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ABSTRACT. We study first order partial differential equations on the curvature of

principal fibre bundles. We show that such differential equations are essentially ex-

hausted by the one obtained from the Bianchi identity, and as one example, we

express the differential equations in the case of 3-dimensional Heisenberg bundles in

a geometric form. In the latter half of this paper, we study some algebraic properties

concerning the Bianchi identity for 3-dimensional Heisenberg bundles. Several types

of invariants and covariants naturally arise from studying this algebraic problem.

Introduction

"Prescribed curvature problem", i.e., the problem of characterizing "actual"
curvature tensor fields (or forms) among the set of curvature like tensor fields
(or forms), is one of the fundamental problem in differential geometry, and
also in physics. In general, not all curvature like tensor fields are actually
curvature, and several results are known at present concerning this problem
for each geometric situation. For example, in a series of papers, Kazdan
and Warner characterized the curvature functions on 2-dimensional manifolds
from global viewpoints [8], [9], while local characterizations of curvatures
are studied deeply in [3], [5], [6], [7], [13], etc.

If Ω is an actual curvature determined by a connection, the components
of Ω must satisfy some partial differential equations. As a classically known
example, in the context of principal G-bundles, the characteristic form f(Ω)
corresponding to a G-invariant polynomial / is closed, and we may consider
the equality df(Ω) = 0 as a first order partial differential equation on Ω. It
is also known that in the case of 5t/(2)-bundle over R4, the curvature like
form Ω which satisfies some second order partial differential equations is an
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actual curvature, under some genericity condition on the pointwise value of

Ω (cf. [13]).

In the present paper, we study the "local" prescribed curvature problem

on principal fibre bundles, especially concerning the first order partial differen-

tial equations on curvatures. Let P -• M be a principal bundle with a struc-

ture group G, and ω be a connection 1-form on P, which takes value in the

Lie algebra g of G (cf. [10; vol. I]). Then ω defines the curvature 2-form

Ω on P by the structure equation

(S) Ω = dω+ 1/2 [ω, ω].

Since we consider only local characterization, we may pull back ω and Ω to

the base manifold M, by using a suitable local cross section of P. If the

Lie group G is abelian, then the above structure equation (S) is simply reduced

to Ω = dω, and hence, by Poincare's lemma, a local g-valued 2-form Ω is

an actual curvature if and only if it satisfies the first order partial differential

equation dΩ = 0. But, for general non-abelian Lie groups G, the situation

is more complicated.

To obtain first order partial differential equations on general principal

G-bundles, we differentiate the above structure equation (S). Then the Bianchi

identity

(B) dΩ = [ί2, ω]

follows, which involves the first derivatives of Ω. We cannot consider (B)

itself as a differential equation on Ω because it also contains a connection

form ω. But, we can obtain first order partial differential equations on Ω

from (B) as follows. Let AP(M9 g) be the set of g-valued p-forms on M, and

define a linear map

by BΩ(ct) = [Ω, α]. We call BΩ the Bianchi map. Then, from the identity

(J5), the form dΩ must be contained in the image of the map BΩ if Ω is an

actual curvature. In general, the map BΩ is not surjective, and hence, some

algebraic conditions are imposed on dΩ, which may be considered as first

order partial differential equations on Ω. Our first main purpose of this

paper is to show that the "essential" first order partial differential equations

on Ω are exhausted by the one obtained in this way. (For precise statements,

see Theorem 1.1.) To prove this fact, we calculate the rank of the map

determined by the 1-jet of the structure equation (S), under a pointwise gener-

icity condition on the curvature Ω (cf. §1).

Our next problem is to find all first order partial differential equations

on Ω in an explicit form. But, for general Lie groups G, this is quite a
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difficult algebraic problem, in contrast to the abelian case which we explained
above. In the present paper, as one example, we give a complete answer to
this question in the case where the structure group G is the 3-dimensional
Heisenberg group H3. The structure of H3 is very simple among non-abelian
Lie groups, but in the standpoint of "prescribed curvature problem", it con-
tains an interesting algebraic difficulty which is peculiar to this sort of problem.
In the paper [7], DeTurck and Talvacchia already studied this problem in
the case where the dimension of the base manifold is 3. For general dimen-
sions, we show that first order partial differential equations are essentially
exhausted by two types of equations: The first one is expressed as the closed-
ness of characteristic forms as explained above, and the second one is a new
type of non-linear equation on Ω, which appears only in the case dim M > 5
(Theorem 2.3). We express this new differential equations in a simple geomet-
ric form by introducing a family of 5-dimensional subspaces of TXM (Proposi-
tion 3.1 and Theorem 3.3).

The critical dimension 5 appeared in this context is of special interest
for us, and some peculiar facts hold in several places of this paper if dim M =
5. For example, only in this case, the Bianchi map BΩ admits a one-
dimensional unexpected kernel, which enables us to write down the defining
equation of the image of BΩ in a relatively simple way, because it is invariant
under the action of the group GL(5, R). (cf. Lemma 2.2, Proposition 3.1. For
other phenomena, see §5.)

As stated above, in obtaining the first order partial differential equations,
the Bianchi identity (or the Bianchi map) plays a fundamental role. In the
latter half of this paper, we study some algebraic properties of the Bianchi
map associated with 3-dimensional Heisenberg bundles. For these bundles,
the essential part of BΩ is simply reduced to the linear map

φF\ V* + 7*->/\3 F*

defined by φF(oίu α2) = F 1 Λ « 2 - α 1 Λ F2, where V = TXM, F = (FU F2) e
/\2 V* + /\2 V* and α l 5 α2 e V*. (We denote the pointwise values of Ω and
ω by F and αi5 respectively. For details, see §2.) If F is a generic element
of /\2 V* + /\2 V*, this map is injective in the case n > 6, and this fact
geometrically implies that two components of the connection 1-form ω are
uniquely determined from the pointwise values of Ω and dΩ. In §4, we
explicitly write down this expression (the inverse formula of the map φF\
whose denominators and numerators are the polynomials of Ω and dΩ with
degree 6 (Proposition 4.1). In order to express this formula, we must intro-
duce a flag F 1 c F 4 c F 6 c Vn where Vn = TXM9 and the superscript indicates
dimension.

In the final section of this paper, we consider the problem of characteriz-
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ing "singular" curvatures from the standpoint of the Bianchi map in detail.
Throughout § 1 ~ § 3, in determining the number of first order partial differen-
tial equations, or in obtaining the defining equation of the image of the
Bianchi map, we consider only "generic" curvatures such that the Bianchi
map takes the maximum rank. Hence, as one natural and important problem,
it is desirable to characterize generic (or equivalently, singular) curvatures in
the set of all curvature like forms. Roughly speaking, we can completely
characterize such singular curvatures in terms of two concepts "reducibility"
and "decomposability" of F. (For the precise statements, see Theorem 5.1.)
On the other hand, by definition, singular curvatures constitute some algebraic
sets of /\2 V* + /\2 V*, and as another characterization, we give the defining
equations of these algebraic sets. Several new types of algebraic equations
appear, including the invariants and the covariants of the group GL(n, R) x
GL(2, R) acting on the space /\2 V* + Λ2 v* - Λ2 v* ® R l (Theorem 5.2 and
Proposition 5.11). We emphasize once again that the case dim M = 5 has a
special meaning in considering singular curvatures. In this case, generic pairs
of 2-forms can be reduced to some normal form (Lemma 5.8), and this normal
form plays one of the crucial roles in characterizing singular curvatures.

Finally, it should be remarked that first order partial differential equations
are not in general enough to characterize "actual" curvatures, and it is neces-
sary to study higher order partial differential equations on Ω. We will treat
this problem in forthcoming papers.

1. First order partial differential equations on principal G-bundles

In this section, we show that first order partial differential equations on
the curvature of principal G-bundles are exhausted essentially by the ones
that are obtained from the Bianchi identity.

Let P-^M be a principal G-bundle over an n-dimensional manifold M,
and let g be the Lie algebra of G. Let ω and Ω be g-valued connection
1-form on P and its curvature form, respectively. Then, they are related by
the structure equation:

(S) Ω = dω+ 1/2 «[ω,ω].

By applying the exterior differentiation d to (S), and using the formula
[[ω, ω], ω] = 0, we obtain the Bianchi identity

(B) dΩ = IΩ, ω].

(For fundamental identities on g-valued forms, see for example [4].) Since
partial differential equations essentially express the "local" property of un-
known functions, we may restrict the problem to some open set of M where
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the bundle P is trivial, and we express this open set as M again. We fix a

cross section σ: M -+P and pull back the forms such as ω, Ω, dω, dΩ on P

to M, and denote them by the same letters. Since the vertical value and

the right translation of these forms are uniquely determined, we may consider

the "prescribed curvature problem" on the base manifold M. In the following,

we denote by AP(M, g) the set of g-valued p-forms on M.

Now, using an element Ω e A2(M, g), we define a linear map

by BΩ(oc) = [ί2, α] for α e A1(M, g). Then, from the Bianchi identity (£), it is

clear that the 3-form dΩ must be contained in the image of the map BΩ if

Ω is an actual curvature. For this reason, we call BΩ the Bianchi map. It

is easy to see that the property "dΩ e Im BΩ" does not depend on the choice

of a cross section of P -+M. When BΩ is not surjective, we may say that

the condition dΩ e Im BΩ (the Bianchi condition) is a first order partial differ-

ential equation on Ω because the defining equation of Im BΩ in A3(M, g)

contains the first derivatives of Ω. Actually, the map BΩ is determined by

a pointwise linear map

defined in the same way as above, where V = TXM, and F — Ωx e /\2 F * ® g.

(In the following, we express g-valued 2-forms as F instead of Ω when the

pointwise values of Ω are concerned.) The maximum rank of BF, where F

runs all over the space /\2 V* (g) g, depends only on the Lie algebra g and

n = dim M, and we denote this maximum rank by rπ(g). Clearly, the equality

rank BF = rπ(g) holds for generic elements F e /\ 2 V* ® g. Hence, if the point-

wise value of Ω is generic, then the map BF takes the maximum rank for

any x e M, and in particular, the number of first order partial differential

equations obtained from the Bianchi condition dΩ e Im BΩ is equal to 1/6

n(n — l)(n — 2) x dim g — rπ(g), which is the codimension of the map BF.

Next, we determine the essential number of all first order partial differen-

tial equations on the curvature Ω. To state the precise results, we use the

following notation. First, we define the sets Jp(ω) and JP(Ω) by

Jp(ω) = {p-jets of g-valued 1-forms ω on M},

JP{Q) = {p-jets of g-valued 2-forms Ω on M}

(the letters ω and Ω on the left hand sides possess only a symbolic meaning),

and denote the elements of these spaces by jp(ω) and jp{Ω), respectively.

Clearly, Jp{ω) and JP(Ω) are differentiable manifolds, and it is easy to see
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that their dimensions are equal to n I I x dim g and ( 11 I x dim g.

