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An integral representation and fine limits at infinity for

functions whose Laplacians iterated m times are measures
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ABSTRACT. Our aim in this paper is to discuss the behavior at infinity of functions

u for which Δmu ̂  0 on R" in the weak sense. For this purpose we give a representa-

tion of u by means of modified Riesz kernels of order 2m.

1. Statement of results

A function u is called polyharmonic of order m in an open set G c= R"
if Amu = 0 on G, where A denotes the Laplace operator, or Laplacian.

We study the existence of fine limits at infinity for functions u on R"
such that Amu is a nonnegative measure. To do so, we first consider a
condition for polyharmonic functions to be polynomials, and establish an
integral representation for M, as a generalization of Riesz decomposition theo-
rem for superharmonic functions.

For a multi-index j = ( j l 9 ...Jn) and a point x — (x l 9..., xn\ we follow
the usual notation:

\j\=Jι + '~+Jn,

j\ =j \ x ... χj π !j J i J n '

γj γJl \x ... \x Y /n
Λ — Λ! Λ Λ Λπ

and

vβxy v^i^ v^x,
Consider the Riesz kernel of order 2m

\x\2m~n iϊ2m<n or if 2m — n is a positive odd integer,

|x|2m~" log (l/|x|) if 2m — n is a nonnegative even integer
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and its remainder term of Taylor's expansion

where f is a nonnegative integer. Letting B(x9 r) denote the open ball centered
at x with radius r, we consider the function

K M = ί*2m(x " y) when y e B(0'1}'
m' 1*2*. <(x, y) when y e R" - β(0, 1)

(cf. Hayman-Kennedy [3]).
Here note that R2m is polyharmonic of order m outside the origin and

(1) AmR2m = c'lδQ

with the Dirac measure δx at x and a constant c φ 0. As will be seen later,
K m f ( ' , y ) is also polyharmonic of order m outside y for any fixed yeRn.

For a nonnegative measure μ on Rw, we define

= ί
JRR"

We first give a condition for this potential to have a meaning.

THEOREM 1. Let μ be a nonnegative measure on Rn and ^ be a nonnegative
integer such that f ^ 2m — n. If

(2)

holds, then

(3) ί \Km,,(x,y)\dμ(y)eLtoc(Rn).

Moreover, in case 2m ̂  n, (2) is equivalent to (3).

Next we give an integral representation for functions u such that Amu
is a positive measure on R", as a generalization of Riesz decomposition
theorem.

THEOREM 2. Let u be a function on Rn such that μ = Δmu ^ 0 in the
weak sense. If there exists a nonnegative integer t such that £ ^ 2m — n and

(4) lim sup r~e~n \u(x)\dx < oo,
r->°o Jβ(0,r)
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then u is of the form

u(x) = c Kmt,(x, y)dμ(y)

where c is the constant in (1) and P is a polynomial of degree at most Λ

In case 2m < n, we consider the usual Riesz capacity of order 2m, which
is defined by

for a set E c: R", where the infimum is taken over all nonnegative measures
μ on Rn such that

= ^ 1 whenever x e E.

In case 2m = n, we define the logarithmic capacity

for a set E c= 5(0, 1), where the infimum is taken over all nonnegative measures
μ on 5(0, 1) such that

ί 2
log- ,dμ(y) ^ 1 whenever x e E.

Finally we are concerned with the fine limits at infinity for the generalized
potentials Km {μ.

THEOREM 3. Let £ be a nonnegative integer, 2m g n and 0 < a ̂  1. //
μ is a nonnegative measure on Rn satisfying

(5)

then there exists a set E a Rn such that

lim |x|~'~'
|x|->oo,xeRn-E

and E is 2m-thin at infinity, that is,

(6) Σ c2m(F() < oo,
ί = l

where E\ = {x: 2~2 ^ \x\ < 2~\ 2ί+2x e E}.

The case m = 1 was proved in [4, Theorem 1].
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REMARK 1. In case 2m < n, (6) may be replaced by

Σ 2-^-^C2m(Ei) < oo,

where £f = {x e E: T ^ \x\ < 2ί+l}.

2. Polyharmonic functions

Let us begin with a condition under which polyharmonic functions are
polynomials. In fact we show the following result.

THEOREM 4. Let u be a polyharmonic function of order m on R". If
there exists a ̂  0 for which

j "*<Jβ(0,r)

(7) lim inf r a n \ u+(x)dx = 0,
*"*«> Jfi(0,r)

ίften u is a polynomial, where u+ denotes the positive part of M, that is, u+(x) =
max (M(X), 0}.

For the harmonic case, see the book of Hayman-Kennedy [3]. If u
satisfies two sided inequalities:

then the conclusion of Theorem 4 is clearly true by considering the Fourier
transform of Amu. We also note that Theorem 4 was essentially proved by
Armitage [1]; in fact, his theorem states that a polyharmonic function u is
a polynomial if

ί U+(X)

Js(0,r)

(8) lim r~a-n+ί u+(x)dS(x) = 0
r->oo Js(0,r)

for some a ̂  0, where S(0, r) denotes the spherical surface d£(0, r).
In this paper, we use the symbol M to denote an absolute positive

constant whose value is unimportant and may change from line to line.

REMARK 2. If (8) holds, then

lim r~a~n u+(x)dx = 0.

We know a mean-value inequality for polyharmonic functions:

LEMMA 1 (cf. [6, Lemma 2]). // u is polyharmonic of order m in B(x, r),
then
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\rku(x)\ ^ Mr'*-" I \u(y)\dy,
jB(x,r)

where M = M(/c, m) is a positive constant independent of x and r, and Vk

denotes the gradient iterated k times.

