# The Poincaré duality and the Gysin homomorphism for flag manifolds 

Dedicated to Professor K. Okamoto for his 60th birthday

Hiroshi Kajimoto
(Received November 6, 1995)


#### Abstract

The Poincaré duality for a partial flag manifold $G / P$ is described in terms of the Weyl group of $G$. The Gysin homomorphism for natural projections between partial flag manifolds is calculated by using it. We investigate the case of complex flag manifolds and Grassmannians in $\boldsymbol{C}^{n}$ and show the relation to the Chern classes.


## 0. Introduction

Let $M$ be an $m$-dimensional connected compact oriented manifold without boundary which has the fundamental homology class $\mu_{M}$ of the orientation. Then the Poincare duality $\mathscr{P}_{M}$ for $M$ is an isomorphism defined by a cap product:

$$
\mathscr{P}_{M}=\mu_{M} \cap: H^{p}(M) \leftrightharpoons H_{m-p}(M), \quad \mathscr{P}_{M} \alpha=\mu_{M} \cap \alpha,
$$

between homology and cohomology of $M$. Let $M$ and $N$ be connected compact oriented manifolds without boundary and let $f: M \rightarrow N$ be a continuous map. Then the Gysin homomorphism $f_{!}$associated to $f$ is by definition the homomorphism $f_{!}=\mathscr{P}_{N}^{-1} \circ f_{*} \circ \mathscr{P}_{M}$ between their cohomology modules, i.e., given by the following commutative diagram:


In the case that $M$ and $N$ are complex flag manifolds and $f$ is a natural projection between them, the Gysin homomorphism is investigated by many

[^0]authors from a variety of view points. In particular J. Damon [4] determined $f_{!}$by using the higher dimensional residue symbol in the context of algebraic geometry and T. Sugawara [13] determined $f_{!}$by using "integration over the fiber" of fiber bundles in the context of algebraic topology. On the other hand Bernstein-Gel'fand-Gel'fand [1] investigated the connection between homology and cohomology of the flag manifold $G / B$ where $G$ is a complex semisimple Lie group and $B$ is a Borel subgroup of $G$, and constructed a basis of cohomology dual to the Schubert basis of homology by introducing a divided difference operator. In their course of study they also determined the Poincare duality on $G / B$. Therefore it seems natural to determine the Poincaré duality on other partial flag manifolds $G / P$ and calculate the Gysin homomorphism by using it. The purpose of this paper is a report of the results (Theorem 2.1, 2.3 and 3.2). We use the Bruhat-Schubert cell decomposition and describe the homology and cohomology in terms of the Weyl group of $G$.

A brief account of contents of this article: We heavily depend upon the formalism of B.G.G. [1], so in $\S 1$ we review their formulations and results on homology and cohomology structure of a partial flag manifold $G / P$ and fix the notation. In §2 we determine the Poincare duality on $G / P$ in terms of the Weyl group action and give a description of the Gysin homomorphism between them. We then specify the classical case of complex flag manifolds and Grassmannians in §3. We give their Bruhat-Schubert cell decomposition and describe the Gysin homomorphism in terms of the Chern classes.

The author would like to express his gratitude to Professor T. Sugawara for a kind guidance to the subject and valuable discussions.

## 1. Preliminaries, homology and cohomology of $G / P$

We begin by introducing the notation that is used throughout.
$G$ is a connected complex reductive Lie group, that is, its Lie algebra $\mathfrak{g}$ is a reductive Lie algebra over $\boldsymbol{C}, \mathfrak{g}=\mathfrak{c}+[\mathfrak{g}, \mathfrak{g}]$, $\mathfrak{c}$ is the center of $\mathfrak{g},[\mathfrak{g}, \mathfrak{g}]$ is a semisimple ideal (cf. [14, 1.1.5]). We will specify $G=G L_{n}(C)$ in $\S 3$. We henceforth give $g$ an invariant non-degenerate bilinear form (, ).
$B$ is a fixed Borel subgroup of $G$.
$G / B$ is a (full) flag manifold of $G$. In case of $G=G L_{n}(C)$ and $B=$ the large upper triangular matrix subgroup, $G / B=F l_{n}(C)$ is the manifold of full flags in $C^{n}$.
$N$ is the unipotent radical of $B$ and $H$ is a maximal algebraic torus of $G$ such that $H \subset B . \quad \mathfrak{b}, \mathfrak{n}$ and $\mathfrak{h}$ are the Lie subalgebras of $\mathfrak{g}$ corresponding $B, N$ and $H$ respectively. Then $B=H N, \mathfrak{b}=\mathfrak{h}+\mathfrak{n}$ and $\mathfrak{h}$ is a Cartan subalgebra of $\mathfrak{g} . \quad \mathfrak{b}^{*}=\operatorname{Hom}(\mathfrak{h}, C)$ is the dual vector space of $\mathfrak{h}$.
$\Delta=\Delta(\mathfrak{g}, \mathfrak{h}) \subset \mathfrak{h}^{*}$ is the root system of $(\mathfrak{g}, \mathfrak{h}) . \Delta^{+}$is the set of positive roots corresponding to $\mathfrak{n}$ i.e. $\mathfrak{n}=\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}$ where $\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g} \mid[H, X]=\alpha(H) X$ for $H \in \mathfrak{h}\}$ is the $\alpha$-root space of $\mathfrak{g}$.
$\Sigma \subset \Delta^{+}$is the set of simple roots and $\Delta^{-}=-\Delta^{+}$.
$W=N_{G}(H) / H$ is the Weyl group of $(G, H)$ where $N_{G}(H)$ is the normalizer of $H$ in $G$. $W$ acts on $H, \mathfrak{h}$ and $\mathfrak{b}^{*}$ naturally. $W$ is determined only by $(\mathfrak{g}, \mathfrak{h})$ or $\Delta$ and if $s_{\alpha}: \mathfrak{b}^{*} \rightarrow \mathfrak{b}^{*}$ is a reflection in the hyperplane orthogonal to $\alpha \in \Delta$ :

$$
s_{\alpha}(\chi)=\chi-\left(\chi, \alpha^{\vee}\right) \alpha \quad \text { where } \alpha^{\vee}=2 \alpha /(\alpha, \alpha) \text { is the coroot of } \alpha
$$

then $\left(W, \tilde{\Sigma}=\left\{s_{\alpha} \mid \alpha \in \Sigma\right\}\right)$ is a Coxeter system. For each $w \in W=N_{G}(H) / H$ the same letter $w$ is used to denote its representative in $N_{G}(H) \subset G$. We know that the triple ( $G, B, N_{G}(H)$ ) is a Tits system (cf. [3, Ch. IV]).
$\ell(w)$ is the length of $w \in W$ relative to the generators $\tilde{\Sigma}=\left\{s_{\alpha} \mid \alpha \in \Sigma\right\}$ of $W$, that is the least number of factors in the decomposition

$$
w=s_{1} s_{2} \cdots s_{l} \quad \text { where } s_{i}=s_{\alpha_{i}} \in \tilde{\Sigma}
$$

This expression is said to be reduced if $l=\ell(w)$.
$s_{0} \in W$ is the unique element of maximal length $r$ in $W$. We have $s_{0} \Sigma=$ $-\Sigma, r=\ell\left(s_{0}\right)=\left|\Delta^{+}\right|, s_{0}^{2}=1$ and $\ell\left(w s_{0}\right)=\ell\left(s_{0}\right)-\ell(w)$ (cf. [3, Ch. VI, $\S 1$, no. 6, Cor. 3 of Prop. 17]). Notice also $r=\operatorname{dim} n=\operatorname{dim}_{C} G / B$.
$\bar{N}=s_{0} N s_{0}^{-1}$ is an analytic subgroup of $G$ with Lie algebra $\overline{\mathfrak{n}}=\sum_{\alpha \in \Delta^{-}} \mathfrak{g}_{\alpha}$. For $w \in W$ put $N_{w}=w \bar{N} w^{-1} \cap N$ and $N_{w}^{\prime}=w N w^{-1} \cap N$. Then $N_{w}$ and $N_{w}^{\prime}$ are unipotent subgroups of $G$ with Lie algebras $\mathfrak{n}_{w}=(\operatorname{Ad} w) \overline{\mathfrak{n}} \cap \mathfrak{n}=$ $\sum_{\alpha \in w d^{-} \cap \Delta^{+}} \mathfrak{g}_{\alpha}$ and $\mathfrak{n}_{w}^{\prime}=(A d w) \mathfrak{n} \cap \mathfrak{n}$ of complex dimensions $\ell(w)$ and $\ell\left(s_{0}\right)-$ $\ell(w)$ respectively. We have $N=N_{w} N_{w}^{\prime}$ and $\mathfrak{n}=\mathfrak{n}_{w}+\mathfrak{n}_{w}^{\prime}$.
1.1 (Bruhat decomposition). Under the above notation we have the double coset decomposition $B \backslash G / B$ as follows:

$$
\begin{aligned}
G & =\bigcup_{w \in W} B w B \quad \text { (disjoint union), } \quad \text { and hence } \\
G / B & =\bigcup_{w \in W} B w \cdot B \quad \text { (disjoint union), }
\end{aligned}
$$

where the notation $B w \cdot B=B w B / B \subset G / B$ indicates the subset of the coset space $G / B$. Each $B w \cdot B$ is a cell of complex dimension $\ell(w)$ in the space $G / B$, that is

$$
\mathrm{n}_{w} \xrightarrow{\text { exp }} N_{w} \xrightarrow{\text { natural }} N_{w} w \cdot B=N w \cdot B=B w \cdot B \subset G / B
$$

are onto analytic diffeomorphisms and $\mathfrak{n}_{w} \simeq \boldsymbol{C}^{\ell(w)}$ is an affine space.
For proof see [3, Ch. IV], or [14, 1.2] for example. We will see later
that in case of $G=G L_{n}(C)$ the Bruhat decomposition corresponds exactly to the classical Schubert cell decomposition.

