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ABSTRACT. A statistical property of block designs with their construction problems is
discussed in the light of practical analysis. Firstly, we discuss the robustness of some
balanced block designs against the unavailability of some observations in terms of
efficiency of the residual design. The block designs covered here are variance-balanced
designs and augmented balanced incomplete block designs. The investigation shows
that variance-balanced designs are fairly robust against the unavailability of any two
observations. The bounds on the efficiency of the residual designs of a variance-
balanced design are given. The robustness of augmented balanced incomplete block
designs against the unavailability of any two blocks is also investigated. Secondly,
some block designs with missing observations are characterized as partially efficiency-
balanced designs which provide a simple statistical analysis for the residual designs.
Some constructions of equireplicate, proper partially efficiency-balanced designs are
also given. Thirdly, as a by-product, some partially balanced incomplete block
designs are provided.

0. Introduction

The basic principles of experimental designs as we know them today were
formulated by R. A. Fisher in his famous book "Statistical Methods for
Research Workers" (1925) and in his paper "The arrangement of field
experiments" (1926). The design of such statistical experiments often used
combinatorial structures that yielded a simple calculation of estimates and/or
a symmetric structure of their variance and covariance. Typical examples are
block designs with some balancing. However, when some observations are
missing or become unavailable in a designed experiment for some reason, the
combinatorial structures of the block designs have been also destroyed. This
causes the following two interesting problems in two different directions. One
is to see an insensitive or robust property against the unavailability of
observations. The robustness of block designs against the unavailability of
data has been investigated in abundance, for example, see Hedayat and John
(1974), Ghosh (1979, 1982a, b, c), Dey and Dhall (1988), Srivastava, Gupta
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and Dey (1990), Kageyama (1990), Mukerjee and Kageyama (1990), Bhaumik
and Whittinghill (1991), Ghosh, Kageyama and Mukerjee (1992), Das and
Kageyama (1992), Dey (1993), and Duan and Kageyama (1995b, 1996). For
an excellent review of the subject refer to Kageyama (1993). Most of the
robustness criteria of block designs against the unavailability of data are (1) to
get the connectedness of the residual design obtained after the unavailability
of data (in which all elementary treatment contrasts can be estimated under
the usual linear model); (2) to have the variance-balance (VB) of the residual
design (in which every normalized treatment contrast can be estimated with
the same variance); (3) to consider the efficiency of the residual design.
Criterion 1 of the robustness was introduced by Ghosh (1982a) who has shown
that balanced incomplete block (BIB) designs are robust according to Criterion
1 against the loss of any r — 1 observations or blocks in BIB designs with the
replication number r of each treatment. Similar results on certain partially
balanced incomplete block (PBIB) designs were obtained by Ghosh et al. (1983)
and Kageyama (1986). See also Baksalary and Tabis (1987) who presented
some sufficient conditions for arbitrary blocks to be robust under Criterion 1.
Criterion 2 of the robustness was introduced and studied by Hedayat and John
(1974). It is well known that all BIB designs are VB. Unfortunately, this
desirable feature of BIB designs can easily be lost if, due to some unforeseen
circumstances, some or all of the data related to experimental units assigned to
one or more treatments are lost in actual experimentation. In some cases
nothing can be done to prevent such an undesirable outcome, but fortunately in
many cases there are ways which we can apply to preserve the variance-balance
of the remaining design if we are careful in our selection of the design to begin
with. The papers by Hedayat and John (1974), Most (1975), Shah and
Gujarathi (1977, 1983), Chandak (1980) and Kageyama (1987) are in this cat-
egory. Criterion 3 that has received attention by various authors is in terms of
efficiency of the residual design. This criterion will be adopted in the present
paper. The papers by Kageyama (1980), Dey and Dhall (1988), Mukerjee and
Kageyama (1990), Ghosh et al. (1992), Dey (1993), and Duan and Kageyama
(1995b, 1996) are in this category. Another problem is that when some
observations are missing or become unavailable in a designed experiment, it is
interesting to see what kind of residual designs appear, and how to take
statistical analysis for the designs under the usual linear homoscedastic additive
model. It is known that block designs can be also regarded as partially
efficiency-balanced (PEB) designs with some number of efficiency classes (Puri
and Nigam (1977)). For a PEB design, we can easily obtain the pseudo
variance-covariance matrix Ω. Once Ω is known, the estimate of the vector of
treatment effects is given by ΩQ and the adjusted sum of squares attributed to
treatments is Q'ΩQ under the usual linear homoscedastic additive model, where
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Q is the column vector of adjusted treatment totals (cf. Puri and Nigam (1983),
Puri (1984), Puri and Kageyama (1985)).

The present paper concerns the two problems mentioned above and
consists of two parts. Part I is devoted to the investigation of the robustness
of some balanced block designs against the unavailability of data in the
designs in terms of efficiency of the residual designs. The block designs
covered here are VB designs and augmented BIB designs. In Part II, some
block designs with missing observations are characterized as PEB designs
which provide a simple statistical analysis for the residual designs. Further-
more, some constructions of equireplicate, proper PEB designs are also given.
As a by-product, some PBIB designs are provided, which cover some results of
Duan and Kageyama (1993, 1995a) as special cases.

1. Preliminaries

Consider a block design d(v, fc,r, k) with v treatments arranged in b
blocks of sizes fci,..., fc& such that the i-th treatment is replicated rt times and
occurs riij times in the '-th block (ί = 1,..., υ; . / = ! , . . . , & ) . Here r =
(ri, . . . , r,,)', k = ( f c i , . . . , kb)' and Πy can take non-negative integers. Let r =
(r i , . . . , r,,)' and k = ( f c i , . . . , fc&)', and R and K stand for diagonal matrices with
diagonal elements r i , . . . , rυ and fci,..., kb, respectively, and n = ΣLi rt =

Σy=ι kj- Further let N = (n#), i — 1,.. ., v; j = 1, . . . , ft, be the v x b incidence
matrix of the design. If n\j = 1 or 0 for all i and 7, the design is called a binary
design. When all r\ (i= l,...,ι;) are equal, the design is said to be equi-
replicate. If all kj (j = ! , . . . ,&) are equal, the design is said to be proper.

The intra-block linear model of n observations obtained through the
design d(υ,6,r,k) can be written as

yιji = μ + τi + βj + *(//, (1.1)

where y^/, i = 1,..., v; j = 1,..., b; I = 1,..., ny, is the /-th observation from the
i-th treatment in the 7-th block, μ is the general mean, τ/ is the i-th treatment
effect, βj is the j-th block effect and e$\ are residuals distributed identically and
independently such that E(eyi) = 0, V(eyi) = σ2 and Cov^/,^/////) = 0 for all

(ϊ'J, /) Φ (*',/,/')• We refer to (1.1) as a fixed-effects linear model. It can be
shown that the reduced normal equations for estimating the treatment effects
are Cτ = β, where C = R — NK~^N' is the information matrix which plays an
important role in statistical analysis, τ = (TI, .. .,τυ)' and Q = T - NK~lBf is
the vector of adjusted treatment totals. Here, T and B arc the vectors of
treatment totals and block totals, respectively. Note that the rank of C is at
most v — 1. A block design is said to be connected if all elementary contrasts
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are estimable. It is well known that a block design is connected if and only if

the rank of its C-matrix is exactly v — 1. In this paper only connected binary
block designs are considered.

A BIB(t;, i>, r, fc,/l) design is an arrangement of v treatments in b blocks of
size k such that (i) every treatment occurs in exactly r blocks and (ii) every
pair of distinct treatments occurs together in λ blocks. An augmented BIB
design d is obtained by augmenting each block of a BIB(ι;, f>, r, fc, λ) design,
having the usual v x b incidence matrix N for v test treatments, with a new
treatment (control treatment). This design d has incidence matrix Nj =
[Nf : lb}' with parameters VQ = v 4- 1, bo = b, k0 = (k + \)lb and r0 = (r\'v, b)'.
Here lb denotes a fe-dimensional column vector with all components being
unity. A block design with parameters u, b,r = (n,..., rυ}' and k = ( f e i , . . . , /Q,)'
is said to be VB if and only if all the non-zero eigenvalues of C are equal, which
means that all elementary contrasts are estimated with the same precision. In
this case we have C = θ(Iυ — v~lJv) with θ = (n — b)/(v — 1), where Iv is the
identity matrix of order v and Jv = lvlv

f. It is known that in the class of all
connected binary incomplete block designs the balanced design is the most
efficient design. Among equiblock-sized and equireplicate designs the BIB design
is the only balanced, and hence the most efficient, design. Unfortunately, how-
ever, BIB designs exist in a limited number of cases, and hence it is necessary to
introduce new designs. Bose and Nair (1939) defined PBIB designs in which
all elementary contracts were not estimated with the same variance. Before
defining a PBIB design, we need the concept of an association scheme of υ
treatments as given below.

DEFINITION 1.1. Given v treatments 1,2, . . . , v , a relation satisfying the
following conditions is said to be an association scheme with m classes:

1. Any two treatments are either 1st, 2nd,..., or m-th associates, the
relation of association being symmetrical; that is, if the treatment α is the i-th
associate of the treatment β then β is the i-th associate of α.

2. Each treatment α/ has n\ i-th associates, the number n\ being inde-
pendent of <%i.

3. // any two treatments α and β are i-th associates, then the number of

treatments that are j-th associates of α, and k-th associates of β, is p fc and is
independent of the pair of i-th associates α and β.

Given an association scheme for a set of the v treatments, we define a
PBIB design as follows:

DEFINITION 1.2. // we have an association scheme with m classes and
given parameters, we get a PBIB design with m associate classes if the v
treatments are arranged into b blocks of size k (<v) such that
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1. Every treatment occurs in exactly r blocks;
2. // two treatments α and β are i-th associates, then they occur together

in λι blocks, the number λi being independent of the particular pair of i-th
associates α and β.

The known two-associate PBIB designs were classified by Bose and
Shimamoto (1952) into the following five types depending on the association
scheme: Group divisible (GD), Simple, Triangular, Latin-square type (Lj) and
Cyclic. A PBIB design with two associate classes is said to be group divisible
if there are v = mn treatments and the treatments can be divided into m
groups of n treatments each, such that any two treatments of the same group
are first associates and two treatments from different groups are second asso-
ciates. A PBIB design with two associate classes is called a Latin-square type
design if there are v = s2 treatments that are arranged in an s x s square array,
such that two treatments are first associates if and only if they occur in the
same row or column of the array, otherwise second associates. A PBIB
design with three associate classes is said to be rectangular if there are v = mn
treatments arranged in a rectangle of m rows and n columns, and with respect
to each treatment, the first associates are the other n — 1 treatments of the
same row, the second associates are the other m — 1 treatments of the same
column, and the remaining (w— l)(n— 1) treatments are the third associates.
These PBIB designs will be discussed in Section 5.

When some observations become unavailable in a designed experiment
for some reason, it is of interest to examine the loss of information, defined
suitably, that is incurred due to missing data. Designs for which this loss is
"small" may be termed robust. Let d* be the design obtained by removing
some observations in the original design d. Let C and C* be the usual C-
matrices of d and d*, respectively. In this case, a criterion of the robustness
against the unavailability of such observations is the efficiency of the residual
design d*, given by

sum of reciprocals of non-zero eigenvalues of C ( φΊ \
( — *• sav I

* \ ^ι(*)' /sum of reciprocals of non-zero eigenvalues of C*

(1.2)

(see Das and Kageyama (1992)), which is equivalent to the ratio of the average
variances of all elementary treatment contrasts in the original and the residual
design. Assume d* to be connected [this assumption is made only for the
convenience of general presentation of the eigenvalues of C* in a closed form,
because the calculation of Φι(*) in (1.2) can be done also for a disconnected
design d*].
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For the evaluation of eigenvalues, the following lemma (Mukerjee and
Kageyama (1990)) is useful.

