}^{t, a}$ or ${ }_{v}{ }^{\prime} J_{m}^{t, a}$, the determination of the K_{*}-local types of the smash products $X_{m} \wedge S Z / 2^{n}$ and $X_{m} \wedge V_{n}$ is established by (3.2), (3.9), (3.12) and the following result and their duals.

Theorem 4.3. The smash products $J_{m}^{t, a} \wedge S Z / 2^{n}, J_{m}^{t, a} \wedge V_{n}, J_{m}^{t, a} \wedge S Z / 2^{n}$ and ${ }_{U} J_{m}^{t, a} \wedge V_{n}$ have the same K_{*}-local types as $S J_{m, m, n}^{t, t, a, a},{ }_{V} S J_{m, m, n}^{t, t, a, a},{ }_{U} S J_{m, m, n}^{t, t, a, a}$ and ${ }_{W} S J_{m, m, n}^{t, t, a, a}$, respectively, if $m<n$.

Proof. Consider the maps $i \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m} \wedge S Z / 2^{n}$, $i \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge V_{n} \rightarrow S Z / 2^{m} \wedge V_{n}, \bar{i}_{U} \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge S Z / 2^{n} \rightarrow U_{m} \wedge S Z / 2^{n}$ and $\bar{i}_{U} \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge U_{n} \rightarrow U_{m} \wedge U_{n}$ when $m<n$. By use of the splitting maps $\varphi: S Z / 2^{m} \wedge S Z / 2^{n} \rightarrow S Z / 2^{m}, \varphi_{V}: V_{n} \wedge S Z / 2^{m} \rightarrow C(\bar{\eta}) \wedge S Z / 2^{m}$ and $\varphi_{U}^{\prime}:$ $U_{m} \wedge S Z / 2^{n} \rightarrow U_{m}$ given in (1.2), (1.8) and (1.10) the first three of them can
be rewritten as the first three maps in (3.3) with $a=b=1, r=s$ and $m=l<n$, respectively. On the other hand, the fourth map is rewritten to be ($\rho_{r} \wedge \omega$, $\left.\bar{i}_{U} \rho_{r} \wedge \bar{j}_{U}\right): \Sigma^{8 r-1} D_{r} \wedge U_{n} \rightarrow U_{m} \vee\left(\Sigma^{1} U_{m} \wedge C(\bar{\eta})\right)$ by use of the splitting map $\varphi_{U}^{\prime \prime}$: $U_{m} \wedge U_{n} \rightarrow U_{m}$ given in (1.14). Therefore our result for $t=4 r$ is immediate. Use the map $n_{r}^{\prime}: \Sigma^{8 r+3} C(\bar{\eta}) \rightarrow D_{2 r+1}^{\prime}$ instead of ρ_{r} in case $t=4 r+2$.
4.2. Choose maps

$$
\begin{align*}
& \varphi_{J}: S Z / 2^{m} \wedge J_{n}^{t, a} \rightarrow S Z / 2^{m} \wedge J^{t, a}, \\
& w_{J} \varphi_{J}: U_{m} \wedge \psi_{J}: \Sigma_{n}^{1} C_{t}^{\prime} \wedge S Z / 2^{m} \rightarrow U_{n} \wedge J_{n}^{t, a} \wedge S Z / 2^{m}, \tag{4.1}\\
& \text { and } \quad \\
& { }_{w} \psi_{J}: \Sigma^{1} C_{t}^{\prime} \wedge V_{m} \rightarrow S_{K} \wedge V_{n}^{J_{n}^{t, a} \wedge V_{m}}
\end{align*}
$$

satisfying $\varphi_{J}\left(1 \wedge l_{J}\right)=1,\left(h_{J} \wedge 1\right) \psi_{J}=1,{ }_{W} \varphi_{J}\left(1 \wedge l_{J}\right)=1$ and $\left(1 \wedge{ }_{V} h_{J} \wedge 1\right)$. ${ }_{W} \psi_{J}=l_{K} \wedge 1 \wedge 1$ when $m \leq n$ and $n \geq 2$, and moreover

$$
\begin{gather*}
{ }_{U} \varphi_{J}: S Z / 2^{m} \wedge{ }_{U}^{J_{n}^{t, a} \rightarrow S Z / 2^{m} \wedge J^{t, a}} \\
{ }_{U} \psi_{J}: \Sigma^{1} C_{t}^{\prime} \wedge C(\bar{\eta}) \wedge S Z / 2^{m} \rightarrow{ }_{U}^{J_{n}^{t, a}} \wedge S Z / 2^{m} \tag{4.2}
\end{gather*}
$$