We collect elementary properties of $(W, \tilde{\Sigma})$ and parabolic subgroups of ( $G, B, N_{G}(H)$ ).
1.2 Lemma (cf. [8, 1.6], [3, Ch. VI, §1]). ( $W, \tilde{\Sigma}$ ) has the following properties. For $w \in W, \alpha \in \Sigma$ simple,
(1) If $w=s_{1} s_{2} \cdots s_{k}\left(s_{i}=s_{\alpha_{i}}, \alpha_{i} \in \Sigma\right)$ is a reduced expression put $\theta_{i}=$ $s_{1} s_{2} \cdots s_{i-1}\left(\alpha_{i}\right)(1 \leq i \leq k)$. Then $\theta_{i}$ are all distinct positive roots and

$$
\left\{\theta_{i} \mid 1 \leq i \leq k\right\}=\Delta^{+} \cap w \Delta^{-} .
$$

(2) $\ell(w)=\left|\Delta^{+} \cap w^{-1} \Delta^{-}\right|$, and so $\ell\left(w^{-1}\right)=\ell(w)$
(3) $\ell\left(w s_{\alpha}\right)=\ell(w)+1$ iff $w \alpha>0$

$$
\ell\left(w s_{\alpha}\right)=\ell(w)-1 \text { iff } w \alpha<0
$$

From this, $\operatorname{dim}_{c} \mathrm{n}_{w}=\left|w \Delta^{-} \cap \Delta^{+}\right|=\ell\left(w^{-1}\right)=\ell(w)$ follows.
For each subset $\Theta \subset \Sigma$ of simple system, define

$$
W_{\Theta}=\left\langle s_{\alpha} \mid \alpha \in \Theta\right\rangle=\text { the subgroup of } W \text { generated by } \tilde{\Theta}=\left\{s_{\alpha} \mid \alpha \in \Theta\right\} \text {, }
$$

and

$$
P_{\theta}=B W_{\theta} B .
$$

Then $\left(W_{\theta}, \tilde{\Theta}\right)$ is a Coxeter system with the root system $\Delta \cap\langle\Theta\rangle$ where $\langle\Theta\rangle=$ $Z$-span of $\Theta$ in $\mathfrak{h}^{*}$ and $P_{\theta}$ is a subgroup of $G$ containing $B$, which is called a (standard) parabolic subgroup. We know that the map $\Theta \mapsto P_{\boldsymbol{\theta}}$ is a lattice isomorphism between the lattice $2^{\Sigma}$ of all subsets of $\Sigma$ and that of subgroups of $G$ which contains $B$, e.g. $P_{\varnothing}=B, P_{\Sigma}=G$. The coset spaces $G / P_{\theta}$ are (partial) flag manifolds, which contains Grassmannians in case of $G=G L_{n}$. We also define a subset $W^{\theta}$ of $W$ as follows,

$$
\begin{aligned}
W^{\Theta} & =\left\{w \in W \mid \ell\left(w s_{\alpha}\right)=\ell(w)+1 \text { for all } \alpha \in \Theta\right\} \\
& =\left\{w \in W \mid w \Theta \subset \Delta^{+}\right\} \quad \text { (by Lemma 1.2(3)). }
\end{aligned}
$$

Then $W^{\theta}$ is called a minimal coset representative of $W / W_{\theta}$ since
1.3 Lemma (cf. [8, 1.10] or [3, Ch. IV, § 1, Exer. 3]). We have

$$
W=W^{\theta} \times W_{\theta}, \quad \text { and hence } \quad W^{\theta} \simeq W / W_{\theta} \quad \text { by } \quad u \mapsto u W_{\theta} .
$$

Given $w \in W$, there is a unique $(u, v) \in W^{\theta} \times W_{\theta}$ such that $w=u v$. Their lengths satisfy $\ell(w)=\ell(u)+\ell(v)$. Each $u \in W^{\theta}$ is the unique element of smallest length in the coset $w W_{\theta}=u W_{\theta}$.
1.4 (Bruhat decomposition for a partial flag manifold). We have the double coset decomposition $B \backslash G / P_{\boldsymbol{\theta}}$.

$$
\begin{aligned}
G & =\bigcup_{w \in W^{\theta}} B w P_{\theta} \quad \text { (disjoint union), and so } \\
G / P_{\theta} & =\bigcup_{w \in W^{\theta}} B w \cdot P_{\theta} \quad \text { (disjoint union) }
\end{aligned}
$$

is a cellular decomposition of the partial flag manifold $G / P_{\boldsymbol{\theta}}$ into cells $B w \cdot P_{\boldsymbol{\theta}}$ of dimension $\ell(w)$.

Sketch of Proof (cf. [14, 1.2.4.9]). Since $\left(G, B, N_{G}(H)\right)$ is a Tits system, for subsets $X, Y \subset \Theta$ there is a bijection ([3, Ch. IV, §2, no. 5, Remarque 2]),

$$
W_{X} \backslash W / W_{Y} \leadsto P_{X} \backslash G / P_{Y} \quad \text { by } W_{X} w W_{Y} \mapsto P_{X} w P_{Y}
$$

Put $X=\varnothing$ and $Y=\Theta$. Then we have from the above decomposition

$$
W^{\theta} \simeq W / W_{\theta} \simeq B \backslash G / P_{\theta} \quad \text { by } w \mapsto B w P_{\theta}
$$

As 1.1 we know that $n_{w} \xlongequal{\sim} N_{w} \sim B w \cdot P_{\theta} \subset G / P_{\theta}$ are onto analytic diffeomorphisms and so $B w \cdot P_{\boldsymbol{\theta}}\left(w \in W^{\boldsymbol{\theta}}\right)$ is a cell in the space $G / P_{\boldsymbol{\theta}}$ of dimension $\operatorname{dim}_{C} n_{w}=\ell(w)$.

We recall cohomology structure of flag manifolds $G / P$ and results of B.G.G. [1]. Let $X_{w}$ be the closure of a cell $B w \cdot B$ in $G / B,\left[X_{w}\right] \in H_{*}\left(X_{w}, Z\right)$ be the fundamental cycle of the complex variety $X_{w}$ of complex dimension $\ell(w)$ and $D_{w} \in H_{*}(G / B, Z)$ be the image of $\left[X_{w}\right]$ under the map induced by the embedding $X_{w} \subset G / B$. In this article we treat homology and cohomology of even dimensional only, so we write $H_{p}$ and $H^{p}$ instead of $H_{2 p}$ and $H^{2 p}$. Then we can write $D_{w} \in H_{\ell(w)}(G / B, Z)$ (i.e. $D_{w} \in H_{2 \ell(w)}$ in fact). In the same manner for each $w \in W^{\theta}$, we define $D_{w}(\Theta) \in H_{*}\left(G / P_{\theta}, Z\right)$ for a homology class determined by the cell $B w \cdot P_{\boldsymbol{\theta}}$ in $G / P_{\boldsymbol{\theta}}$. Then we have
1.5. (1) $\left\{D_{w} \mid w \in W\right\}$ forms a free basis of the homology module $H_{*}(G / B, Z)$, i.e. $H_{*}(G / B, Z)=\bigoplus_{w \in W} Z D_{w}$.
(2) The natural map $p: G / B \rightarrow G / P_{\theta}$ induces a epimorphism $p_{*}: H_{*}(G / B, Z)$ $\rightarrow H_{*}\left(G / P_{\theta}, Z\right)$ such that $p_{*} D_{w}=0$ if $w \notin W^{\theta}$ and $p_{*} D_{w}=D_{w}(\Theta)$ if $w \in W^{\theta}$. And $H_{*}\left(G / P_{\theta}, Z\right)=\bigoplus_{w \in W^{\theta}} Z D_{w}(\Theta)$.

By (2) we will write simply $D_{w} \in H_{*}\left(G / P_{\theta}, Z\right)$ instead of $D_{w}(\Theta)$ if there is no fear of confusion.

We introduce in $\mathfrak{h}$ the coroot system $\left\{H_{\alpha} \mid \alpha \in \Delta\right\}$ of $\Delta$, i.e.

$$
\begin{gathered}
H_{\alpha}=2 h_{\alpha} /(\alpha, \alpha) \in \mathfrak{h} \quad \text { where } h_{\alpha} \in \mathfrak{h} \text { is given by } \\
\left(h_{\alpha}, H\right)=\alpha(H) \quad \text { for all } H \in \mathfrak{h} .
\end{gathered}
$$

Then $s_{\alpha}(\lambda)=\lambda-\lambda\left(H_{\alpha}\right) \alpha$ for all $\lambda \in \mathfrak{h}^{*}$. Let $\mathfrak{h}_{z}=\left\{H \in \mathfrak{h} \mid \exp _{G}(2 \pi i H)=1\right\}$ be the unit lattice of $G$ and $\mathfrak{h}_{\boldsymbol{Q}}=\mathfrak{h}_{\boldsymbol{z}} \otimes \boldsymbol{Q}$. Then $\mathfrak{h}_{\boldsymbol{z}}$ contains the coroot lattice $\mathfrak{h}_{\Delta}=\boldsymbol{Z}$-span $\left\{H_{\alpha} \mid \alpha \in \Delta\right\}, \mathfrak{h}_{\boldsymbol{z}} \supset \mathfrak{h}_{\Delta}$. Let $\mathfrak{h}_{\boldsymbol{Z}}^{*}=\left\{\chi \in \mathfrak{h}^{*} \mid \chi\left(\mathfrak{h}_{\boldsymbol{z}}\right) \subset \boldsymbol{Z}\right\}, \mathfrak{h}_{\boldsymbol{Q}}^{*}=\mathfrak{h}_{\boldsymbol{Z}}^{*} \otimes \boldsymbol{Q}$ and $\mathfrak{h}_{\Delta}^{*}=\left\{\chi \in \mathfrak{b}^{*} \mid \chi\left(\mathfrak{h}_{4}^{*}\right) \subset \boldsymbol{Z}\right\}$. Then $\mathfrak{h}_{\Delta}^{*}$ is the weight lattice and $\mathfrak{h}_{\boldsymbol{Z}}^{*} \subset \mathfrak{h}_{\Delta}^{*}$.