LEMMA 1.1. Let u, SI , . . . ,S M be positive integers, and consider the sxs
matrix

A _
A —

SlSl

buuJSuSu _

where s = si + 52 H ----- \- su and the u x u matrix B = (by) is symmetric. Then
the eigenvalues of A are α/ with multiplicity Si — 1 (1 < i < u) and μ\, . . . , μ*,

where μ\, . . . , μ* are the eigenvalues of A =Da + D^2BD^2 with Da =
diag {αi, . . . , au}9 Ds = diagfo, . . . , su} and DS

1/2 = diagίs1/2, . . . , su

1/2}.

The following notations are used throughout the paper: Is is the identity
matrix of order s, Jsxt = \s\t' is an s x t matrix with all elements unity, Osxt

denotes an 5 x t matrix with all elements zero, Jsxs (Osxs) is specially denoted
by JS(OS) (hereafter, J denotes such matrix of appropriate size), and A (x) B
denotes the Kronecker product of two matrices A and B.

Part I. Robustness of some block designs

The robustness of VB and augmented BIB designs against the unavail-
ability of some observations has been investigated in terms of efficiency of the
residual design by Gupta and Srivastava (1992), Duan and Kageyama (1995b,
1996). For a VB design, Gupta and Srivastava (1992) investigated the robust-
ness of the design against the unavailability of some disjoint blocks. Duan and
Kageyama (1996) investigated the robustness of VB designs against the unavail-
ability of any number of observations in a block or any two blocks which are
not necessarily disjoint. For an augmented BIB design, Gupta and Srivastava
(1992) investigated the robustness of the design against the unavailability of all
observations in a block. Duan and Kageyama (1995b) investigated the robust-
ness of the design against the unavailability of any two observations.

In Part I, we pay our attention to the cases that any two observations in
the VB design or any two blocks in an augmented BIB design are miss-
ing. These are feasible situations in practice.

2. Robustness of variance balanced block designs

A binary connected VB design with parameters ι?, b, r = (ri, . . . , rv)
r,

k = (fci, . . . , fcfc)', n - ELi rt = Σ*=ι kj and θ = (n - b)/(v - 1) in which C =
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Θ(IV — v~*Jv), is considered here to show the robustness against the unavail-
ability of data. Further assume that the present VB design does not have the
incidence matrix of type JVXb and also satisfies fc, > 2 for all j = 1,..., b. This
is the usual assumption in the area of design of experiments to avoid trivial
designs. On account of Corollary 6 of Kageyama and Tsuji (1980) and
Proposition 3.1 of Kageyama (1984), we can show that θ = (n — b)/(v — 1) > 1.
This property will be used later.

2.1. Unavailability of any two observations in a design

Suppose that two observations in any one block or two different blocks of
a VB design d with incidence matrix Nd = (ny), i = 1, . . . , 0; j = 1, . . . , fe, are
lost. Without loss of generality, the situation can be treated by separating it
into the following five patterns.

Case 1: Two observations corresponding to positions n\\ and n^\ in a
block are lost.

Note that Duan and Kageyama (1996) investigated the robustness of the
design against the unavailability of any number s (1 < s < fej ? — 1) of observa-
tions in a block by showing an expression of the efficiency of the residual design
as

(2.1)

Hence Case 1 can be treated as a special case of (2.1) when 5 = 2, which is also
rewritten as

*!(*)=• (2.2)
(Ό - 3){(0 - I)2 -x2} + 20(0-1)

with x = 0. The formal expression (2.2) will be utilized in Section 2.2.

Case 2: Two observations n\\ and n\2 in different blocks but for the
same treatment are lost.

Let w be the number of treatments common to two such blocks. Then
1 < w < min{fei,/C2}. In this case, the C-matrix of the residual design d* can
be given by

C* =

en

€22

Sym
C33 c34J c35J

€44 C4$J

€55]
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with
en = 0 - 2 - v~lθ + fcj-1 + fcj1,

C22 = 0/w-ι - {^0 + fcr1^! - I)"1 + ̂
C33 = 0/fcl-w - {v'lθ 4- k?(kι - IΓVfci-
C44 - θ/fc2-w - {v~lθ + kj^fe - l)~Vfa-

C12 = -tr + - + -, en = -t

C14 = -tr'β + fc, l, c23_= -ir'fl - fcrUfel - I)"',
c24 = -v~lθ - Iς 1(fe2 - I)"1, cis = c25 = c34 = c35 = c45 = -t?-^.

Hence we can obtain the following after some calculation through

Lemma 1.1.

LEMMA 2.1. The v — 1 non-zero eigenvalues of C*, 1 < w < min{/cι,fe2}5

are given by

θ with multiplicity (w.m.) v — 3,

0 — 1 — x w.m. 1,

θ — 1 H-x w.m. 1,

w/im? x = (kιk2 - fei - fc2 -f w){fe1fe2(feι - I)(fc2 - 1)}"1/2.

REMARK 2.1. When w = 1, the C-matrix of the residual design d* can be

given by removing the second partitioned row (submatrix) and column (sub-

matrix) in the original C* of the residual design. Then by Lemma 1.1, the

same result as Lemma 2.1 with w = 1 can be given. Similarly we can get

Lemma 2.1 also for each case of w = k\ or w = fc2) or υ — k\ — k2 + w = 0.

Later such special cases will be discussed similarly.

Recall that ^ι(fcι,fc2,w) and φ2 are the sum of reciprocals of non-zero

eigenvalues of C* and C, respectively. Hence, in (1.2),

, , ( g _ ι ) 2 _ χ 2 ,

which yield the efficiency of the residual design d* as

- _ (2.3)
(t, - 3){(0 - I) -x2} + 20(0-1)

for 1 < w < min{feι, k2} with x = (kιk2 - fei - fe2 -h w){fcιfc2(fcι - l)(Jk2 - 1)}~1/2.

For a given VB design, we here consider how the efficiency of the residual

designs changes in terms of w like (2.3). As for behaviour of the values of

efficiencies in the case above, we have the following.

THEOREM 2.1. In a VB design with parameters υ, fe,r = (ri, . . . ,rυ)
f, k =
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(*!, . . . , kb)', n =

where wmaχ < min{fcι,fc2}.

kJ = (n- V)/(υ - 1), for Case 2

> e(kι,k2', wmax),

PROOF. Note that x in (2.3) is an increasing function of w. This implies

that ^ ( f c i j f o j w ) is also an increasing function of w, since ^(fcij^w) is an

increasing function of x. For any integers w', w such that 1 < w' < w <

min{fcι,fc2}, it follows that ^(fci,^ w') < φl(kι,k2,w), which through (2.3)
implies that e(k\, kι\ w') > e(k\, £2; w) for 1 < w' < w < min{fcι, £2}. This com-

pletes the proof. Π

Theorem 2.1 implies that the behaviour of β(fc;, fe;/;wmax), j^j'JJ' =

! , . . .,£?, is important to judge whether the design is robust or not for Case

2. All VB designs listed in Kageyama (1976), Gupta and Jones (1983), Jones,

Sinha and Kageyama (1987), and Gupta and Kageyama (1992) have been

worked out. The evaluation reveals that except for a few, all the VB designs

have high values of e(fc/,fc/>; wmax). In fact, 318 designs satisfy e > 0.90, 5
designs of series numbers 2, 7 in Kageyama (1976), 6, 7 in Gupta and Jones

(1983) and 2 in Gupta and Kageyama (1992) get 0.90 > e > 0.80, and only one

design of series number 1 in Kageyama (1976) has smaller values of efficiency as

β(2,2;2) = β(4,4;4) = 0.50 and *(2,4;2) - 0.59 show. It appears that all VB

designs are fairly robust against the unavailability of any two observations

pertaining to the same treatment in any two different blocks.

Case 3: Two observations n\\ and 7*22 in different blocks and corre-
sponding to different treatments are lost. This case can also be treated by

separating it into following three types:

Case 3.1: n^\ — 0 and n\ι — 0 with 0 < w < min{/cι, k{\ — 1.

In this case, the C-matrix of the residual design d* can be given by

C22

Sym

C25J

C33

€44 045

C55

C66J

(2.4)

with
en = θ - 1 -

C33 = 0/w - {

€44 = 0/k,-w-

θ + fef1, c22 = 0"1 - 1 - v~lθ + fe2-l,
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C55 = 0/fc-w-ι - {υ~lθ + k^(k2 - I)-1}./**-*-!,

= Cis = Cl6 = C24 = ^26 = ^36 = £45 = £45 = £56 = —

j " , C23 = C25 = ~V~ + ^ ,

c34 = -ir^ - /cj-^fci - I)'1, ess = -v~lθ - k^(k2 - I)"1.

Hence we can obtain the following after some calculation through

Lemma 1.1.

LEMMA 2.2. The v - 1 non-zero eigenvalues ofC*, 0 < w < min{fa, fa} - 1,

are ^fit βn by

θ w.m. v — 3,
θ — 1 — x w.m. 1,
θ — 1 +x w.m. 1,

where x = w{feιfa(feι - l)(fa - l)}~1/2

By Lemma 2.2, in (1.2),

-f-Ψl v f v i ) f v^5 ") Q

\~ — /

Hence the efficiency of the residual design d* is given by

, fa, w) („ _ 3){(0 _ I)2 _ X2}

for 0 < w < min{fa, fa} - 1 with x = w{fcιfa(feι - l)(fa - 1)}~1/2.

As for behaviour of the values of efficiencies in Case 3.1, we have the

following.

THEOREM 2.2. In a VB design with parameters v, b, r = (ri, . . . , rv)', k =

(fa, . . . , kb)
f, n = ΣLi r, = Σ]Lι fe; ̂  β = (n - b)/(v - 1), for Case 3.1

e(fcι,fa;0) > β(kι,fa;l) > > e(kι,fa; wmax),

wmax < min{kι,fa} - 1.

PROOF. Note that x in (2.5) is an increasing function of w. This implies

that ^ι(kι,fa,w) is also an increasing function of w. For any integers w', w

such that 0 < w' < w < min{fa, fa} - 1, it follows that ^ι(fa, fa, w') <

Φ\ (ki , fa, w), which through (2.4) implies that e(k\ , fa; w') > e(k\ , fa; w) for

0 < w; < w < min{fcι,fa} — 1. This completes the proof. Π

THEOREM 2.3. In a VB design with parameters v, b, r = (ri, . . . , r v ) f , k =
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i, . . . , kb)
r, n = ΣVi=ι Π = Σ,bj=ι kj and Θ=(n- b)/(v - 1), for Case 3.1

n; w) < e(k\, fe2; w) < έ?(/cmax, fcmax; w)

/or fl ^ixed positive integer w swcft ί/iαί 1 < w < mm{k\,k2} — 1.

PROOF. First note that x in (2.5) is a symmetric function of k\ and

The partial derivatives of x with respect to k\ and &2 can be given by

dx k2(2kι - l)(/c2 - l)w dx k{(2k2 -

- I)}3/2 ' 3*2 2{fc1fc2(fc1 - I)(fe2 - 1)}3/2 '

respectively, which are negative for 1 < w < min{fcι,/c2} — 1. Thus, x is a

decreasing function of k\ and fe2. This implies that ^1(feι,fe2,w) is also a

decreasing function of k\ and /c2. It follows that ^(feminjfcminj w) >

Φι(kι,k2, w) > ̂ (feniax, fcmax, w), which through (2.5) implies that ^(femin, fc

e(fcι,/c2;w) < β(femaχ,femax; w). This completes the proof. Π
min

REMARK 2.2. Note that x = 0 in (2.5) when w = 0. Thus, the efficiency

of the residual design, e(fcι,fc 2;w = 0), is independent of block sizes k\ and k2.

