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Estimation and model selection in an extended growth curve model
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ABSTRACT. In this paper we consider the growth curve model with two different

within-individuals design matrices. The MLE's of the model are obtained in closed

forms, based on a canonical form. Some basic properties of the MLE's are given.

The problem of selecting such a model is also considered. We derive a corrected

version of AIC (Akaike Information Criterion, Akaike (1973)) which will be useful in

small samples.

1. Introduction

An extension of the usual growth curve model introduced by Potthoff and
Roy (1964) has been proposed by Verbyla and Venable (1988), who considered
the model with several different within-individuals design matrices. In this
paper we consider the growth curve model with two different within-individuals
design matrices as follows: Let Y denote an n x p data matrix whose rows
consist of observations on distinct experimental units. We assume that

(1.1) 7 = AiθiXi + A2Θ2X(2} + β,

where A\ are n x fc, between-individuals design matrices of ranks fe, , X\ and
X(2) are q\xp and q x p (q = q\ + q2 < p) within-individuals design matrices
of ranks q\ and q, respectively, Θ\ and Θ2 are k\ x q\ and k2 x q matrices of
unknown parameters and the rows of $ are independently distributed, each with
a p-variates normal distribution having mean zero and unknown covariance
matrix Σ. Further, it is assumed that

It may be noted that our model can be applied for the case where the n
individuals have been measured at the same p different times or occasions, and
consist of two types of polynomial growth curves with different degrees. In a
polynomial growth curve model the design matrices within individuals are
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defined by

(1.3) Xi =

• i
tl

.f-1

X(2) =

1
tι

1 1

Our model also includes as a special case, the usual growth curve model when
Xp) = O or A2 = O, and a mixture of MANOVA and GMANOVA models
(Chinchilli and Elswick (1985)) when Xφ = IP On the other side, the model
(1.1) is similar to the usual growth curve model since

(1.4)
ΓΘi Ol

= [ A 1 A 2 ] \ \X{2).
L C72 J

That is, the model (1.1) can be regarded as one of the growth curve models with
certain linear restrictions. For a review on the latter models, see, e.g., Kariya
(1985).

The purpose of this paper is to study the problems of estimating the
unknown parameters Θ\, 02 and Σ, and selecting the degrees of polynomials
in the model (1.1). In Section 2 a canonical form for the model (2.1) is given.
In Section 3 the MLE's of βi, ΘΊ and Σ are obtained in closed forms. Some
basic properties of the MLE's are also given. The model (1.1) can be con-
sidered as a fitting model for the true model defined by setting q\ = q\ and

q2 = #2- For such a situation, we can apply AIC (Akaike Information Cri-
terion, Akaike (1973)) for the selection of good models. In Section 4 we
present a corrected version of AIC which will be useful in small samples.

2. A canonical form

Since the model (1.1) is closely related to the usual growth curve model,
we can obtain a canonical form for (1.1) by the same technique as in Gleser
and Olkin (1970). However, in order to clarify the correspondence between
the quantities in a canonical form and the original form, we give a concrete
transformation. The result is also useful in defining the models for selecting
the degrees of polynomials. Applying the Gram-Schmidt orthonormalization
method to A = [A\ A^, we can choose an orthogonal matrix H = [Hi HI HI]
of order n such that

A2] = [//i H2]
L.21 L.22
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where Hi : n x fc, , and Lπ : fe, x fe/ are lower triangular matrices. Similarly, let
B = [B( B'2 B'3]

f be an orthogonal matrix of order p such that

Gn

where Bt : q\ x p, and GM : q\ x q\ are lower triangular matrices. Then we can
write

A.Θ.X, + A2Θ2X(2} = H.Ξ.B, + H2Ξ2B(2},(2.1)

where

Ξ2 = L22Θ2G + L2ι[βι O]G.

There exists a one-to-one correspondence between the original parameter
matrices {Θ\,Θ2} and the transformed parameter matrices {Ξ\,Ξ2}. In fact,
Θ\ and Θ2 can be expressed in terms of Ξ\ and Ξ2 as

(2.2)

or equivalently

n

6>2 - O],

Θi O

6>21 ©22

where $2 = [̂ 21 ^22] and Ξ2 = [Ξ2\ Ξ22}.
Now consider the transformation from Y to

= H'YBf

(2.3)
Z2l Z22 Z23

Z3i Z32 Z33

where Zy = H^YBj. Then it is easily seen that the rows of the random matrix
Z : n x p are independently distributed, each with a p-variate normal distribution
with unknown covariance matrix Ω = BΣBf and means

(2.4) £(Z) =
" 1

O

O O

^22 O

o o
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The canonical form is related to the one (Gleser and Olkin (1970)) for testing a

linear hypothesis in the usual growth curve model, which is to test "E(Zi2) =

O". Here we note that the hypothesis

(2.5) βι = [βί0 O] and 6>2 = [6>*0 O]

for some q\ < q% (q* < qt) can be expessed as

(2.6) Ξ! = [Ξ W 0} and Ξ2 = [Ξ^ O]

in the canonical form, where Θ*Q : fe, x q*,Ξ*0 : fe; x q* satisfy the relation (2.2).

