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ABSTRACT. This paper deals with ίΛmean limits for Taylor's expansion of Riesz

potentials Uaf of order α for functions / satisfying an Orlicz condition. We examine

when

lim ω(r)(r'" \ \ UJ(x) - PXo(x)\«dx) = 0
r^0 \ Jβ(;co,r) /

holds for every x0 ε R" possibly except that in a set of capacity zero, where ω is a

weight function and PXQ is a polynomial. If ω(r) = r~', then this means that Uaf is

ίΛdifferentiable of order / at x0.

1. Introduction

For 0 < α < n and a nonnegative measurable function / on Rn, we define
UJby

= f \*-yΓnf
JR»

UJ(χ)=\ \χ - yΓnf(y)dy,
JR»

Uaf is called the Riesz potential of / of order α. Here it is natural to
assume that Uafφ oo, which is equivalent to

(1.1) f (1 + \y\r*f(y)dy < oo.
JR»

As in the previous papers [7], [8], we assume the condition

(1-2) f Φp(f(y))dy<^
JR»

where Φp(r) = rpφ(r\ 1 < p < oo, with a function φ on the interval (0, oo)
having the following properties:
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(φl) φ is positive nondecreasing on (0, oo).
(φ2) φ is of logarithmic type, that is, there exists Aγ > 0 such that

A^lφ(r) < φ(r2) < A±(p(r) whenever r > 0.

In the previous paper [8], we discussed the existence of fine limits of
the form

(1.3) lim ω(\x - x0|)[l/a/(x) - PJx)] = 0

for functions / satisfying (1.1) and (1.2), where E is an exceptional set, ω is
a "weight function" and PXQ is a polynomial.

In this paper, we prove that the ZΛmean satisfies

Γ
" | UJ(x) -
jB(x0,r)

(1.4) lim ω(r) r'" | UJ(x) - PXQ(x)\«dx = 0,
r->0 \ jB(x0,r) /

for q > 0 satisfying i/q > 1/p — α/n, where B(x0, r) is the open ball centered
at x0 with radius r (see Theorem 3.1).

As in [8], UΛf(x) — PXo(x) is written as

- ί
JR"

[4,Λ*o/M= R,,,,xo(χ, y)f(y)dy
JRn

for some nonnegative integer /, with the remainder term of Taylor's expansion
of RΛ(x - y) = \χ- y\Λ~n:

(x-

provided

(1.5) J ^ \y-χoΓn-'f(y)dy«*>.

If (φl), (φ2) and

Γ1

(1.6) [rn~αpφ(r~1)]~1/(p~1V~1rfr < oo

hold, then UJ is continuous everywhere on Rn (see [1, Theorem 5.4] and [6]).
Furthermore we know (see [8]) that (1.3) holds for E = 0 (the empty set)
and hence (1.4) trivially holds (see also Theorem 3.2 below). Thus we are
mainly concerned with the case where (1.6) does not necessarily hold.

In Section 4, we shall show that (1.4) holds as far as x0 is not contained

in a set of certain capacity zero (see Theorem 4.1 and Corollary 4.1 below).
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In view of the behavior at the origin of Bessel kernels, our results can be
considered as generalizations of the results by Meyers [3], [4] concerning
Bessel potentials of functions in Lp(Rn).

If (1.4) holds for ω(r) = r~(, then UΛf is said to be ZAdifferentiable of
order / at x0 (cf Meyers [3], Stein [9] and Ziemer [10]), where / is a positive
integer such that / < α. In the final section we discuss ZΛdifferentiability as
a consequence of the proceeding results in case S <a (see Theorem 5.1 below).
In case α = /, we shall show that U^f is ZΛdifferentiable of order £ almost
everywhere (see Theorem 5.2). Note that if (1.6) holds, then U f is £ times
differentiate almost everywhere (see [6, Theorem 2]).

2. The estimates of ί/α,ΛjCo/

Throughout this paper, let M denote various constants independent of
the variables in question.

First we collect properties which follow from conditions (φl) and (φ2)
(see [7] and [8, Section 2]).
(φ3) φ satisfies the doubling condition, that is, there exists A > 1 such that

(φ(r) < )φ(2r) < Aφ(r) whenever r > 0.

(φ4) For any γ > 0, there exists A(γ) > 1 such that

^(y)~V(r) ̂  φ(r7) ^ A(γ)φ(r) whenever r > 0.

(φ5) If y > 0, then

sγφ(s~1) < Atγφ(t~1) whenever 0 < s < t.