We now compare values of e(k\,k2;vi) for Cases 2 and 3.1. The cor-

responding efficiencies are denoted by e2(fcι,fc2;w) and ^3.1(^1,^2; w),

respectively.

THEOREM 2.4. In a VB design with parameters v, b, τ = (ri, . . . , r Ό ) f ,

k= fc i , . . . , /^) ' ,

ι,fe;w) <β3.ι(/cι,/c2;w)

/or α ^xed positive integer w SMC/I ίfiαί 1 < w < min{feι,/C2} — 1.

PROOF. Let x, stand for x in Case i. Recall that xs.i = w{feι/c2(/cι - 1) x

(fe - 1)}~1/2 and x2 - (/cιfc2 - fct - fc2 + w){fc1fc2(fc1 - l)(fe - I)}"1/2. It can

be shown that xs.i < x2. Since e(fcι,fc 2;w) is a decreasing function of x/ as

shown before, it follows that ^2(^1, k2-,w) < eι.\(k\,k2', w). This completes the

proof. Π

Theorems 2.2 and 2.3 imply that the behaviour of e(fcmin,fcmin; wmax) is

important to judge whether the design is robust or not for Case 3.1.

However, Theorem 2.4 shows that the efficiency of the residual design with

pattern of missing observations in Case 3.1 is not smaller than the one with

pattern of missing observations in Case 2 for any VB design. Hence it is

enough to evaluate the values of e(kj, fc//; w) for Case 2 to show the robustness

for Case 3.1 pattern. Thus, from the previous evaluation for Case 2, it follows

that VB designs are fairly robust against the unavailability of the two obser-

vations in Case 3.1.
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Case 3.2: n2\ = 0 and n\2 = 1 with 1 < w < min{fcι,/c2} - 1.
In this case, the C-matrix of the residual design d* can be given by C* in

(2.4) with

cn = θ - 1 - υ~lθ + /if1 - Iς1(k2 - I)"1,

c33 = 0/w-ι - {
C44 = 0/kl-w - {υ

C55 = 0/fa-w-ι ~

C12 = -vθ + lς, en = -tr + kΓ - ^(k2 - I)',
C14 = -1̂ 0 + fcj-1, Ci5 = -Ό~lθ - kϊl(k2 - \Y\

C16 = C24 = ^26 = C36 = C45 = ^46 = ^56 =-ϋ"10, C23 = C25 =~V~1Θ -f fe^ \

c34 = -t;-^ - fcrH*! ~ I)'1. ^35 = -υ~lθ - k^(k2 - I)-1.

Hence we can obtain the following after some calculation through
Lemma 1.1.

LEMMA 2.3. The v — 1 non-zero eigenvalues of C*, 1 < w < min{kι, k2} —
1, are given by

θ w.m. v — 3,
0— 1 — x w.m. 1,
0 — 1 + x w.m. 1,

x = (fci - w){/cι/c2(kι - l)(/c2 - 1)}~1/2.

By Lemma 2.3, in (1.2),

. n ι N f -3 2(0-1)
-- - V ;

Hence the efficiency of the residual design d* is given by

t «Λ - -ι,fc2; w) = -—7-. — - - = - = - (2.o)
^(kι,/c2,w) (Ό - 3){(0- I)2 -x2} + 20(0-1)

for 1 < w < min{fcι,/c2} - 1 with x = (kι - w){kιk2(kι - I)(k2 - 1)}~1/2.
As for behaviour of the values of efficiencies in Case 3.2, we have the

following.

THEOREM 2.5. In a VB design with parameters v, b, r = (ri, . . . , r v ) f ,

k =(*!,..., kb)'9 n = ΣLi rt = Σ{=ι fe; and θ=(n- b)/(v - 1), /or Case 3.2

e(fcι,/c 2;l) <e(/cι,fc2;2) < < e(kι,fc2; wmax),

wmax < min{feι,/c2} - 1.
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PROOF. Note that x in (2.6) is a decreasing function of w. This implies
that ^ι(fcι,fc2,w) is also a decreasing function of w. For any integers w', w
such that 1 < w' < w < min{fcι, fc2} — 1, it follows that φ\(k\, fc2, w') >

^ι(fci j fc2,w), which through (2.6) implies that e(fcι,/c2; w
7) < e(fcι,fc2;

 w) f°Γ

1 < w' < w < min{fcι,/e2} — 1. This completes the proof. Π

THEOREM 2.6. In a VB design with parameters v, b, r = (ri, . . . , rv)'9 k =

(*!,..., ft*)', n = ΣJLi r, - ΣJLi fc; ̂  0 = (n - &)/(» - 1), for Case 3.2

e(fcmax, fcmin; w) < β(fcι, fc2; w) < β(fcmin, fcmax; w)

/or a fixed positive integer w such that 1 < w < kmin — 1.

PROOF. The partial derivative of x in (2.6) with respect to k\ can be

given by

dx _ (2fcι - l)w - fci

which is positive for 1 < w < fcmin — 1. Thus, x is an increasing function of

fci. This implies that ^(ki,/^, w) is als° an increasing function of k\. On the
other hand, the partial derivative of x in (2.6) with respect to ki can be given by

dx

8k2 2{fc1fc2(k1 - I)(fc2 - I)}3/2 '

which is negative for 1 < w < femin — 1. Thus, x is a decreasing function of
fe2. This implies that ^ι(feι,fe2,w) is also a decreasing function of fc2. It
follows that ^(fcmax^min^) > ^1(kι,fe2,w) > ^(/Cmin^maxjW), which through

(2.6) implies that β(femax,fcmin; w) < e(fcι,/c2; w) < e(fcmin,/cmax; w). This com-

pletes the proof. Π

When the sizes of two blocks in which the missing observations for Case
3.2 occur are equal, we can obtain the following which shows the sensitive
behaviour of efficiency.

THEOREM 2.7. In a VB design with parameters v, b, r = (ri, . . . ,rv)
r, k =

(fci,.. .,**) 7, n = ΣLιΠ = Σ}=Λ ™d θ=(n-b)/(υ-l), for Case 3.2, if
k > k1, then

e(k,k',w)<e(kr,k';w)

for kk'/(k + k' - 1) < w < V and

for
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PROOF. Let x(k) = (k - w){fc(fc- I)}"1 stand for x in (2.6). For any
two possible block sizes fc, k' such that fcmin < k' < k < fcmax, it can be shown
that

- - f c f c ' ( f c _ l ) ( f c ' _ l ) '

which means that x(fc) > x(fc') if kk//(k + kf - 1) < w' < k', and x(fc) < x(fc') if
1 < w < kkf /(k + k' — 1). Since e(fc, fc, w) in (2.6) is also a decreasing function
of x = x(/c). It follows that e(k, fc; w) < e(kf, k' w) for fcfc'/(fc -f k' - 1) < w <
fc', and e(k, fc; w) > e(fc', fc'; w) for 1 < w < fcfc'/(fc + k' - 1). This completes the
proof. Π

We now compare values of e(fcι,fc2;w) for Cases 2 and 3.2. A notation
£3.2(fcι ?fc2;w) is defined in the same way as Theorem 2.4.

THEOREM 2.8. In a VB design with parameters v, b, r = (ri, . . . , r v ) f ,

k = f e i , . . . , ^ 7 ,

i, fc2; w) < 63.2(^1,^2; w)

/or a fixed positive integer w such that 1 < w < min{fci,/C2} — 1.

PROOF. Let x, stand for x in Case i. Recall that xs.2 = (fci - w) x

{fc!fc2(fcι - I)(fc2 - 1)Γ1/2 and x2 = (fcιfc2 - *ι - k2 + w){fcιfc2(fcι - I)(k2 - l)}~1/2

It can be shown that xs.2 < X2 Since e(k\, k^\ w) is a decreasing function of xiy

it follows that e2(k\,k2',w) < ^3.ι(fcι,fc25 w). This completes the proof. Π

Theorems 2.5 and 2.6 imply that the behaviour of β(fcmaχ,fcmm; 1) is
important to judge whether the design is robust or not for Case 3.2.
However, Theorem 2.8 shows that the efficiency of the residual design with
pattern of missing observations in Case 3.2 is not smaller than the one with
pattern of missing observations in Case 2 for any VB design. Hence it is
enough to evaluate the values of e(fc/, fc,-/; w) for Case 2 to show the robustness
for Case 3.2 pattern. Thus, from the previous evaluation for Case 2, it follows
that VB designs are fairly robust against the unavailability of the two obser-
vations in Case 3.2.

For «2i = 1 and n\ι — 0, a case that two observations n\\ and ^22 are lost
can be considered. However, this case will be omitted. Because this case is
equivalent to Case 3.2 by exchanging the first and second treatments and
simultaneously by exchanging the first and second blocks, respectively. Thus
by exchanging k\ and fc2 of (2.6), we obtain the same result in this case as
Case 3.2.

Case 3.3: nι\ = 1 and n\ι = 1 with 2 < w < min{fcι,fc2}.
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In this case, the C-matrix of the residual design d* can be given by C* in
(2.4) with

en = θ - 1 - v~lθ + fcj-1 - k^(k2 - I)"1,

ca = 0 - 1 - v~lθ + kϊ1 - kϊl(k! - I)'1,
C33 = 0/W-2 - {V^θ + ̂ ki - I)'1 + k2

l(k2 - lΓVw-2,

€44 = ΘIkt.w - {υ~lθ + fcr'(fcι - I)-1}/*,-",
C55 = 0/b-w - {tr'0 + fcj '(*2 - l)~V*2-w,
Cfi6 = 0/B-fc,-fc2+w — V~ ΘJv-ki-h+w,

Cn = -v-
lθ + kϊl + ftj-1, en = -v~lθ + fcΓ1 - k^(k2 - I)"1,

C14 - -υϊlθ + fcr1, cis = -c-1^ - ^-'(fcz - I)'1,
Cl6 = C26 = C36 = 045 = C46 = C56 = -t)"

1
,̂

c
23
 = -p-ifl + ̂i _fc

Γ
i(fc, - i)-

1
,
 C24

 = _
r
-ι

θ
_fe

Γ
i(

fcl
 _ i)-i

;

"
1

c25 = -»-»β + fc^1, c34 = -tr^ - fcΓ!(feι - I)"1,
C3S = -l>-1β-i^1(ik2-lΓ1.

Hence we can obtain the following after some calculation through

Lemma 1.1.

LEMMA 2.4. The v— 1 non-zero eigenvalues of C*, 2<w < min{fcι,fc2},
are given by

θ w.m. v — 3,

θ — 1 — x w.m. 1,
θ-ί + x w.m. 1,

where x = (fei + fe2 - w){fe1/c2(fcι - I)(fc2 - l)}"1/2

By Lemma 2.4, in (1.2),

, ,. . , »-3 2(0-1)

* (t " ')—r +

( -W
Hence the efficiency of the residual design d* is given by

-2 "

for 2 < w < min{feι,fe2} with x = (/d + fe2 - w){fcι/c2(feι - I)(fe2 - l)}~1/2

As for behaviour of the values of efficiencies in Case 3.3, we have the
following.

THEOREM 2.9. In a VB design -with parameters t;, b, r = (ri, . . . , rv)',

k = (fci, . . . , fefc)7, n - ΣLi Π - ΣJLi fe; and θ=(n- b)/(v - 1), for Case 3.3

e(fcι,/c2;2) < e(fcι,/c2;3) < < β(feι,/c2; wmax),

wmax < min{fcι,fc2}.
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PROOF. Note that x in (2.7) is a decreasing function of w. This implies

that ^ι(fcι,fc2,w) is also a decreasing function of w. For any integers w', w
such that 2 < w' < w < min{fcι,fc2}, it follows that ^ι(fcι,fc2,vv') > ^1(fcι,/C2, w),
which through (2.7) implies that e(fcι,fc2; w') < e(fcι,/C2; w) for 2 < w' < w <
min{fcι,fc2}. This completes the proof. Π

THEOREM 2.10. In a VB design with parameters v, ft, r = (r l 5. . . , r^)',

k = (fci, . . . , /Q,)', n = ΣJU Π = ΣJLi fc; αwd » = (n ~ b)/(v - 1), for Case 3.3

^(fcmin, fcmin; W) < e(kι,k2] w) < e(fcmax, /Cmaxί W)

/or α fixed positive integer w SMC/I that 2 < w < min{feι,fc2}.