In the following we list some notations we are using in the subsequent

sections. Let

U = Z13]'[Zn Zn Z13]

(2.7)

V = [Z2l Z22 Z23]'[Z21 Z22 Z23]

= (Vij\, Vi} = Z2ίZ2j,

W = [Z31 Z32 Z33]'[Z31 Z32 Z33]

= [WV], Wίj = Z'3iZ3j,

We decompose the covariance matrix Ω as

?π Ω12 Ω13

(2.8) Ω- Ω22

LΩ31 Ω32 Ω33J

Further, we denote

i = [Zji Z, 2 Zί3], Z, (12) = [Z,ι Zi2],

°21
r,Ω(23)(23) =

etc

Similar notations are used for matrices of 17, V, W and T partitioned in the

above manner.
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3. Estimation of 0ι, Θ2 and Σ

Verbyla and Venables (1988) have proposed a procedure for estimation
in a general extended growth curve model, by reducing the model to the

seemingly unrelated form. However, the property of such estimation has not

been demonstrated. Our model is a special case of the general extended
model, and, furthermore, is closely related to the usual growth curve

model. This speciality makes the maximum likelihood approach feasible in a
convenient form, which will be demonstrated in this section.

Since there exists a one-to-one correspondence between {Θ\,Θι,Σ} and

{5Ί, £2, Ω}, maximum likelihood estimators of {Ξι, Ξ2,Ω} yields maximum

likelihood estimators of {Θ\,θ2,Σ}. These estimators can be obtained by
slightly extending Gleser and Olkin's argument. First we maximize the joint

density function f(2,\Ξ\,Ξι,ΐϊ) with respect to (Ξ\,Ξϊ). Considering the

conditional distribution of Z\\ and (Z2\ Z22) given (Z\2 Zι3) and Z23, we can
see that the maximum occurs at

Ξ\ =

Then

(3.2)

- (2πΓnp/2\ΩΓn/2 exp[-±{tr Ω~1W

+ tr 0(^)(23) 17(23)(23) + tr Ω^ F33}].

The exponent part of g(Ω) consists of the sum of three hierarchical terms. For

the case of the sum of such two terms, Gleser and Olkin (1970) obtained its

maximization. Using their idea repeatedly it can be seen that the maximum of

g(Ω) over Ω > O is achieved at

Flθιι.23 = WΊl 23,

(3.3) nΩ22 3 = T22.3,

= T33
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or equivalently at

*p-q\

(3.4) nΩ = W + \
L

where

β = C/(23)(23) + ί T*?* 1 Vχ[Tg Γ32 /„], and q3 = p - q.
I Aqι J

Noting that

[
L

we have

ΞI = Zn - Zι(23) W(23)(23)'

' *7 T"— 1
2(12) ^ ^

For studying the distributions of Ξ\, ΞI and Ω, we use the following
reductions. Let F be the p x p lower triangular matrix such that

F'ΩF = Ip.

Consider the transformation

Zi2

Z = Z21 - ^2

and let 17, F, ^ and f be the matrices defined by (2.7) for Z replaced by
Z. Let F, Z, U9 etc. be partitioned in the same manner as Ω. Then we can
see that

(Ξi - Ξι)Fn = Zn - Zi(23)^(23)(23)

(Ξ2 ~ Ξ2)F(i2)(12) = Z2(12) ~ ̂ 23^331[^3(2

nF'ΩF = "the quantity obtained from the right-hand side of

(3.4) by replacing Z by Z"

These reductions may be summarized as in the following Lemma.

LEMMA 3.1. Let Ξ\, ΞI and Ω be the maximum likelihood estimators of
ΞI, ΞΊ and Ω, respectively. Then, (Ξ\ — Ξ\)F\\, (Ξ2 — 5r2)^(i2)(i2) «nd nF'ΩF
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are distributed like the quantities of the right-hand side of (3.5), (3.6) and (3.4),

respectively, with the assumptions of Ξ\= 0, Ξ2 = 0 and = Ip.

Using Lemma 3.1 we obtain the following fundamental properties of these

estimators.