$$
{ }_{U} \varphi_{J}^{\prime}: U_{m} \wedge J_{n}^{t, a} \rightarrow U_{m} \wedge J^{t, a} \quad \text { and } \quad{ }_{u} \psi_{J}^{\prime}: \Sigma^{1} C_{t}^{\prime} \wedge U_{m} \rightarrow J_{n}^{t, a} \wedge U_{m}
$$

satisfying ${ }_{U} \varphi_{J}\left(1 \wedge{ }_{U} l_{J}\right)=1,\left({ }_{U} h_{J} \wedge 1\right)_{U} \psi_{J}=1,{ }_{U} \varphi_{J}^{\prime}\left(1 \wedge l_{J}\right)=1$ and $\left(h_{J} \wedge 1\right)_{U} \psi_{J}^{\prime}=$ 1 when $m<n$. For these maps $\varphi_{J},{ }_{W} \varphi_{J},{ }_{U} \varphi_{J}$ and ${ }_{U} \varphi_{J}^{\prime}$ we can find maps $f: \Sigma^{1} S Z / 2^{m} \wedge C_{t}^{\prime} \rightarrow S Z / 2^{m} \wedge J^{t, a}, f_{W}: \Sigma^{1} U_{m} \wedge C_{t}^{\prime} \wedge C(\bar{\eta}) \rightarrow U_{m} \wedge J^{t, a}, f_{U}:$ $\Sigma^{1} S Z / 2^{m} \wedge C_{t}^{\prime} \wedge C(\bar{\eta}) \rightarrow S Z / 2^{m} \wedge J^{t, a}$ and $f_{U}^{\prime}: \Sigma^{1} U_{m} \wedge C_{t}^{\prime} \rightarrow U_{m} \wedge J^{t, a}$ such that $\varphi_{J}(i \wedge 1)=\lambda_{J}+f\left(i \wedge h_{J}\right),{ }_{W} \varphi_{J}\left(\bar{i}_{U} \wedge 1\right)={ }_{W} \lambda_{J}+f_{W}\left(\bar{i}_{U} \wedge{ }_{U} h_{J}\right),{ }_{U} \varphi_{J}(i \wedge 1)={ }_{U} \lambda_{J}+$ $f_{U}\left(i \wedge{ }_{U} h_{J}\right)$ and ${ }_{U} \varphi_{J}^{\prime}\left(\bar{i}_{U} \wedge 1\right)={ }_{U} \lambda_{J}^{\prime}+f_{U}^{\prime}\left(\bar{i}_{U} \wedge h_{J}\right)$ in which the maps λ_{J} : $J_{n}^{t, a} \rightarrow S Z / 2^{m} \wedge J^{t, a}, W_{J} \lambda_{U} J_{n}^{t, a} \rightarrow U_{m} \wedge J^{t, a}, U_{\lambda_{J}}: U_{J_{n}, a}^{J^{t, a}} \rightarrow S Z / 2^{m} \wedge J^{t, a}$ and ${ }_{U} \lambda_{J}^{\prime}:$ $J_{n}^{t, a} \rightarrow U_{m} \wedge J^{t, a}$ are given in (3.5). When $m \geq 2$ our assertion is easily verified. Note that the map $\bar{\lambda} \wedge 1: C(\bar{\eta}) \wedge U_{1} \rightarrow U_{1}$ is factorized as the composite map $\bar{i}_{U} \theta\left(1 \wedge \bar{j}_{U}\right)$ for some $\theta \in\left[\Sigma^{1} C(\bar{\eta}) \wedge C(\bar{\eta}), \Sigma^{0}\right] \cong Z / 2 \oplus Z / 2 \oplus Z / 2 \oplus$ $Z / 2$ because of $\bar{\lambda} \wedge 1=1 \wedge \bar{\lambda}: C(\bar{\eta}) \wedge C(\bar{\eta}) \rightarrow C(\bar{\eta})$. When $m=1$ it follows that $2 \lambda_{J}=2^{n-1}\left(i \eta \wedge i_{J} h_{J}\right)=0,2_{U} \lambda_{J}=2^{n-2}\left(i \eta \wedge\left(i_{J} \wedge \bar{\lambda}\right)_{U} h_{J}\right)=0, \bar{\lambda} \wedge W_{W}=$ $2^{n-1}\left(\bar{i}_{U} \theta \wedge i_{J}\right)\left(1 \wedge T_{U} h_{J}\right)=0$ and $\bar{\lambda} \wedge{ }_{U} \lambda_{J}^{\prime}=2^{n-2}\left(\bar{i}_{U} \theta \wedge i_{J}\right)\left(1 \wedge(\bar{i} \wedge 1) h_{J}\right)=0$. By means of this result we can easily show that our assertion is also valid even if $m=1$. Consequently the maps $\varphi_{J},{ }_{w} \varphi_{J},{ }_{v} \varphi_{J}$ and ${ }_{v} \varphi_{J}^{\prime}$ are chosen to satisfy $\varphi_{J}(i \wedge 1)=\lambda_{J},{ }_{W} \varphi_{J}\left(\bar{i}_{U} \wedge 1\right)={ }_{W} \lambda_{J},{ }_{U} \varphi_{J}(i \wedge 1)={ }_{U} \lambda_{J}$ and ${ }_{U} \varphi_{J}^{\prime}\left(\bar{i}_{U} \wedge 1\right)=$ ${ }_{u} \lambda_{J}^{\prime}$. On the other hand, the maps $\psi_{J},{ }_{w} \psi_{J},{ }_{v} \psi_{J}$ and ${ }_{v} \psi_{J}^{\prime}$ may be taken to be the composite maps $\left(i_{J} \wedge 1\right)(1 \wedge \psi),\left(1 \wedge v^{i_{J}} \wedge 1\right)\left(1 \wedge \psi_{V}^{\prime \prime}\right),\left({ }_{U} i_{J} \wedge 1\right)(1 \wedge$ $\left.1 \wedge \psi_{U}\right)$ and $\left(i_{J} \wedge 1\right)\left(1 \wedge \psi_{U}^{\prime}\right)$, respectively, where $\psi: \Sigma^{1} S Z / 2^{m} \rightarrow S Z / 2^{n} \wedge S Z / 2^{m}$, $\psi_{U}: \Sigma^{1} C(\bar{\eta}) \wedge S Z / 2^{m} \rightarrow U_{n} \wedge S Z / 2^{m}, \psi_{U}^{\prime}: \Sigma^{1} U_{m} \rightarrow S Z / 2^{n} \wedge U_{m}$ and $\psi_{V}^{\prime \prime}: \Sigma^{1} V_{m} \rightarrow$ $S_{K} \wedge V_{n} \wedge V_{m}$ are given in (1.2), (1.8), (1.10) and (1.14). Therefore they satisfy $(1 \wedge j) \psi_{J}=i_{J}(1 \wedge \pi),\left(1 \wedge 1 \wedge \bar{j}_{V}\right)_{W} \psi_{J}=l_{K} \wedge \nu_{V} i_{J}\left(1 \wedge \omega^{\prime \prime}\right),(1 \wedge j)_{U} \psi_{J}=$ ${ }_{U} i_{J}\left(1 \wedge \bar{\pi}_{U}^{\prime}\right)$ and $\left(1 \wedge \bar{j}_{U}\right)_{U} \psi_{J}^{\prime}=i_{J}\left(1 \wedge T \bar{\pi}_{U}\right)$ where $\omega^{\prime \prime}=\omega+i_{V} i v j$ or ω depending if $(m, n)=(1,2)$ or not.