PROOF. First note that x in (2.7) is a symmetric function of k\ and
/C2. The partial derivatives of x with respect to k\ and fe2 can be given by

dx _ -fcι(2fc2 4- 1) + (2fcι - l)w + fc2

gx = -fc2(2fcι + 1) + (2fc2 -

^2"2{fc1(fc1-l)}1/2{fc2(fc2-l)}3 / 2 '

respectively. Without loss of generality, we assume that k\ < k^. Then, for
any 2 < w < min{fcι, fc2} = fci, we have

-Jkι(2Jk2 + 1) + (2fcι - l)w + fc2 < - fcι(2fc2 + 1) + (2fcι - l)fcι + fc2

= (2fcι - l)(fcι - fc2) - fci < 0,

-fc2(2fc! + 1) + (2fc2 - l)w + fci < - fc2(2fcι + 1) + (2fc2 - l)fcι +. fc2

= -fc2 < 0.

Thus, x is a decreasing function of k\ and fc2. This implies that
^ι(fcι>fc2,w) is also a decreasing function of k\ and fc2. It follows that

Φ\ (fcmin, fcmin, w) > φ{ (fci , fc2, w) > φv (fcmax, fcmax, w), which through (2.7) ίm-

plies that e(fcmin, fcmin w) < β(fcι,fc 2;w) < β(fcmax,fcmaχ; w). This completes the
proof. Π

We now compare values of e(fcι,fc2;w) for Cases 2 and 3.3.

THEOREM 2.11. In a VB design with parameters v, b, r = (ri, . . . ,ry)',

for a fixed positive integer w such that 2 < w < min{fcι,/C2}.
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PROOF. Let Xi stand for x in Case i. Recall that £3.3 = (fci 4- ki — w) x

{fc!fe(fcι - 1)(*2 - 1)}~1/2 and x2 = (kfa - k, - k2 + w){fc1/c2(/c1 - I)(fe2 - I)}'1/2.
It can be shown that 3:3.3 < x2. Since e(/cι,/c2; w) is a decreasing function of x l5

it follows that e2(fcι,/c2;w) < ^3.3(^1,^2; w). This completes the proof. Π

Theorems 2.9 and 2.10 imply that the behaviour of e(fcmin,fcmin;2) is
important to judge whether the design is robust or not for Case 3.3.
However, Theorem 2.11 shows that the efficiency of the residual design with
pattern of missing observations in Case 3.3 is not smaller than the one with
pattern of missing observations in Case 2 for any VB design. Hence it is
enough to evaluate the values of e(fc/,fc//; w) for Case 2 to show the robustness
for Case 3.3 pattern. Thus, from the previous evaluation for Case 2, it follows
that VB designs are fairly robust against the unavailability of two observations
in Case 3.3.

Thus, from the previous discussions, we can conclude that VB designs
are fairly robust against the unavailability of any two observations in the
design.

2.2. Bound on the efficiency of the residual designs

For a given VB design, we consider how the efficiency of residual designs
changes according to positions of missing observations. A bound on the
efficiency of the residual designs of VB designs is given in this section. It can
be shown that the best design (which has the smallest loss of information) in a
class of residual designs is derived by removing two observations in the same
block or these corresponding to two different treatments in two different
blocks which have disjoint sets of treatments. The worst design happens
when two observations corresponding to the same treatment in two different
blocks are removed.

Let ei(fci, fc 2 ;w) stand for the efficiency of the residual designs in Case i
with i = 2, 3.1,..., 3.3. For Case 1 see (2.2) as eι(x = 0) there. We can
obtain the following.

THEOREM 2.12. In a VB design with parameters ι;, b, r = (ri, . . . , rv)',

k = (fci, . . . , kb)', n = Σ =ι Π = Σ]Lι kj and θ=(n- b)/(v - 1),

for all possible Cases i except for Cases 1, 2 and 3.1 with w = 0.

PROOF. First note that the expressions of efficiency of the residual designs
for the five cases mentioned above are the same as a function on x, which is
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given by

= (= e(x), say).
(Ό - 3){(0 - I)2 -x2} + 20(0-1)

It can be shown that e(x) is a decreasing function of x. Recall that x, stands
for x in the efficiency factor of Case i. Note that 0 < x < x2 in the five cases
mentioned above. Thus it follows that the maximum and minimum of effi-
ciency of the residual designs are given by e(x = 0) and e(x = x2), which
correspond to Cases 1 and 3.1 with w — 0, and Case 2, respectively. This
completes the proof. Π

An example is illustrated. A VB design with 7 treatments, 14 blocks of
size fci = 3 and fe2 = 4, respectively, having 7 replicates is considered, whose
blocks are given by

1 3 2 1 3 1 4 1 1 2 2 1 1 2

2 5 3 4 4 2 5 2 5 3 6 3 3 4

4 6 5 6 6 5 7 3 6 4 7 4 7 5

7 7 7 6 7 5 6

where columns show blocks of three or four treatments. Let d be two copies of
this design which yields another VB design. All values of efficiency for the
residual design d* are shown in the following tables. Here "—" denotes that
such case does not exist. The data with h and / denote the highest and lowest
values of efficiencies of the residual designs in that tables, respectively.

Through Tables 2.1 to 2.4, it follows that the maximum of efficiency of
the residual designs is emax = e\(x = 0) = £3.1 (&ι,fe 2;w = 0) = 0.96969. The
residual designs corresponding to Cases 1 and 3.1 with w = 0 are the designs
with the highest efficiency in the class of the residual designs. Note that emax

is independent of k\ and fe2. The minimum of efficiency of the residual
designs is given by emin = e2(3,3;3) = e2(4,4;4) = 0.96666.

3. Robustness of augmented BIB designs

Consider an augmented BIB design d with parameters VQ = v + 1, b$ = b,
k0 = (fc+ l)lfc and ΓQ = (r\'v,b)'. It is easily shown that the non-zero eigen-
values of the C-matrix of d are (rfc + λ)/(fc+l) with multiplicity v—ί and
(vr + r ) / ( k + 1) with multiplicity one.

Suppose that any two blocks in an augmented BIB design d are lost.
Without loss of generality, assume that the first two blocks are lost. Let w be
the number of test treatments common to two such blocks in the original BIB



Robustness and constructions of some balanced block designs

Table 2.1 e(k\, k\\ w) for 0 < \v < k\

19

Case i

Case 1

Case 2

Case 3.1

Case 3.2

Case 3.3

w = 0

0.96969*
—

0.96969*
—

—

Table

Case i

Case 1

Case 2

Case 3.1

Case 3.2

Case 3.3

w = 0

0.96969*
—

0.96969*
—

—

Table 2.3

Case i

Case 1

Case 2

Case 3.1

Case 3.2

Case 3.3

\v = 0

0.96969*
—

0.96969*
—

—

Table 2.4

Case i

Case 1

Case 2

Case 3.1

Case 3.2

Case 3.3

w = 0

0.96969*
—

0.96969*
—

—

w = l

0.96835

0.96961

0.96936

—

w = 2

0.96759

0.96936

0.96961

0.96835

2.2 e(fc2,fo;w) for 0 < w

w = l

0.96799

0.96967

0.96950

—

e(kι,k2;w) for

w = l

0.96818

0.96965

0.96952

—

e(feιfcι w) for

w = 1

0.96818

0.96965

0.96932

—

w = 2

0.96759

0.96961

0.96961

0.96894

0 < w < mil

w = 2

0.96763

0.96952

0.96965

0.96864

w = 3

0.96666'
—

—

0.96894

<k2

w = 3

0.96715

0.96950

0.96967

0.96917

α{fciιfe2}

w = 3

0.96700
—

—

0.96902

w = 4

—

—

—

—

w = 4

0.96666'
—

—

0.96936

w = 4

—

—

—

—

0< w<min{/cι,/c2}

w = 2

0.96763

0.96952

0.96952

0.96864

w = 3

0.96700
—

—

0.96902

w = 4

—

—

—

—
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design. It is known (Connor (1952)) that the number w of treatments common

to any two blocks satisfies - ( r-/ ί- fc)<w< 2λk/r + (r - λ - k) (= wmax, say).
In this case, the C-matrix of the residual design d* can be given by C*(w),

where

with

C22 C23J C24J C2$J

C33 C34J C35J

Sym €44 C4sJ
C55

C22 = C33 = (q - k - l)/k_w - (A - 1) Jfc_w,

€44 = qlv-2k+w - AJ0_2fc+w, C55 = W - 2/C,

C14 = ^23 = C24 = C34 = "A, Cis = -(r - 2),

c4s = -r, q = rk + λ.

n = Cn = -(A - 1),

C25 = C35 = ~(r - 1),

The calculation of eigenvalues of C*(w) can be done by separating it into
three cases of w = 0, w = fc (for the same blocks) and 1 < w < fc — 1.

Case 1: w = 0. In this case, we can obtain the following after some
tedious calculation through Lemma 1.1.

LEMMA 3.1. The v non-zero eigenvalues o/C*(w) with w = 0 are given by

q/(k+ 1) w.m. t? - 2k - 1,
l w.m. 2fc-2,

l) w.m. 1,
(α±(α2-40)1 / 2)/{2(fc+l)} w.m. 1 each,

where
v(r - λ) - 1, β = (v + ΐ){r(q - 1) - 2kλ}, q =

Recall that ^ι(w) and φ2 are the sum of reciprocals of non-zero
eigenvalues of C* and C, respectively. By Lemma 3.1, in (1.2),

v - 2k - 1 2k-2 1

(3.1)

which yield the efficiency of the residual design d* in e(0) = φ2/Φι(ty
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Case 2: w = k. In this case, we can obtain the following through
Lemma 1.1.

LEMMA 3.2. The v non-zero eigenvalues of C*(w) with w = k are given by

q/(k-\-\) w.m. v — k— 1,
4/( fc+l)-2 w.m. k- 1,
(α±(α2-4β)1 / 2)/{2(fc+l)} w.m. 1 each,

- 2(/d + r)}, q =

fe-1

where
α = (v + l)r + q - 2(k + 1), β = (v -

By Lemma 3.2, in (1.2),

A n^ /, ^fv-k- 1
rfι(fc) = (fc+1)

V «

Hence the efficiency of the residual design d* is, in (1.2), e(k) = Φι/φ\(k] with
(3.1).

Case 3: 1 < w < fc - 1. It follows from Lemma 1.1 that the υ — 4 non-
zero the eigenvalues of C* are q/(k + 1) - 2, q/(k + 1) - 1 and g/(fc + 1) with
respective multiplicities w — 1, 2(fc — w — 1) and i; — 2k + w — 1. Other four
non-zero eigenvalues of C* are μj/(fc -h i ) , . . . , μ%/(k + 1), where μj, . . . , μ| are
non-zero eigenvalues of zf = Da -I- DS BDs with

-2k-2,q-k-l,q-k-l,q,υr- 2k},

= diag{w, k - w, k - w, i; - 2k + w, 1},

-(A-l) -A -A -(r-l)

Sym — λ — r

0

It is easy to see that q — w — 1 is an eigenvalue of A with multiplicity one.
Thus (q — w — l)/(fc + 1) is the eigenvalue of C*(w) with multiplicity one. The
remaining three non-zero eigenvalues of A have to satisfy a polynomial equa-

tion of degree 3, say μ3 -f ^μ2 + «ιμ — «o = 0. It is seen that the remaining
three eigenvalues, say μj, μ\ and μ^, of J satisfy

- _
μ* μ^ μl ~ α0
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with αo = βy + (v + l){rg - 2(fc + l)/l}w, a\ = β + αy + {(t? + l)r + y}w, 02 =
-(α + y + w), where α = 2(^ - fc) + v(r- λ) - 1, β = (υ+ l){r(q - 1) - 2kλ},

— /7 *y I If I 1 A /j — » J> I 2
— M Z.I A/ |̂  -* / j T — * ** T^ '*'•

In (1.2)

»-2Jk + w - l
•-2(Jk+l)

1 αΛ
-I --- μ —

flo/q - (w + 1)

Hence the efficiency of the residual design d* is, in (1.2), given by e(w) =
w) with (3.1) for 1 < w < fc - 1.