For an nonnegative integer /, a point x0 e Rn and a nonnegative measur-
able function / on Rn, we consider the potential

14. ,.*>/(*)= ί R«,s,xo(χ>
jRn

which is written as UΛ^>Xof(x) = U^x) + U2(x) + U3(x) for x e Rn - {x0}, where

ι/ι(*)= ί R^tXo(χ9
JRn-B(xo,2\x-x0\)

U2(χ)= ί R^tXo(χ9
J B(x0,\x-x0\/2)

t/ 3 W= ί R*^(*,
J B(xQ, 2 \x-x0\)-B(x0, |x-x0l/2)
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We know the following results (cf. [6] and [8, Section 3]).

LEMMA 2.1. If ye B(x0, \x - x0|/2), then

!*..,.*,(*> y)\ < M|χ - xol ' ly - *oΓ"~'
LEMMA 2.2. If ye £(x0, 2|x - x0|) - B(x0, \x - x0|/2), then

LEMMA 2.3. // y e Rn - B(x0, 2 \x - x0|), then

!*.,,.*,(*> 301 < M|x - XoΓ1 |y - XoΓ"-'-1.

Throughout this paper, let ω(r) be a positive nonincreasing function on
(0, oo ) satisfying the following doubling condition:
(ωl) There exists A1 > 0 such that

ω(r) < A1ω(2r) whenever r > 0.

LEMMA 2.4. Suppose ω satisfies
(ω2) r/+1ω(r) is nondecreasing on (0, oo).
Let f be a nonnegatίve measurable function on Rn satisfying

(2.1) \y - x0Γ
nω(\y - x0\)f(y)dy < oo.

Then

ω(|x-x0 |)ί/ι(x) = 0(1) as x->x0

// in addition, ω satisfies

(ω3) lim r'+1ω(r) = 0,
r->0

then

"~~ as x->xn.

PROOF. Let ε > 0. If 2|x — x0| < ε, then by Lemma 2.3 and condition
(ω2) we have

IL^X)!^ M|x — x0K
+1 \y — XQ\Λ~Λ~'~\

JR»-B(x0,2\x-

< M\x - x0\'+1[ε'+1ω(ε)']-1 \y - x0\
Λ~nω(\y - xΌ\)f(y)dy

J Rn-B(x0,ε)

+ Mω(\x - xol)-1 ί \y - x0Γ"ω(\y - x0\)f(y)dy.
J B(xa,B)-B(x0,2\x-x0\)
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Hence by (2.1) we obtain

I U,(x)\ < ω(\x - XolΓ1 JM.|x - x0|'+1ω(|x - x0\)

r „-.
Jβ<xo,ε>

+ M I \y - x*Γ*ω(\y - x<>\)f(y)dy

which implies that

U^x) = 0(ω(\x — Xol)"1) as X - * X Q

If in addition condition (ω3) holds, then

\ \y -
JB(x0,ε)

lim sup ω(|x - x0l)|ί/ι(*)l < M \y - x0Γ"ω(|y - x0\)f(y)dy.
*-»*o JB(x0,ε)

Since ε is arbitrary, we see that the left hand side is equal to zero.

LEMMA 2.5. Suppose ω satisfies
(ω4) r^ω(r) is nonincr easing on (0, oo).
/// is a nonnegative measurable function on Rn satisfying (2.1), then

ω(\x - x0\)U2(x) = o(l) as x->x0.

PROOF. By Lemma 2.1 and condition (ω4), we have

\U2(x)\ < M\x - x0|' I \y -- x l ' fo I I
jB(x0,\x-x

J B(XO,\X-XO\/

0

Mω(\x - x0|)
 1 I \y- x0|

β nω(\y - x0\)f(y)dy,
ol/2)

which together with (2.1) implies the assertion of the lemma.

REMARK 2.1. If ω satisfies (ω4) and / satisfies (2.1), then (1.5) holds.

3. Mean limits

For q > 0, x0 e R" and r > 0, we define the IΛmean of a measurable
function u over B(x0, r) by

( 1 Γ Vlq

Vq(u9 x0, r) = I —- \u(x)\qdx 1 ,
\σnr JB(x0,r) /

where σn denotes the volume of the unit ball B(0, 1).