When $X_{m}=J_{m}^{t, a}, U_{m}^{t, a}, J_{m}^{t, a}$ or ${ }_{V}^{\prime} J_{m}^{t, a}$, the determination of the K_{*}-local types of the smash products $X_{m} \wedge M_{n}^{q}$ and $X_{m} \wedge{ }^{\prime} M_{n}^{q}$ is established by the following result and its dual.

Theorem 4.4. i) The smash products $J_{m}^{t, a} \wedge M_{n}^{q}, U_{m}^{t, a} \wedge M_{n}^{q}, J_{m}^{t, a} \wedge{ }^{\prime} M_{n}^{q}$ and ${ }_{U} J_{m}^{t, a} \wedge^{\prime} M_{n}^{q}$ have the same $K_{*}-$-local types as $S J M_{m, m, n}^{t, t, a, a, a},{ }_{U} S J M_{m, m, n}^{t, t, a, a, a}, J S^{\prime} M_{m, m, n}^{t, t, q, a, a}$ and ${ }_{U} J S^{\prime} M_{m, m, n}^{t, t, q, a, a}$, respectively, if $m \leq n$; and
ii) the smash products $M_{m}^{t} \wedge J_{n}^{q, a}, M_{m}^{t} \wedge{ }_{U} J_{n}^{q, a}, M_{m}^{t} \wedge J_{n}^{q, a}$ and ${ }^{\prime} M_{m}^{t} \wedge J_{n}^{q, a}$ have the same K_{*}-local types as ${ }^{\prime} P M J_{m, m, n}^{t, t, a, a}{ }_{U}^{\prime} P M J_{m, m, n}^{t, t, a, a}, J^{\prime} M P_{n, m, m}^{q, t, t, a}$ and ${ }_{U} J^{\prime} M P_{n, m, m}^{q, t, t, a}$, respectively, if $m<n$.

Proof. i) Use the splitting maps $\varphi_{M}: S Z / 2^{m} \wedge M_{n}^{q} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{q}$ and ${ }_{U} \varphi_{M}: U_{m} \wedge M_{n}^{q} \rightarrow S_{K} \wedge S Z / 2^{m} \wedge P^{q}$ given in (2.5) and their dualized splitting maps $\varphi_{M}^{\prime}: S Z / 2^{m} \wedge{ }^{\prime} M_{n}^{q} \rightarrow S_{K} \wedge \Sigma^{2 q-1} S Z / 2^{m} \wedge C_{q}$ and ${ }_{U} \varphi_{M}^{\prime}: U_{m} \wedge^{\prime} M_{n}^{q} \rightarrow$ $S_{K} \wedge \Sigma^{2 q-1} U_{m} \wedge C_{q}$ for $m \leq n$. Then the maps $i \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge M_{n}^{q} \rightarrow$ $S Z / 2^{m} \wedge M_{n}^{q}, \bar{i}_{U} \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge M_{n}^{q} \rightarrow U_{m} \wedge M_{n}^{q}, i \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge M_{n}^{q} \rightarrow$ $S Z / 2^{m} \wedge ' M_{n}^{q}$ and $\bar{i}_{U} \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge^{\prime} M_{n}^{q} \rightarrow U_{m} \wedge ' M_{n}^{q}$ may be rewritten as in (3.4) with $a=b=1, r=s$ and $m=l \leq n$, respectively. Our result is now immediate.
ii) Use the splitting maps $\varphi_{J}: S Z / 2^{m} \wedge J_{n}^{q, a} \rightarrow S Z / 2^{m} \wedge J^{q, a}{ }_{U} \varphi_{J}: S Z / 2^{m} \wedge$ ${ }_{U_{n}^{q, a}}^{J_{n}} \rightarrow S Z / 2^{m} \wedge J^{q, a}, \psi_{J}: \Sigma^{1} C_{q}^{\prime} \wedge S Z / 2^{m} \rightarrow J_{n}^{q, a} \wedge S Z / 2^{m}$ and ${ }_{U} \psi_{J}: \Sigma^{1} C_{q}^{\prime} \wedge C(\bar{\eta})$ $\wedge S Z / 2^{m} \rightarrow{ }_{U} J_{n}^{q, a} \wedge S Z / 2^{m}$ given in (4.1) and (4.2) for $m<n$. Then the maps $i \mu_{r} \wedge 1: \Sigma^{8 r+1} D_{r} \wedge J_{n}^{q, a} \rightarrow S Z / 2^{m} \wedge J_{n}^{q, a}, i \mu_{r} \wedge 1: \Sigma^{8 r+1} D_{r} \wedge U_{n}^{q, a} \rightarrow S Z / 2^{m} \wedge$ $U_{n}^{J_{n}^{q, a}}, \mu_{r} \wedge j \wedge 1: \Sigma^{8 r} D_{r} \wedge S Z / 2^{m} \wedge J_{n}^{q, a} \rightarrow J_{n}^{q, a}$ and $\mu_{r} \wedge j \wedge 1: \Sigma^{8 r} D_{r} \wedge S Z / 2^{m} \wedge$ $U_{n}^{J_{n}^{q, a}} \rightarrow_{U} J_{n}^{q, a}$ are rewritten as in (3.6) with $r=s$ and $m=l<n$. Our result is now immediate.