\ P / \V\ P J

The structure equation (S) naturally induces a quadratic map

Str°:J1(ω)-+J°(Ω)

because the pointwise value of Ω is uniquely determined by the 1-jet ^(ω)
of ω. And, by differentiating the equation (5), we naturally obtain the first
prolongation of Str°

Str1:J2(ω)-^J1(Ω),

which is also quadratic. (For details, see the proof of Theorem 1.1.) We
may say that the defining equations of the image of Str1 in Jx(i2) are the
first order partial differential equations on Ω, and the essential number of
these equations is equal to the codimension of the map Str1. We denote by
sn(g) the rank of Str^ (the differential of Str1) at a generic point of J2(ω), i.e.,
the maximum rank of the differential of the quadratic map Str1. Then, the
codimension of the map Str1 is equal to

dim J'iΩ) - sM = 1/2 n(n - l)(n + 1) x dim g - sπ(g),

which depends only on the Lie algebra g and the dimension of the manifold.
Clearly, we have the inequality

dim J\Ω) - sM > 1/6 n(n - l)(π - 2) x dim g - rπ(g)

because the Bianchi condition dΩ e Im BΩ is the first order partial differential
equation on Ω as explained before. Now, under the notation as above, our
first main theorem is stated as follows.

THEOREM 1.1. For any Lie algebra g, the equality

dim J\Ω) - sM = 1/6 n(n - l)(n - 2) x dim g - rπ(g)

holds. In particular, essential first order partial differential equations on the
curvature Ω are exhausted by the Bianchi condition dΩ e Im BΩ for any principal
G-bundle.

PROOF. We prove this theorem by using a local coordinate system
(xί9'",xn) of M. Let {eί9'"9er} be a basis of the Lie algebra g, and we
put [eti eu~] = £cfMes. Then, the components of a connection form ω and its

5

curvature form Ω = dω + 1/2 [ω, ω] are locally expressed as
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ω (έ)"?a""

where

Ωsij = ωsji - ωsij + Σ ctu^H^up
tu

and

dωsi

We may use the components {ωsi, ωsij} and {Ωsij} as local coordinates of the

manifolds J1(ω) and J°(Ω), respectively. Clearly, the map Str° is locally

expressed as

Str°((ωsh ωsij)) = (Ωsij)

through the above equality on Ωsij. Next, we differentiate the structure equa-

tion Ω = dω + 1/2 [ω, ω] with respect to xk. Then, by putting

we have

Ωsijk = ωsjik - ωsijk + X Φ ^ + cotiωujk),
tu

and the map Str1 is locally expressed as

= (Ωsip Ωsijk)9

which is quadratic if g is not abelian. (As above, we may consider {ωSI , ωsij,

ωsijk} and {Ωsij9Ωsijk} as local coordinates of J2(ω) and JX(Q).)

Now, we determine the kernel of the differential of Sir1 at a generic

point j2(ω) = (ωsί, ωsij9 ωsijk) e J2(ω). By considering the above equalities, the

tangent vector
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of J2(ώ) at j2(ω) is contained in the kernel of Sir* if and only if

<*sji ~ <*sij + Σ ctu(o)ujocti + ω t l α t t J ) = 0,
tu

(*)

α«/t* - ««;* + Σ ctu(oujxtik + ωtikauj + ωujk<xti + ωti<xujk) = 0.
tu

In the following, we determine the degree of freedom of α satisfying (*) for

generic j2(ω). From the first equations of (*), the component αs i j (i>j) is

uniquely determined by the values of ccsij (i <j) and αsi. Similarly, since asijk

is symmetric with respect to j and fe, the component ocsijk is determined by

the values ocsijk (i <j< fc), otsij (i <j) and αsί, but not uniquely in this case. By

putting

Aw = *sjik ~ <Xsw + Σ cL(ωUj<Xtik + MtiAj + ω^Orf + ωtiocujk),
t

it is easy to see that this degree of freedom just comes from the equality

(**) Asijk ~ Askji + Astdj = 0,

which imposes some additional conditions on the components (αs/, asij). We

rewrite this equality (•*) in a simple form in the following way. First, we have

Asijk - Λskji + Askij = Σ cs

tu{ωuμtik + ωtikccuj + ωujkocti + ωtiotujk)

- Σ ciK/Orti + ωtkίocuj + ωuji(xtk

+ Σ cίsu(ωuiαίkj + ωtkjctui + ωM</αA

= Σ CrUK * ~ ««ιy)ωrt + ^uki ~ xuik)ωtj + ( α ^ - α t t J-> ί f c}

+ Σ ctu{(ωtkj ~ <*>φ)<*ui + (ωίίfc - ωtfcί)αttJ + ( ω ^ - ωtij)<xuk}

= 0.

From the first equation in (*), we have

<*«,• - α5/i = Σ cm(ωuj*ti + ωίfαMJ.),

and we substitute this equality into the above. Then, we have

Σ ctu{(ωtkj - o)tjk)ocui + (ωtik - ωtki)ccuj + (ωtji - ωtij)ocuk}

+ Σ ctuCvΛ(ωwk^vj + covjocwk)ωti + ( ω ^ α ^ + ωvkocwi)ωtj

+ ( ω ^ α,,- + ω Γ j α W / )ω A } = 0.
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The coefficient of αMί in this expression is equal to

Σ ctJ<ωtkj ~ <0φ) + Σ clw
t tvw

= Σ ctu(cotkj - ωtjk) + Σ
t tvw

= Σ ciHw ~ ωw) + Σ
t

= Σ CL (

(We used the Jacobi identity once in the above modification.) The coefficients

of ocuj and αufc can be calculated in the same way, and hence, the above

equality is simplified as

Σ cϊu(Ωtjk<*ui - Ωtik<*uj + ®tij*»k) = 0,

which is equivalent to [Ω, α 0 ] = 0, where α0 = (αsί). Therefore, the degree of

freedom of α = (αsί, (xsij, 0Lsijk), which is the dimension of Ker Sίr£, is equal to

{n + 1/2 n(n + 1) + 1/6 n(n + l)(n + 2)} x dim g - rπ(g)

= 1/6 n(n2 + 6n + 11) x dim g - rπ(g),

because the equality [ί2, α 0 ] = 0 imposes rn(g) conditions on α for a generic

;2(ω). (Note that the map BΩ{oco) = [ί2, α 0 ] determined by β = St^U^ω))

takes the maximum rank if j1(ω) is a generic element in J1(ω) because the

map Str° is surjective.) Therefore, we have

5n(g) = rank Str^ at j2(ω)

= dim J2(ω) - {1/6- n{n2 + 6n + 11) x dim g - rn(g)}

= {l/2 n(n + l)(n + 2) - l/6 n(n2 + 6n + 11)} x dim g + rn(g)

= l/6 n(n - l)(2n + 5) x dim g + rπ(g),

and hence the codimension of the map Sir* is equal to

dim J\Ω) - s,(g) = 1/2 n(n - l)(n + 1) x dim g - 1/6 n(n - l)(2n + 5)

x dim g - rπ(g)

= 1/6 n(n - l)(n - 2) x dim g - rπ(g),

which proves the theorem. q.e.d.
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REMARK. (1) Let / be an invariant polynomial of the Lie group G.

Then, as stated in Introduction, the characteristic form f(Ω) on M is closed.

(See [10; Vol. II].) We may consider this equality df(Ω) = 0 as a first order

partial differential equation on Ω, and Theorem 1.1 implies that this equality

follows essentially from the Bianchi condition dΩ e Im BΩ. (And, in fact, the

closedness of f(Ω) is proved in [10] by using only the Bianchi identity.)

(2) As stated in this proof, the degree of freedom on the expression of

(xsijk comes from the equality (**) on Asijk, and it is easy to see that this fact

is equivalent to the exactness of the following natural complex (cf. [1]):

F * ® S 2 F * -• /\2 F* ® F* -» /\3 F*.

The codimension dim J1(Ω) — sn(g) which is the essential number of first

order partial differential equations may be also expressed as 1/6 n(n+ l)(n — 4)

x dim g + fcπ(g), where fcπ(g) is the dimension of the kernel of BΩ for generic

Ω. In the special case n = 4, Mostow and Shnider [12] showed that the

map BΩ is the isomorphism if the Lie algebra g is semi-simple and Ω is generic.

Therefore, combining these results, we have

COROLLARY 1.2. When dim M = 4 and q is semi-simple, there exists no

first order partial differential equation on the curvature Ω.

2. 3-dimensional Heisenberg bundles

Now, our next problem is to determine the rank rn(g) (or equivalently,

the rank sw(g)) for a given Lie algebra g, and to find the defining equations

of the image of the map BΩ. First, in this section, we determine the value

rn(q) when q is the 3-dimensional Heisenberg Lie algebra. As stated in Intro-

duction, prescribed curvature problem for this bundle is already studied in

[7] in the case dim M = 3.

Let H3 be the 3-dimensional Heisenberg group:

1
0

0

a
1

0

c

b

1
a,b,ceR

Then, by putting

0 1
0

0
0

0

0 0
0

0
1

0

0 0
0

1
0

0

{Xι,X2,X3} forms a basis of the Lie algebra l)3 of i/3, and the bracket
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operations of ί)3 are given by

IX19 X2~\ = X3, tXu X 3 ] = [Xl9 X 3 ] = 0.

Let ? - > M be a principal bundle with structure group H3, and let ω (resp.

Ω) be a connection (resp. curvature) form on P. As in §1, we pull back the

forms ω and Ω to M by a cross section of P, and denote by ωt (resp. Ωt)

the ^-component of ω (resp. Ω). Then the structure equation (S) for the

3-dimensional Heisenberg bundle is locally expressed as

Ωx = dωx,

(S) Ω2 = dω2,

Ω3 = dω3 + ωx Λ ω2,

and the Bianchi identity is

dΩt = 0,

(B) dΩ2 = 0,

dΩ3 = Ω1 A ω2 — ωx A Ω2.

Our first purpose in this section is to prove the following theorem.

THEOREM 2.1. For ^-dimensional Heisenberg bundles, the rank rw(ί)3) and

the essential number of first order partial differential equations d i m J 1 ^ ) —

sn(ί)3) (= 1/2-n(n — l)(n — 2) — rn(ί)3)) on the curvature Ω are given in the

following table, according as the dimension of the base manifold M.

„
n

n

n

= 3
= 4

= 5

> 6

r.ft3)

1

4

9

2n

dim

1/2-

Jι(Ω)

2

8

21

n ( n 2 -

- s.Gb)

3n-2)

Since dΩγ = dί22 = 0 for H3-bundles, the Xx- and X2-components of the

image of the Bianchi map BΩ defined in §1 is zero. Hence, to prove this

theorem, we have only to show the following lemma.