Let $R=S\left(\mathfrak{h}_{\boldsymbol{Q}}^{*}\right)=\boldsymbol{Q}\left[\mathfrak{h}_{Q}\right]$ be the ring of polynomial functions on $\mathfrak{h}_{\boldsymbol{Q}}$ with rational coefficients. The Weyl group acts naturally on $R$. Let $I=R^{W}$ be the subring of $W$-invariants in $R, I^{+}=\{f \in I \mid f(0)=0\}$ and $J=I^{+} R$ be an ideal of $R$ generated by $I^{+}$.

We construct a homomorphism $\beta: R \rightarrow H^{*}(G / B, Q)$ as follows. First let $\chi \in \mathfrak{h} \underset{\mathbf{Z}}{*}$. Then $\chi$ lifts to a character $\theta: H \rightarrow C^{*}$ by $\theta(\exp X)=\exp \chi(X), X \in \mathfrak{h}$. We extend $\theta$ to a character of $B$ by $\theta(h n)=\theta(h), h \in H, n \in N$. Since $G \rightarrow G / B$ is a principal fiber bundle with structure group $B, \theta$ defines a line bundle $E_{\chi}$ on $G / B$. We let $\beta(\chi)=c_{1}\left(E_{\chi}\right) \in H^{1}(G / B, Z)$ be the 1 -st Chern class of $E_{\chi}$. Then $\beta$ is a homomorphism $\mathfrak{h}_{\mathcal{Z}}^{*} \rightarrow H^{1}(G / B, Z)$, which extends naturally to a ring-homomorphism $\beta: R \rightarrow H^{*}(G / B, Q)$.
1.6 (A. Borel [2]). (1) The homomorphism $\beta$ commutes with the actions of $W$ on $R$ and $H^{*}(G / B)$.
(2) Ker $\beta=J$ and the induced map $\bar{\beta}: \bar{R}=R / J \rightarrow H^{*}(G / B, Q)$ is an onto ring-isomorphism. $\quad \bar{R}=R / J$ is a truncated polynomial ring of finite dimension $|W|$ over $\boldsymbol{Q}$.
(3) The natural map $p: G / B \rightarrow G / P_{\theta}$ induces a ring-monomorphism $p^{*}$ : $H^{*}\left(G / P_{\theta}\right) \rightarrow H^{*}(G / B)$. The cohomology ring $H^{*}\left(G / P_{\theta}, Q\right)$ is isomorphic to the subring $H^{*}(G / B, Q)^{W_{\theta}}=(R / J)^{W_{\theta}}$ of $W_{\theta}$-invariants by $p^{*}$.
B.G.G. [1] established a connection between homology and cohomology of $G / P$. They introduced polynomials $\left\{P_{w} \in R \mid w \in W\right\}$ in such a way that the induced set $\left\{\bar{P}_{w}=\beta\left(P_{w}\right) \in \bar{R} \mid w \in W\right\}$ forms a basis of $\bar{R}=H^{*}(G / B)$ dual to the basis $\left\{D_{w} \mid w \in W\right\}$ of $H_{*}(G / B)$ by the natural pairing $\langle$,$\rangle of homology$ and cohomology: $\left\langle D_{w}, \bar{P}_{u}\right\rangle=\delta_{w u}$, and determine $P_{w}$.

The polynomial $P_{w}$ is constructed by the following divided difference operator $\Delta_{w}$. For each root $\alpha \in \Delta$, we define the operator $\Delta_{\alpha}: R \rightarrow R$ of degree -1 by

$$
\begin{gathered}
\Delta_{\alpha} f=\left(f-s_{\alpha} f\right) / \alpha, \quad \text { i.e. } \\
\left(\Delta_{\alpha} f\right)(H)=\left(f(H)-f\left(s_{\alpha} H\right)\right) / \alpha(H), \quad H \in \mathfrak{h}_{\boldsymbol{Q}} .
\end{gathered}
$$

The $\Delta$-operators have the following properties.
1.7 (cf. [1], [5] and [7]). (1) Let $w=s_{1} s_{2} \cdots s_{l} \in W, s_{i}=s_{\alpha_{i}} \in \tilde{\Sigma}$. If $\ell(w)<l$ then $\Delta_{\alpha_{1}} \Delta_{\alpha_{2}} \cdots \Delta_{\alpha_{l}}=0$. If $\ell(w)=l$, i.e. this expression of $w$ is reduced then the operator $\Delta_{\alpha_{1}} \Delta_{\alpha_{2}} \cdots \Delta_{\alpha_{1}}$ depends only on $w$ and does not depend on the
reduced expression of $w$. We thus put $\Delta_{w}=\Delta_{\alpha_{1}} \Delta_{\alpha_{2}} \cdots \Delta_{\alpha_{l}}$ for the reduced expression $w=s_{1} s_{2} \cdots s_{l}, s_{i}=s_{\alpha_{i}} \in \tilde{\Sigma}$.
(2) $\quad \Delta_{w} \cdot \Delta_{u}=\left\{\begin{array}{ll}\Delta_{w u} & \text { if } \ell(w u)=\ell(w)+\ell(u) \\ 0 & \text { if } \ell(w u)<\ell(w)+\ell(u)\end{array}, \quad w, u \in W\right.$.
(3) $\Delta_{-\alpha}=-\Delta_{\alpha}, \Delta_{\alpha}^{2}=0, w \Delta_{\alpha} w^{-1}=\Delta_{w \alpha}$.
(4) $s_{\alpha} \Delta_{\alpha}=-\Delta_{\alpha} s_{\alpha}=\Delta_{\alpha}, s_{\alpha}=1-\alpha \Delta_{\alpha}$.
(5) $\Delta_{\alpha}(f g)=f\left(\Delta_{\alpha} g\right)+\left(\Delta_{\alpha} f\right) s_{\alpha} g, f, g \in R$.
(6) $\Delta_{\alpha} f=0$ iff $s_{\alpha} f=f$.
(7) $\Delta_{\alpha} J \subset J$.

From (5) and (6) $\Delta_{\alpha}: R \rightarrow R$ is a $R^{W}$-endomorphism and by (7) it induces an endomorphism $\Delta_{\alpha}$ (we use the same letter) of $\bar{R}=R / J$. The homology basis $D_{w} \in H_{*}(G / B)$ viewed as a functional on the cohomology $H^{*}(G / B)=\bar{R}$ is described by $\Delta_{w}$ as
1.8.

$$
\left\langle D_{w}, \beta(f)\right\rangle=\left(\Delta_{w} f\right)(0), \quad f \in R, w \in W .
$$

The polynomials $\left\{P_{w}\right\}$ which induce the dual basis of $\left\{D_{w}\right\}$ are determined $\bmod J$ and given as follows:
1.9 ([1]). (1) Let $P_{0}=P_{s_{0}} \in H^{r}(G / B, Q)$ be the fundamental cohomology class of top order $r=\ell\left(s_{0}\right)=\operatorname{dim}_{C} G / B$. Then

$$
P_{0}=|W|^{-1} \prod_{\alpha \in \Delta^{+}} \alpha=\rho^{r} / r!\quad(\bmod J)
$$

where $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$ is half the sum of the positive roots.

$$
\begin{equation*}
\bar{P}_{w}=\Delta_{w^{-1} s_{0}} \bar{P}_{0} \quad \text { for } w \in W \tag{2}
\end{equation*}
$$

(3) By the natural ring-monomorphism $p^{*}: H^{*}\left(G / P_{\theta}\right) \rightarrow H^{*}(G / B)\left\{p^{*-1} \bar{P}_{w} \mid w \in\right.$ $\left.W^{\theta}\right\}$ is the basis of $H^{*}\left(G / P_{\theta}\right\}$ dual to the basis $\left\{D_{w} \mid w \in W^{\theta}\right\}$ of $H_{*}\left(G / P_{\theta}\right)$.