THEOREM 3.1. Let 1 < p < n/a and q>Q with l/q > 1/p — oc/n. Suppose
ω satisfies (ω2\ (ω4) and
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(ω5) lim rβω(r) = 0 for some β < α.
r->0

/// is a nonnegative measurable function on Rn satisfying conditions (1.1), (2.1)
and

')]-' f
jB(x0,r)

(3.1) lim [r - 'ωίrΓMr-1)]-1 I *P(f(y))dy = 0,

then

(3.2) ω(r)t^(ί/α>ΛjCo/(x), x0, r) = O(l) as r -»0.

// in addition condition (ω5) holds for β < t + 1, then

(3.3) ω(r)K(l/α ^ Xnf(x)9 x0> 0 = o(l) as

REMARK 3.1. By (ω4), β > t, and hence t < α. If / + 1 < α, then (ω2)
implies (ω5) for β satisfying / + 1 < β < α.

PROOF OF THEOREM 3.1. Note that if β < t + 1, then (ω5) implies (ω3).
Thus, in view of Lemmas 2.4 and 2.5, it suffices to treat only £/3(x). For

δ > 0, we have by Lemma 2.2,

\U,(x)\<M ί \x-yΓnf(y)dy
JE(X)

= M\ \x- yΓnf(y)dy
J{yeE(X):f(y)>\X-x0\-*}

+ M f \χ-yr*f(y)dy
J {yeE(x):0<f(y)<\x-x0\-*}

= Ml/31(x) + Mί/32(x),

where E(x) = £(x; x0) = B(x0,2\x - x 0 l) - B(*o> I* ~ xol/2) By condi-
tion (φ4), we see that if f(y) > \x — x0Γ*,

φ(|x - x0Γa) > Mφ(\x - X0\~l).

For q with ςf > /?, let y be a number such that 1/q = \/p — y/n. Then α — γ =

n(l/q — l/p + α/n) > 0. If |x — x0| < r < 1, then we have

f
J£

\
J

f
jE(E(x)

\x - y
B(x0, 2r)
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On the other hand, we have

U32(x) <\x- x0\~δ \ \x - yΓndy < M\x - x0Γ
δ < Mr*~δ,

JB(x0,2\χ-χ0\)

where 0 < δ < α. We use Minkowski's inequality to obtain

ι \ι/β
Vq(U,(x\ χ0, r) < Mr'"* + Λf

ί Γ / Γ
\\ \χ-
WB(x0,r) \Jβ(x0,2r)

Applying Sobolev's inequality to the last integral, we obtain

U ΦP(f(y))dy
B(x0,2r)

+ MrΛ-δω(r).

Hence, by choosing δ > 0 such that β < α — δ it follows from (3.1) and (ω5)

r-»0

Since Vq(u, x0, r) is nondecreasing with respect to q, Theorem 3.1 is obtained.

Set

αo

In case αp = n and q = oo, we shall establish the following result.

THEOREM 3.2. Let ap = n and ω be as in Theorem 3.1. Let f be a

nonnegative measurable function on Rn satisfying conditions (1.1), (2.1) and (3.1).

// φ*(l) < oo, then

(3.4) sup m*,/,x0/MI — o(ω(r)~1φ(r~ί)ί/pφ*(r)) as r->0.
xeB(x0,r)

REMARK 3.2. Note that

a y/p'
Lφ(t'l)Tplpt~ldt] :

J

so that

r-O
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Hence (3.4) does not imply that

ω(r) sup |l/βi,.^/(x)| = 0(l) as r^O.
xeB(x0,r)

PROOF OF THEOREM 3.2. In view of Lemmas 2.4 and 2.5, it suffices to
treat only t/3(x), as before. By [8, Lemma 4.1], we have

α \l/P
ΦP(f(y))dy)

8(x0,2r) )

for |x — x0| < r, where 0 < δ < α. Consequently, it follows that

/ ι ι Γ Y/pl
( [ω(r) pφ(r J)] #P(/(}0)<fy ) f

for |x — x0| < r. Hence we obtain by (3.1) and (ω5)

lim [ω(rΓ>*(r)φ(r-1)1/|1]-1 sup | t/3(x)| = 0.
r->0 xeB(x0tr)

This completes the proof of Theorem 3.2.

4. Quasi everywhere convergence of mean limits

Define

fc(x) = |xΓ"ω(|x|).

To evaluate the size of exceptional sets, for a set E c Rn and an open set
G ci β", we consider

Q, ΦP(£; G) = inf Φp(0()>))d}>,
β JG

where the infimum is taken over all nonnegative measurable functions g on

G such that fe(x — y)g(y)dy > 1 for every x e E (cf. Meyers [2] and Mizuta
«/ ΛΠ

[7]). For simplicity, we write Ck>Φ (E) = 0 if

Ckt φ (E Π G; G) = 0 for every bounded open set G.