LEMMA 2.2. Let V be an n-dimensional vector space, and F = (Fl9 F2) be

a pair of 2-forms on V. Then the maximum rank of the map

φF: V* + K*->/\3 V*
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defined by

φF(ocu α 2 ) = F 1 Λ α 2 - α 1 Λ F 2 , α l 5 α 2 e F *

is given by

n = 3

n = 4

n = 5

n > 6

rank φF

1
4
9

In

REMARK. For 3-dimensional Heisenberg bundles, we may call φF the

Bianchi map since φF is the essential part of BF as explained above. (As

before, in considering the pointwise problem, we express 2-forms as F instead

of Ω.) It is clear that the Bianchi map φF takes the maximum rank for a

generic F, and rank φF is not maximum if and only if F belongs to some

algebraic set in /\2 V* + /\2 V*9 consisting of singular elements. To determine

the explicit defining equations of this algebraic set is another interesting alge-

braic problem, and we study this problem in §5 in detail. (See Theorem 5.2

and Proposition 5.11.)

PROOF. For the case n = 3, 4 and n > 6, we have only to find F =

(F l 5 F2) such that the rank of φF takes the values in the table because rank φF

cannot exceed these values. For each case, by using a basis {e*, ••',*?} of

V*, we put

n = 3 : Fx = e\ A e\, F2 = 0,

n = 4: Fx = e% Λ e% + e% Λ ej, F2 = 0,

n > 6: Fx = e\ A e\ + e% A e%, F2 = e\ A e% + e\ A e%.

Then, we can easily verify that the map φF is surjective in the case n = 3,

4, and injective in the case n > 6. Next, for the case n = 5, we put

Fx = e? Λ e\ + ef Λ ej, F2 = e? Λ ej + e% A e%.

Then, by direct calculations, we can show that rank φF = 9 with Ker φF =

<(ef, — e?)>. Hence, to complete the proof, we have only to show that the

inequality dim Ker φF > 1 holds for any F in the case n = 5. For this pur-

pose, we construct a canonical 1-dimensional kernel of φF in terms of F for

generic F. First, using the volume form Φ = ef A ••• Λ e%, we define α l f ,

α2 ί 6 /? (1 < i < 5) by
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and put %i =ΣθLuef, oc2 = Σ(x2ief. Then, we have φF(α1? α2) = 0. In fact,
the ef A ef A e% component of OL1 A F2 is equal to <xuF2jk — a>\jF2ik + otίkF2ip

and we have

= F1 AF1 Λ(F2jk'ei}F2-F2ik ejiF2 + F2ij'ek]F2)

= -1/2-F1AF1A {ei\ej\ek\{F2 A F2)},

On the other hand, as for the ef A ef A e% component of α2 Λ Fl9 we can
show the equality

(oc2iFljk - oc2jFlik + ct2kFuj)Φ = 1/2 F2 A F2 A {e,\ es\ eh\ (F, A FX)}

completely in the same way. Since any 6-forms automatically vanish on R5,
we have

{ei}(F1AF1)}A{ekj(F2AF2)} = 09

and using these equalities, we have

^i Λ Fί A {^J^.J^J(F 2 Λ F2)} = -{ei\{F1 A Ft)} Λ {^J^J(F 2 Λ F2)}

= - t e J e J ^ i Λ FJ} Λ {ek\{F2 A F2)}

= {ek J ej] et] (Fx Λ FJ} A F2 A F2

= - F 2 Λ F2 Λ {^J^.J

which shows that oc1 A F2 = OL2 A Ft. Clearly (α l s α2) φ 0 for generic F, and
hence we have dim Ker φF > 1 for any F. q.e.d.

REMARK. The last inequality rank φF < 9 in the case n = 5 follows imme-
diately from Proposition 3.1, where the existence of a non-trivial defining
equation of Im φF is proved. This inequality can be also proved by using
the results in §5. For details, see Remark after Lemma 5.8.

It is easy to see that the ring of invariant polynomials of the Lie group
H3 is generated by two elements with degree 1, and the corresponding charac-
teristic forms are Ωx and Ω2. Of course, we already know the closedness
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of the forms Ωx and Ω2 by the Bianchi identity (B). These equations dΩ1 =

dΩ2 = 0 contain 21 I = 1/3 n(n — l)(n — 2) independent first order partial

differential equations on the components of Ω. And by subtracting this from
the value in Theorem 2.1, we know that the number of the remaining first
order partial differential equations is given by

dimJί(Ω)-sn(\)3)-2r

n = 5
n>6

0
0
1

l/6 n(n + 2)(n-5)

But, these numbers just coincide with the codimension of the image of the

map φF in Lemma 2.2 because ί 1 — In = 1/6* n(n + 2) (n — 5). Therefore,

we have the following theorem, which may be considered as a refinement of
Theorem 1.1 for 3-dimensional Heisenberg bundles.

THEOREM 2.3. The essential first order partial differential equations on

the curvature Ω of 3-dimensional Heisenberg bundles are exhausted by

dΩx = dΩ2 = 0 for n = 3, 4,

and

dΩ1 = dΩ2 = 0, dΩ3 e Im φiΩί,Ω2) for n> 5.

This result for the case n = 3 is also an immediate consequence of Propo-
sition 2.4 in [7], where it is proved that a generic triple of 2-forms (Ωl9 Ω2, Ω3)
with dΩγ = dΩ2 = 0 is always a curvature of H3-bundle over a 3-dimensional
manifold. (Here, the term "generic" implies that the pointwise value of Ω is
generic in a sense. For details, see [7; p. 34].)

Thus, our remaining problem for first order partial differential equations
on Ω is to find the explicit defining equations of the map φ(βl,β2) in Lemma
2.2, which belongs to the problem of "Linear Algebra".

3. The Bianchi condition in the case n > 5

In this section, we give the explicit defining equations of the image of
the map φF defined in Lemma 2.2 in a geometric form for n > 5. We first
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treat the case n = 5, which also plays a fundamental role for the general case

n > 6. To state the results, we first prepare some notations.

Let V be a 5-dimensional real vector space, and we fix a volume form

Φ e /\ 5 F * throughout. Then, for any 4-form γ e /\ 4 F*, the vector y# e F

is uniquely determined by the rule

y* J φ = γ e /\4 V*.

In this section, in the case n = 5, we say that the pair of 2-forms F = (Fί9 F2) e

Λ 2 V* + Λ 2 v* i s "generic" if

(1) three vectors (Fx Λ F i ) # , (Fί A F 2 ) # , (F2 Λ F2)
Φ are linearly indepen-

dent in V,

(2) the rank of the Bianchi map φF: F * + V* ->/\ 3 F * is 9 (i.e., φ F is

of maximum rank. cf. Lemma 2.2).

We remark that such forms actually exist. For example, using a basis

{**, •• ,e?} of V*, we put

Fλ = e\ A e% + gf Λ e j ,

F 2 = β* Λ el + ^* Λ βf.

Then, with respect to the volume form Φ = e\ A ••• Λ β^, we can easily check

that

(fi Λ F t ) # = 2^5, (F, A F2)* = - ^ 4 , (F2 A F2)
# = 2β2,

and rank φF = 9. (See the proof of Lemma 2.2.) Therefore, "generic" forms

constitute an open dense subset of /\ 2 V* + /\ 2 V*. (Actually, it is a comple-

ment of an algebraic set of /\ 2 F * + /\2 V*9 and explicit defining equations

of this algebraic set can be obtained immediately by using the results in

Theorem 5.2.) Note that the genericity for the curvature (Ωί9Ω2) depends

only on the pointwise O-th jet of Ω9 not on their derivatives, nor on the

choice of the volume form of V. Now, the next propositon combined with

Theorem 2.3 gives the complete answer to first order partial differential equa-

tions of Ω in the case n = 5. (In the following, we express the pointwise

value of dΩ3 as G.)

PROPOSITION 3.1. Let F = (Fl9F2) be a generic element of /\ 2 V* +

/\ 2 V*9 where V = R5. Then, a 3-form G e /\ 3 F * is contained in the image

of the Bianchi map φF:V*+ F * - » / \ 3 F * defined in Lemma 2.2 if and only

if the following equality holds:

FJ*, (FtAF2r, ( F 2 Λ F 2 ) * ) = 0.
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Note that the above equality is a non-trivial condition on G, and it does

not depend on the choice of the volume form Φ. In particular, by this

proposition, it follows that rank φF < 9 for generic (and hence, any) F in the

case n = 5 because dim /\3 F* = 10. (cf. Lemma 2.2.) Geometrically, this

proposition implies that the 3-form dΩ3 vanishes on the 3-dimensional sub-

space spanned by (Ωx A Ω±)Φ

9 (ΩX A Ω2)
Φ, (Ω2 A Ω2)

Φ at each point of M,

and hence this condition may be considered as a first order partial differential

equation on Ω3.

To prove this proposition, we have only to show that the above equality

holds in the case G e Im φF. In fact, since the above condition is a single

equation on G and we already proved rank φF = 9 for generic F (Lemma

2.2), the converse part follows immediately. In order to prove the above

equality on G, we first prepare the following lemma.

LEMMA 3.2. Let F = (Fl9F2) be a generic element of /\2 V* + /\2 V*9

where V — R5. If two vectors vl9 v2eV satisfy

then two 1-forms v2]F1 and ι?iJF2 are parallel in V*.

PROOF. Since the pair is generic and dim V = 5, we may put

F i = Σ Fve*Λ e*>

F2 = e\ A e\ + e% A <?J,

in terms of a suitable basis {ef} of V*. Then, from the condition v2j

(F2 A F2) = 0, we have v2 = ke5. Next, since F1 A F2 is equal to

(F1 2 + F34)e?234 + ^35^235 + F4 5ef2 4 5 + F 1 5 ^ 3 4 5 + F 2 5 ^ 3 4 5 (Φ 0)

where efjkl = ef A ef Λ β̂  Λ ef, we have

Vi = /{F25β! - F 1 5 β 2 + F 4 5 e 3 - F35e4 + (F1 2 + F 3 4)e 5}.

Hence,

k(Ό1}F2) = kl(F15eΐ + F25et + F35e? + F45βJ)

= -kl(e5jF1)

= -l(v2}Fί),

which proves the lemma. q.e.d.

REMARK. If we drop the genericity condition on Fx and F2, this lemma
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does not hold as the following example shows:

F1 = F2 = e% Λ e%, vx = et and v2 = e2.

PROOF OF PROPOSITION 3.1. We put

(Ft A F,r = v0, (F± Λ F2)* = vu (F2 A F2)* = v2,

and show the equality

G(vo,vuv2) = 0

in the case G is expressed as Fx A α2 — a1 A F2 for some α l 5 α2 e V*. For
this purpose, we have only to prove the equality

since the remaining second term also vanishes, as can be proved in the same
way. First, from the definition, we have easily

which is equivalent to vojFί = 0 . (Note that dim V= 5 and Fί A F X #0.)
Thus, we have only to show the equality F1(vί, v2) = 0. We evaluate the
both sides of the following equality at the vector v2.