REMARK 3.1. Note that the expression, β(w), of efficiency mentioned
above also holds for w = 0 and w = fc.

An example is presented as an illustration. For an augmented BIB
design derivable from a BIB(9, 12, 4, 3, 1) design, when w = 1, the char-
acteristic equation of degree 5 is given by

det(4 - μl) = -μ(μ - 11) (μ3 - 52μ2 + 695μ - 2540) = 0

with oo = 2540, a\ = 695 and a2 = -52. Hence e(ί) = 0.783.
The augmented BIB designs to be used here are derived from existing

BIB designs listed in Hall (1986) and Raghavarao (1971). The values of *?(w),
0 < w < wmax, for 168 augmented BIB designs derivable from existing BIB
designs listed in Hall (1986) and Raghavarao (1971) were worked out. From
the evaluation it follows that for an augmented BIB design, e(w) is decreasing
as w is increasing. Thus, it is sufficient to investigate the values of e(wmax) for

all augmented BIB designs to show the robustness. The evaluation reveals

that, except for some cases, all the designs have high values of e(wmax). In

fact, 128 augmented BIB designs satisfy e(wmax) > 0.90, 24 augmented BIB
designs get 0.90 > e(wmax) > 0.80, 10 augmented BIB designs satisfy 0.80 >

e(wmaχ) > 0.70 and 6 augmented BIB designs derivable from BIB designs of
series numbers 1, 2, 4, 8 and 11 in Raghavarao (1971) and of series number 1 in

Hall (1986) have e(l) = 0.54, e(2) = 0.43, e(3) = 0.57, β(4) - 0.65, e(2) = 0.67
and e(ί) = 0.62, respectively. Thus, we can conclude that augmented BIB
designs are fairly robust against the unavailability of any two blocks in a
design.

REMARK 3.2. The worst design in the sense of efficiency is an augmented
BIB design derivable from a BIB(4,4,3,3,2) design.
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Part II. Constructions and analysis of some PEB designs

A block design d(t;, fe,r, k) is called a partially efficiency-balanced (PEB)
design with m efficiency classes (Puri and Nigam (1977)), if there exists a set of
v — 1 linearly independent treatment contrasts {s,y} which can be partitioned
into m(<v— 1) disjoint classes such that all the pt contrasts of i-th class are
estimated with the same relative loss of information μί} i.e., they satisfy the
equations

MoSij = μtSij, 7 = 1, . . . , p, for i = 1, . . . , m,

where MO is defined by

MO = M - - iy , M = R-^NK-^N'.
n

The parameters of a PEB design with m efficiency classes can be written as
v.b.r.k.μ^p^Li, ί= l , . . . ,w, where L, 's are mutually orthogonal idempotent
matrices of ranks pt and given by

' i = , . . . ,m
7=1

(see Puri and Nigam (1976)).
A particular class of PEB designs, in which μ, takes only two distinct

values μl φ 0 and μ2 = 0 (no relative loss of information) with respective
multiplicities p{ and p2 = v — p^ — 1, is called a simple PEB design (Puri and
Nigam (1977)). If μ, = μ for all i, the design is called an efficiency-balanced
(EB) design (Puri and Nigam (1975)).

For a PEB design with m efficiency classes, M- and M0-matrices have the

spectral decomposition M = ΣJLo^ί anc* ̂ ° = Σ^i^i^u respectively, such
that Σ^o Li = !v, where μ0 = 1, L0 = ( l / n ) l v τ f and 0 < μi < 1, i = 1, . . . , m.
In this case, the pseudo variance-co variance matrix Ω of adjusted treatment
means under model (1.1) is shown by Caliήski (1971) as

(4.0)

which plays an important role in statistical analysis.
Most works on PEB designs in the literature have been devoted to

discussion of the construction and statistical analysis of the designs, for
example, see Caliήski (1971), Puri and Nigam (1976, 1977, 1978, 1983), Puri et
al. (1977), Nigam and Puri (1982), Kageyama and Puri (1983), Puri (1984),
Puri and Kageyama (1985, 1988), and Kageyama and Saha (1988). Further
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statistical justification on PEB designs can be found in Caliήski and
Kageyama (1996).

In Part II, we discuss the structural patterns and statistical analysis of
equireplicate non-proper balanced designs, BIB designs and augmented BIB
designs with some missing blocks. Several methods of constructing equi-
replicate, proper PEB designs are also given together with some PBIB designs.

4. Structural patterns of some block design with missing blocks

If some observations are lost in balanced designs or PEB designs, the
residual designs will become new PEB designs. In this section, we discuss the
following three cases of missing patterns: (i) one block is lost in an equi-
replicate balanced design; (ii) some disjoint blocks are lost in a BIB design; (iii)
one block is lost in an augmented BIB design. The PEB property of these
designs are clarified.

4.1. Some partially efficiency-balanced designs

(i) Equireplicate balanced design with one missing block
Consider a binary connected equireplicate VB design d with parameters υ,

b, r, kj, j = 1, . . . , b, n = ]Γ?=1 kj and θ = (n - b)/(v - 1), where θ is a non-zero
eigenvalue of matrix C = Θ(IV - V1 Jv) with multiplicity v - 1. Since a proper
binary VB design is a BIB design, we mainly consider non-proper binary VB
designs. It is well known (cf. Dey et al. (1981)) that an equireplicate VB design
is also an EB design. Hence, the present design is simply called an equi-
replicate balanced design here. Let d* be the residual design by removing
one block, for example, the first block of size fci, in the equireplicate balanced
design d. Without loss of generality, suppose that all observations occur in
the first k\ positions of the missing block. It is easily shown that the M-
matix of the residual design d* is given by

M121

[M2ι M22\

with

r-θ 1 (θ 1\
=7-[hl +^ (jΓ fcj J*'

θ r-θ θ
= — J^-k^xk^ M22 = ——Iv_kl +—jΌ_kί.

Hence we can obtain the following after some calculation through
Lemma 1.1.
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LEMMA 4.1. The v eigenvalues of M* are given by

μ£ = 1 w.m. 1,

μ*ι = (r-θ)/(r-l) w.m. kι - 1,
μ* = (r — θ)/r w.m. v — k\ — 1,

μ* = {ι?r(r - 0 - 1) + *ι0}/{w(r - 1)} w.m. 1.

It follows from Lemma 4.1 that the design d* is a PEB design with three
efficiency classes. Hence we can get the following.

THEOREM 4.1. In an equireplicate balanced design with parameters v,b,

r, fey, j = 1, . . . , b, n = Σ/=ι ^/ and 0 — (" — fy/(v — 1), i/ one block is lost, the
residual design is a PEB design having three efficiency classes with parameters

»* = », i* = fr-l, r* = [(r-l)l^, ri;_J', fc* = fc,, ; = 2 , . . . , Z > ,

L2* - diag{okl> /0_fcl - -J— j,_kll, L; = /„ - LO* - L; - L2*.
L v KΊ )

PROOF. It is easily shown that the idempotent matrices corresponding to
the eigenvalues μ* of M*, i = 0, . . . , 3, are given by LQ = (vr — k\)~v\vr*', L\ =
diag{(/fel - k^Jkl , Ov.kl }, L* = diag{0fcl , Iυ__kl -(v- fei)'1 J,_fcl }5 L3* - Iv - L0* -

LI — LJ, respectively, which are mutually orthogonal such that Σ^=0^Γ~
/y. This completes the proof. Π

Recall that an equireplicate proper balanced design is a BIB design.
Thus, if the design d* is obtained by deleting one block in a BIB(ι;, b, r, fc, λ)
design, Theorem 4.1 shows the following.

COROLLARY 4.1. In a BIB(t;, fo, r, /c, λ) design, if one block is lost, the
residual design is a PEB design having three efficiency classes with parameters

v* = v, b*=b-l, r* = [(r - l)i;, rϊ^]', /c* = fc,

ii* -1 if- Γ~λ u*-Γ-^ . _ ( r - A ) ( r - f e )
μ o"1 5 μι~fc(^Ί)' μ2~ rk ' μ 3~ rJk(r-l) '
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Lo* = ̂ Γfc1^' Lί

L* = diagjOfc, /,_* - fcΛ-fc, £3* = I* ~ io - Lί - L2

(ii) BIB design with some disjoint missing blocks
Bhaumik and Whittinghill (1991) discussed the robustness of VB designs

by showing that the best design is derived by removing blocks which have
disjoint sets of treatments, and the worst design appears when identical blocks
are removed. Here we consider an equireplicate proper balanced design, i.e.
BIB design with parameters v, b, r, k and λ, in which some disjoint blocks are
lost. Let d* be a residual design by removing s disjoint blocks in a BIB
design for 1 < 5 < υ/k. Note that 5 = 1 means the missing of one block.

Without loss of generality, suppose that the first s disjoint blocks are
lost. It is easily shown that the M-matrix of the residual design d* is given
by

with

= -j~J(v-sk)xsk, M22 = - ~jΓ^-sk +~j:Jv-sk'

Hence we can obtain the following through Lemma 1.1.

LEMMA 4.2. The v eigenvalues of M* for 1 < s < v/k are given by

μ% = 1 w.m. 1,
μ\ = (r-λ)/{k(r-\)} w.m. s(fc-l),
μ\ = (r — λ)/(rk) w.m. v — sk — 1,
μ* = (r-fc-λ)/{fe(r-l)} w.m. 5-1,
μ* = {r(r - λ) - (r - sλ)k}/{rk(r - 1)} w.m. 1.

It follows from Lemma 4.2 that the design d* is a PEB design having at
most four efficiency classes. Thus the following can be obtained.

THEOREM 4.2. In a BIB(ι?, fc, r, fe, λ) design, if s disjoint blocks are lost for
1 < 5 < υ/k, the residual design is a PEB design having at most four efficiency
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classes with parameters

j^* — y ϊj* — Jj o r* — \(γ 1^1 7*1 1 k* ~~ fc

* _ , * _ r — λ * _ r ~ ^ *_r—k—λ
*= ' μι = k(r-l)' μ2=~HΓ' μ3 = k(r- 1) '

t _ r(r - 1) - (r - sl)fc
μ4- rfc(r-l) '

L\ = diagj Ost, Iυ-sk - v_sk

j"-^ >,

L3* = diagl ^/s - -

Γ * _ Γ Γ * Γ * _ Γ * Γ *
-L<4 — -ίtf -L<Q -L/l -L<2 ^3*

PROOF. It is easily shown that the idempotent matrices corresponding to
the eigenvalues μ* of M*, ι' = 0, ...,4, are given by LQ = (t r — sfc)"1!^*',
Lί = diag{/s (g) (Ik - fc-1 Jfc), <Vsfe}, LJ = diag{Osk, I^A - (v - skΓlJv-sk}, L3*
= diag{(/s - 5~VS) (g) fc-1 Λ, 0D_5fc}, L| = Iυ - L% - L\ - L\ - L3*, respectively,
which are mutually orthogonal such that Σ?=o^? = V- This completes the
proof. Π

When 5 = v/k, the M-matrix of the residual design d* can be given by
removing the second partitioned row (submatrix) and column (submatrix) of
the original M* of the residual design in (4.1). Then by Lemma 1.1, we can
obtain the following.

