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Asymptotic expansions for the best linear discriminant functions
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ABSTRACT. In the discriminant problem between two elliptical populations with

different covariance matrices, we derive the asymptotic expansions of the expected

misclassification probabilities of the sample best linear discriminant function. Using

this result, we construct an estimator of the expected misclassification probabilities

which are asymptotically less biased than the usual estimates. Asymptotic expansions

of the bias of the estimated discriminant coefficients and the cut-off point are also

derived.

1. Introduction

Consider the problem of classifying an observation X into one of two
populations Π\ : Ep(μv,Γ\',lri) and 772 : Ep(μ2,Γ2-,h), where Ep(μ,Γ',h] is a p-
dimensional elliptical distribution with probability density function

(1.1) \Γ

where h is a decreasing function, μ is a p x 1 parameter vector and Γ is a positive
definite p x p matrix. We assume that Ep(μ,Γ\h) has the covariance matrix.
Then Πj (j = 1,2) has the covariance matrix Σj = ωΓj, where the constant ω
is given by the characteristic function of Ep(μ,Γ;h) (cf. Kelker [2]). Consider-
ing some modification of h, we can assume without loss of generality that the
constant ω = 1.

In the case of normal populations, Anderson and Bahadur [1] derived the
class of admissible linear discriminant procedures. The admissible linear dis-
criminant rule is that an observation is classified into Π\ if X'b < c, where b is
a p x 1 vector and c is a scalar given by

(1.2) b = (feiΣΊ + k2Σ2γ\μ2 - μι), c = b'μ, + k.b'Σ.b

and fci and k2 are scalars chosen such that k\Σ\ + k2Σ2 is positive definite.
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Let

(1.3) y} = kj(b'Σjb)l/2,

and PJ be the probability that an observation from 77, is misclassified. Then
PJ, = 1 — Φ(yj) where Φ is the standard normal distribution function (for details
see [1]).

It is easily shown that the above rule is admissible linear for our prob-
lem. Let Ψ be the univariate marginal distribution function of Ep(0,/;ft), the
spherical population. Then P; = 1 — Ψ(yj). The expression of the probability
density function of Ψ with using h is given by Wakaki [5].

Anderson and Bahadur [1] described three ways to determine k\ and
&2 These methods are (1) minimization of one misclassification probability for
a specified probability of the other, (2) the minimax procedure and (3) minimiza-
tion of the total misclassification probability for given a priori probabilities. In
this paper we deal with the minimax procedure since the minimax linear
procedure is determined by y\ and yi and does not depend on Ψ. On the
other hand, the other two procedures depend on Ψ. Even for the normal case,
the Bayes linear procedure (3) above is generally not unique, and sometimes one
of the misclassification probabilities PI and PI becomes very large.

It is shown that the minimax linear discriminant rule is one of the above
admissible rules with k\ and £2 which solves the equation y\ = y^. Since y\
and j>2 are homogeneous of degree 0 in k\ and fc2 and both scalars are
positive, we can put k\ = k and ki = 1 - k (0 < k < 1).

When population parameters are unknown, these parameters should be
estimated based on two samples of sizes n/, one from each population ///. In
this paper we use the usual sample mean vector Xj and the sample covariance
matrix S/. The sample minimax linear discriminant rule states that an obser-
vation is classified into Π\ if X'B < C, where B is a p x 1 vector and C is a
scalar given by

(1.4) B = (KiSi + K2S2)~ (*2 ~ AΊ), C = B'Xi + Ki

with K\ = K and KΊ = 1 — K. Here, the scalar K is determined as follows.
Let YI and ¥2 be functions of K and the sample estimates given by

(1.5) Yj = KJ(B'SJB)l/2 C / = l , 2 ) .