0 = Vi J(FX Λ F2) = (v, J F,) A F2 + Fί A K JF2).

Then, we have

0 = Fx(vu v2)-F2 - (v^F,) A (v2]F2) + (v2 J Fx) A (V, J F2) + F2(vu v^-F,.

From Lemma 3.2, we have (v2iF1) A (VΪ]F2) = 0, and since v2\F2 = 0, the
above equality implies the desired equality Fι(vί,v2) = 0. q.e.d.

REMARK. For n = 5, the general linear group GL(5, R) acts canonically
on the space /\2 V* + /\2 F* 4- /\3 F*. The expression

may be considered as a polynomial on this space with total degree 7, and
it is easy to see that this polynomial is the invariant of GL(5, /?), corresponding
to the Schur function S33333. This invariant is also expressed in the form

2 , Sgn(στp)F l σ ( 1 ) σ (2)F l σ (3 ) σ ( 4 )F l t ( 1 ) t (2)iΓ2τ(3)τ(4)^2p(l)p(2)^2p(3)p(4) ^(5)^5)^(5),
σ,τ,pe <S5

up to the scalar multiplication by non-zero constants, where FUj and F2ij are
the components of Fx and F2. (For the definition of the Schur function and
the meaning of the above summation, see [11], [2].) Since the map φF has
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some GL(5, /?)-invariant property and the codimension of I m φ f is 1, the
defining equation of Im φF is an invariant of GL(5, /?), as expected.

Next, under these preliminaries, we consider the general case n > 6. In
this case, we can express the differential equations on Ω in a geometric form
as in Proposition 3.1 by introducing a family of 5-dimensional subspaces of
tangent spaces. We first fix a 5-dimensional subspace W of V = Rn and the
volume form of W. And next, we restrict the forms Fl9 F2, G to this subspace
W, which we denote by FY, FY 9 Gw, respectively. Then, from Proposition
3.1, it is clear that the equality

GW((FΓ Λ F?)*9 (F? A F?)*9 (Ff Λ F?)+) = 0

holds if G e / \ 3 F* is contained in the image of φF. (Note that the above
equality does not depend on the choice of the volume form of W9 as before.)
If W runs all over the 5-dimensional subspaces of V9 the 3-vectors

(FΓ Λ F»)+ A (ff A F?)* A (F? A FY)*

span a subspace of /\3 V which is determined by F1 and F2 independently
on the choice of the volume form. In the following, in the case n > 6, we
say that the pair of 2-forms F = (Fl9 F2) is "generic" if

(1) the dimension of the above subspace of /\3 V takes a maximum value,
(2) the Bianchi map φF is injective.

(Note that these conditions are natural generalizations of the corresponding
genericity conditions in the case n = 5 defined before.) Clearly, generic pairs
F constitute an open dense subset of /\2 V* + /\2 V*. Now, our main result
for general n (> 5) is the following.

THEOREM 3.3. Let F = (Fl9 F 2 ) e / \ 2 V* + /\2 V* be a generic element.
Then, G e /\3 F* is contained in the image of the Bianchi map φF: F* + V* ->
/\3 F* if and only if

GW{{F? A FΓ)#, (FΓ Λ F f ) # , (FY A FY)*) = 0

for any 5-dimensional subspace W of V.

PROOF. The case n = 5 is already proved in Proposition 3.1. In the
following, we consider the case n > 6. In this case, since the codimension

( n\
) — 2n = 1/6* n(n + 2)(n — 5) (cf. Lemma 2.2), we have

only to show that the 3-vectors

(•) (FY A FY)# A (FY A FY)#
 A (FY A F?)#
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span a 1/6 n(n + 2)(n — 5)-dimensional subspace of /\ 3 V when W runs all

over 5-dimensional subspaces of V. And for this purpose, we have only to

find one pair F satisfying this property because the dimension of this subspace

spanned by (*) cannot exceed the value 1/6 -n(n + 2)(n — 5).

In the following, we divide the proof into two cases n = 6 and n > 7.

First, we treat the case n = 6. Using a basis {e*, •**,£*} of V*9 we put

Ft = e\ A el + e% A e%,

^2 = e* Λ e% + β 2 Λ β *

Then, it is easy to see that φF is injective. In the case n = 6, the value

1/6 n(n + 2)(n — 5) is equal to 8, and we will show that 3-vectors (*) span

an 8-dimensional subspace of /\3 V. We restrict the forms Fl9 F2 to the

subspace W spanned by the following five vectors

v1=e1+a1e6,

v5 = e5 + a5e6,

where ax ~ a5 are real parameters that may be considered as a local coordinate

system of the Grassmann manifold, consisting of all 5-dimensional subspaces

of V. Let {α l5 ,α 5 } be a basis of W*, which is the dual of {vl9 "9v5}.

Then, in terms of {αj, the forms F^, F% are expressed as

Λ α
5,

and hence, we have

FY Λ FY = - 2 ( α 3 α 1 2 3 5 -f fl4α1245),

FY Λ FY = α 2 α 1 2 3 5 — aίocί24.5 —

F2 A F2 = — 2 α 1 2 3 4 ,

where α 1 2 3 5 = ocj Λ α2 Λ α 3 Λ α5 etc. Then, by using the volume form Φ =

<xt A -" A α5, we have

Y A FY)# = a3vί + a4v2 - a1v3 - a2v4,

Y A FY)* = -2v5.
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We express the 3-vectόr (*) in terms of the basis {ej. Then, after straightfor-
ward calculations, we have

1/4-(FΓ Λ FΓ)# Λ (FΓ Λ FY)# A (Ff A FY)*

= -a1a3a5e3Ar6 - axa3e3Ar5 - a2a4a5e346 -

+ 0304(^245 - e135) - ala5e236 - ale235,

where e 3 4 6 = e3 A e4 A e6 etc. Hence, if the space W varies according as the
value of ax ~ α5, the 3-vectors (*) span the 8-dimensional subspace

<>135 - ^245» ^136 ~ ^246» ^145> ^146» ^235^ ^236» β345» ^346> C Λ 3 V>

and hence, this completes the proof of the theorem in the case n = 6.
Next, we consider the general case n > 7. In this case, we prove the

theorem completely in the same way as above, but a tremendous amount of
calculations is required. First, we put

F x = e\ A e\ + e% A e%,

F2 = e\ A e% + e% A e%,

and consider the 5-dimensional subspace W of V spanned by

- + a5nen,

where {aυ} may be considered as a local coordinate system of the Grassmann
manifold consisting of all 5-dimensional subspaces of V. We take the same
procedure as in the case of n = 6. Then, by using the volume form Φ =
αx Λ ••• Λ α5, we finally have

(FY A FY)* = 2(-a46v3 + α36ι;4),

(FY A FY)* = (a26a3Ί - ^27036)^1 + (017036 - 016037 + 046^2

+ (016027 ~ 017026 + 057^3 ~ 026^4 ~ 037^5*

(FY A FY)* = 2(-a5Ίv2 + a2Ίv5).

By expressing the vectors vt in terms of eΛ ~ en, the above equalities become

(FY A FY)# = 2{-a46e3 + a36e4 + ( α 3 6 α 4 7 - α 3 7 α 4 6 ) e 7 + •••



Differential equations on the curvature 249

F? Λ FY)# = (a26a3Ί - a2Ίa36)ex + (aίΊa36 - a16a3Ί + α 4 6 ) e 2

+ (016027 - 017026 + 057>*3 ~ 026*4 ~ 037*5

+ (036057 - 037056^6 + (^27046 ~

+ {(026037 - 027036)018 + (

+ (016027 - 017026 + 057)038 ~ 026α48 ~ 03

+ {(026037 - 02703o)01n + (017036 ~ 016037

+ (016027 - 017026 + 057)03* ~ 02604* ~

Y A FY)# = 2{-a5Ίe2 + a2Ίe5 + (a2Ίa56 - a26a5Ί)e6

+ (027058 - 028057^8 + ' "

Now, in this situation, we show that the 3-vectors (*) span the 1/6-
n(n -f 2)(n — 5)-dimensional subspace of /\3 V generated by the following
vectors:

+ ^247 - ^356* ^23i (ί - 4 - ϊl\ β3ij (6 < ί < j < ή),

~ e5βi (i = 4, 7 - n), e2M (i = 5, 6, 8 - n), e45i (i = 8 - n),

- *47i (i = 5, 6, 8 - n\ e25i (i = 7 ~ n), e46i (i = 8 - n\

0' = 5, 6, 8 ^ n), β20- (6 < i < j < n), e4ij ( 8 < i < j < n),

e15i (i = 7 - n), ^3 4 ί (i = 5, 6, 8 - n), e 5 i i (7 < i < < n),

β l v (6 < i <j < n), e35i (i = 7 - w), β v k ( 6 < i < j < k < n).

But actually, it is difficult to write down all 3-vectors (*) explicitly. And we
calculate only several parts of them. First, we calculate 3-vectors in (*) whose
coefficients are equal to a26a37 α 4 6 α 5 7 . By considering each term of (Fj* A
Fj^)*, it is easy to see that the desired vectors are contained in the part

4 ( - α 4 6 e 3 - α 3 7 α 4 6 e 7 ) Λ (α 2 6037^i + 046*2 + 057*3 - 026*4 - 037*5)

Λ (-a5Ίe2 - a26a5Ίe6).

Hence, they are equal to 4α26037046057(*i23 + *247 ~ *356) Thus, the 3-
vector e 1 2 3 + ^ 2 4 7 — e356 is contained in the subspace spanned by (*). We
continue this procedure for remaining 3-vectors listed up above. We omit the
detailed calculations, and in the following, we only list up the monomials of
ay by which we can extract the above 3-vectors:
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2
— β456 "26α36"37α57> e12i ~~ e56i '' " "

e13j -
- *2

00^

+ ^457 «26«27«37«46? ^136 + ^467 «2

\a\na\ " ' " 2 " 2

• Λ 2 ji

2 p . „ Λ
β 2 3 6

6» e 2 4 6 : (

e2jk:a27a3kal6a5j, e 3 4 5 :

2 . 2

7 U2/u

:a\Ίajn a ' n l

• Λ 2 Λ 2

2 " 2 e^6j:a2jal6a
2

51i

e6Ίj:alΊa3jal6a56,

2 2

In this list, the range of the indices is understood to be

if the subscript of 3-vectors e ^ contains "Γ, "/', "(/", " fe", or "i/fe", respec-
tively, q.e.d.

REMARK. (1) We must divide the above proof into two cases n = 6 and
n > 7 because the pair of 2-forms

Fx = e\ A e% + e% A e%,

FΎ = e? Λ β? + e\ A βί,



Differential equations on the curvature 251

which we used in the former part of the proof generates only 20-dimensional

subspace of /\ 3 V in the case n = 7, though the codimension of Im φF is equal

to l/6 n(n + 2 ) ( n - 5 ) = 21.