LEMMA 4.3. The v eigenvalues of M* for s = v/k are given by

w.m. 1,

l)} w.m. v - s,
μ*2 = (r - k - λ)/{k(r - 1)} w.m. s - 1.

It follows from Lemma 4.3 that the design d* is a PEB design having two
efficiency classes. Thus we can obtain the following.

THEOREM 4.3. In a BIB(ι;, b,r, fc, λ) design, if s = v/k disjoint blocks are
lost, the residual design is a PEB design having two efficiency classes with
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parameters

v* = v, b* = b-s, r* = r- l , fe* = fc,

REMARK 4.1. The design given in Theorem 4.3 is actually a group
divisible (GD) design with parameters ι;* = v, b* = b — υ/k, r* = r — 1, fc* = fc,
λl = λ- 1, ^ = λ\ m* = v/k, n* = k.

(iii) Augmented BIB design with a missing block

Consider an augmented BIB design d with parameters 1̂  = 0 + 1, b$ = b,
ko = (fe-h l)\b and r0 = (rl/, b)'. Let d* be a design by deleting one block in
the augmented BIB design d. Without loss of generality, suppose that all
observations in the missing block occur in the first fc and the last positions
respectively. It is easily shown that the M-matrix of the residual design d* is
given by

fe+1

with

r-λ λ-l

A/22 M23

_ ι ?

L _ i x ? , _ . x p - -

Hence we can obtain the following through Lemma 1.1.

LEMMA 4.4. The v+1 eigenvalues of M* are given by

μo = 1 w.m. 1,
μi = (r-λ)/{(r -!)(*+!)} w.m. fe-1,
/ι5 = (r - A)/{r(fc + 1)} w.m. t? - fe - 1,
μ\ = {rk(r - 1) - (w - k)λ}/{r(r - l)(fc + 1)} w.m. 1,
μl = 0 w.m. 1.

It follows from Lemma 4.4 that the design d* is a PEB design having at
most four efficiency classes. Hence we can obtain the following.
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THEOREM 4.4. In an augmented BIB design with parameters VQ = V+!,

bo = b} ko = (fc+ l)lfe and ΓQ = (rl^ b)', if one block is lost, the residual design
is a PEB design having four efficiency classes with parameters

v- = v + 1, 6* = 6 - 1, r* = [(r - l)l£, ri;_fc, b - 1]', fc* = k + 1,

Ό - * ' ^ι- ( r _ 1 ) ( f c + i) '

r fc(r- l)-(ϋr-kμ

Po = l, p ί = f e - l ,

L2* = d i a g O k . V k - Λ - f c . O , L3* = diag{L,0},

Γ * _ Γ Γ * Γ * Γ *
^4 — *v* ~ ^0 ~~ ^1 ~~ ^2 ~"

where

-rJkχ(v-k)
vr-k[-(r- l)J(v-k)xk {(r - l)k/(v - k)}Jυ-k J '

PROOF. It is easily shown that the idempotent matrices correspond-
ing to the eigenvalues μ* of M*, i = 0,..., 4, are given by LQ =

{(b — l)(fc+ I)}"1!,,*!**', LI = diag{/fc — k~lJk,Ov-k,Q}, L\ = diag{0fc,/u-fc—
(i; - /O^Λ-fc,0}, L3* = diag{L, 0}, L* = IΌ. - L^ - L* - L\ - L3*, respectively,
which are mutually orthogonal such that Σ*=QL* = Iv*. This completes the

proof. Π

If the original augmented BIB design d is derived from a symmetric BIB

design, the residual design d* is a PEB design with three efficiency classes
since μ3 = 0. Hence we have the following.

COROLLARY 4.2. In an augmented BIB design with parameters VQ = V+Ϊ,

Z?o = b, ko = (k + l)lfc and ΓQ = (rl£, b)'} where v = b and r = k, if one block is
lost, the residual design is a PEB design having three efficiency classes with
parameters

Ό* = v + 1, 6* = 6 - 1, r* - [(r - l)l'k, rl'v_k, b - I]7, Jk* = k + 1,

r — λ * r — λ * Λ
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L* = diagOfcΛ-fc - - J β _ f c , θ , L3* - V - LO - Lί - L2

4.2. Statistical analysis

In this section, we shall present a basic formulae for analyzing the designs
constructed in the previous section. Under model (1.1),. we further assume
that βyi, i = 1, . . . , i?; 7 = 1, . . . , fe; / = 1, . . . , Hy, are independently distributed as
a normal distribution with E(e\ji) = 0 and F(βy/) = σ2. For PEB designs, we
can easily obtain the pseudo variance-covariance matrix Ω through idem-
potent matrices L, and corresponding eigenvalues μi (see (4.0)). Once Ω is
known, the estimate of the vector of treatment effects is given by ΩQ and the
adjusted sum of squares attributed to treatments is Q'ί2Q, where Q is the
column vector of adjusted treatment totals (cf. Puri and Nigam (1983), Puri
(1984), Puri and Kageyama (1985)).

(i) Analysis for equireplicate balanced designs when one block is lost
Let Q = (Qι/,Q2/)/ be ^ vector of adjusted treatment totals, where

Qi = (βi, - , βfc)', and Q2 = (β*1+1, . . . , β,)'. Using Theorem 4.1, we get

The following original data relate to an experiment on wheat crop using a
BIB design with parameters t? = 9, b = 12, r = 4, fc = 3, A = 1. The data used
here are from Dey (1986) on page 98. The layout plan and yield figures are
tabulated in Table 4.1.

Now suppose we are interested in testing a hypothesis involving the
treatment effects. In comparative design of experiments, the interest is in
comparing the various treatment effects and a hypothesis of common interest
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Table 4.1

Block No.

1

2

3

4

5

6

7

8

9

10

11

12

Treatments and yield figures

(1) 77 (2)

(6) 54 (4)

(7) 47 (9)

(1) 70 (7)

(8) 72 (5)

(3) 50 (6)

(1) 63 (8)

(4) 62 (2)

(3) 68 (5)

(1) 69 (9)

(2) 61 (6)

(8) 65 (3)

65 (3) 65

60 (5) 65

61 (8) 60

62 (4) 62

55 (2) 55

40 (9) 60

67 (6) 54

53 (9) 57

67 (7) 66

62 (5) 52

63 (7) 79

65 (4) 38

Block totals (B, )

217

179

168

194

182

150

184

172

201

183

203

168

IS

against the alternative HI : at least one pair of τ, 's is different.
We reproduce the following tables from Dey (1986), which are useful for

computing adjusted sum of squares attributed to treatments.

Table 4.2

Treatment

No.

1
2
3
4
5
6
7
8
9

Total

Treatment total

Ti

279
234
258
222
239
211
254
264
240

2201

Block Nos. in which

the treatment i occurs

1, 4, 7, 10

1, 5, 8, 11

1, 6, 9, 12

2, 4, 8, 12

2, 5, 9, 10

2, 6, 7, 11

3, 4, 9, 11

3, 5, 7, 12

3, 6, 8, 10

ZM*J

778
774
736
713
745
716
766
702
673

6603

kQi = kTi-ΣJ

59
-72

38
-47
-28
-83
-4
90
47

0

(0 BJ

It follows from Table 4.2 that
St = Q'ΩQ = 1123, Sb = £JLι Bf/kj - G2/(vή = 1226,

ST = Eijk ylk ~ G2/(^) = 2884, Se = ST-St-Sb = 535,
which can yield the following analysis of variance table (Table 4.3).

Here we have values of F = 4.2 and FM6(α = 0.05) = 2.59. Thus the
hypothesis of equality of treatment effects is rejected at 5%.
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Table 4.3

Source

Treatment

Block

Error

Total

d.f.

8

11

16

35

S.S.

1123

1226

535

2884

M.S.

140.3

33.4

F

4.2

Table 4.4

Block No.

1

2

3

4

5

6

7

8

9

10
11

12

Treatments and yield figures

(1) * (2)
(6) 54 (4)

(7) 47 (9)

(1) 70 (7)

(8) 72 (5)

(3) 50 (6)

(1) 63 (8)

(4) 62 (2)

(3) 68 (5)

(1) 69 (9)

(2) 61 (6)

(8) 65 (3)

* (3) *
60 (5) 65

61 (8) 60

62 (4) 62

55 (2) 55

40 (9) 60

67 (6) 54

53 (9) 57

67 (7) 66

62 (5) 52

63 (7) 79

65 (4) 38

Block totals (Bj)

*

179

168

194

182

150

184

172

201

183

203

168

When some disjoint blocks are lost in the design, the residual design
becomes a PEB design. In the case, we can also take this hypothesis:
τ\=τι = - = τυ. The following examples are utilized to illustrate how to
treat this testing hypothesis.

EXAMPLE 1. When one block, for example, the first block, is lost, the
data are tabulated in Table 4.4. Here "*" denotes that data in this position
are lost.

We prepare the following auxiliary table (Table 4.5), which is useful for
computing adjusted sum of squares attributed to treatments.

It follows from Table 4.5 that

St = Q'ΩQ = 1045.93, Sb = Σj=2

 Bj/*j ~ G2/(vr - k,) = 815.52,

ST = EijkVlk ~ °2/(vr ~ feO = 2391.51, Se = ST-St-Sb = 530.05,
which can yield the following analysis of variance table (Table 4.6).

Here we have values of F = 3.45 and F8)14(α = 0.05) = 2.70. Thus the
hypothesis of equality of treatment effects is rejected at 5%.
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Table 4.5

Treatment

No.

1

2

3

4

5

6

7

8

9

Total

Treatment total

Tf

202

169

183

222

239

211

254

264

240

1984

Block Nos. in which

the treatment i occurs

*, 4, 7, 10

*, 5, 8, 11

*, 6, 9, 12
2, 4, 8, 12

2, 5, 9, 10

2, 6, 7, 11

3, 4, 9, 11

3, 5, 7, 12

3, 6, 8, 10

Σ.(.)jB.

561

557

519

713

745

716

766

702

673

5952

kQi = kTi-Σ,j(i}Bj

45

-50

30

-47

-28

-83

-4

90

47

0

Table 4.6

Source

Treatment

Block

Error

Total

d.f.

8

10

14

32

S.S.

1045.93

815.52

530.05

2391.51

M.S.

130.74

37.86

F

3.45

(iί) Analysis for BIB designs when s disjoint blocks are lost
Let Q = (Q/, Qi')' be the vector of adjusted treatment totals, where

Qi = (βi. fi*)', and Q2 = (Qsk+l,..., Q,)1. Using Theorem 4.2, we get

Q'flQ =

EXAMPLE 2. When two disjoint blocks, for example, the first two blocks,
are lost in a BIB design with the data in Table 4.1, the resulting data are
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Table 4.7

Block No.

1

2

3

4

5

6

7

8

9

10

11

12

Treatments and yield figures

(1) * (2) * (3) *

(6) * (4) * (5) *

(7) 47 (9) 61 (8) 60

(1) 70 (7) 62 (4) 62

(8) 72 (5) 55 (2) 55

(3) 50 (6) 40 (9) 60

(1) 63 (8) 67 (6) 54

(4) 62 (2) 53 (9) 57

(3) 68 (5) 67 (7) 66

(1) 69 (9) 62 (5) 52

(2) 61 (6) 63 (7) 79

(8) 65 (3) 65 (4) 38

Block totals (Bj)

*
*

168

194

182

150

184

172

201

183

203

168

Table 4.8

Treatment

No.