Then K is a solution of the equation Y? = Y2

2, with (0 < K < 1).
When the training samples are given, each conditional misclassification

probability PJ is given by 1 — Ψ(Zj), where

(1.6) Zi = (C - B'μ^B'ΣiB)'1'2 and Z2 = (Brμ2 - C)(BltΣ2B)~l/2
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A simple estimator of the expected misclassification probability is 1 — Ψ(Yj),
where the expectation is taken for the distribution of AΊ, X2,S\ and 82. In the
following section, we see that 1 - Ψ(Ύj) is a biased estimator.

For the Fisher's linear discriminant function, McLachlan [4] modified the
usual estimator of the expected misclassification probability, using asymptotic
expansions. The resulted estimator has the bias of order O(n~2), where n =
n\ •+ n2. The purpose of this paper is to derive the asymptotic expansion of the
expected misclassification probability of the sample minimax linear discriminant
rule, and to construct it's estimator which is unbiased up to the order n"1.

2. Expectation of Ψ(Yj)

Before expanding the expected misclassification probability, we first
derive the asymptotic expansion of the expectation of Ψ(Yj). Because of the
invariance of Yj under a group of affine transformations, we can without loss
of generality assume that the following conditions hold true.

(2.1) μι+μ2 = 0, kιΣι

and Σ\ and Σ2 are diagonal.
Let

(2.2) Sj = Σj + Vj 0=1,2) and

where δ = μ2 — μ\. Note that the coefficient vector of the minimax linear
discriminant function is δ. Then Vj and D are Op(n~1/2) and the limiting joint
distribution of n l/2F/ and n1/2/) is independent normal. The basic expectation
formulas are as follows. Let Ξ be any p x p symmetric matrix and α, ζ, η and ξ
be any p x 1 vector. Then

E[D'ΞD] = nϊltr(Ξ

E[(D'*)(D'ζ)] = n^t'

(2.3) E[Λ'VjΞVjζ\ = njl{(2κ + l)*'ΣjΞΣjζ + (K

+ (κ+l)(x'Σjξ)(ηfΣjζ)},

where K is the kurtosis parameter.
Let

(2.4) K = k + Kf + Ks,

where Kf = Op(n~1/2) and Ks = Op(n~1). Considering the Taylor expansion
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of \ Ύf at K = k, Si = ΣI, S2 = Σ2 and X2-Xι = δ, we obtain

(2.5) \Ύf = \ kfβj + {sjkjβuKf + FJ}

+ {sjkjKs + (f 0<7 >i2 - /ta)*/ + Giκf + Hj}

+ 0p(n~3/2) (7 = 1,2),

where si = 1, 52 = —1, the notation <;> means that <1> = 2 and <2> = 1,

(2.6) /fyfc..., = δ'ΣtΣjΣk -"Σiδ (/, 7, fc, - . . , / = 1 or 2),

and

ί} = fc2{5'Γ; D-fc<;.>δ'Γ; F<^,

^ ̂  G, - sΛ Σ, =ι{^ (̂  > - 2MWW - W ̂ i^^

)T; D + fc^^J - 2k<jyΣ(jy)Vj

2δ - kιk2δ'Vj

+ klfiδ'VζjyΣjVyyδ + 2k\ jyδ' 'Σ 'jVfaδ} + (Remainder).

Here (Remainder) means the remainder term whose expectation is 0.
Since 3 ί̂ 2 — 3 5? = 0, from each terms of Of(n~ll2) and the ones of

Op(n-1) we obtain

(2.8)
(G2 - GjKf + H2- H,}.

Substituting these equations in (2.5) gives the expansion of ^Y? as

(2.9) iY 2 = \Y* =\Ύ}= iy2 + Ύf + Ys + O^n^/2),

where y = y\ = y2,

(2.10) ys = fa* [{ί'(fc,J - k2Σ2)D}2

+ £jtιfc(DΊ> + Yf.=l k2δ'V2δ) + (Remainder).