(2) In the case n > 6, if we fix a 5-dimensional subspace V5 of TXM,

then the curvature Ω naturally determines a flag

V3 c Vs a TXM,

under a pointwise genericity condition on Ω, and the above theorem implies

that all first order partial differential equations on Ω can be described by

considering all such flags. This situation has some resemblance to the curva-

tures of Riemannian manifolds where the curvatures are completely determined

by their sectional curvatures that are decided by 2-dimensional subspaces of

TXM.

4. The inverse formula of the Bianchi map φF: V* + V* -• /\3 V*

In the rest of this paper, we state several algebraic properties concerning

the Bianchi map φF: V* + V* -> /\3 V* associated with 3-dimensional Heisen-

berg bundles, which is defined in §2. In Lemma 2.2, we proved that the

map φF is one-to-one in the case n > 6, and admits a 1-dimensional non-trivial

kernel in the case n = 5 for generic F = (Fl9 F2) e /\2 V* + /\2 V*. Hence, if

n > 6, the pair of 1-forms ( α l 5 α 2 ) is uniquely determined from F and the

image G = φF(al9 α2) e /\3 V*, which renders geometrically that the <X1 ? Z 2 >-

components of the connection 1-form on principal //3-bundles are uniquely

determined from the curvature 2-forms Ωl9 Ω2 and the exterior derivative

dΩ3. In this section, we give the inverse formula of the map φF explicitly

for both cases n > 6 and n = 5. But the expressions of the inverse formulas

are not so simple as in the case of standard inverse matrices of linear iso-

morphisms. First, in the case n > 6, we prove the following proposition.

PROPOSITION 4.1. (The inverse formula of φF.) Assume n > 6, and let

{eί9~-9en} be a basis of V. Then, the following equalities hold if G e /\3 V*

is expressed as G = Fx A α2 — αx Λ F 2 .

M e i H ί e i J F J Λ F2 A F 2 } 1 2 3 4 Λ {(e1}F2) A Fί A F,},^

= -Άie^F,) A ( β l J G ) Λ F 2 } 1 2 3 4 Λ { ( e J F 2 ) Λ FX A FX}123A e/\2 V*,

α 2 ^ i ) {(^iJ^i) Λ F2 A F 2 } 1 2 3 4 Λ {{e1\F2) A FX A F 1 } 1 2 3 4

= 2{(^ jFJ Λ F2 Λ F 2} 1 2 3 4 Λ {(e1}F2) A (e^G) A F^^etf V*.

(In these expressions, the form {** }i 2 3 4 means the interior product
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PROOF. We substitute G = Fx A OL2 — αx Λ F2 into the expression (ex J Fx)

A(e1\G) A F2. Then, it is equal to

(eiJJFΊ)Λ ( e J F j Λ α2 Λ F2

- ot1(e1)(e1 J FJ Λ F 2 Λ F 2 + (^ J F X ) Λ ^ Λ (^ J F2) Λ F2

= M^iMβiJFi) ΛF1ΛF2- α ^ K e J F J A F2 A F2

+ (β 1JF 1)Λα 1Λ(β 1JF 2)ΛF 2.

The following two equalities are easy to check:

2e1]{(e1}F1) A αx Λ (ex\F2) A F2} = <*1(e1)>e1 J {(ex JFJ Λ F2 Λ F 2},

2«i J {(^i J Fx) A Fx A F2} + e1]{(e1iF2) A FX A FX} = 0,

and from these equalities, we have

2{(eίjFί) Λ αx Λ ( e J F 2 ) Λ F2}1234 = a1(e1){(e1iF1) A F2 A F 2 } 1 2 3 4

and

{(«! JFJ Λ F
x
 Λ F

2
}

1 2 3 4
 Λ {(^'JF

2
) Λ F

χ
 Λ F

1
}

1 2 3 4
 = 0.

Hence, we have the equality

Λ (eJG) Λ F 2 } 1 2 3 4 Λ {(βJF 2 ) Λ Fx Λ F 1 } 1 2 3 4

2(β1){(e1 JFJ Λ F, A F 2 } 1 2 3 4 Λ {(«! JF2) Λ FX A

JF1) Λ F2 Λ F 2 } 1 2 3 4 Λ {(^JF 2 ) Λ Fί A

Λ αx Λ(β! jF 2 )Λ F 2 } 1 2 3 4 Λ {(β1JF2) Λ FX Λ F 1 } 1 2 3 4

) A F2 Λ F 2 } 1 2 3 4 Λ {(^JF 2 ) Λ FX A

The second equality in this proposition can be proved completely in the same

way. q.e.d.

REMARK. (1) We consider the pair of 2-forms

F
1
 = e% A e% + e% A e%,

F
2
 = e\Aet + e%A eξ,

where {e*,-m,e*} is the dual basis. Then, the form

(•) {(βiJFJ Λ F2 Λ F 2 } 1 2 3 4 Λ {(βxJF2) Λ Fx Λ F x } 1 2 3 4

is equal to Ae% A e% Φ 0, which implies that the 2-form (*) is non-zero for

generic pairs F = (F l 9 F 2 )e/\ 2 F* + / \ 2 K*. Hence, from the equalities in
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Proposition 4.1, the values α ^ J and α2(e1) are uniquely determined from
Fl9 F2 and G = φF(α l5 α2). By changing the order of {ej suitably, we can
replace the first vector e1 by an arbitrary ei9 and thus we obtain the desired
inverse formula of φF9 having the above (*) as a typical denominator. Note
that this inverse formula essentially depends only on the flag F 1 c F 4 c
F 6 czF, determined by F 1 = <^>, F 4 = <e1? •••, e4> and F 6 = (eu •••, eβ\
but not on the basis {et} itself. In addition, there exist many ways to express
oL^βj) in terms of F and G by considering different flags. This implies im-
plicitly that there is an algebraic relation between F and G, which is nothing
but the equality stated in Theorem 3.3.

(2) In this inverse formula, the coefficient of e% A e% in the denominator
(*) is a polynomial on the space /\2 F* + /\2 V* with total degree 6, which
is the generator of the GL(F)-invariant subspace of S6(/\2 F* + /\2 F*)* corre-
sponding to the Schur function S4222ii We can write down it by using the
method in [2] with the aid of computers, and as a result, it is expressed as
a sum of 240 monomials of the components of Fx and F2. The corresponding
Young diagram

indicates that the above flag F 1 c F 4 c F 6 a V naturally appears in the
expression of this inverse formula.

(3) If we use the flag F 1 c F 2 c F 6 c F where F 2 = <e l5 e2} instead
of the above, then we can formally prove the equality

α i ί e i H f o J F J Λ F2 A F2}12 A {(βJF2) Λ FX A FX}12

= -2{(ex J Fx) A (ex j G) Λ F 2 } 1 2 Λ {(^ J F2) A FX A FX}12 G Λ 6 V\

completely in the same way as Proposition 4.1. But, in this case, it is easy
to see that the 6-form

Λ F2 Λ F 2 } 1 2 Λ Λ F, A

reduces identically to zero, and hence, this equality does not serve as the
inverse formula. We also note that the 2-form (*) is always equal to zero
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in the case n < 5, and hence the above inverse formula is useful only in the

range n > 6.

By this proposition, we can express the <X l 5 X 2 ) " c o m P o n e n t s °f the

connection 1-form ω in terms of Ωl9 Ω2 and dΩ3, which may be considered

as a sort of algebraic rigidity on the connection. (Compare the result of

Tsarev [13] for the case of 5ί/(2)-bundles over J?4, where the connection is

completely determined by the curvature. See also [12].) By substituting this

inverse formula into the structure equations Ωx = dωί and Ω2 = dω2, we can

theoretically obtain the second order partial differential equations on the

curvature Ω. But, unfortunately, it is almost impossible to write down them

explicitly. Note that in the case of n > 6, actual curvatures are completely

characterized in terms of first and second order partial differential equations

under a genericity condition on the pointwise value of Ω on account of the

following lemma, which is essentially stated in [7].

LEMMA 4.2. Let Ω = {Ωl9Ω2,Ω3} be a ί)3-valued 2-form on an n-dimen-

sional manifold M (n> 3). Assume that there exist 1-forms ωx and ω2 such that

Ω2 = dω2,

dΩ3 = Ωί Λ ω2 — ωx A Ω2.

Then, Ω is an actual curvature determined by a connection.

This lemma is easy to prove by applying Poincare's lemma on the form

Ω3 — ωt A ω2. By this lemma, if 1-forms ωl9 ω2 determined uniquely by

Ωl9 Ω2 and dΩ3 satisfy the first two equalities Ω1 = dωί9 Ω2 = dω2, then Ω

is an actual curvature. This implies that first and second order partial differ-

ential equations are sufficient to characterize actual curvatures for generic

cases if n > 6.

Next, we give the inverse formula of φF in the case n = 5. In this case

( α l 5 α 2 ) is not uniquely determined from Fl9 F2 and G because φF always

admits a non-trivial 1-dimensional kernel. The result is expressed in the

following slightly complicated form.

Using the volume form Φ = ej Λ ••• Λ e£, we define s l ί 5 s2 i, m^eR by

= \β'F1AF1A{ei\F2\

s2iΦ=-l/2-F2AF2A(ei}F1),

mijΦ = 1/2- {(eti Ft) A (ej] F2) + (ej j Fx) A (et] F2)} A G.

(Note that mi7 = m^.) Then, the inverse formula in the case n = 5 is expressed

in the following form.
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PROPOSITION 4.3. (The inverse formula of φF.) Assume n = 5 and G =

φ F (α 1 ,α 2 ) for some OL1=YJOLuef, α2 = ̂ a 2 l ^ * e K*. Then, OLU and <x2i are

expressed as

ktsli9

su

where {feji<i<5 are real numbers satisfying

k _ k

2slis1jS2is2j(slis2j — s l 7 s 2 i )

PROOF. We first show the following equality

s2i

<x2i

= 2mΨ

To prove this, we substitute the vector e$ to the equality

a 2 A F x ΛFX Λ(ei]F2) = 0.

Then, we have

0 = eji{*2ΛF1ΛFίΛ(ei]F2)}

= *2j Fί AF,A (etj F2) - 2α2 Λ (es\ F,) A F, A (et\ F2) - F2ij-<x2 A F, A Fl9

and from this equality, we have

1/2-a2j'F1 ΛFX Λ(ei}F2) = <x2A(ej]F1)AFί Λ(β,JF2)

+ l/2 F2ij-(x2AF1 Λ F ,

In the same way, we can prove

\/2ΌL2i'F1 AF,A (ejjF2) = α2 Λ feJFJ Λ F, A (e,.JF2)

+ l/2'FVi 0L2ΛF1 Λ f ,

Adding these two equalities, we have

(suoc2j + sυot2i)Φ = l/2'{aZJ'F1 A Fγ A (β j F2) + au:Fx ΛFX A (e}\ F2)}

= α2 Λ (eji F,) AFXA (et] F2) + α2 Λ (β,J F,) A F, A ( e j F2)

i) Λ (eji F2) + (eji FJ A (βii F2)} Λ FX A α2.
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Similarly, we have

(sv*u + s2iaυ)Φ = {{e,j Fx) A (e, J F2) + (βjJ F J Λ (etj F2)}

A αx Λ F 2 ,

which combined with the above proves the desired equality (**).