In case k(x) = \x\β~n, we write CβtΦ for Q> φ . If a property holds except
for a set £ with CktΦ (E) = 0, then we say that the property holds Cktφp -quasi
everywhere.

LEMMA 4.1 (cf. [7, Lemma 7.1]). /// is a nonnegative measurable function
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on Rn satisfying (1.1) and (1.2), then

where

jx: f
I J R

= tx:\ k(x-y)f(y)dy=<x>y.
R» )

If ft is a positive nondecreasing function on (0, oo) satisfying the doubling
condition, then h is called a measure function. We denote by Hh the
Hausdorff measure for the measure function h.

LEMMA 4.2 (cf. [7, Lemma 7.2]). Let h be a measure function on [0, oo)

for which

lim r~nh(r) = oo.
r->0

For a locally integrable function g on Rn, set

Egth = \x: lim sup [ft(r)]-1 f \g(y)\dy > OJ.
I r->0 jB(x,r) )

Then Hh(Eβ,h) = 0.

LEMMA 4.3 (cf. [7, Corollary 7.2]). // G and G are bounded open sets

in Rn such that G' c= G, then there exists M > 0, depending on the distance
between dG and dG, such that

Ck,φp(E;G)<MHh(E)

for any set E c G', where

U l \-p/p'
[tn-Λpω(tγpφ(t-l)YpΊpt^dt\ , 0 < r < 2'1,

«πd Λ(r) = Λ(2"1) for r > 2'1.

Pκcx)F. First we show that for any α > 0, there exists M > 1 such that

Q, *p(*(0, r); 5(0, α)) < M[κa(r)]-p

whenever 0 < r < α/2, where

[tn'Λpω(tΓpφ(t~l)YpΊpt~ldt

Let 0 < r < α/2 and consider the function
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ll\yΓ pω(\y\rpφ(\yΓ*)rp'lp, if y e 5(0, α) - 5(0, r),
0, otherwise.

If x e 5(0, r), then |x - y\ < 2\y\ for y e 5(0, a) - 5(0, r), so that

|x - y\a~nω(\x - y\)fr(y)dy

> M ί \yΓL\yΓapω(\y\Γpφ(\y\'l)rpΊpdy
JB(0,a)-B(0,r)

Hence it follows that

For β = α 4- np'/p — up', we see that

fr(y) ^Άf\ΓT^T < M-

[ιc.(α/2)]'

whenever y e 5(0, α). Here note by the doubling condition on ω that

ω(r) < Mr~δ, 0 < r < 1,

for some ί > 0. Thus fr(y)[κa(r)Yp' < M\y\~y for 7 = β + (5(pr - 1) > 0.
Hence, we find by conditions (<p3) and (φ4)

Φ

Consequently we establish

< M [κβ(r)]-» f ί\yΓ°po>(\y\Γpφ(\y\-1)rp'/p\yΓdy
JB(0,a)-B(0,r)

= M[κ.(r)Γ'
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Let a' = dist(δG', dG). For any x e G',

Ck,Φp(B(x, r); B(x9 a')) < M[κa.(r)Tp < Mh(r)

whenever 0 < r < α'/2. Hence, we have

Ck,φp(B(x,r)',G)<Mh(r).

If E c= (Jj^ B(xp η), η < α'/2, then we obtain

; 0 < Ck, φp B(x,5 r,);

< M Σ h(rj),
j=ι

which proves

Ck,φp(E;G)<MHh(E).

LEMMA 4.4. For a nonnegative measurable function f on R" satisfying
(1.2), set

-1)]-1 ί Φp
jB(x0,r)

F = jx0: linkup [r*-Λ*ω(rΓpφ(r-l)T1 | Φp(f(y))dy

If (ωS) holds, then Q, φp(F) = 0.

PROOF. Letting p(x) denote the distance of x from the boundary δG,
we define G7 = {x e G: p(x) >j~1} for each positive integer j. Since FΠ G =

Uf=1(FnG,.), we have

Q, φp(F Π G; G) < f Q, φp(F Π G,-; G).

Let Λ be defined as in Lemma 4.3. By the doubling conditions on ω and
φ we see that

Since (ω5) implies

lim r~n[rn~Λpco(r)~pφ(r~1)'] = lim r^~Λ)p[rp'ω(r)~]~pφ(r~'L) = oo,
r-^O r-*0

we have Hh(F) = 0 by Lemma 4.2. Hence it follows from Lemma 4.3 that
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Now, with the aid of Lemmas 4.1 and 4.4, we obtain the following result

from Theorem 3.1.