When $X_{m}, Y_{m}=J_{m}^{t, a},{ }_{U} J_{m}^{t, a},{ }_{\prime}^{t, a}{ }_{m}^{t, a}$ or ${ }_{V} J_{m}^{t, a}$, the determination of the K_{*}-local types of the smash products $X_{m} \wedge Y_{n}$ is established by the following result and its dual.

Theorem 4.5. i) The smash products $J_{m}^{t, a} \wedge J_{n}^{q, b}, U_{U}^{t, a} \wedge U_{n}^{J_{n}^{q, b}}, J_{m}^{t, a} \wedge J_{n}^{q, b}$ and ${ }_{V} J_{m}^{t, a} \wedge{ }_{U} J_{n}^{q, b}$ have the same K_{*}-local types as $S J_{m, m, n}^{t, t, q, a, b, b}, S_{U} J_{U} J_{m, m, n}^{t, t, a, a, a, b}$, $J^{\prime} J S_{n, m, m}^{q,, t, b, a, a}$ and ${ }_{W} J^{\prime} J S_{n, m, m}^{q, t, t, b, a, a}$, respectively, if $m \leq n$ and $n \geq 2$, and they have the same K_{*}-local types as $M S J_{1,1,1}^{1, t, a, a, b},{ }_{W} M S J_{1,1,1}^{1, t, q, a, b}, J M S_{1,1,1}^{t, 1, q, a, b}$ and ${ }_{W} J M S_{1,1,1}^{t, 1, q, a, b} \wedge C(\bar{\eta})$, respectively, if $m=n=1$; and
ii) the smash products $U_{J_{m}^{t, a}} \wedge J_{n}^{q, b}, J_{m}^{t, a} \wedge U_{n}^{q, b}, V_{m}^{\prime} J_{m}^{t, a} \wedge J_{n}^{q, b}$ and ${ }^{\prime} J_{m}^{t, a} \wedge U_{U}^{J_{n}^{q, b}}$ have the same K_{*}-local types as $S_{U} J J_{m, m, n}^{t, t, q, a, a, b}, S J_{U} J_{m, m, n}^{t, t, a, a, a, b},{ }_{V} J^{\prime} J S_{n, m, m}^{q, t, t, b, a, a}$ and ${ }_{U} J^{\prime} J S_{n, m, m}^{a, t, t, b, a, a}$, respectively, if $m<n$, and they have the same K_{*}-local types as $L S J_{m, m, m}^{1, t, q, b,},{ }_{W} L S J_{m, m, m}^{1, t, q, a, b} \wedge C(\bar{\eta}),{ }_{W} J L S_{m, m, m}^{t, 1, q, a, b}$ and $J L S_{m, m, m}^{t, 1, q, a, b}$, respectively, if $m=n$.