Now, we put i=j in (**). Then, after a slight modification, we have

OLγi lΐlii &Ίi "*i£

2sus2i s2i 2sus2i

and we express this value as fef. As a result, we have

2s2i

In addition, we substitute these equalities into (**). Then the desired equality

on kt — kj follows immediately. q.e.d.

REMARK. (1) Clearly, the above inverse formula contains one free pa-

rameter, as we already know from Lemma 2.2. In addition, if G = 0, then

we have mo = 0 and kt = kj. Hence, this inverse formula also gives the expres-

sion of the canonical 1-dimensional kernel of the map φF, which we showed

during the proof of Lemma 2.2.

(2) We put

s l = X slief a n < i S2 = Σ S2ieΐ-

Then the equality

4 S l Λ 52 Λ G = -GdF, A F,r, (F, A F2)*9 (F2 A F2)*)Φ e /\5 V*

holds, where the vectors (Ff Λ F})# are defined in terms of the volume form

Φ. By this equality, we get another expression for the defining equation of

Im φF.

5. Characterization of singular elements of /\2 V* + /\2 V*

In this final section, we prove the theorems which characterize "singular"

(and consequently, "generic") elements F = (Fl9 F2) e /\2 V* + /\2 V* from the

standpoint of Lemma 2.2. In this section, we say that F is "singular" if the

Bianchi map φF: V* + V* - > / \ 3 V* is not of maximum rank. To state the

precise results, we first prepare two notions on F.
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We say that F = (Fί9 F2) satisfies condition (Rk) (k = 3, 4, 5, •••) if there

exists a fc-dimensional subspace W* of V* such that Fl9 F2 e /\2 W*9 and F

satisfies condition (D) if there exists a pair of real numbers (fc, /) Φ (0,0) such

that the 2-form kFx + IF2 is decomposable. These two conditions are enough

to characterize singular elements. Under these preliminaries, we have the

following theorem.

THEOREM 5.1. Let F = (Fί9 F2) be an element of /\2 F* + /\2 V*. Then,

F is singular if and only if the following conditions are satisfied.

The case n = 3:F1= F2 = 0.

The case n = 4: F satisfies condition (R3).

The case n — 5: F satisfies condition (R4) or (£>).

The case n>6:F satisfies condition (R5) or (D).

By definition, singular elements are characterized in terms of some poly-

nomial relations on the components of Fί and F2 that are the minor determi-

nants of the matrix corresponding to φF. But these relations may be ex-

pressed in a simpler geometric form (i.e., polynomials with lower degree), and

to find these polynomials is in general a hard algebraic problem. The follow-

ing theorem answers to this problem in the case of n = 4 and 5.

THEOREM 5.2. An element F = (Fl9 F2) e /\2 V* + f\2 V* is singular if and

only if

n = 4: Fί A FX = F1 A F2 = F2 A F2 = 0.

n = 5: FjΛ Ft A (υj F2) = F2 A F2 A (V] i*\) = 0 for any v e V,

or

</n A f229 OLAβy 2Oii Λ f129 α Λ J?>

2</i2 A f229 α Λ β> < / n Λ f229 α Λ β>
= 0

for any α, β e V*, where f^ = (Ft A FJ)# e V, and < , } is the natural pairing

of Λ 2 v and Λ 2 v* (We fix a volume form of V = R5 throughout.)

Note that the above conditions are equivalent to three polynomial rela-

tions of the components of F1 and F2 with degree 2, 3 and 8 respectively, if

we rewrite them by using a basis of V.

To prove these theorems, we must prepare several lemmas. We first

give three lemmas concerning conditions (#3)^(^5) . In contrast to the case

of a single 2-form, it is slightly difficult to characterize the reducibility of

(Fl9 F2) to a low dimensional subspace of V* in terms of polynomial relations.
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LEMMA 5.3. A pair of 2-forms F = (Fl9 F2) satisfies condition (R3) if and

only if

F 1 Λ F 1 = F 1 Λ F 2 = F 2 Λ F 2 = 0.

PROOF. Clearly, we have only to show the "if" part. The case Fx =

F2 = 0 is trivial, and we assume Fx Φ 0. Then, from the condition Ft A F1 =

0, the form Fγ is expressed as Fx = OL1 A α2 for some linearly independent

1-forms αx and α2. Then, from the condition Ft A F2 = 0, we can express

F2 as F2 = (xί A βx + α2 Λ β29 and from the condition F2 A F2 = 0, it follows

that α l 9 α2, βl9 β2 are linearly dependent, which proves the lemma. q.e.d.

LEMMA 5.4. A pair of 2-forms F = (Fί9 F2) satisfies condition (RA) if and

only if

Fx A Fx A F1 = Fί A Fί A F2 = Fx Λ F2 A F2 = F2 A F2 A F2 = 0

and

Ft A F1 A (vj F2) = F2 A F2 A (v] Fx) = 0 for any veV.

PROOF. Considering the degree of the above forms, we know that the

"only if" part of this lemma holds trivially. We prove the "if" part. Assume

Fx A Fx = F2 A F2 = 0. Then Fl9 F2 are expressed as Fί = a1 A α2 and F2 =

α3 Λ α4 for some αf G V*, and hence the existence of the 4-dimensional sub-

space W* follows immediately. Hence, by the symmetry of Fx and F29 we

may assume Fx A FX φ 0. Then, from the condition Fί A FX A FX = 0, the

form Fi is expressed as F1 = ocί A OC2 + α3 Λ α4 for some linearly independent

1-forms cti. Then, using the condition F1 A FX A (V J F2) = 0 for any v e V9 we

can easily show that F2 G <αf Λ αJ > 1 < / < ; ^ 4 , and the lemma follows. q.e.d.

REMARK. (1) We may drop the conditions "Fί A F1 A F2 = Fx A F2 A

F2 = 0" in this lemma. In fact, as the above proof shows, these conditions

follow from the remaining conditions automatically. We add these one in

order to express the conditions on F in a form which is invariant under the

natural group action of GL(2, R) on the space /\2 V* + /\2 V* = /\2 V* ® R2.

(2) Two types of conditions in this lemma are actually necessary as the

following two examples show:

Fx = e% A e% + e% A e%9 F2 = e% A e%9

and

Fi=eΐ Aeϊ + e$ Aet + e*5 A e%9 F2 = 0.

It is easy to see that the former satisfies only the first condition, the latter
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satisfies only the second condition, and both pairs cannot be reduced to a

4-dimensional subspace of V*.

LEMMA 5.5. A pair of 2-forms F = (Fl9 F2) satisfies condition (R5) if and

only if

Fx A Fί Λ Fx = Fx A F1 A F2 = F1 A F2 A F2 = F2 A F2 A F2 = 0

and

{vj w] (Fx A Ft)} A {vj w J (F2 A F2)} = 0 for any v, w e V.

PROOF. We first prove the "only if" part. The first equality follows

immediately from the fact dim W* = 5. To prove the second equality, we

may assume v = et and w = e2, where {el9--9es} is a basis of W. Then,

for distinct indices i ~ /, the value

{eίie2j(Fί A F J } A {ex J e2J(F2 A F2)}(ei9 ep ek9 et)

is equal to zero because at least one of i ~ I is 1 or 2.

Now, we prove the "if" part. If F1 A F1 = F2 A F2 = 0, then as in the

proof of Lemma 5.4, there exists a 4-dimensional subspace W* of V* such

that Fu F2e /\2 W*. Next, assume Fx A FX Φ 0. Then, from the condition

Fγ A Fγ A F1 = 0, we have F x = αx Λ α2 + α 3 Λ α 4 for some linearly indepen-

dent 1-forms αf. Then, from the condition Fί A Ft A F2 — 2α t Λ ••• Λ α 4 Λ

F2 = 0, the 2-form F2 is expressed as F2 = OL1 A β1 + + α 4 Λ β4 for some /?f.

In this situation, using the condition F2 A F2 A F2 = 0, we can easily show

that dim<a1 ? •••, a 4, βu •••, j?4> < 6. If the dimension of this space is equal

to 6, we may assume that the six forms α l 9 •••, α 4, βl9 β2 or α l 9 ••*, α 4, βl9

β3 are independent on account of the symmetry of βt. In the first case, we

put v = ex and w = e2, where {el9-
m

9en} is a basis of V satisfying α ê,-) = δψ

Then, we have

v] w J (Fi Λ F J = - 2 α 3 Λ α 4,

!? J w J (F2 Λ F2) = 2βx A β2 (mod α 3, α4),

and hence {t J wJ(F! Λ F X ) } Λ {I J wJ(F 2 Λ F2)} φ 0, which contradicts the

assumption. In the second case, by putting v = eί and w = e3, we have the

contradiction completely in the same way, and hence, 2-forms Fx and F 2

belong to the exterior product of the space <α l 5 , α 4 , βx, , jS4> with dimen-

sion <5. q.e.d.

REMARK. AS in the case of Lemma 5.4, two types of conditions in this

lemma are indispensable. In fact, the pair of forms

^ i = e* Λ e* + e* Λ e*> F2 = e\ A e% + e% A e%
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satisfy only the first condition, and the pair

F1 = e\ Λ e\ + e% A e* + e% A e%, F 2 = 0

satisfy only the second condition. Clearly, these pairs cannot be reduced to

a 5-dimensional subspace of V*.

Next, we prepare two lemmas concerning the kernel of the Bianchi map

φF, which play an important role in characterizing singular elements. To

state the result, we define a new condition on F. We say that F satisfies

condition (N) if there exist 1-forms α l 5 α2, βί9 β2, β$ such that

Fl = «1 Λ βl + «2 A β2,

F2 = Ctx A β3 — 0C2 A βχ.

Clearly, condition (N) implies condition (R5).

LEMMA 5.6. Let F = (FUF2) be an element of /\2 V* + /\2 V*. Then

the map φF: V* + F*-^/\ 3F* admits a non-trivial kernel if and only if F

satisfies condition (N) or (D).

PROOF. First, assume that Fx and F2 are expressed as

*Ί = α l Λ βl + «2 A β2, F2=0ί1 A β3-Ot2 A βt.

Then the pair (α 1,α 2) belongs to the kernel of φF because

Fχ A α 2 — OLχ A F2 = 0Lί A βί A CC2 + (Xχ A 0L2 A βχ = 0 .

If (α1? α2) = 0, then Fx = F2 = 0, and the map φF also admits a non-trivial

kernel. Next, assume that kFx 4- IF2 is decomposable. Then, it is expressed

as α Λ β with α ̂  0, and it is easily checked that the map φF admits a

non-trivial kernel (Zα, — feα). (Actually, in this case, we have dim Ker φF>2

as we shall prove later.)