As to (1) we put $D_{0}=D_{s_{0}} \in H_{r}(G / B)$ for the fundamental homology class of top order. As to (2) note that $\operatorname{deg}\left(\Delta_{w^{-1} s_{0}} P_{0}\right)=\ell\left(s_{0}\right)-\ell\left(w^{-1} s_{0}\right)=\ell\left(s_{0}\right)-$ $\left(\ell\left(s_{0}\right)-\ell\left(w^{-1}\right)\right)=\ell(w)=\operatorname{deg} P_{w}$. From 1.5(2) and 1.9(3), we will write simply $P_{w} \in H^{*}\left(G / P_{\theta}\right)$ instead of $p^{*-1} \bar{P}_{w}$. In other words we identify $H^{*}\left(G / P_{\theta}\right)$ with the subring $H^{*}(G / B)^{W_{\theta}}$ of $H^{*}(G / B)$ by the natural map $p^{*}$. These polynomials $P_{w}$ have the following properties:
1.10 ([1]). (1) Let $w \in W, \alpha \in \Sigma$. Then

$$
\Delta_{\alpha} P_{w}= \begin{cases}0 & \text { if } \ell\left(w s_{\alpha}\right)=\ell(w)+1 \\ P_{w s_{\alpha}} & \text { if } \ell\left(w s_{\alpha}\right)=\ell(w)-1 .\end{cases}
$$

(2) Let $w, u \in W, \ell(w)+\ell(u)=r$. Then

$$
P_{w} P_{u}= \begin{cases}P_{0} & \text { if } u=s_{0} w \\ 0 & \text { if } u \neq s_{0} w .\end{cases}
$$

(3) (The Poincaré duality of $G / B)$ Let $\mathscr{P}=D_{0} \cap: H^{*}(G / B, Q) \leftrightharpoons H_{*}(G / B, Q)$ be the Poincaré duality of the full flag manifold $G / B$. Then we have

$$
\mathscr{P} P_{w}=D_{s_{0} w} .
$$

We give a proof of the following, for this is a key fact in $\S 3$.
1.11 Proposition ([5, Lemma 4], [7, 2.5]). The operator $\Delta_{s_{0}}: R \rightarrow R$ is given by

$$
\Delta_{s_{0}} f=\sum_{w \in W} \varepsilon(w) w f / \prod_{\alpha \in \Delta^{+}} \alpha, \quad f \in R,
$$

where $\varepsilon(w)=(-1)^{\ell(w)}= \pm 1$ is the sign of $w \in W$.
Proof. First we have $s_{\alpha} \Delta_{s_{0}}=\Delta_{s_{0}}$ for $\alpha \in \Delta^{+}$, hence $w \Delta_{s_{0}}=\Delta_{s_{0}}$ for $w \in W$. In fact we have $\Delta_{\alpha} \Delta_{s_{0}}=0$ by $\ell\left(s_{\alpha} s_{0}\right)=\ell\left(s_{0}\right)-1$ and 1.7(2), then use 1.7(4). Fix a reduced expression $s_{0}=s_{1} s_{2} \cdots s_{r}, s_{i}=s_{\alpha_{i}}, \alpha_{i} \in \Sigma$. Then we see that $\Delta_{s_{0}}=\Delta_{\alpha_{1}} \circ \Delta_{\alpha_{2}} \circ \cdots \circ \Delta_{\alpha_{r}}=\alpha_{1}^{-1}\left(1-s_{1}\right) \circ \alpha_{2}^{-1}\left(1-s_{2}\right) \circ \cdots \circ \alpha_{r}^{-1}\left(1-s_{r}\right)$. Expanding out we have

$$
\Delta_{s_{0}}=\sum_{w \in W} q_{w} w
$$

where $q_{w} \in \boldsymbol{Q}\left(\mathfrak{h}_{\boldsymbol{Q}}\right)$ is a rational function. The comparison of coefficients in $w \Delta_{s_{0}}=\Delta_{s_{0}}$ then implies that $w q_{u}=q_{w u}, w, u \in W$. Here we use the fact that $w$ 's are linearly independent over $\boldsymbol{Q}\left(\mathrm{h}_{\boldsymbol{Q}}\right)$, which follows from the Dedekind theorem of the Galois extension $\boldsymbol{Q}\left(\boldsymbol{h}_{\boldsymbol{Q}}\right) / \boldsymbol{Q}\left(\boldsymbol{h}_{\boldsymbol{Q}}\right)^{\boldsymbol{W}}$. We know that $q_{s_{0}} s_{0}=(-1)^{r} \alpha_{1}^{-1} s_{1} \circ \alpha_{2}^{-1} s_{2} \circ \cdots \circ \alpha_{r}^{-1} s_{r}=(-1)^{r}\left\{\alpha_{1}\left(s_{1} \alpha_{2}\right) \cdots\left(s_{1} \cdots s_{r-1} \alpha_{r}\right)\right\}^{-1} s_{0}=$ $(-1)^{r}\left(\prod_{\alpha \in \Delta^{+}} \alpha\right)^{-1} s_{0}$, hence $q_{s_{0}}=\varepsilon\left(s_{0}\right)\left(\prod_{\alpha \in \Lambda^{+}}\right)^{-1}$ by 1.2(1). Note that $w\left(\prod_{\alpha \in \Delta^{+}} \alpha\right)=(-1)^{\ell(w)} \prod_{\alpha \in \Delta^{+}} \alpha=\varepsilon(w) \prod_{\alpha \in \Lambda^{+}}$for $w \in W$ by 1.2(2). We thus obtain that $q_{w}=w s_{0} \cdot q_{s_{0}}=\varepsilon(w) / \prod_{\alpha \in \Delta^{+}} \alpha$.

## 2. The Poincaré duality and the Gysin homomorphism for partial flag manifolds

In this section we shall describe the Poincaré duality and the Gysin homomorphism for partial flag manifolds $G / P$ in terms of the Weyl group $W$. For each subset $\Theta \subset \Sigma$ of simple roots we obtain a parabolic subgroup $P_{\theta}=B W_{\theta} B$, the partial flag manifold $G / P_{\theta}$ and the cellular decomposition $G / P_{\theta}=\bigcup_{w \in W^{\theta}} B w \cdot P_{\theta}$. The homology and cohomology of $G / P_{\theta}$ is given by

$$
H_{*}\left(G / P_{\theta}, \boldsymbol{Q}\right)=\bigoplus_{w \in W^{\theta}} \boldsymbol{Q} D_{w}, \quad H^{*}\left(G / P_{\theta}, \boldsymbol{Q}\right)=\overline{\boldsymbol{R}}^{W_{\theta}}=\bigoplus_{w \in W^{\theta}} \boldsymbol{Q} P_{w}
$$

According to the left coset decomposition $W=W^{\theta} \times W_{\theta}$, we put

$$
s_{0}=s^{\theta} s_{\theta}, \quad s^{\theta} \in W^{\theta}, \quad s_{\theta} \in W_{\theta}
$$

Then $s_{\theta}$ is the unique element of maximal length in $W_{\theta}$. In fact, if there is an element $t \in W_{\theta}$ such that $\ell(t) \geq \ell\left(s_{\theta}\right)$ then $\ell\left(s^{\theta} t\right)=\ell\left(s^{\theta}\right)+\ell(t) \geq \ell\left(s^{\theta}\right)+$ $\ell\left(s_{\theta}\right)=\ell\left(s_{0}\right)$ by 1.3, the uniqueness of $s_{0}$ in $W$ implies that $s_{0}=s^{\boldsymbol{\theta}} s_{\theta}=s^{\theta} t$, and hence $s_{\theta}=t$. Since $\left(W_{\theta}, \tilde{\Theta}\right)$ is a Weyl group of the root system $\Delta \cap\langle\Theta\rangle$, $s_{\boldsymbol{\theta}}$ has the same properties as $s_{0}$ for $W_{\theta}$. We have $\ell\left(s_{\theta}\right)=\left|\Delta^{+} \cap\langle\Theta\rangle\right|$, $s_{\theta}(\Theta)=-\Theta$ and $s_{\theta}^{2}=1$ for example. Similarly we know that $s^{\theta}$ is the unique element of maximal length in $W^{\theta}$ and that $\ell\left(s^{\theta}\right)=\ell\left(s_{0}\right)-\ell\left(s_{\theta}\right)=$ $\left|\Delta^{+} \backslash\langle\Theta\rangle\right|=\operatorname{dim}_{C} G / P_{\boldsymbol{\theta}}$ by $s^{\boldsymbol{\theta}}=s_{0} s_{\boldsymbol{\theta}}$. We put $D_{\boldsymbol{\theta}}=D_{\boldsymbol{s}^{\theta}} \in H_{*}\left(G / P_{\boldsymbol{\theta}}\right)$ and $P_{\boldsymbol{\theta}}=$ $P_{s^{\theta}} \in H^{*}\left(G / P_{\theta}\right)$ for these top order elements of homology and cohomology. (There will be no confusion between the notation $P_{\theta}$ of cohomology class and that of parabolic subgroup.)

The Poincare duality $\mathscr{P}_{\theta}$ of the partial flag $G / P_{\theta}$ is defined as follows. Since $D_{\theta}$ is the fundamental homology class of $G / P_{\boldsymbol{\theta}}$,

$$
\begin{aligned}
& \mathscr{P}_{\theta}=D_{\theta} \cap: H^{p}\left(G / P_{\theta}, \boldsymbol{Q}\right) \leadsto H_{\ell\left(s^{\theta}\right)-p}\left(G / P_{\theta}, \boldsymbol{Q}\right), \quad 0 \leq p \leq \ell\left(s^{\theta}\right), \\
& \left\langle\mathscr{P}_{\theta} f, g\right\rangle=\left\langle D_{\theta} \cap f, g\right\rangle=\left\langle D_{\theta}, f g\right\rangle, \quad f, g \in \bar{R}^{W_{\theta}}=H^{*}\left(G / P_{\theta}\right) .
\end{aligned}
$$

The Poincare duality of $G / P_{\theta}$ is given by the following:

### 2.1 Theorem.

$$
\mathscr{P}_{\theta} P_{w}=D_{s_{0} w s_{\theta}}, \quad w \in W^{\theta} .
$$

We first check two points that if $w \in W^{\theta}$ then also $s_{0} w s_{\theta} \in W^{\theta}$ and $\ell\left(s_{0} w s_{\theta}\right)=\ell\left(s^{\theta}\right)-\ell(w)$. These guarantee that if $P_{w} \in H^{p}\left(G / P_{\theta}\right)$ then $D_{s_{0} w s_{\theta}}$ $\in H_{\ell\left(s^{\theta}\right)-p}\left(G / P_{\theta}\right)$. Indeed if $w \in W^{\theta}$, then $s_{0} w s_{\theta}(\Theta)=-s_{0} w(\Theta) \subset-s_{0} \Delta^{+}=$ $-\Delta^{-}=\Delta^{+}$so $s_{0} w s_{\theta} \in W^{\theta}$ by definition of $W^{\theta}$, and $\ell\left(s_{0} w s_{\theta}\right)=\ell\left(s_{0}\right)-$ $\ell\left(w s_{\theta}\right)=\ell\left(s_{0}\right)-\left(\ell(w)+\ell\left(s_{\theta}\right)\right)=\left(\ell\left(s_{0}\right)-\ell\left(s_{\theta}\right)\right)-\ell(w)=\ell\left(s^{\theta}\right)-\ell(w)$ by 1.3.