Proof. i) Use the splitting maps $\varphi_{J}: S Z / 2^{m} \wedge J_{n}^{q, b} \rightarrow S Z / 2^{m} \wedge J^{q, b},{ }_{w} \varphi_{J}:$ $U_{m} \wedge U_{J_{n}^{q, b}} \rightarrow U_{m} \wedge J^{q, b}, \psi_{J}: \Sigma^{1} C_{q}^{\prime} \wedge S Z / 2^{m} \rightarrow J_{n}^{q, b} \wedge S Z / 2^{m}$ and ${ }_{w} \psi_{J}: \Sigma^{1} C_{q}^{\prime} \wedge$ $V_{m} \rightarrow S_{K} \wedge{ }_{V} J_{n}^{q, b} \wedge V_{m}$ given in (4.1) for $m \leq n$ and $n \geq 2$. Then the maps $i \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge J_{n}^{q, b} \rightarrow S Z / 2^{m} \wedge J_{n}^{q, b}, \bar{i}_{U} \rho_{r} \wedge 1: \Sigma^{8 r-1} D_{r} \wedge U_{n}^{q, b} \rightarrow U_{m} \wedge U_{n}^{q, b}$ and $\rho_{r} \wedge j \wedge 1: \Sigma^{8 r-2} D_{r} \wedge S Z / 2^{m} \wedge J_{n}^{q, b} \rightarrow J_{n}^{q, b}$ are rewritten as the first, forth and fifth maps in (3.7) with $a=c=1, r=s$ and $m=l \leq n$, respectively. On the other hand, the map $\rho_{r} \wedge \bar{j}_{V} \wedge 1: \Sigma^{8 r-2} D_{r} \wedge V_{m} \wedge V_{V}^{J_{n}^{q, b}} \rightarrow V_{n}^{q, b}$ may be rewritten to be $\left(\rho_{r} \wedge \nu_{\nu} i_{J}(1 \wedge \omega)\right) \vee\left(\rho_{r} \wedge \bar{j}_{V} \wedge{ }_{V} l_{J}\right):\left(\Sigma^{8 r-1} D_{r} \wedge C_{q}^{\prime} \wedge V_{m}\right) \vee$ $\left(\Sigma^{8 r-2} D_{r} \wedge V_{m} \wedge J^{q, a} \wedge C(\bar{\eta})\right) \rightarrow{ }_{V} J_{n}^{q, b}$. Hence the first half of our result is immediate. When $n=l=m=1$ in (3.10) the map η_{J} may be taken to be $2: J_{1}^{t, a} \rightarrow J_{1}^{t, a}$ and the map ${ }_{w} \eta_{J}$ may be replaced by the map $\bar{\lambda} \wedge 1: C(\bar{\eta}) \wedge$ ${ }_{U} J_{1}^{t, a} \rightarrow{ }_{U} J_{1}^{1, a}$ if $J_{1}^{t, a}$ is replaced by $C(\bar{\eta}) \wedge{ }_{U} J_{1}^{t, a}$. Therefore the latter half of our result is now obvious.
ii) The first half of our result is similarly shown as i) by use of the splitting maps ${ }_{U} \varphi_{J},{ }_{U} \varphi_{J}^{\prime},{ }_{U} \psi_{J}$ and ${ }_{U} \psi_{J}^{\prime}$ given in (4.2). When $n=l=m$ in (3.13) the maps π_{J} and ${ }_{W} \pi_{J}$ may be taken to be $2^{m}:{ }_{U} J_{m}^{t, a} \rightarrow{ }_{U} J_{m}^{t, a}$ and $2^{m-1}(\bar{i} \wedge 1)$: $J_{m}^{t, a} \rightarrow C(\bar{\eta}) \wedge J_{m}^{t, a}$, respectively. Therefore the latter half of our result is now obvious.

References

[1] J. F. Adams, On the groups $J(X)-I V$, Topology, 5 (1966), 21-71.
[2] S. Araki and H. Toda, Multiplicative structures in $\bmod q$ cohomology theories, I, Osaka J. Math., 2 (1965), 71-115.
[3] A. K. Bousfield, The localization of spectra with respect to homology, Topology, 18 (1979), 257-281.
[4] A. K. Bousfield, A classification of K-local spectra, J. Pure and Applied Algebra, 66 (1990), 121-163.
[5] D. M. Davis, Generalized homology and the generalized vector field problem, Quart. J. Math. Oxford, 25 (1974), 169-193.
[6] D. C. Ravenel, Localization with respect to certain periodic homology theory, Amer. J. Math., 106 (1984), 351-414.
[7] H. Toda, Composition methods in homotopy groups of spheres, Ann. Math. Stud., 49, Princeton (1962).
[8] Z. Yosimura, Quasi K-homology equivalences, I and II, Osaka J. Math., 27 (1990), 465-498 and 499-528.
[9] Z. Yosimura, The quasi $K O$-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.
[10] Z. Yosimura, The quasi $K O$-homology types of the stunted real projective spaces, J. Math. Soc. Japan, 42 (1990), 445-466.
[11] Z. Yosimura, The K_{*}-localizations of Wood and Anderson spectra and the real projective spaces, Osaka J. Math., 29 (1992), 361-385.
[12] Z. Yosimura, The K_{*}-localizations of the stunted real projective spaces, J. Math. Kyoto Univ., 33 (1993), 523-541.
[13] Z. Yosimura, KO-homologies of a few cells complexes, Kodai Math. J., 16 (1993), 269294.
[14] Z. Yosimura, K_{*}-localizations of spectra with simple K-homology, I, to appear in J. Pure and Applied Algebra.
[15] Z. Yosimura, K_{*}-localizations of spectra with simple K-homology, II, preprint.
[16] Z. Yosimura, KO-homology of the smash product of real projective spaces, NIT Seminer Report on Mathematics (1994).

Department of Mathematics
Nagoya Institute of Technology
Nagoya 466, Japan

[^0]: 1991 Mathematics Subject Classification. 55P42.
 Key words and phrases. K-theory, Spectra, Cofibers.