THEOREM 4.1. Let I <p < n/α, q > 0 with l/q > l/p — α/n and ω be as

in Theorem 3.1. // / is a nonnegative measurable function on Rn satisfying

conditions (1.1) and (1.2), then (3.2) holds for Ck>φ -quasi every x0. // in

addition (ω5) holds for β < / + 1, then (3.3) holds for Ck>φ -quasi every x0.

REMARK 4.1. Let αp < n, 0 < a < I and α — / — a > 0. If ω(r) = r~(<f+α),

then conditions (ωl) ~ (ω5) are all satisfied.

COROLLARY 4.1. Let / + a < α < n/p and 0 < a < I. If f is a nonnega-

tive measurable function on Rn satisfying conditions (1.1) and (1.2), then

(4.1) lim r-'- Vq(UΛt,tXof(x)9 *0, r) = 0
r-»0

holds for Ca_^_a > 0 -quasi every x0 and q > 0 wΐtft l/q > l/p — a/n.

REMARK 4.2. Meyers [3] obtained a result similar to Corollary 4.1 for

Taylor's expansion of Bessel potentials of ZAfunctions.

5. ^-differentiability

We say that u is ZΛdifferentiable of order *f at x0 if

lim r~fVq(u(x) - P(x), x0, r) = 0
r-»0

for some polynomial P (see Meyers [3], Stein [9] and Ziemer [10]).

In view of Corollary 4.1, we have the following result.

THEOREM 5.1. Let αp < n. Let f be a nonnegative measurable function

on Rn satisfying conditions (1.1) and (1.2). // έ is a nonnegative integer smaller

than α, then UΛf is Lq-dίfferentiable of order / Cα_Λ Φ -quasi everywhere for

q > 0 with l/q > l/p — α/n.

For similar results for Bessel potentials of IΛfunctions, see Meyers [3].

In case / = α, we show the following result.

THEOREM 5.2. Let / be a positive integer with £p < n. Let f be a non-

negative function in Lfoc(Rn) satisfying condition (1.1) with α = /. Then Ό£f

is Lq-differentiable of order / almost everywhere for q > 0 with l/q > l/p — //n.

REMARK 5.1. For //-differentiability of Bessel potentials, we refer the

reader to Ziemer [10, Theorem 3.4.2]. In case έ = α = 1 and p < n, Theorem

5.2 implies the result by Stein [9, Theorem 1, Chapter 8].
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For the reader's convenience, we give a proof of Theorem 5.2. First we
recall the following result from the singular integral theory (see Stein [9];
Theorem 4 in Chapter 2).

LEMMA 5.1. Let f be a locally integrable function on Rn satisfying condi-
tion (1.1). Then there exists a set E^ with n-dimensional measure zero such that

Av(x0) = AVts(x0) = lim DvR,(x0 - y)f(y)dy
r->0 jRn-B(x0,r)

exists and is finite for every x0ε Rn — Eί and every multi-index v with \v\ <έ.

Set

U(x) = ί R,(*-
jB(xo,l)

Then U is infinitely differentiable on B(xθ9 1) (see e.g., [5, Lemma 4]). Define

Bv = D*U(x0)

for any multi-index v with |v| < /. Note here that Bv does not depend on

x0, that is,

Bv = Dv I R,(x - y)dy
x=0

The following lemma is elementary (cf. [5, Lemma 1]).

LEMMA 5.2. For a nonnegative function g e ίf*c(JR
Λ), set

ε(r) = sup Γ" g(y)dy.
0<t<r Jβ(0,f)

// y > 0, then

Jβ(0,r)

(5.1) I \yΓ"g(y)dy < Mr?ε(r)
r)

and

(5.2) r* I \yΓ-"g(y)dy < Mε(s)
JB(0,s)-B(0,r)

whenever 0 < r < s.