Next we extend 1.10(2).
2.2 Lemma. Let $w, u \in W^{\theta}, \ell(w)+\ell(u)=\ell\left(s^{\theta}\right)$. Then

$$
P_{w} P_{u}= \begin{cases}P_{\theta} & \text { if } u=s_{0} w s_{\theta} \\ 0 & \text { if } u \neq s_{0} w s_{\theta}\end{cases}
$$

Proof. The fundamental cohomology class $P_{\boldsymbol{\theta}}$ of $G / P_{\boldsymbol{\theta}}$ is given by 1.9(2) as

$$
P_{\theta}=P_{s^{\theta}}=\Delta_{\left(s^{\theta}\right)^{-1} s_{0}} P_{0}=\Delta_{s_{\theta}} P_{0}
$$

First let $u=s_{0} w s_{\theta}$. Then $P_{u}=\Delta_{u^{-1} s_{0}} P_{0}=\Delta_{s_{\theta} w^{-1}} P_{0}$. We know that $P_{0}=$
$P_{w} P_{s_{0} w}$ by $1.10(2)$. Applying $\Delta_{s_{\theta}}$ to this both sides we get

$$
P_{\theta}=\Delta_{s_{\theta}} P_{0}=\Delta_{s_{\theta}}\left(P_{w} P_{s_{0} w}\right)
$$

The reduced expression of $s_{\theta} \in W_{\theta}$ is of the form $s_{\theta}=s_{1} s_{2} \cdots s_{n}$ where $n=\ell\left(s_{\theta}\right), s_{i}=s_{\alpha_{i}}$ with $\alpha_{i} \in \Theta$. And so $\Delta_{s_{\theta}}=\Delta_{\alpha_{1}} \Delta_{\alpha_{2}} \cdots \Delta_{\alpha_{n}}$. For any $\alpha \in \Theta$, $\ell\left(w s_{\alpha}\right)=\ell(w)+1$ since $w \in W^{\theta}$, hence $\Delta_{\alpha} P_{w}=0$ by $1.10(1)$. We thus obtain 1.7(5),

$$
\Delta_{\alpha}\left(P_{w} P_{s_{0} w}\right)=P_{w}\left(\Delta_{\alpha} P_{s_{0} w}\right)+\left(\Delta_{\alpha} P_{w}\right)\left(s_{\alpha} P_{s_{0} w}\right)=P_{w}\left(\Delta_{\alpha} P_{s_{0} w}\right),
$$

we iterate this and get

$$
P_{\theta}=\Delta_{s_{\theta}}\left(P_{w} P_{s_{0} w}\right)=P_{w}\left(\Delta_{s_{\theta}} P_{s_{0} w}\right)=P_{w}\left(\Delta_{s_{\theta}} \Delta_{w^{-1}} P_{0}\right)=P_{w} \Delta_{s_{\theta} w^{-1}} P_{0}=P_{w} P_{u},
$$

since $\ell\left(s_{\theta} w^{-1}\right)=\ell\left(w s_{\theta}\right)=\ell\left(w^{-1}\right)+\ell\left(s_{\theta}\right)$ and 1.7(2). Next let $u \neq s_{0} w s_{\theta}$. Then $u s_{\theta} \neq s_{0} w$, and by $1.10(2), P_{w} P_{u s_{\theta}}=0$. Applying $\Delta_{s_{\theta}}$ to both sides and calculating as above, we obtain

$$
0=\Delta_{s_{\theta}}\left(P_{w} P_{u s_{\theta}}\right)=P_{w} \Delta_{s_{\theta}} P_{u s_{\theta}}=P_{w} P_{u} .
$$

Here we again use 1.7(2) and compute

$$
\Delta_{s_{\theta}} P_{u s_{\theta}}=\Delta_{s_{\theta}} \Delta_{s_{\theta^{u}}-1 s_{0}} P_{0}=\Delta_{u^{-1} s_{0}} P_{0}=P_{u},
$$

since $\ell\left(s_{\theta}\right)+\ell\left(s_{\theta} u^{-1} s_{0}\right)=\ell\left(s_{\theta}\right)+\left(\ell\left(s_{0}\right)-\ell\left(s_{\theta} u^{-1}\right)\right)=\ell\left(s_{\theta}\right)+\ell\left(s_{0}\right)-\ell\left(s_{\theta}\right)-$ $\ell\left(u^{-1}\right)=\ell\left(s_{0}\right)-\ell\left(u^{-1}\right)=\ell\left(u^{-1} s_{0}\right)$.

Proof of Theorem 2.1. For $w \in W^{\theta}$ we have by the choice of basis

$$
\mathscr{P}_{\theta} P_{w}=\sum_{u \in W^{\theta}}\left\langle\mathscr{P}_{\theta} P_{w}, P_{u}\right\rangle D_{u}=\sum_{\ell(u)+\ell(w)=\ell\left(s^{\theta}\right)}\left\langle D_{\theta}, P_{w} P_{u}\right\rangle D_{u} .
$$

By Lemma 2.2, the only one term $u=s_{0} w s_{\theta}$ remains and we get $\mathscr{P}_{\theta} P_{w}=D_{s_{0} w s_{\theta}}$ as required.

We shall describe the Gysin homomorphism between partial flag manifolds. For two subsets $\Theta \subset \Phi$ of simple roots $\Sigma$ we have Weyl groups $W_{\boldsymbol{\theta}} \subset$ $W_{\Phi}, W^{\theta} \supset W^{\Phi}$, parabolic subgroups $P_{\theta} \subset P_{\Phi}$ and the natural map $\pi$ between the partial flag manifolds:

$$
\pi: G / P_{\theta} \rightarrow G / P_{\Phi}
$$

which induces naturally the homomorphisms $\pi_{*}: H_{*}\left(G / P_{\theta}\right) \rightarrow H_{*}\left(G / P_{\Phi}\right)$ of homology and $\pi^{*}: H^{*}\left(G / P_{\Phi}\right) \rightarrow H^{*}\left(G / P_{\theta}\right)$ of cohomology.

The Gysin homomorphism for $\pi$ is defined by $\pi_{!}=\mathscr{P}_{\phi}^{-1} \circ \pi_{*} \circ \mathscr{P}_{\theta}$ : $H^{*}\left(G / P_{\theta}\right) \rightarrow H^{*}\left(G / P_{\Phi}\right)$, i.e. given by the following commutative diagram:


Note that the Gysin homomorphism $\pi_{!}$decreases the dimension of cohomology by $\ell\left(s^{\theta}\right)-\ell\left(s^{\Phi}\right)=\operatorname{dim}_{C} G / P_{\theta}-\operatorname{dim}_{C} G / P_{\Phi} \geq 0$. Under the above notation we can calculate $\pi_{!}$as follows.
2.3 Theorem. (1) $\pi_{!}$operates on the basis $\left\{P_{w} \mid w \in W^{\theta}\right\}$ of $H^{*}\left(G / P_{\theta}\right)$ as

$$
\pi_{!} P_{w}=\left\{\begin{array}{ll}
P_{w s_{\theta} s_{\phi}} & \text { if } s_{0} w s_{\theta} \in W^{\Phi} \\
0 & \text { if } s_{0} w s_{\theta} \notin W^{\Phi},
\end{array} \quad w \in W^{\theta} .\right.
$$

(2) $\pi_{!}$is written by the $\Delta$-operator as

$$
\pi_{!}=\Delta_{s_{\phi} s_{\theta}}: \bar{R}^{W_{\theta}}=H^{*}\left(G / P_{\theta}\right) \rightarrow \bar{R}^{W_{\Phi}}=H^{*}\left(G / P_{\Phi}\right) .
$$

Proof. (1) By $1.5(2)$ the induced homology map $\pi_{*}: H_{*}\left(G / P_{\theta}\right) \rightarrow H_{*}\left(G / P_{\phi}\right)$ is given by, for $w \in W^{\theta}$,

$$
\pi_{*} D_{w}(\Theta)= \begin{cases}D_{w}(\Phi) & \text { if } w \in W^{\Phi} \\ 0 & \text { if } w \notin W^{\Phi}\end{cases}
$$

Hence for $P_{w} \in H^{*}\left(G / P_{\theta}\right), w \in W^{\theta}$, we have

$$
\begin{aligned}
\pi_{!} P_{w} & =\mathscr{P}_{\Phi}^{-1} \circ \pi_{*} \circ \mathscr{P}_{\theta}\left(P_{w}\right)=\mathscr{P}_{\Phi}^{-1} \circ \pi_{*}\left(D_{s_{0} w s_{\theta}}\right) \\
& = \begin{cases}\mathscr{P}_{\Phi}^{-1} D_{s_{0} w s_{\theta}}=P_{w s_{\theta} s_{\phi}} & \text { if } s_{0} w s_{\theta} \in W^{\Phi} \\
0 & \text { if } s_{0} w s_{\theta} \notin W^{\Phi} .\end{cases}
\end{aligned}
$$