1

2

3

4

5

6

7

8

9

Total

Treatment total

Ti

202

169

183

162

174

157

254

264

240

1805

Block Nos. in which

the treatment i occurs

*, 4, 7, 10

*, 5, 8, 11

*, 6, 9, 12

*, 4, 8, 12
*, 5, 9, 10

*, 6, 7, 11

3, 4, 9, 11

3, 5, 7, 12

3, 6, 8, 10

Σ;(0β>

561

557

519

713

745

716

766

702

673

5415

kQi = kTi-Σj(i}Bj

45

-50

30

-48

-44

-66

-4

90

47

0

tabulated in Table 4.7. Here "*" denotes that data in this position are
lost.

We also prepare the following table (Table 4.8), which is useful for
computing adjusted sum of squares attributed to treatments.

It follows from Table 4.8 that

St = Q'ί2Q = 1039.79, Sb = Σ*=3 B}/k - G2/(vr - 2k) = 814.83,

ST = Eijk y]k - G2/(vr - 2k) = 2330.17, Se = Sτ - St - Sb = 476.55,
which yield the following analysis of variance table (Table 4.9).

Here we have values of F = 3.27 and FM2(α = 0.05) = 2.85. Thus the
hypothesis of equality of treatment effects is rejected at 5%.
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Table 4.9

Source

Treatment

Block

Error

Total

d.f.

8

9

12

29

S.S.

1039.79

814.83

476.55

2330.17

M.S.

129.97

39.71

F

3.27

(iii) Analysis for augmented BIB designs when one block is lost

Let Q = (Qί,Q2,βϋ+ι)' be the vector of adjusted treatment totals, where

Qi = (βi, - - - , Qk}' and Q2 - (β*+ι,..., Qϋ)'. Using Theorem 4.4, we get

1 / *

?-ϊ Σ>

1 / v \

'-^(,S,a)

iϊfee )^
Now suppose we are interested in testing a hypothesis involving the test

and the control treatment effects. In augmented BIB designs, the common
interest is in comparing the various test treatment effects and the control

treatment effect, and a hypothesis of common interest is

HQ : TI = T2 = = τυ + τϋ+ι

against the alternative H\: at least one pair of τ, and τv+\ is different for

EXAMPLE 3. In an augmented BIB design with parameters VQ = 10,

60 = 12, fc0 = 4 and r0 = (41J, 12)7, which is derived from the BIB(9, 12,4, 3, 1)
design as used before. When one block, for example, the first block, is

lost, the data are tabulated in Table 4.10 (e.g. compare with Table 4.1). The

data corresponding to the test treatments 1 to 9 are from Dey (1986), while

the data corresponding to the control treatment 10 is artificially given by
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Table 4.10

Block No.

1

2

3

4

5

6

7

8

9

10

11

12

Treatments and yield figures

(1) * (2) * (3) * (10) *

(6) 54 (4) 60 (5) 65 (10) 60

(7) 47 (9) 61 (8) 60 (10) 56

(1) 70 (7) 62 (4) 62 (10) 65

(8) 72 (5) 55 (2) 55 (10) 61

(3) 50 (6) 40 (9) 60 (10) 50

(1) 63 (8) 67 (6) 54 (10) 61

(4) 62 (2) 53 (9) 57 (10) 57

(3) 68 (5) 67 (7) 66 (10) 67

(1) 69 (9) 62 (5) 52 (10) 61

(2) 61 (6) 63 (7) 79 (10) 68

(8) 65 (3) 65 (4) 38 (10) 56

Block totals (Bj)

*

239

224

259

243

200

245

229

268

244

271

224

Table 4.11

Treatment
No.

1

2
3
4
5
6
7
8
9
10

Total

Treatment total

τt

202
169
183
222
239
211
254
264
240
662

2646

Block Nos. in which
the treatment i occurs

*, 4, 7, 10
*, 5, 8, 11
*, 6, 9, 12
2, 4, 8, 12
2, 5, 9, 10
2, 6, 7, 11
3, 4, 9, 11
3, 5, 7, 12
3, 6, 8, 10
2, 3, ..., 12

Σ.(.)β.

748
743
692
951
994
955

1022
936
897

2646

10584

kQQί = kQTi-Σlj(i}Bj

60
-67

40
-63
-38

-111
-6
120
63

2

0

rounding up an average of other data in the same block. Here "*" denotes
that data in this position are lost.

We prepare the following auxiliary table (Table 4.11), which is useful for

computing adjusted sum of squares attributed to treatments.
It follows from Table 4.11 that

St = Q'ΩQ = 908.56, Sb = Σ*=2 Bj/h - G2/(vr + b - k - 1) = 1096.68,

ST = Σijkylk ~ G2/(vr + b-k-l) = 2673.18,
Se = Sτ - St - Sb = 667.94,

which can yield the following analysis of variance table (Table 4.12).
Here we have values of F = 3.63 and F9)24(α = 0.05) = 2.30. Thus the

hypothesis of equality of treatment effects is rejected at 5%.
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Table 4.12

37

Source

Treatment

Block

Error

Total

df.

9
10
24

43

S.S.

908.56

1096.68

667.94

2673.18

M.S.

100.95

27.83

F

3.63

5. Constructions of equireplicate, proper PEB designs

The previous section also shows the usefulness of PEB designs for our
present set-up. Such designs have been constructed in abundance as men-
tioned before. In this section, we provide further several construction
methods for PEB designs.

A block design with parameters v = 2k, b, r, k is said to be self-com-
plementary. An Hadamard matrix H of order n is a matrix with elements
+Γs and — Γs such that HH1 = nln. In this case, it is well known that n = 2
or n = 0 (mod 4) (see Bush (1979)). Let A denote an (n — t) x n matrix
obtained by deleting any t rows of the matrix H for 0 < t < n — 2. Note that
t = 0 implies no deletion of rows in matrix H. Let N = JVXb — N for the
incidence matrix N.

THEOREM 5.1. The existence of an Hadamard matrix of order n and an
equireplicate, proper self -complementary PEB design N with parameters v =
2fc, ft, r, k, μI? PJ, L,, ί = l , . . . , m , implies the existence of a self-complementary
PEB design N*, having at most m + 1 efficiency classes, with parameters
t>* = (n - i)υ, fo* = nfe, r* = nr, k* = (n - f)fc, μ* - μz /(n - ί), j£+1 =0, p* =

{l/(n-t)}Jn-t]®(l/Ό)JΌ:

AT = (J(n_ί)xπ - A) (X) N}.

PROOF. Note that in N* the elements +1 and —1 in the matrix A are
replaced by N and N, respectively. It follows that the M* -matrix for the
design N* is given by

It is easily shown that the eigenvalues of M* are given by μ$ = 1, μ* =
μj(n - ί), i = 1, . . . , m, and μ^ = 0 with multiplicities p% = 1, p* = (n - ήph

i= 1, . . . , m, and p^+1 = n — t — 1, respectively. The idempotent matrices cor-
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responding to the eigenvalues μ*, i — 0, . . . , m + 1, are given by LQ =

{(n - ήv}-lJ(n_t}v, L* = In,t ® Li, i = 1, . . . , m, L;+I - [In,t -(n- i)~lJn-t] ®

v~lJυ, which are mutually orthogonal such that Σ^Q L* = I(n-t}v This
completes the proof. Π

REMARK 5.1. Note that if the original design N is a BIB or simple PEB
design, the resulting design N* is also a simple PEB design because of

/Cι=0
Since a PBIB design is a special case of PEB designs (cf. Puri and Nigam

(1977)), if a self-complementary rectangular PBIB design with parameters v =
mn = 2k,b,r,k,λι,λ2,λ3 is taken as a design N, we can get the following.

COROLLARY 5.1. The existence of an Hadamard matrix of order n and a
self-complementary rectangular PBIB design with parameters v = mn = 2k, b, r,

k,λι,λ2,λ3 implies the existence of a self-complementary PEB design, having at
most four efficiency classes, with parameters v* = (n — t)v, b* = nb, r* = nr,

fc* = (n - t)k, μl = {r-λ, + (m- ί)(λ2 - λ3)}/{rk(n - ί)}, μ\ = {r - λ2 +
(n _ i)(λl _ λ3)}/{rk(n - ί)}, μ*3 = {r- λt-λ2 + λ3)}/{rk(n - ί)}, μ4* = 0,

Pί = (n-t)(n-l), p*2 = (n-t)(m-l), pj = (n- f)(m- l)(n- 1), P4* = "-
ί-1, LJ=/ l l _ f ®(l/m)J I I I ®{/ I I -(l/n)J I I }, L* - In_t ® {/m - (l/m)Jm} ®
(l/n)Jn, L3* = /„_, ® {/m - (l/m)Jm> ® {/„ - (l/n)Jn}, L* - [/„_, - {l/(n - ί)}

Jn-t]®(l/υ)JΌ.

It is well known that if λ2 = λ3 or λ\ = AS, a rectangular PBIB design is
reducible to a GD design. Hence if a starting design is a GD design, we can
easily present the parameters of the resulting design by letting λi = λ3 or
λ\ = λ3 in Corollary 5.1, as the following shows.

COROLLARY 5.1.1. The existence of an Hadamard matrix of order n and a
self-complementary GD design with parameters v = 2k,b,r,k,λ\,λ2',m, n implies
the existence of a self-complementary PEB design, having at most three effi-

ciency classes, with parameters v* = (n — t)v, b* = nb, r* = nr, fe* = (n — t)k, μ* =
(r - λi)/{rk(n - ή}, μ\ = (rk - vλ2)/{rk(n - ί)}, μ*3 = 0, pf = m(n - t)(n - 1),

p| = (n-f)(m-l) , p3* = n - f - l , Lf = Jn_ t® /m® {/n - (l/n)Jn}, L2* =
V t ® {/m - (l/m)Jm} ® (l/n)Jn, L3* - [/n_, - {l/(n - ή}Jn-t] ® (l/ι?)Λ.

REMARK 5.2. The resulting design JV* in Corollary 5.1.1 is a PBIB design

based on a nested group divisible (NGD) association scheme (see Duan and
Kageama (1993)). It is well known that NGD designs are useful as 3-factor
experiments. The parameters λ\, λ\ and λ\ of N* are easily derived through
the expressions of the eigenvalues of M*, where λ\ = nλ\, λ\ = nλ2, λ% = nr/2-,
m* =m, n* = n, p* = n — t. Note that if r = 2λ\ or 2λ2, or λ\ = λ2, the design
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TV* is reducible to a semi-regular GD design. The related discussions are

referred to Duan and Kageyama (1993, 1995a).

THEOREM 5.2. The existence of an equireplicate, proper self-comple-

mentary PEB design N with parameters v = 2k, ft, r, fe, μI 5 ph L, , i = 1,. . . , m,
implies the existence of a self-complementary PEB design JV*, having at most
m + 1 efficiency classes, with parameters v* = 2v, b* = 2ft, r* = 2r, k* = 2k,

=", L*-{/2-(l/2)J2}®L I., i = l , . . . , n ι ,

PROOF. It follows that the M*-matrix for the design N* is given by

1 m ί 1 \
M* = -J2v + Σ Λ ί J2 - 2 J2 ) ® L"

It is easily shown that the eigenvalues of M* are given by μ$ = 1, μ* = μt ,
ί = 1,..., m, and μ^+1 = 0 with multiplicities PQ = 1, p* = p^ i= 1,. . ., m, and
pm+1 = v, respectively. The idempotent matrices corresponding to eigenvalues

μ*, i = 0 , . . . , m + l , are given by Lζ = (2υ)-1J^ L* - {/2 - 2~1J2)} ® L,,
i = 1,.. ., m, L^+1 = (/2 — Λ) ® v~^Jv + 2"1/2 ® /ϋ, which are mutually ortho-
gonal such that Σ*SΪ L* = hv This yields the required result. Π

REMARK 5.3. Note that if the original design is a BIB or simple PEB
design, the resulting design is also a simple PEB design because of μ^+1 = 0.