A Taylor expansion of Ψ(Y) gives

(2.11)
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where ψ is the density function of Ψ and ψ' is its derivative. Note that we
neglect the term of Op(n~3/2) at the right-hand side of (2.11). In the rest of this
paper we neglect the terms of Op(n~3/2) and O(n~3/2) in equations of asymptotic
expansions. Using the formulas given by (2.3), the expectation of Ψ(Y) can be
expanded as

(2.12) E(Ψ(Y)} = Ψ(y)

where

(2.13) E[yj = Σ2.=l nr1 [i {Vfβtkfa + 1) + y,*,^ + β^k^K + 2)

+ 2)

(2.14) E[y/] = fc?*2> nΓlQβffi(3κ + 2) + βt}.

Here we used the notation

(2-15) yijk..,

3. Asymptotic expansion of the expected misclassification probabilities

In this section we derive the asymptotic expansion of E[!Pr(Z7 )] (7 = 1,2),
where Z; is given by (1.6). If we replace μl,μ2,Σι and ΣΊ with X\,Xι,S\ and
^2 then both Z\ and ZΊ become Ύ. Therefore the difference between Z, and Y
is OpCn'1/2). Let

(3.1) Xj = ̂  + Dj (7=1,2).

Then we can expand Z; as

(3.2) Z^y + Zβ + Zφ

where

i

Z4 = y-lYt-{

with

(3.4) Wsi = iy-3fc/(7 - 4kj + 2k<J>)(δ'VJδ)2

+ k<Dβ^(δ'Dj)2} + y-tβύikjδ'

+ δ'Σ<j>Djδ'(kjI-k<J>Σ<jy)Dj}.



598 Hirofumi WAKAKI

A Taylor expansion of Ψ(Zj) gives that

(3.5) Ψ(Zj) = Ψ(y)

Comparing (3.5) with (2.11), we obtain the asymptotic expansion of the expected
misclassification probability as

(3.6) E[Ψ(Zj)] = E[Ψ(Y)] + ψ(y) E[Wsj\ +±ψ'(y) E[ZJ - y~2Yf

2},

where

κ + 2) + i (29κ + 14)
(3-7)

The equation (3.6) gives the bias of Ψ(Y] as an estimator of the expected mis-
classification probability. Replacing the unknown parameters with those con-
sistent estimators, we can modify the bias of Ψ(Y) as in the following theorem.

THEOREM 3.1. Let

(3.8) Pj = 1 - Ψ(YJ) + n'i{^(YJ)Aj + ̂ f(YJ)BJ} (j = 1,2),

where Yj is given by (1.5),

Aj = Y^i-ΎjKj - 2βί2KJk(jy(2κ+ 1) + fafaKj}

(3.9) +Yj{7jKj(κ + 1) - ik<;>(3/c + 2) + 1 (29ft + 14) + β^β^K^K + 1)},

with a consistent estimator k of kurtosis parameter and

y2 = ti{(KιI

(3.10) j812 - B'(KJ

β2n = fi'
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Then PJ has the bias of order O(n~3/2) as an estimator of the expected mis-
classification probability E[l — Ψ(Zj)].

Note that we made the assumption (2.1) for the population parameters in
the derivation of asymptotic expansions. But in the above theorem, we do
not make assumptions as in (2.1). Consistent estimators (3.10) of y's and β's
are given as follows.

Let μ1? μ2, Σ\ and Σ2 be the original parameters. Then the transformed
parameters μ^, μ2*, Σ\* and Σ2* are

Γ, Σ2* = (kιI + k2Λ)-A and
(3.11)

ft- = -ft* = (M + MΓ1/2#^Γ1/2(μι - μ2)/2,

where A is a diagonal matrix whose diagonal elements are the latent roots of
ΣϊlΣ2 and H is an orthogonal matrix such that HfΣ^/2Σ2Σ^1/2H = A. There-
fore βyk...ι in (2.6) and y #&.../ in (2.14) are written with the original parameters as

= (ft -

(3.12)

Replacing the original parameters with those sample estimators, we obtain
(3.10).