(2) First let $w \in W^{\theta}$ with $s_{0} w s_{\theta} \in W^{\Phi}$. Then by 1.9(2) we have

$$
\pi_{!} P_{w}=P_{w s_{\theta} s_{\phi}}=\Delta_{s_{\phi} s_{\theta} w^{-1} s_{0}} P_{0}
$$

Since $s_{\theta} \in W^{\theta} \subset W^{\Phi}$, we have $\ell\left(s_{\Phi} s_{\theta}\right)=\ell\left(s_{\Phi}\right)-\ell\left(s_{\theta}\right)$. We thus get a length relation: $\ell\left(s_{\Phi} s_{\theta} w^{-1} s_{0}\right)=\ell\left(s_{0} w s_{\theta} s_{\Phi}\right)=\ell\left(s_{0} w s_{\theta}\right)+\ell\left(s_{\Phi}\right)$ (by $s_{0} w s_{\theta} \in W^{\Phi}$ and $1.3)=\ell\left(s_{0}\right)-\ell\left(w s_{\theta}\right)+\ell\left(s_{\Phi}\right)=\ell\left(s_{0}\right)-\ell(w)-\ell\left(s_{\theta}\right)+\ell\left(s_{\Phi}\right)=\left(\ell\left(s_{\Phi}\right)-\right.$ $\left.\ell\left(s_{\theta}\right)\right)+\left(\ell\left(s_{0}\right)-\ell(w)\right)=\ell\left(s_{\Phi} s_{\theta}\right)+\ell\left(w^{-1} s_{0}\right)$. Hence by 1.7(2) we obtain

$$
\pi_{!} P_{w}=\Delta_{s_{\phi} s_{\theta} w^{-1} s_{0}} P_{0}=\Delta_{s_{\phi_{s}} s_{\theta}} \Delta_{w^{-1} s_{0}} P_{0}=\Delta_{s_{\phi_{\theta}} s_{w}} P_{w} .
$$

Since $H^{*}\left(G / P_{\theta}\right)=\operatorname{span}\left\{P_{w} \mid w \in W^{\theta}\right\}$ it suffices to show that if $w \in W^{\boldsymbol{\theta}}$ and $s_{0} w s_{\theta} \notin W^{\Phi}$ then $\Delta_{s_{\phi} s_{\theta}} P_{w}=0$. Again in this case we have

$$
\Delta_{s_{\phi} s_{\theta}} P_{w}=\Delta_{s_{s_{\phi}} s_{\theta}} \Delta_{w^{-1} s_{0}} P_{0}
$$

Since $s_{0} w s_{\theta} \notin W^{\Phi}$ there is some $\alpha \in \Phi$ such that $\ell\left(s_{0} w s_{\theta} s_{\alpha}\right)=\ell\left(s_{0} w s_{\theta}\right)-1$. We thus have $\ell\left(s_{0} w s_{\theta} s_{\Phi}\right)<\ell\left(s_{0} w s_{\theta}\right)+\ell\left(s_{\Phi}\right)$ since $s_{\Phi} \in W_{\Phi}$ has the reduced expression of the form $s_{\Phi}=s_{1} s_{2} \cdots s_{m}$ with $s_{1}=s_{\alpha}, s_{i} \in \tilde{\Phi}$ and $m=\ell\left(s_{\Phi}\right)$. So we get $\ell\left(s_{\Phi} s_{\theta} w^{-1} s_{0}\right)=\ell\left(s_{0} w s_{\theta} s_{\Phi}\right)<\ell\left(s_{0} w s_{\theta}\right)+\ell\left(s_{\Phi}\right)=\ell\left(s_{0}\right)-\ell(w)-$ $\ell\left(s_{\theta}\right)+\ell\left(s_{\Phi}\right)=\ell\left(s_{\Phi} s_{\theta}\right)+\ell\left(w^{-1} s_{0}\right)$. By 1.7(2) again we finally get $\Delta_{s_{\phi} s_{\theta}} \Delta_{w^{-1} s_{0}}=$ 0 , which implies that $\Delta_{s_{\phi} s_{\theta}} P_{w}=0$.

## 3. Complex flag manifolds and the Schubert cell decomposition

In this section we investigate the classical case that $G=G L_{n}(C)$ and $B=$ the large upper triangular matrix subgroup of $G$. In this case the coset space $G / B$ is identified with the set $F l_{n}(C)$ of full flags in $C^{n}$. We shall first look at the cell structure of the Bruhat decomposition. Let $H$ be the diagonal matrix subgroup of $G, \simeq\left(C^{\times}\right)^{n}$ and $N$ be the upper triangular matrices with all the diagonal entry 1 . Let $E_{i j}$ denote a square matrix with ( $i, j$ )-entry 1 , all other entries being $0, E_{i}=E_{i i}$ and $D\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i} E_{i}$ denote a diagonal matrix. Then Lie algebras of $H$ and $N$ are $\mathfrak{h}=\sum_{i=1}^{n} C E_{i}$ and $\mathfrak{n}=$ $\sum_{i<j} C E_{i j}$ respectively. The root system is $\Delta=\left\{\alpha_{i j}=x_{i}-x_{j}, 1 \leq i \neq j \leq n\right\}$ where $x_{i} \in \mathfrak{h}^{*}$ with $x_{i}\left(D\left(a_{1}, \ldots, a_{n}\right)\right)=a_{i}$. The $\alpha_{i j}$-root space is $\mathfrak{g}_{i j}=C E_{i j}$. $\Delta^{+}=\left\{\alpha_{i j}, i<j\right\} \supset \Sigma=\left\{\alpha_{i}=\alpha_{i, i+1}=x_{i}-x_{i+1}, 1 \leq i<n\right\}$ are the set of positive roots and the set of simple roots respectively. Let $M=N_{G}(H)$. Then the Weyl group is $W=M / H$ and $M$ is the subgroup of $G$ comprised of all monomial matrices which have only one non-zero entry in each row and in each column. We see that $M$ is isomorphic to a semidirect product $M \simeq \mathfrak{S}_{n} \ltimes H$ of the symmetric group $\Im_{n}$ on $n$ letters and the diagonal subgroup $H$. The isomorphism is given by $\Im_{n} \ltimes H \leadsto M,(w, h) \rightarrow m_{w} h$ where $w=$ $\binom{1,2, \ldots, n}{w_{1}, w_{2}, \ldots, w_{n}} \in \Theta_{n}$ and $m_{w}$ is a permutation matrix with $\left(w_{j}, j\right)$-entry 1 for each $j=1,2, \ldots, n$, all other entries being 0 . We see that $m_{w} E_{i} m_{w}^{-1}=E_{w(i)}$ and if $h=D\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in H$ then $m_{w} h$ is a matrix with $\left(w_{j}, j\right)$-entry $a_{j}$ for $1 \leq j \leq n$, all other entries being 0 . Hence the Weyl group $W$ is isomorphic to $\mathfrak{S}_{n}$ and its action on $\mathfrak{h}$ and $\mathfrak{b}^{*}$ is a permutation of the coordinate axes: $W=M / H=\Im_{n}$ and $w \cdot E_{i}=m_{w} E_{i} m_{w}^{-1}=E_{w(i)}, w \cdot x_{i}=x_{w(i)}$ for $w \in W=\Im_{n}$. Since ( $G=G L_{n}, B, M$ ) is a Tits system (cf. [3, Ch. IV, §2, no. 2]) we have the Bruhat decomposition:

$$
G L_{n}(C) / B=\bigcup_{w \in W} B w \cdot B \quad \text { (disjoint union). }
$$

On the other hand the identification $G L_{n}(C) / B \underset{\rightarrow}{\sim} F l_{n}(C)$ is given as follows. The set $F l_{n}(C)$ of full flags in $C^{n}$ is by definition, $F l_{n}(C)=\left\{\left(V_{1}, V_{2}, \ldots, V_{n}\right)\right.$, sequences of linear subspaces of $\left.C^{n} \mid 0 \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n}=C^{n}, \operatorname{dim}_{C} V_{j}=j\right\}$. Let $\left\{e_{i}\right\}$ be the standard basis of $C^{n}$ and fix a base point $o=\left(C^{1}, C^{2}, \ldots, C^{n}\right) \in$
$F l_{n}\left(C^{n}\right)$ with $C^{j}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{j}\right\}$. Then we have a bijection which identifies the two spaces,

$$
G L_{n}(C) / B \leadsto F l_{n}(C), \quad g B \mapsto g o=\left(g C^{1}, g C^{2}, \ldots, g C^{n}\right) .
$$

If a matrix $g \in G L_{n}(\boldsymbol{C})$ is written by $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ where $g_{j}=g e_{j}=$ the $j$-th column vector of $g$ then $g C^{j}=\operatorname{span}\left\{g_{1}, g_{2}, \ldots, g_{j}\right\}=$ linear subspace of $C^{n}$ spanned by the first $j$ column vectors of the matrix $g$. By this identification a subset $B w \cdot B=B m_{w} \cdot B=N m_{w} \cdot B \subset G L_{n}(C) / B$ corresponds to


Hence $B w \cdot B$ corresponds to the set of all matrices $b=\left(b_{i j}\right)$ with $b_{w_{j}, j}=1$, $b_{i j}=b_{w_{j}, k}=0$ if $i>w_{j}, k>j$ for each $j=1,2, \ldots, n$ and all other entries are free $b_{i j}=*$, or the flags which are made by column vectors of those matrices. Since $g o \neq g^{\prime} o$ in $F l_{n}(C)$ if $g B \neq g^{\prime} B$ in $G / B$, and two different matrices
of the above form cannot transform each other by the right $B$-action, two matrices which have different free parameter $*$ correspond to different flags in $C^{n}$. Since the topology of $F l_{n}(C)$ is induced from matrix topology by the above bijection, $B w \cdot B$ thus forms a cell in $F l_{n}(C)$ which is expressed by matrices of the above form. $B w \cdot B$ is sometimes called a Bruhat cell.