Now, we show the converse part. Assume that φF admits a non-trivial

kernel (α l 5 α2), i.e., F1 A OL2 — oc1 A F2 = 0.

(i) The case α l 5 α2 are linearly independent. In this case, from the

above assumption, we have αx Λ α2 Λ FX = OL1 Λ α2 Λ F2 = 0, and hence Fx

and F2 are expressed as

*Ί = α i A J8i + α2 Λ β29 F2 = ax A β3 + α2 Λ ^ 4.

Then, we have

Fx Λ α2 — αx Λ F2 = —αx Λ α2 Λ (βί + /?4) = 0,

and hence ^ -h /?4 = pαx + ς[α2 for some p, f̂ G R. Then, by putting /?! =

~β\ ~ Pαi ( = ^ α 2 ~ i?*), we obtain the desired expressions. (These expressions
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can be directly obtained by using a generalization of Cartan's lemma stated

in [1; p. 473].)

(ii) The case α l 5 α2 are linearly dependent. In this case, ka1 + /α2 = 0

for some (fc, /) φ (0,0). By the symmetry, we may assume / φ 0. Then, we

have

0 = F1 A α 2 — ofj. Λ F2 = —kβ'F1 A OLX — OL1 A F2

and hence kFί + IF2 = oti A β for some β. q.e.d.

REMARK. In the case of n = 4, the map φ F : F* + V* -> /\ 3 K* clearly

admits a non-trivial kernel. Hence, any F satisfies condition (N) or (D). The

pair of 2-forms

^ i = e* Λ e* + β * Λ £*> F2 = e% A e% — e% A e%

satisfies (ΛΓ), but not (D) because

(fcFi + IF2) A (kFί + IF2) = - 2 ( k 2 + / 2 ) ^ f Λ ••• Λ e\ Φ 0

for (fe, /) / (0, 0). Conversely, the pair of 2-forms

F± = F2 = ef A e%* + e% A e%

satisfies only (D). In fact, if i*\ and F2 are expressed as

Fi = «i Λ βi + α2 A ]52, F 2 = αx Λ J83 - α2 Λ ^

for some αf, ft, then the map φF admits a non-trivial kernel ( α l s α 2 ) . But,

in this case, the kernel of φF must be in the form (γ, γ) (ye V*), and hence,

we have αx = α 2. Therefore, Fί is decomposable, which is a contradiction.

LEMMA 5.7. Let F = (FUF2) be an element of /\2V* + /\2V*. Then

the map φF: V* + V* -> /\ 3 V* admits a kernel with dimension >2 if and only

if F satisfies condition (R4) or (D).

PROOF. We first prove the "if" part. Assume that there exists a 4-

dimensional subspace W* of V* such that Fl9 F2e /\2 W*. Then, by Lemma

2.2, the rank of the restricted map φF: W* + W* -+ /\3 W* is at most 4, and

since dim(F* + V*) - dim(PF* + W*) = 2n- 8, the rank of the original map

φF: K* + V* -• /\ 3 V* is at most {In - 8) + 4 < In - 2. Next, assume kFί +

/F2 is expressed as OL1 A α2 Φ 0. Then, it is easy to see that the pairs of

forms (hl9 — feαj, (/α2, —koc2) are in the kernel of φ F and hence dim Ker φF >

2. If kFx + /F2 = 0, then the pair of 1-forms {βl9 β2) with kβx + /J?2 = 0

belongs to the kernel of φ f , and hence we also have dim Ker φF > 2.
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Now, conversely, assume that φF admits a kernel with dimension > 2 .

First, if φF admits a non-trivial kernel of type (pα, gα), then as we showed

in the proof of Lemma 5.6, the 2-form qFx — pF2 is decomposable. Next,

we divide the remaining situation into three cases according as the type of

the kernel. In the following, we assume that the 1-forms α l 5 •••, α 4 are

linearly independent.

(i) When ( α 1 , α 2 ) and ( α 3 , α 4 ) belong to the kernel of φF. In this case,

from the proof of Lemma 5.6, we have

*i = <*i A βί + α 2 Λ β2 = α 3 Λ γ± + α 4 Λ y2,

F2 = «i A β3 - α 2 Λ βx = α 3 Λ y3 - α 4 Λ γu

for some βi9 yf. Then, by Cartan's lemma, we have βh yt e < α l 9 •••, α4> and

hence the space W* = < α l 9 •••, α4> satisfies the desired property.

(ii) When ( α 1 ? α 2 ) and ( α 3 , p 1 α 1 + p 2 α 2 + p 3 α 3 ) belong to the kernel of

φF. As above, the forms Fx and F2 are expressed as

Fi = α i A βί + α 2 Λ J?2,
(•)

F 2 = αx Λ /?3 — α 2 Λ β x .

We multiply the 1-forms α x and α 2 to the equality Fx A ( p ^ i + p 2 α 2 + P3OC3) —

α 3 Λ F2 = 0. Then, we have

(βi + P3&) A oti Λ α2 Λ α3 = (J?3 - p3j8i) Λ αx Λ α2 Λ α3 = 0,

and hence βx = —p3β2, jβ3 = —v\βi (mod α l 5 α2, α3). In particular, we have

Fu F2e/\2{ocuoc2i(x3,β2y
(iii) When (α l 5 α 2 ) and ( p ^ + p 2 α 2 , p 3 α 1 + p4α2) belong to the kernel

of φF. By using the above equality (*), we have

0 = Fx Λ (p3αi + p4α2) - ( p ^ + p2α2) Λ F2

= {(Pi ~ P*)βi + P302 + Piβs} A <*! Λ α2.

Hence, we have (px - p4)j?! + p3j?2 + p2jβ3 ε <α l 9 α2>. Since (α l 5 α2) and

(Piαi + P2α2> P3αi + P4α2) a r e n o t parallel, it follows that one of px — p4, p2,

p3 is not zero. Hence, we have dim<αl5 α2, βί9 β2, β3} < 4. q.e.d.

REMARK. We consider the pair of forms

Fx = e\ A e% + e% Λ e%, F2 = e% A e\.

Then, it is easy to see that Ker φF = <(£?,()), (βf, 0)>, and hence the case

"dim Ker φF = 2" actually occurs if n > 5. On the contrary, if F satisfies

condition (# 4), we have dim Ker φF > 4 as we showed in the above proof.
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In the special case n = 5, we have the following lemma, which may be

considered as one of the normal forms of pairs of 2-forms on R5.

LEMMA 5.8. Assume n = 5. Then, any pair of 2-forms F = (Fl9F2)e

/\2 F* + /\2 V* satisfies condition (N) or (D).

PROOF. In a different situation, we already proved in [2; p. 38] that

for any Fx and F2, there exist linearly independent 1-forms <xί and α2 such

that oc1 A oc2 Λ F± = <Xχ A α2 Λ F2 = 0. Hence, we have

Fl = α l Λ βl + α2 A ft,

F2 = ax A ft + α 2 Λ βA9

for some βt. Since dim 7 = 5, we may assume /J4 e <α l 5 α2, j8l9 j82, j83> by the

symmetry, and we express β4 = aγVLγ + α 2 α 2 + bίβ1 + b2β2 + b3β3. We divide

the proof into two cases.

(i) The case bt φ 0. By putting oί1 = ocί + b3α2, ^ = βί + a1/bί'(xί and

~β2 = β2 — b3jil9 2-forms Fx and F2 are expressed as

Fx = δ t Λ & + α2 Λ J52,

F2 = αx Λ j?3 + α2 Λ (pft + gj82),

where p = bx -\- b2b3 and q = b2. If p = 0, then the form qFγ — F2 is equal

to oix A (qβί — β3), which is decomposable. If p φ 0, the above expressions

are deformed into

F± = 1/p δi Λ (pβ, + ί? 2 ) + (ί/p δi - α2) Λ (-J82),

F2 = 1/p δi Λ (pjS3 + p ^ + ^f2^2) - (ί/p δx - α2) Λ ( p ^ + qβ2),

and thus F satisfies condition (N).

(ii) The case bx = 0. In this case, by putting j?3 = β3 — aι&2, we have

Fi = <Xi Λ ft + α2 Λ ft,

F2 = αx Λ ft + α2 Λ (b2β2 + b3ft).

If fc2 = 0, then the form F2 = (αx + &3α2) Λ ft is decomposable, and if b3 = 0,

then the form b2Fγ — F2 — OL1 A (2>2ft — ft) is decomposable. If b2 Φ 0 and

b3 φ 0, then the above expressions are deformed into

Λ (l/62 ft - l/b2b3-β2),

F2 = (αx + b3α2) Λ (ί>2/b3 ft + ft) - b2αi A l/i3 ft

that are the desired expressions. q.e.d.
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REMARK. It is easy to see that the pair of 2-forms

Fx = e\ Λ e% + e% A e%,

F2 = eΪΛ e*2

does not satisfy condition (N), and the pair of 2-forms

Fί = e\ Λ e% + e*2 Λ e } ,

F2 = e% A e% — e\ A e%

does not satisfy condition (D). Hence both cases actually occur. But, the

above proof shows that generic pairs of 2-forms F = (Fl9 F2) satisfy condition

(N), which may be considered as a normal form of F. On the other hand,

pairs satisfying condition (D) are contained in some algebraic set of /\2 V* +

/\2 V*9 as the next lemma shows. We also remark that in the case n = 5,

the inequality rank φF<9 in Lemma 2.2 follows directly from Lemma 5.6

and Lemma 5.8.

LEMMA 5.9. Assume n = 5, and let F = (Fί, F2) be an element of /\2 V* +

/\2 V*. If F satisfies condition (D), then with respect to any volume form of

V, the following equality holds for any α, β e V*.

= 0.
</nΛ/ 2 2,αΛj?> 2</ 1 1 Λ/ 1 2 ,αΛj5>

2</i2 A / 2 2 , α Λ β} < / n Λ f22, α Λ β}

(f.. = (Ff Λ ζ ) # 6 V, and < , > is ί/te nαίwrα/ pairing o/ /\2 K and /\2 F*.)

PROOF. First, we consider the natural group action of GL(2, R) on the

space /\2 v* + f\2V* = /\2 V* ® R2. We put

with zί = ps - qr Φ 0, and fυ = (Ff Λ F3)*. Then we have

fll = P2fll + 2PQf 12 + Mil,

7i2 = P'/u + (PS

f22 = r2fxl + 2rsf12 + s2f22.