4. Bias of the estimated discriminant function

In this section we derive asymptotic expansions of the bias of the
estimated discriminant coefficient vector B and cut-off point C. The coef-
ficient vector B can be expanded as

(4.1) B = δ + Bf + Bs,

where

Bf = D - {kiVi + k2V2 + Kf(Σ, - Σ2)}δ,

(4.2) Bs = {k,V, + k2V2 + Kf(Σl - Σ2)}2δ - {KS(Σ, - Σ2) + Kf(V, - V2)}δ

fe2F2 + Kf(Σι - Σ2)}D.
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Substituting (2.8) with (2.7) in (4.2) and taking the expectatiσn by using (2.3), we
can obtain the asymptotic bias of B as in the following theorem.

THEOREM 4.1. The expectation of B can be expanded as

(4.3) E[B] =δ

where

(4.4) by = ̂ k^{3βjβfl2k*(3κ + 2) - Uβjβ^kJk^K + 1)

+ I2βjβjl2kj - Uβ^kjkζjy} -iFgktfyWffiQK + 2)

+ 4βjβjl2k
2(ί - 3fc,.)fc<;>(»c+ 1) + 16βjβn22k

2k2

jy(κ + l)+4βjk2

+ 4/?,Ί2(l - 3fc,

fc2 - 2]κ + 3fe2 - I)k0>

+ k j ( [ 3 - k j } K + 2-kj),

(4.5) fry = - i^23fc<y>{3^i2k/(3K + 2) -

- k})(3κ + 2)

4βjβjl2kf(3kj - 5)k<D(κ+ 1)

4/?,fc,.(-fc, + 2) + 4βjl2(3kj - 5)fc<J.>

(4.6) ί.2; - \β^k^{-β^k<jy(3κ + 2) + 4βjβjl2k
2k2

<jy(κ

^Skj - 5}κ + 5kj -

<jy,

(4.7) &3; = -β^{2βjk2(κ +!) + !}.

Theorem 4.1 shows that the direction of E[B] is not equal to the unknown

(2k} - I ) k 2

< j y ,
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best coefficient vector δ. This suggests to modify the bias of B by replacing
the unknown parameters included in (4.4), (4.5), (4.6) and (4.7).

The cut-off point C can be expanded as

(4.8) C = c + Cf + Cs,

where

+ δ'(k1Σ1-k2Σ2)Bf,

Cs = -l(Dl-D2)'(
(4.9)

x (Di + D2) + δ'(kιVι - k2V2)Bf + δ'(kιΣι - k2Σ2)Bs

Σl - k2Σ2)Bf + Kf{\δ'(k, V, - k2V2)δ + δ'(Σ! + Σ2)Bf}

+ iKsδ'(Σί+Σ2)δ.

A calculation of the expectation of Cs gives the asymptotic bias of C as in the
following theorem.

THEOREM 4.2. The expectation of C can be expanded as

(4.10)

where

(4.11) cj = - jL/?n3*o>(l - 2kJk<J>){3β*β}ί2kj(3κ + 2) - U.β*β2

flΛk]k<»(κ + 1)

+ I2β2βjl2k
2 -

x (3κ + 2) - 4β2βjϊ2k
2(2k] - 4k* - 5kj + 3)k<jy(κ + 1)

fβιmkJ(ί - 2kjk<jy)k2

<jy(κ+ 1)

(3κ + 2) - 3(1 - 2fe;.k<;.>)}

ku^K + 1) + (2k/ - 4*; - 5k, + 3)fc<;>}

ft/?1122(l - 2kJk<J>)k2

<J> + Uβtfklfi

^+lβύtfμγrfkKl - 2kjk<jy)k<D(κ+l)

- 2γ12βj(l - 2kjk<j})kl)y - βt}k*(14kj - 25k* + 19fc, - 6)fc<;.>(3κ + 2)
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