Next let $\Phi=\Sigma \backslash\left\{\alpha_{p}\right\}$ and $p+q=n$. Then

$$
W_{\Phi}=\mathfrak{S}_{p} \times \mathfrak{S}_{q}=\left(\begin{array}{c|c}
\mathfrak{S}_{p} & O \\
\hline O & \mathfrak{S}_{q}
\end{array}\right), \quad P_{\Phi}=B W_{\Phi} B=\left(\begin{array}{c|c}
G L_{p} & * \\
\hline O & G L_{q}
\end{array}\right)
$$

and $G / P_{\Phi}=G r_{p, q}(C)=$ the Grassmann manifold of $p$-subspaces in $C^{n}$. The identification is given by a bijection:

$$
G L_{n}(C) / P_{\Phi} \leftrightharpoons G r_{p, q}(C), \quad g P_{\Phi} \mapsto g C^{p}=\operatorname{span}\left\{g_{1}, g_{2}, \ldots, g_{p}\right\} .
$$

We look at the cell structure of the Bruhat decomposition:

$$
G L_{n}(C) / P_{\Phi}=\bigcup_{w \in W^{\Phi}} B w \cdot P_{\Phi} \quad \text { (disjoint union). }
$$

First from $w \alpha_{i}=w\left(x_{i}-x_{i+1}\right)=x_{w(i)}-x_{w(i+1)}$ it is easy to see that $W^{\Phi}=$ $\left\{w \in W \mid w \Phi \subset \Delta^{+}\right\}=\left\{\left.w=\binom{1,2, \ldots, n}{w_{1}, w_{2}, \ldots, w_{n}} \in \Im_{n}=W \right\rvert\, w_{1}<w_{2}<\cdots<w_{p}\right.$, $\left.w_{p+1}<\cdots<w_{n}\right\}$. Therefore the Bruhat cell $B w \cdot P_{\Phi}=N m_{w} \cdot P_{\Phi}$ corresponds to $B w \cdot P_{\Phi}=N m_{w} \cdot P_{\Phi}$

$$
\begin{aligned}
& \subset G r_{p, q}(C),
\end{aligned}
$$

where the above indicates a $p$-subspace spanned by column vectors of the matrix. Thus the Bruhat cell $B w \cdot P_{\Phi}$ corresponds exactly to the classical Schubert cell of the symbol $\left(w_{1}, w_{2}, \ldots, w_{p}\right)$ in $G r_{p, q}(\boldsymbol{C}): e\left(w_{1}, w_{2}, \ldots, w_{p}\right)=$ $\left\{W \in G r_{p, q}(C) \mid 0 \subset W \cap C^{1} \subset W \cap C^{2} \subset \cdots \subset W \cap C^{n}=W, \operatorname{dim} \frac{W \cap C^{i}}{W \cap C^{i-1}}=0\right.$ or 1, $\left.\operatorname{dim}\left(W \cap C^{w_{i}}\right)=i, \operatorname{dim}\left(W \cap C^{w_{i}-1}\right)=i-1\right\}$ (cf., e.g. [11, p. 75]).

Now let $\Theta=\left\{\alpha_{p+1}, \alpha_{p+2}, \ldots, \alpha_{n-1}\right\}=\Sigma \backslash\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\} \subset \Phi$ and also let $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p-1}\right\} \subset \Phi$. Then

$$
W_{\theta}=\mathfrak{S}_{q}=\left(\begin{array}{c|c}
I_{p} & O \\
\hline O & \mathfrak{S}_{q}
\end{array}\right), \quad W_{\Gamma}=\mathfrak{S}_{p}=\left(\begin{array}{c|c}
\mathfrak{S}_{p} & O \\
\hline O & I_{q}
\end{array}\right), \text { hence } W_{\Phi}=W_{\Gamma} \times W_{\theta}
$$



We shall calculate the Gysin homomorphism $\pi_{!}$associated to the natural map:

$$
\pi: G / P_{\theta} \rightarrow G / P_{\Phi}=G r_{p, q}(C) .
$$

We first review the cohomology structure of these spaces (cf. [2], [13, Theorem 4.2]). For $G=G L_{n}(C)$ we have the unit lattice $\mathfrak{h}_{z}=\bigoplus_{i=1}^{n} Z e_{i}$ and its dual lattice $\mathfrak{h}_{\mathbf{Z}}^{*}=\bigoplus_{i=1}^{n} \boldsymbol{Z} x_{i}$. So $R=\boldsymbol{Q}\left[\mathfrak{h}_{\boldsymbol{Q}}\right]=\boldsymbol{Q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $I=$ $R^{W}=\boldsymbol{Q}\left[e_{1}, e_{2}, \ldots, e_{n}\right]=$ the ring of symmetric polynomials where $e_{k}$ is the $k$-th elementary symmetric function. Thus the cohomology ring of the full flag manifold $F l_{n}(C)=G / B$ is

$$
H^{*}(G / B)=Q\left[x_{1}, \ldots, x_{n}\right] / J
$$

where $J=\left(e_{1}, e_{2}, \ldots, e_{n}\right)=$ the ideal generated by symmetric polynomials without constant term. We know that $H^{*}(G / B)$ has an additive basis $\left\{x^{\alpha}=\right.$ $\left.x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \mid 0 \leq \alpha_{i} \leq n-i, i=1,2, \ldots, n\right\}$. We next see the cohomology ring of the Grassmannian $G / P_{\Phi}=G r_{p, q}(C)$ as,

$$
\begin{aligned}
H^{*}\left(G / P_{\Phi}\right) & =(R / J)^{W_{\Phi}}=R^{W_{\Phi}} / I^{+} R^{W_{\Phi}} \\
R^{W_{\Phi}}=\boldsymbol{Q}[x]^{\mathcal{S}_{p} \times \mathbb{S}_{q}} & =\boldsymbol{Q}\left[c_{1}, c_{2}, \ldots, c_{p}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{q}^{\prime}\right]
\end{aligned}
$$

where $c_{i}=e_{i}\left(x_{1}, \ldots, x_{p}\right)$ and $c_{j}^{\prime}=e_{j}\left(x_{p+1}, \ldots, x_{n}\right) . \quad I^{+} R^{W_{\Phi}}=\left(e_{1}, \ldots, e_{n}\right)$ is an ideal generated by symmetric polynomials in this ring. By using the generating function for the elementary symmetric function: $E(t)=\sum_{r \geq 0} e_{r} t^{r}=\prod_{i=1}^{n}\left(1+x_{i} t\right)$, we easily see a relation: $e_{r}=\sum_{i+j=r} c_{i} c_{j}^{\prime}$. Hence we have

$$
H^{*}\left(G / P_{\Phi}\right)=\bar{R}^{W_{\Phi}}=\boldsymbol{Q}\left[c_{1}, \ldots, c_{p}, c_{1}^{\prime}, \ldots, c_{q}^{\prime}\right] /\left(\sum_{i+j=r} c_{i} c_{j}^{\prime}=0 \mid r \geq 1\right)
$$

We note that $c_{i}$ and $c_{j}^{\prime}$ are the canonical Chern classes of the tautological bundles on the Grassmannian $G r_{p, q}(C)=G / P_{\Phi}$ and that the above identity is also deduced directly by algebraic topology. The ring $H^{*}\left(G / P_{\Phi}\right)$ is generated by $c_{1}, c_{2}, \ldots, c_{p}$ (as ring) and has an additive basis $\left\{c_{j_{1}} c_{j_{2}} \cdots c_{j_{k}} \mid 0 \leq k \leq q\right\}$. In the same way we have for the partial flag manifold $G / P_{\boldsymbol{\theta}}$,

$$
\begin{gathered}
H^{*}\left(G / P_{\theta}\right)=\bar{R}^{W_{\theta}}=Q\left[x_{1}, x_{2}, \ldots, x_{p}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{q}^{\prime}\right] / J \quad \text { where } \\
J=\left(e_{r}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq p, 0 \leq k \leq r} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} c_{r-k}^{\prime} \mid r \geq 1\right) .
\end{gathered}
$$

Moreover $H^{*}\left(G / P_{\theta}\right)$ has the ring-generators $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and has an additive basis $\left\{x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{p}^{\alpha_{p}} \mid 0 \leq \alpha_{i} \leq n-i, i=1,2, \ldots, p\right\}$.