And hence

/ii A f22 = Λ{2prflx A f12 + (ps + g r ) / n Λ f22 + 2^fs/12 Λ / 2 2 } ,

/ll A /i2 = ^{p2/n Λ f12 + p^/χi Λ f22 + «2/l2 Λ / 2 2 } ,

7i2 A / 2 2 = ^{r 2/ x l Λ f12 + rs/u Λ f22 + s 2 / 1 2 Λ / 2 2 } .
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Using these expressions, we can prove the equality

(#)
</ll A / 2 2 , « A β} 2</ 1 1 Λ / 1 2 , α Λ β)

2</i2 A / 2 2 , α Λ j8> </ n Λ/ 2 2 ,αΛj5>

Oil A / 2 2 , α Λ β} 2</11 Λ / 1 2 , α Λ J8>

2</i2 A / 2 2 , α Λ βy </n Λ / 2 2 , α Λ j8>

for any α, β e V* after simple calculations. Hence, to prove the lemma, we
may replace F1 and F2 by Fx and F2. In particular, we may assume that
F1 is decomposable. Then, in this case, we have / u = 0 , and the above
determinant is clearly equal to zero, which proves the lemma. q.e.d.

REMARK. The above equality (#) shows that the determinant

Oil A / 2 2 , α Λ βy 2</ n Λ / 1 2 , α Λ βy

2</12 Λ / 2 2 , α Λ j?> Oi l A/22,αΛj?>

is the GL(2, i?)-invariant of the space /\2 K* + /\2 F* = /\2 K* ® I?2 with
degree 8. As we show later, this expression is a non-trivial condition on F.
It should be remarked that in the case of n > 6, the similar results in this
lemma hold if we fix a 5-dimensional subspace W, its volume form, and
restrict several forms and vectors to W. (See Proposition 5.11.)

We prove one more lemma concerning condition (D).

LEMMA 5.10. Let F = (FU F2) be an element of /\2 V* + /\2 V*. If F
satisfies condition (D), then the following equality holds for any v1 ~ υ^e V.

f d , I C \ Λ I 7 A C 1 A / ίt-i I 17 \ A F A I 7 \ Π ^ Λ 2 T / *

\\V1 Jrί) A t2 A Γ 2 ) i 2 3 4 Λ {[V1 \ t 2 ) A rχ A Γi) i 2 3 4 — UG / \ K .

(The form {" }i 234 implies the interior product v4j v3j v2j υxi {***}.)

PROOF. We prove this lemma in a similar method as in Lemma 5.9. As
above, we put

F2 = rF, + sF2,

with A = ps — qr Φ 0. Then, we have

X+ 2pqFγ Λ F2 + g2F2 Λ

2 2 x x + 2rsFx Λ F 2 + S 2 F 2 Λ

and hence

F1ΛF1= p2Fι

F2 Λ F2 = r 2 F x
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K J Fi) A F2 A F2 = pr2{vι J F 1 ) Λ F 1 Λ F 1 + 2prs(i;1 JFt) A Fί A F2

+ P*2(»i J *Ί) Λ F2 Λ F2 + φ 2(ι?! J F2) Λ ^ Λ F i

+ 2qrs(v1 J F2) Λ FX Λ F2 + g s 2 ^ J F2) A F2 A F2,

and

(V1}F2)AF1 AF1=V

2r{v1\F1)AFι A F, + 2pqr(Vl }Ft) A FX A F2

+ 4 2 Φ i J Fi) Λ F2 Λ F2 + p 2 φ i J ί i ) Λ Fi Λ Fx

+ 2pqs(Όx J F2) Λ ^ Λ F ^ β2*(»i J ̂ 2) AF2AF2.

Using the equalities

{(vi J Fi) Λ Fί A Fγ}12^ = { K J F2) Λ F2 Λ F 2 } 1 2 3 4 = 0,

{fa JFJ Λ Fx Λ F 2 } 1 2 3 4 = - l ^ ί ^ J ί i ) Λ Fx Λ F j i ^ ,

and

{ K J F 2 ) Λ F, A F 2 } 1 2 3 4 = -l/liiViJFJ A F2 A F 2 } 1 2 3 4 ,

we have

{(V1]F1)ΛF2 A F2}ί234 = sA{(v1]F1) AF2 A F 2 } 1 2 3 4

-rA{(vί]F2)AF1 Λ F X } 1 2 3 4

and

{ ( ^ I J ^ ) Λ Ft Λ F 1 } 1 2 3 4 = -gJ{( t ; 1 JF 1 )ΛF 2 Λ F 2 } 1 2 3 4

+ P ^ { ( I ; 1 J F 2 ) Λ F 1 A F X } 1 2 3 4 .

Thus, we obtain the equality

{(ι?iJFi) Λ F2 Λ F 2 } 1 2 3 4 Λ {{Ό1]F2)Λ FI Λ F ! } 1 2 3 4

= z / ^ K J F J Λ F2 Λ F 2 } 1 2 3 4 Λ {(^JF 2 ) Λ Fx A FX}123A.

Hence, as in the proof of Lemma 5.9, we may assume that Fx is decomposable,

i.e., Fi Λ Fx = 0 in order to prove the lemma. And, in this case, the equality

clearly holds. q.e.d.

REMARK. The expression appeared in this lemma is nothing but the one

appeared in Proposition 4.1, which corresponds to the denominator of the

inverse formula. It is the GL(2, J?)-invariant of the space /\2 V* + /\2 F* =

/\2 V* ® R2 with degree 6. We also remark that this expression identically

vanishes in the case n < 5, as we explained in Remark (3) after Proposition 4.1.
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Now, under these preliminaries, we prove Theorem 5.1 and Theorem 5.2,

simultaneously. In Theorem 5.1, the case n = 3 is almost trivial, and the

case n > 6 follows immediately from Lemma 5.6 and Lemma 5.8 because F

is singular if and only if φF admits a non-trivial kernel. (Note that, as stated

before, condition (N) implies condition (R5).)

In the case n = 4, we prove that the following three conditions are equiva-

lent:

( i ) Fx A Fί= Fί A F2=F2 A F2 = 0.

(ii) F satisfies condition (R3).

(iii) F is singular.

The equivalence of (i) and (ii) follows from Lemma 5.3. Next, assume that

F satisfies the condition (ii). We take a basis {ef, e%,e%,e%\ of V* such that

W* = (ef, e%, e%}. Then, it is easy to see that the image of the map φF is

contained in the space <ef Λ e\ A e%, e% A Fl9 e% A F2>, and hence we have

rank φF < 3, which implies that F is singular. Conversely, assuming that F

is singular, we show the equalities F1 A Fί = Fx A F2 = F2 A F2 = 0. If Fί A

Fx Φ 0, then the form Fx is expressed as Ft = e% A e\ + e% A e% with respect

to some basis {e*}, and it is easy to check that φF is onto in this situation.

Hence, we have Fί A FX = 0, and in the same way, we have F2 A F2 = 0. If

Fx A F2 Φ 0, we may express Fx = e\ A e% and F2 = ke% A e% (mod e\^e%) with

k φ 0. In this situation, we can also easily show that φF is surjective, which

is a contradiction. Therefore, we have Fx A Fx — Fx A F2 = F2 A F2 = 0.

Finally, we show the theorems in the case n = 5. In this case, we consider

the following five conditions on F:

( i ) dim Ker φF>2 (i.e., F is singular),

(ii) F satisfies condition (K4).

(iii) F satisfies condition (D).

(iv) F J Λ ^ Λ (v J F2) = F2 A F2 A (v] Fx) = 0 for any veV.

</n Λ /22> « A β} 2</ n Λ /1 2, α Λ β}
2</i2 A f229 OLAβy <Jχi A f229 OLAβy

for some (and hence, any) volume form of V.

We already proved that F satisfies the condition (i) if and only if it satisfies

(ii) or (iii) by Lemma 5.7, and the condition (ii) is equivalent to (iv) by Lemma

5.4. (Note that the first equalities in Lemma 5.4 is automatically satisfied in

the case n = 5.) In addition, from Lemma 5.9, the condition (iii) implies (v).

Hence, to complete the proof, we have only to show that the condition (v)

implies (iii) in the case where (iv) does not hold. In this situation, under

the condition (v), we assume that there exists a vector voeV such that

Fγ A Fx A (vo}F2) Φ0 or F2 A F2 A (V0 J FJ Φ 0.

(v) = 0 for any α, β e V* and
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If the form kFx + IF2 is not decomposable for any (fc, Z) / (0,0), then we have

by Lemma 5.8

F 1 = α 1 Λ α 3 l α 2 Λ α 4,

F2 = Λ α 5 — α 2 Λ α 3

for some α f. If the forms cc1 ~ α 5 are linearly dependent, then the forms Fί

and F2 can be reduced to a 4-dimensional subspace W*9 which contradicts

our assumption that the above vector υ0 exists, (cf. Lemma 5.4.) Hence,

the above five 1-forms αf form a basis of V*. We denote by {eί9

m-9es}

the dual basis. Then, with respect to the volume form α x Λ ••• Λ α 5 , we have

/ u = — 2e5, fί2 = e3, f22 = 2e4. Hence, by putting α Λ β = α 4 Λ α 5 , we have

</u A /

2</i
2 2 >

i 2

2 < / n Λ / 1 2 , α Λ

</n Λ / 2 2 , α Λ j

which contradicts the condition (v). Therefore, there exists a pair (fe, I) φ (0, 0)

such that kFx + IF2 is decomposable, which completes the proof in the case

n = 5. q.e.d.

In the general case n > 6, it is hard to characterize singular elements F

only in terms of polynomial relations of F± and F2. The following proposition

gives the partial answer to this problem.

PROPOSITION 5.11. Assume n > 6, and let F = (Fl9 F2) e /\ 2 F * + /\2 V*

be a singular element. Then one of the following two cases (a) or (b) occurs.

(a) Fx A Fx A Fx= Fx A Fx A F2 = Fx A F2 A F2 = F2 A F2 A F2 = 0, and

[v] w J (Fi A Fx)} A {vi w] (F2 A F2)} = 0 for any v, w e V.

(b) {(i J F J Λ F2 A F2}1234 A {(ΌX]F2) A F± A FX}123A = 0 e /\2 V*,

where vί ~ v4 e V and { * }i234 = ^ J ^3 J v2\ vί J {•••},

< / n A f229 α Λ β} 2 < / n Λ / 1 2 , α Λ

2</i2 A / 2 2 , α Λ jS> < / l x Λ / 2 2 , α Λ I
= 0 for any α, β e W*9

where W is any 5-dimensional subspace of V and ftj = (Fj^ A Fj^)φ e W.

Conversely, if F satisfies the conditions in (a), then F is singular.

This proposition follows immediately from Theorem 5.1 (the case n > 6),

Lemma 5.5, Lemma 5.9 (and its Remark), Lemma 5.10, and we omit the

details. It is easy to see that the pair

Fj = e\ A e% + e\ A e%,

F2 = e* A e* — e\ A e%
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belongs to the case (a), but not to (b), and conversely, the pair

F, = e\ A e\ + e% A e* + e% A e%,

F2 = e% A e% + e% A e%,

which is also singular, belongs to the case (b), not to (a). Hence, both cases

in this proposition actually occur. At present, we do not know whether the

conditions in (b) are sufficient to say that F is singular.
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