If we take a self-complementary rectangular PBIB design with parameters
v = mn = 2k,b,r,k,λ\,λ2,λι as a starting design, we can obtain the following.

COROLLARY 5.2. The existence of a self-complementary rectangular PBIB
design with parameters v = mn = 2fe, b,r, fc, λ\,λ^λ^ implies the existence of a
self-complementary PEB design, having at most four efficiency classes, with pa-

rameters v* = 2v, ft* = 2fc, r* = 2r, fe* = 2fe, μ\ = {r - λι + (m - 1)(A2 - >L3)}/(rfc),

μ*2 = {r ~ λ2 + (n - 1)(^ - A3)}/(rfc), μ^ - (r - λ, - λ2 + A3)/(rk), μ4* - 0,

Pί = (n - 1), p2* = (w - 1), P3* = (w - l)(n - 1), p4* = ̂  i-ϊ = {h ~ (1/2)J2} ®
(l/m)Jm(g){/n-(l/n)Λ}, L2* - {/2- (l/2)J2}®{/m- (l/m)Jm}(x)(l/π)Λ, L3*-
{/2 - (1/2)J2} (8) {/m - (1/m)Jm} (8) {/„ - (1/n)Jn}, L* = (72 - J2) ® (l/ι;)Λ +

(1/2)J2®/D.

It is well known that a rectangular PBIB design is reducible to a BIB
design when λ\ = λi = A3 = A. Hence if the starting design is a BIB design,
the resulting design is simple PEB which is actually a rectangular PBIB design

with parmeters λ\ = 2λ, λ^ — 0, λ$ = 2(r — λ); m = 2, n = v.
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THEOREM 5.3. The existence of an equireplicate, proper self-comple-
mentary PEB design N with parameters v = 2k, b, r, fe, μt, p, , L, , i = 1,..., m,
implies the existence of a PEB design N*, having at most m + 1 efficiency
classes, with parameters v* = 4v, b* = 4b, r* = 3r, fe* = 3fe, μ* = μt/3,
1/9, p* = 4p,, p ,̂+ι = 3, L* = /4 ® L,, ΐ = 1,..., m, L^+1 = {/4

• jv
N

N

-Ovxb

N

N

Ovχb

N

N

0Vχb

N

N

Oυχb'

N

N

N .

PROOF. It follows that the M*-matrix for the design JV* is given by

which yields the required result. Π

If we take a self-complementary rectangular PBIB design with parameters
v = mn = 2fe, fe, r, fc, ̂ 1,^2, AS as a starting design, we can get the following.

COROLLARY 5.3. The existence of a self-complementary rectangular PBIB
design with parameters υ = mn = 2k,b,r,k,λι,λ2,λι implies the existence of a
PEB design, having at most four efficiency classes, with parameters v* = 4v,
Z>*=4ί>, r* = 3r, fc* = 3fc, μ\ = {r - λι + (m - 1)(A2 - A3)}/(3rfc), μ* = {r-Λ 2 +

(n _ ι)μ1 _ A3)}/(3rfc), μ* = (r - A! - ^2 + A3)/(3rfc), μ4* = 1/9, p* = 4(n - 1),

) Jw} (8) (1/n) Jn, L3* = /4
) J „ - (1/n) Jn},L * = 74 ® {/m -

L* = {/4 - (1/4)J4} ® (l/ϋ)Λ.

As an application of Corollary 5.3, we have the following.

COROLLARY 5.3.1. The existence of a self-complementary GO design with
parameters v = 2/c, b, r, fe, λ\,λι\ m,n implies the existence of a PEB design,
having at most three efficiency classes, with parameters v* = 4v, b* = 4b, r* = 3r,

fc* = 3fe, μϊ = (r - A0/(3rfc), μ^ = (rk - »A2)/(3rfc), μ*3 = 1/9, pf = 4m(n - 1),

(!/«)/„, L3* = {/4 - (1/4)J4} ® (1/»)Λ.

REMARK 5.4. The resulting design in Corollary 5.3.1 is also regarded as
an NGD design with parameters λ\ = 3/U, λ\ = 3Λ.2, λ% = r; m* — m, n* = n
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and p* = 4. Note that if r = 3λ\ or 3Λ,2> or λ\ = λι, the design is reducible to
a regular GD design.

THEOREM 5.4. The existence of an equireplicate, proper PEB design N
with parameters v,b,r,k,μj,phLi, i= l , . . . ,w, implies the existence of a PEB
design N*, having at most w + 1 efficiency classes, with parameters v* = ίu,

μ* = rfc/i,/[{r+(i- !)&}{fc+(f- l)ι?}],
(i-lM], p* = ίPi, p;+ 1=f-l,

(l/ι?)Λ /or t > 2:

PROOF. It follows that the M*-matrix for the design N* is given by

vb + rk - 2vr

{r + (t-l)b}{k + (t-\)υ}

which yields the required result. Π

If we take a rectangular PBIB design with parameters v = mn, b, r, fc,
^i»^2j^3 as a starting design, we can obtain the following.

COROLLARY 5.4. The existence of a rectangular PBIB design with param-
eters v = mn,b,r,k,λι,λ2,λ3 implies the existence of a PEB design, having at
most four efficiency classes, with parameters v* = tv, b* = tb, r* = r + (t — l)b,

μ\ = rk{r - λ2 + (n - l)(λι - λ,}}/[{r+ (t - l)b}{fc+ (ί - l)ι?}], μ\ = rk(r -λ,-
λi + λ3)/[{r +(t- \)b}{k + (t- l)ϋ}], μ* = (υb + rk - 2vr)/[{r +(t- l)b}{k +
(t - I)*}], pf = f(n - 1), p2* = t(m - 1), p3* - ί(m - l)(n - 1), pj = t - 1, LJ =
/t (g) (1/m) Jm ® {/„ - (1/n) Jn}, L* = 7t ® {/m - (1/m) Jm} (x) (1/n) Λ, L3* = Jt ®

{/m - (1/m) Jm} ® {/„ - (1/n) Jn}, L* = {/, - (1/ί) Λ} ® (l/υ)Jv for t > 2.

It is well known that a rectangular PBIB design is reducible to a Latin
square design, if m = n and λ\ = λ2. Hence if a starting design is a PBIB
design based on a Latin square association scheme, we can present the
parameters of the resulting design by letting m = n = s and λ\ = λi in the
result above. As an application of Corollary 5.4, the following can be
obtained.
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COROLLARY 5.4.1. The existence of a Latin square PBIB design with

parameters v = s2,b,r,k,λι,λ2 implies the existence of a PEB design, having at
most three efficiency classes, with parameters v* = tv, b* = tb,r* = r+(t- ί)b,

fc* = k + (t - 1)», μ\ = {r- 2λ! +λ2 + s(λ! - λ 2 ) } / [ { r +(t- ί)b}{k +(t- !)»}],
fi = (r- 2λl + λ2)/[{r + (t - l)b}{k + (t - !)»}], μ\ = (vb + rk- 2vr)/[{r +

[{/, - (1/s) J,} <g> (l/s)Λ + (l/s)Λ <g> {/, - (l/s)Λ}], L| = /t ® {/, - (l/s)Λ> <g>
{/, - (l/s)J,}, LI = {/, - (l/t)Jt} <S> (l/») JΓ /or t > 2.

COROLLARY 5.4.2. The existence of a GD design with parameters v =

mn,b,r,k,λ\,λ2, m, n implies the existence of a PEB design, having at most three
efficiency classes, with parameters v* = ίu, 6* = ίfc, r* = r + (t — l)b, fe* = fc-f

(ί-l)ι , ^i = rfc(r-^)/[{rH-(i-l)6}{fc+(i-l)i;}], μ*2 = rk(rk-υλ2)/[{r+
(t - \}b}{k + (ί - 1)4], μ*3 = (t fr + rfc - 2υr)/({r + (t - l)b}{k + (t - !>}], pj -
ίm(n - 1), p2* - ί(m - 1), p3* - ί - 1, Lf = /t ® /m ® {/„ - (l/n)Jn}, L2* = /t ®
{/m - (1/m) Jm} ® (1/n) Jn, L3* - {It - (1/ί) Jt} ® (l/t;)Λ /or ί > 2.

REMARK 5.5. The resulting design in Corollary 5.4.2 yields an NGD

design with parameters λ[ = λι + (t- l)b, λ\ = λ2 -h (t - 1)6, A^ = 2r + (ί - 2)6;
m* = m, n* = n and p* = ί. This result is also reported as Theorem 2.2 in
Bhagwandas et al. (1992). Note that if λι = λ2 or 6 = 2r - λι, or 2r - A2, the
design is reducible to a regular GD design.

Another pattern will be presented to constuct more PEB designs.
Though the pattern can be generalized, a case with small values of design

parameters is chosen from a statistical point of view.

THEOREM 5.5. The existence of an equireplicate, proper PEB design N
with parameters t;, 6,r, fc, μ I 5p,, L, , i= l , . . . ,m, implies the existence of a PEB
design N*, having at most m + 1 efficiency classes, with parameters v* = 3t?,

fe* = 36, r* = r + 6, fc* - k + v, μ* - rkμt/{(r + b)(k + v)}, j£+1 - (ι?6 + r/c - w)/

)}, p? = 3pί, p^ = 2, L*=I3®Li, i = l , . . . , m , L;+I = {J3-

PROOF. It follows that the M*-matrix for the design N* is given by
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vb + rk - vi

+ (r + ft)(fc + ι

which yields the required result. Π

If we take a rectangular PBIB design with parameters υ = mn, ft, r, k,

^1,^2,^3 as a starting design, we have the following.

COROLLARY 5.5. The existence of a rectangular PBIB design with param-

eters v = mn, b, r, fc, λ\,λι,λι implies the existence of a PEB design, having at
most four efficiency classes, with parameters v* = 3u, b* = 3ft, r* = r + ft,

{r-λ2 +
v)}, μ*4 =

-l), p2* = 3(m-l), p3* = 3(m-l)(n-l),

^
L3* = /3 ® {/m - (l/m)Jm} ® {/„ - (l/πμj, L* - {/3 - (1/3)J3> ® (l/ι?)Λ

We also have some applications of Corollary 5.5.

COROLLARY 5.5.1. The existence of a Latin square PBIB design with
parameters v = s 2,ft,r, fe, ̂ 1,^2, implies the existence of a PEB design, having at
most three efficiency classes, with parameters v* = 3t;, ft* = 3ft, r* = r + ft, fe* =

| = (r - 2^ + A2)/

{/s - (Vβ)Λ>, ^3* = {̂ 3 - (1/3) J3} ® (1/V)JV.

COROLLARY 5.5.2. The existence of a GD design with parameters r, ft, r, fe,

^1,^2; m, n implies the existence of a PEB design with parameters v* = 3υ,
ft* = 3ft, r* - r + ft, fe* = k + ι>, Aiί = (r - ^)/{(r + ft)(k + t;)}, μ^ - (rfe - ι;A2)/

{(r + ft)(fe + ί;)}, μϊ = (υb + rk-vr)/{(r+b)(k + υ)}, p*-3m(n-l), p2* =

3(m - 1), p* - 2, L* = /3 ® /m ® {/» ~ (1/π) Jn}, L2* = /3 ® {Jm - (1/m) Jm} ®
(l/n)Jn, L3* - {/3 - (1/3)J3} ® (l/ι;)Λ.

REMARK 5.6. The resulting design in Corollary 5.5.2 yields an NGD
design with parameters λ{ = λ\ + ft, λ^= λι + ft, Λ,3 = r; m* = m, n* = n and
p* = 3. Note that if AI = ^2, the design is reducible to a regular GD design.

Since many families of PBIB designs based on other known association

schemes are available in the literature, these PBIB designs can be utilized to
construct more PEB designs through the methods mentioned in this sec-
tion. The analysis of variance for theses designs can be easily made.
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