THEOREM 3.1. Let Ξ\3 Ξ2 and Ω be the maximum likelihood estimators of

ΞI, Ξ2 and Ω, respectively. Then

(i) E [ Ξ t ] = Ξ i 9 i=l ,2,
(ii) Var[vec(Sι)] = {1 + (p - gι)M}ί2n.23 ® h»

(iii) Var[vec(.§2)] =

(iv) Cov[vec(Sι), vec(22)] = O,
'cιlqι O

Γo o

(v) £[β]=fl + -F/~1

O
OO c2Iί

O O c3/ft J
where vec(y4) denotes the vector obtained by stacking the columns of A under

each other,

= n- ki- p + q-

(3.7)
- g) -f kιq2}/nι - {k2q2(p - q)}/(nιn2),

{k2(p - q)}/n2, c3 = k.

PROOF. These results are obtained by using Lemma 3.1. (i) is easily
seen. The distribution of ΞI is essentially the same as in the usual growth

curve model, and hence (ii) has been shown in Grizzle and Allen (1969). For
(iii), first we consider the expectation with respect to Z2, getting

Var[vec(£2 - Ξ2)] =

where

ΓMn M121

M 2 2J'

and M22 =

Note that W ~ WP(IP, n-k) and T(23)(23) ^ Wp-qι(Ip-qί,n - k2). Now we use
the fact (see, e.g., Siotani, Hayakawa and Fujikoshi (1985)) that W\\.2$ ~
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Wqι (Iqι, n - k - p + 41), W(23)(23) ^ Wp-qι (Ip-qι, n - fe), the elements of
Wί(23) Wm1)03) are independently distributed as ΛΓ(0, 1), and these three random
matrices are independent. Similar results hold for submatrices of 7^3) (23).
Using these properties we can see that E[Mn] = m\\Iqι, E[M\2] = O, E[M22] =
E[tτ T3-3

l]Iq2 = {qι/n2}Iq2, where

mn = E[tT ^(23)(23):Γ(23)3^33 Γ3(23)]

Note that

W-ι - \° ° ] + Γ ^ Ί

^23X23) ~[0 ^J + [_^Jrr32J

Considering the expectation with respect to ^23, we have

mn = E[tr W^1} + {E[tr W23W3:

-f E[tr T23T33T32] - 2 tr JB[tr

This proves (iii). The result (iv) and (v) are shown by similar reductions. The
details are omitted.

The properties of the MLE's &\ and Θ2 are obtained from the ones of Ξ\
and Ξ2 through the relation (2.2). In fact, these estimators are unbiased.
Using vec(ABC) = [C ® A] vec(β), we have

Var[vec(0!)] =

= {1 + (p -

From the definition of L it follows that

A\AI = LίjLn, A'2A2 = L'22L22, (A'2A2)~l Ά'2Aι = L^"2

1L2ι,

where λ\ = (/„ — P^) !̂ and /^2 = A^A^A^'^A^ is the projection matrix onto
the space spanned by the culumn vectors of A2. Futher

(3.8) ~

For the reduction of the second equality, see, e.g., Siotani, Hayakawa and
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Fujikoshi [1985, p. 311]. Therefore, we can write

Var[vec(β,)] = {1 + (p -

Similarly it holds that

Var[vec(<92)] =

+ var
[[ o

)-1/^]] ® (A'2A2Γ
l

M ol
0 0J,

where M = (^Γ"1^)'1 (g) (A'2A2}~1 A^A^A^Ai}'1 A\A2(A'2A2Γ
l , and

In order to express θ\, Θ2 and Σ in terms of the original notations, let

se = {!/(« - k)}y'H3H^y = {i/(n - k)}y'(/n - PX) Y,

St = {!/(» - k2)}Y'(H1H\ + H3H'JY = {l/(n - k2)}Y'(In - PAJY,

X2 = X2(IP-Pχ<ι).

Then, using reductions similar to (3.8), we obtain the following expressions:

22 = ' °

where

Our derivation of the MLE's yields

nΓ = (7 - AtθiXi - A2Θ2X(2))'(Y - AiΘiXl - A2Θ2X(2]).



644 Yasunori FUJIKOSHI and Kenichi SATOH

Letting K = Ip - S^X'^XiS^X^'1^ we obtain

Ai^JTi + A2Θ2X(2) =

This implies

nΣ=(n- k)Se 4- K'(PA Y - A2Θ22X2)'(PA Y - A2Θ22X2)K

= (n- k)Se + K'(ΫPAι Y + J'Y'

where J = Ip - S^

4. Model selection and a corrected A 1C

The model (1.1) involves a polynomial growth curve model with two
types of polynomials with different degrees. In this case the numbers q\ — 1
and q\ + q2 - 1 means the degrees of two types of polynomials. Now we
assume that the true model is the model (1.1) with qι = q* (q{ < q%), Θi =
[<9*0 O] (or Ξi = [£70 O]) in (2.5) and Σ = 27* (or Ω = Ω*). Then, the model
(1.1) can be regarded as a fitted model. In a practical situation, the degrees of
the polynomials are unknown, and we need to select appropriate degrees, i.e.,
good models. Here we consider the Akaike information criterion (Akaike
(1973)) as one of such methods. The criterion has been proposed as an
approximately unbiased estimator of the risk defined by the transformed
predicted probability density or the expected Kullback-Leibler information of a
fitted model. In our problem we can write the risk as