PROOF OF THEOREM 5.2. By Lemma 5.1, we can find a set Ei with
n-dimensional measure zero such that Av^(x0) exists and is finite for every
x0eR" — E1 and every multi-index v with |v | < /. Consider the set
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E2 = K: lim sup r~n \f(y) - f(x0)\pdy >
(. r^O JB(x0tr)

note that E2 has n-dimensional measure zero since feLγoc(Rn). We show
that UJ is ZΛdifferentiable of order t at x0 e Rn - (El U E2). For simplicity,
we assume that x0 = 0. For |v| < /, set

S-Λ J "-V, C\~> " 1 * ^ 1 ^ ^ 5

For x e B(0, 1/2) - {0}, we write K((x, y) = R(,ft0(x, y) and

= \x\-' f XXx, y)f(y)dy
JRn-B(0,l)

Kf(x,y){f(y)-f(0)}dy
B(0,l)-ί(0,2|x|)

- \x\-< Σ ^ lim f D*Rf(-y){f(y) -f(0)}dy
\\\<.t V! r-^o Jβ(0,2|x|)-B(0,r)

'(lim f K((x,y)dy- Σ ?f
V^O JB(0,l)-B(0,r) \v\ = f VI

+ W" ί R,(χ-y){f(y)-m}dy
J{yeB(0,2\x\) \x-y\<\x\/2}

= Mi(x) + M2(X) - M3(X) +/(0)M4(x) + M5(X) + M6(x),

if the limits exist.
With the aid of Lemma 2.3, it is easy to see that

lim MX(X) = 0.

For a > 0, set

sa(r)= sup (V" ί \f(y)-m\ady\la.
0<ί<r \ Jβ(0,ί) /

Then note that limr^0εp(r) = 0, since we assumed that 0£E 2 Holder's in-
equality gives
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(5.3) ^(r)<Mεp(r) for r > 0.

Hence we have by Lemma 2.3 and (5.2),

lim sup |u2(x)| < M lim sup |x| \y\'n'^\f(y) -f
jB(0,l)-B(0,2|jc

= M lim sup |x| I lyΓ^lfiy) -m\dy

< Mε^δ)

for any δ > 0, which proves

lim u2(x) = 0.

Similarly, if |v| < (, then (5.1) and (5.3) give

lim sup |x|'v|-«f ί
Jβ(0,2|x|)

"'Lj< M lim sup

<M lim sup fi!(2|x|) = 0.

If |v| = /, then, since

(5.4) DvR,(-y)dy = Q, 0 < r < s

(see [5, Proof of Theorem 3]), we see that by the assumption that 0 φ E1

and (5.4)

l imί ^ ^ D*R,(-y){f(y)-f(0)}dy

= lim j f D*R,(-y)f(y)dy -/(O) f D*R,(-y)dy\
r^O UB(0,2\x\)-B(0,r) Jβ(0,2|x|)-B(0,r) J

= lim j f D*R,(-y)f(y)dy - ί D*R,(-y)f(y)dy\
r^O URn-B(0,r) JR»-B(0,2\x\) )

tends to zero as x->0, so that M3(x) is well-defined and

lim M3(x) = 0.
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Noting that

ί D*R,(-y)dy = D
Jβ(0,l)

for |v| < *f, we see by (5.4) that u4(x) is well-defined and

'\U(x)- Σ T ί D^(-y)dy- £ ~
L M</ v! Jβ(o,i) \v\=t v!

= \x\-'W(x)- Σ ^(

Since U is infinitely differentiate at 0,

lim M4(x) = 0.

As to w5, we see by (5.1) that

\u5(χ)\<M\x\-» ί \f(y)-m\dy<
jB(0,2\x\)

which tends to zero as x -> 0 in view of (5.3).
In case //? < n, note that

\u6(x)\<\x\-' ί \ * - y Γ n \ f ( y ) -
jB(x,

<M \
JB(x,\x\/2)

Hence, letting l/q = 1/p — £/n, Sobolev's inequality yields

/ / f
Vq(u69 0, r) < Mr-n/q[ l\y\~'\f(y) ~/(0)|]J

\Jβ(0,2r)

Consequently, (5.1) gives

Vq(u69 0, r) < Mεp(2r),

which shows that

(5.5) limP;(M6,0,r) = 0.

In case *fp = n, for q > p, take y such that l/q = 1/p — γ/n. Then 0 < y < •>
and

1*1/2)

\χ-yΓ*\yΓ'\f(y)-m\dy.

JB(*,

\x - yΓ*\yΓ\f(y) -f(0)\dy,
1*1/2)
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so that

αB(0,2r)

l/P

ί\yΓ\f(y)-m\Ydy <Mεp(2r).

Therefore, (5.5) also follows. Hence we have established that

lim r-fVt(Uff(x) - P(x), 0, r) = 0
r->0

holds for q > 0 with l/q > l/p — έ/n, where

P(x)= Σ D\ / /_j L
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