We recall several facts about symmetric polynomials (cf. [10] for example). For indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ let $A=Z\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $e_{r}=$ $e_{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ be the elementary symmetric function which has the generating function (that we have already used above):

$$
E(t)=\sum_{r \geq 0} e_{r} t^{r}=\prod_{i=1}^{n}\left(1+x_{i} t\right) .
$$

Also let $h_{r}=h_{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the complete symmetric function with generating function:

$$
H(t)=\sum_{r \geq 0} h_{r} t^{r}=\prod_{i=1}^{n}\left(1-x_{i} t\right)^{-1} \quad \text { in } A[[t]] .
$$

The identity $E(-t) H(t)=1$ implies that

$$
\sum_{r=0}^{l}(-1)^{r} e_{r} h_{l-r}=h_{l}-e_{1} h_{l-1}+e_{2} h_{l-2}+\cdots+(-1)^{l} e_{l}=0
$$

for all $l \geq 1$. For $\alpha \in N^{n}(N=\{0,1,2, \ldots\})$ let

$$
a_{\alpha}=a_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{w \in \mathbb{S}_{n}} \varepsilon(w) w \cdot x^{\alpha}=\operatorname{det}\left(x_{i}^{\alpha_{j}}\right) \in A,
$$

where $w \cdot x^{\alpha}=x_{w(1)}^{\alpha_{1}} x_{w(2)}^{\alpha_{2}} \cdots x_{w(n)}^{\alpha_{n}}=x^{w^{-1 \cdot \alpha}}$ for $w \in \Im_{n}$. Then $a_{\alpha}$ is skew-symmetric; $w \cdot a_{\alpha}=a_{w \cdot \alpha}=\varepsilon(w) a_{\alpha}$ for $w \in \mathbb{S}_{n}$ and for $\delta=(n-1, n-2, \ldots, 1,0)$,

$$
a_{\delta}=\operatorname{det}\left(x_{i}^{n-j}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)=\prod_{\alpha \in \Delta^{+}} \alpha
$$

is the Vandermonde determinant. For $\lambda \in N^{n}$ the Schur function $S_{\lambda}$ is defined by a homogeneous symmetric polynomial of degree $|\lambda|$ :

$$
S_{\lambda}=S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{\lambda+\delta}(x) / a_{\delta}(x) \in A .
$$

If $\lambda \in N^{n}$ is a partition, i.e. $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$, let $d(\lambda)=\#\left\{i \mid \lambda_{i} \neq 0\right\}$ be the depth of $\lambda$ and let $\lambda^{\prime}$ denote the conjugate partition of $\lambda$, i.e. $\lambda_{j}^{\prime}=\#\left\{i \mid \lambda_{i} \geq j\right\}$. Then the Schur function $S_{\lambda}$ is expressed by elementary symmetric functions $e_{r}$ or by complete symmetric functions $h_{r}$ as
3.1.

$$
S_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq m}
$$

where $n \geq d(\lambda)$ and $m \geq d\left(\lambda^{\prime}\right)$.
We can now describe the Gysin homomorphisms $\pi_{!}$for $\pi: G / P_{\boldsymbol{\theta}} \rightarrow G / P_{\Phi}=$ $G r_{p, q}(C)$ by the Schur function $S_{\lambda}$ and by elementary symmetric functions $c_{1}$, $c_{2}, \ldots, c_{p}$ those are the Chern classes on $G r_{p, q}(C)$. We thus regain results of J. Damon [4, Cor. 2 of Theorem 1] and T. Sugawara [13, Theorem 6.2 and Cor. 6.3] in our context.
3.2 Theorem. Keep the notation above. Let $s_{\Phi}=s_{\Gamma} s_{\theta}$ be the decomposition of elements of maximal length according to $W_{\Phi}=W_{\Gamma} \times W_{\theta}$. The Gysin homomorphism $\pi_{1}: H^{*}\left(G / P_{\theta}\right)=\bar{R}^{W_{\theta}} \rightarrow H^{*}\left(G / P_{\Phi}\right)=\bar{R}^{W_{\Phi}}$ for $\pi$ is given as follows.
(1) For a polynomial $f \in \bar{R}^{W_{\Phi}}$

$$
\pi_{!} f=\Delta_{s_{\Gamma}} f=\sum_{w \in W_{\Gamma}} \varepsilon(w) w \cdot f / \prod_{1 \leq i<j \leq p}\left(x_{i}-x_{j}\right),
$$

where $w \in W_{\Gamma}=\Im_{p}$ acts on $p$ variables $x_{1}, x_{2}, \ldots, x_{p}$ of the polynomial $f$. In particular $\pi_{!}(w f)=\varepsilon(w) \pi_{!} f, w \in W_{\Gamma}$.
(2) For a monomial $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{p}^{\alpha_{p}} \in \bar{R}^{W_{\theta}}\left(\alpha \in N^{p}\right)$,

$$
\pi_{!}\left(x^{\alpha}\right)=S_{\alpha-\delta}\left(x_{1}, \ldots, x_{p}\right)
$$

where $\delta=(p-1, p-2, \ldots, 1,0) \in N^{p}$. In particular if $\lambda \in N^{p}$ is a partition, i.e. $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$ then

$$
\pi_{!}\left(x^{\lambda+\delta}\right)=\operatorname{det}\left(c_{\lambda_{i}^{\prime}-i+j}\right)=\operatorname{det}\left(\bar{c}_{\lambda_{i}-i+j}\right)
$$

where we put $\bar{c}_{j}=(-1)^{j} c_{j}^{\prime}$.
Proof. (1) By 2.3(2), $\pi_{!}=\Delta_{s_{\Gamma}}$ since $s_{\Gamma}=s_{\phi} s_{\theta}$. Note that $s_{\Gamma}$ is the element of maximal length in $W_{\Gamma}=\mathbb{S}_{p}$ and $\Delta_{s_{\Gamma}}$ acts on the first $p$ variables
$x_{1}, \ldots, x_{p}$ of a polynomial in $R$ by definition of the $\Delta$-operator. Then our assertion follows from 1.11.
(2) Since $a_{\delta}\left(x_{1}, \ldots, x_{p}\right)=\prod_{1 \leq i<j \leq p}\left(x_{i}-x_{j}\right)=\prod_{\alpha \in \Delta^{+} \cap\langle\Gamma\rangle} \alpha$ we know that for a monomial $x^{\alpha}\left(\alpha \in N^{p}\right)$.

$$
\pi_{!}\left(x^{\alpha}\right)=a_{\alpha}\left(x_{1}, \ldots, x_{p}\right) / a_{\delta}\left(x_{1}, \ldots, x_{p}\right)=S_{\alpha-\delta}\left(x_{1}, \ldots, x_{p}\right)
$$

by the very definition of the Schur function. Note that $S_{\alpha-\delta}\left(x_{1}, \ldots, x_{p}\right)$ is a symmetric polynomial of $x_{1}, \ldots, x_{p}$ and so it belongs to $\bar{R}^{W_{\Phi}}=H^{*}\left(G / P_{\phi}\right)$. We shall express it by the Chern classes $c_{i}$ and $c_{j}^{\prime}$. Now there is a partition $\lambda \in N^{p}$ and $w \in \mathbb{S}_{p}$ such that $w \cdot \alpha=\lambda$. Note that $\pi_{!}\left(x^{w \cdot \alpha}\right)=\pi_{!}\left(w^{-1} x^{\alpha}\right)=$ $\varepsilon(w) \pi_{!}\left(x^{\alpha}\right)$. We thus consider $\pi_{!}\left(x^{\alpha}\right)$ for a strict partition $\alpha=\lambda+\delta$. In view of 3.1 we know that for the last identity, it suffices to show that

$$
h_{j}\left(x_{1}, \ldots, x_{p}\right)=(-1)^{j} e_{j}\left(x_{p+1}, \ldots, x_{n}\right)
$$

in $\bar{R}=R / J=Q\left[x_{1}, \ldots, x_{n}\right] /\left(e_{1}, \ldots, e_{n}\right)$ since $c_{i}=e_{i}\left(x_{1}, \ldots, x_{p}\right)$ and $c_{j}^{\prime}=$ $e_{j}\left(x_{p+1}, \ldots, x_{n}\right)$. Let $E_{1}(t)=\prod_{i=1}^{p}\left(1+x_{i} t\right)$ and $E_{2}(t)=\prod_{i=p+1}^{n}\left(1+x_{i} t\right)$ be generating functions of $e_{r}\left(x_{1}, \ldots, x_{p}\right)$ and $e_{r}\left(x_{p+1}, \ldots, x_{n}\right)$. Then we have

$$
E_{1}(t) E_{2}(t)=E(t)=\sum_{r \geq 0} e_{r} t^{r}=1 \quad \text { in }(R / J)[t] .
$$

Let $H_{1}(t)=\prod_{i=1}^{p}\left(1-x_{i} t\right)^{-1}$ be the generating function of $h_{r}\left(x_{1}, \ldots, x_{p}\right)$. Then $E_{1}(-t) H_{1}(t)=1$. Hence we obtain that $H_{1}(t)=E_{1}(-t)^{-1}=E_{2}(-t)$ in $(R / J)[[t]]$, which implies our identity.

## References

[1] I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, Schubert cells and cohomology of the spaces G/P, Russ. Math. Surveys 28, No. 3 (1973) 1-26.
[2] A. Borel, Sur la cohomologie des espaces fibré principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
[3] N. Bourbaki, Groupes et algèbres de Lie, Ch. IV, V, VI, Masson, Paris 1981.
[4] J. Damon, The Gysin homomorphism for flag bundles: Application, Amer. J. Math. 96 (1974), 248-260.
[5] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301.
[6] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. Ec. Norm. Sup., 7 (1974), 53-88.
[7] H. Hiller, Schubert calculus of a Coxeter group, l'Enseign. Math. 27 (1981), 57-84.
[8] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math. 29, Cambridge Univ. Press, 1990.
[9] B. Kostant, Lie algebra cohomology and generalized Schubert cells, Ann. of Math. (2) 77 (1963), 72-144.
[10] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, 1995.
[11] J. Milnor and J. Stasheff, Characteristic Classes, Annals of Math. Studies 76, Princeton University Press, 1974.
[12] W. Stoll, Invariant Forms on Grassmann Manifolds, Annals of Math. Studies 89, Princeton Univ. Press, 1977.
[13] T. Sugawara, The Gysin homomorphism for generalized flag bundles, Mem. Fac. Sci. Kyushu Univ., Ser. A, Vol. 42, No. 2 (1988), 131-144.
[14] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I, Springer-Verlag, 1972.
Department of Mathematics
Faculty of Education
Nagasaki University
Nagasaki 852, Japan


[^0]:    1991 Mathematics Subject Classification. 57T15, 22E46.
    Key words and phrases. flag manifolds $G / P$, Poincaré duality, Gysin homomorphism, Bruhat decomposition, Weyl group, symmetric function.