(4.1) K(tt,ft) = EjEj,h21og/(yF;£i,S2,0)],

where f(Yp;E\,E2,&) is the predicted probability density for the future obser-
vation matrix YF; n x p. Here it is assumed that Yp is independent of Y. The
expectations E\ and Eγp means the ones under the true model. A formal
application of AIC to our model yields

(4.2) A/C=-21og/(y;Sι,t2,l i) + 2{fcιβι+fc2« + ip(p-Hl)}-

The criterion (4.2) is an approximately unbiased estimator for (4.1) when
n is large. Some refinement of this criterion has been discussed in certain
models (see, e.g., Sugiura (1978), Hurvich and Tsai (1989), Bedrick and Tsai
(1994)). Sugiura reported a correction of AIC in the usual growth curve
model in a research meeting in 1981, but the result is unpublished. We can
write the risk R(q\,q2) as

(4.3) Λ(«ι, ft) = E*γ[n log |Γ|] + KI + #2 + #3 + pn log(2π)
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where

RI = /ιEy[tr Σ Σ ],

R3=E*γ[tr(Ξ2-Ξ*2)'(Ξ2-Ξ*2)

LEMMA 4.1. Let Riy i= 1,2,3 be the quantities defined by (4.3) or (4.4).

Then

(i) RI = n{nq3/n4 + nn0^ι/(nιn5) 4- qι(n -k2- l)/(w2n3)},
(ii) £2 = nfcι^ιn0/(nιn5),

(iii) £3 = n{fc242/n3 + fc2<ZιM H- fc2tfι(p - qι)/(nιns) + k2q2q3/(n2n3)},
where n, , i = 1, 2, 3 are griven fey (3.7), and ΠQ = n — fc — 1, n^ = n — p-\-q—\,
n$ = n — k — p — 1.

PROOF. Let F* be the p x p lower triangular matrix such that F*'ΩF* =
I p. Then, using Lemma 3.1 with F* instead of F we can write

RI =E[trO~1].

Here Ω is given by (3.4) and has the distributional reduction in Lemma 3.1.
Note that

tr Ω~ = tr flJΊ.23 + tΓ flp3)(23)fl(23)lβΓl.23°l(23)β(23)(23)

+ tr Ω22,3 + tr Ω^Ω32Ω22,3Ω23Ω^ + tr Ω^1

+ tr Γ 3̂ + tr Γ3-3

1T32T2-2

1

3T23T3-3

1 + tr(T33

Using the above expression we obtain (i). We can rewrite

R2 = E*γ[tτ{(Ξ1-Ξ*l)F*n}'{(Ξί-Ξl)F*n}[Iqι O OKF 'flF'Γ1!/,, O O]'].

Using Lemma 3.1 with F* instead of F yields

R2 = »£[tr[/ft -

which gives (ii), after doing some computations similar to the ones in Theorem
3.1. A similar argument shows that

R3 = nE[tr[Iq3 - Ω^3Ω33 ]Z2Z2[Iq3 - Ω^3Ω33 ]'Ψ(i2)(i2)]

Here Ω~l = Ψ and each of the terms in the above expression of R3 has the
distributional reduction as in Lemma 3.1. Note that Ψ\\ = nW^3, Ψ\2 =
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T^1 T32, and

= ^si1 ^3(23) W(23)(23) ̂ 23)1- Using these expressions we can obtain (iii).
Based on (4.3) and Lemma 4.1, we can propose a corrected version of

AIC given by

C-AIC(qι,q2) = n log \Σ\ + np log(2π)

+ nk2q2/n3 + n2q^/n^ + nk2qι/n5

4- feιn0^ι + fc2tfι(p

+ {fl2(n - *2 - 1)M + nk2q2q3}/(n2n3),

which has an unbiased property in the sense of the following Theorem 4.1.

THEOREM 4.1. Suppose that the model (1.1) with (qι,q2) = (q\,q2) and the
parameters (2.5) or (2.6) is true. Let R(q\,q2) be the risk defined by (4.1) for
selecting a fitted model (1.1). Then, for any (q\,q2] such that qt > q*, i = 1,2,

E(C-AIC(q,,q2)]=R(q,,q2).

Thus C-AIC is an exact unbiased estimator for R(qι,q2) under certain
conditions. So, we can expect that C-AIC has a better behaviour than AIC
in small samples. For large n, it holds that

C-AIC- AIC = O(l/n),

since

In a special case of the usual growth curve model, i.e., A2 = O, we can write

C-AIC = n log \Σ\ + /w log(2π) + n2(p - q)/n4 + n(n + fc)^n0/(nιn5).
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