LEMMA 2. // u is polyharmonic of order m in Rn, then

(9) lim r-"-* I u(y)dy = 0
Jfl(0,r)r-»oo

whenever k> 2m — 2.

This is an easy consequence of finite Almansi expansion (cf. [2, Proposi-
tion 1.3]), which states that u is written as

u(χ) = Σ M2ί~2M*)
ί=l

with harmonic functions u{. By the mean value property, we have

I u(x)dx = 1 ( 1 u(tΘ)dΘ ) t*-ldt
Jβ(0,r) JO \JδB(0,l) /

= Σ I I I uί(tθ)dθ]t2i-2+M'ldt
ί=ι Jo \Jaβ(o,i) /

= X [Afu,(0)] f Γ t2ί-2+"-ldt
«=1 JO

which proves (9).

PROOF OF THEOREM 4. Since \u\ = 2u* — u, Lemma 1 gives

~n-k I \
JB(x,r)

\rku(x)\ ^ Mr~n-k \u(y)\dy

\u(y)\dy
β(0,2r)

u+(y)dy - Mr~n~k u(y)dy
JB(0,2r) JB(Q,2r)

= /! - /2
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for x e #(0, r). By our assumption,

lim inf 1^ = 0
r-»oo

for fc ^ a. On the other hand, in view of Lemma 2,

lim 1 2 = 0
r-»oo

when k>2m-2. Thus, if fc > a + 2m - 2, then

|F*tφc)| = 0 for any x e R",

which implies that u is a polynomial.

REMARK 3. In view of Lemma 2, (7) may be replaced by

liminfr- f l-π \u(x)\dx = 0.
»— 'oo jB(0,r)

REMARK 4. Professor Suita kindly informed the author that Theorem 4
can be proved by the use of the expansion into spherical harmonics, instead
of our Lemma 1.

3. Proof of Theorem 1

First we prepare some lemmas, as generalizations of the corresponding
lemmas in [4] concerning the case m = 1.

LEMMA 3. For r > 0, K2m,Λrx, ry) = r2m~nR2m^(x, y).

LEMMA 4. // T is a rotation about the origin, then

PROOF. For ί > 0, let f(t) = R2m(tx - y). Then note that

K2m>, y) = /(I) - /(O) - - (^ΓV^O).

If Γ is a rotation about the origin, then \tTx — Ty\ = \tx — y\, so that

R2m(tTx - Ty) = R2m(tx - y).

Hence it follows that R2m^(Tx9 Ty) = R2m,Ax->y\ Now the required assertion
is proved.

LEMMA 5. // 2m ̂  n, then there exists δ > 0 such that

A = lim inf ( inf r

n~2m+^1 \Km^(x9 ry)\] > 0
r-»oo \yeB(jc,<5) ' /

for any x e R" with \x\ = 1, where A does not depend on x.
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PROOF. Let x e R" with |x| = 1 be fixed. For t > 0 and y e R", let f(t) =
/(ί; y) = R2m(tx — y)' Then we have by Lemma 3

t2m-n-,-lR2m^(χ9 Γly) = Γ^R^fa y)

- - (t\rlt '/<o(o)]

uniformly for y e B(x, 1/2) as t -> 0. Note that /(ί; x) = R2m(tx - x) = 1 1 - t\2m~n

when 2m < n and f(t\ x) = —log |1 — t\ when 2m = n. Hence we see that

is a non-zero constant. Therefore there exists δ > 0 such that

= liminf inf rn~2m+'+1\R2m^(x, ry)\ > 0.
r->oo \yeB(x,δ) ' /

In view of Lemma 4, we see that A does not depend on x, and the required
assertion now follows.

The following lemma can be derived by the use of mean value theorem
(cf. [4] and [5]).

LEMMA 6. Let S^2m-n. If \y\ ̂  1 and \y\ ̂  2|x|, then

PROOF OF THEOREM 1. First suppose (2) holds. For R > 1, write

|Km.,l AΦO = ί IK-.Λ*, y)\dμ(y) + ί \Kmt,(x, y)\dμ(y)
JRn-B(Q,2R) JB(0,2R)

= UR(X) + VR(X).

In view of Lemma 6, MΛ(X) is bounded on 5(0, #). On the other hand, since

M*)^f l«2^-y)ldMy)+ Σ T f l[^Λ2J(-y)MAi(Λ
Jβ(0,2Λ) |j|^^ ]' Jβ(0,2Λ)-J5(0,l)

we see that VR is locally integrable on R". Thus \Kmt,\μ is integrable on
5(0, K). Since jR is arbitrary, (3) follows.

Next let 2m ̂ n and suppose (3) holds. Then there exists x0 Φ 0 such
that

J R
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In view of Lemma 5, we can find δ > 0 and R > 1 such that

|Kmf,(x, y)\ ̂  MM2*-"-'-1 whenever |x| = 1, \y\ > R and y/\y\ e B(x, δ),

so that Lemma 3 gives

whenever \y\ > R\x0\ and \y/\y\ — x 0 / |xol l < & Hence we have

\Kmt,(x0,y)\dμ(y)
J Γ(x0,δ)-B(0,

\
J ΓΓ(x0,δ)-B(0,R\x0\)

so that

I
Jr

\y\2m"*-'-*dμ(y) < oo,

where Γ(x0, δ) = {y: \y/\y\ — Xo/l*ol l < ̂ } Since Km (μ is finite almost every-
where on 5(0, 2) - 5(0, 1), we can find a finite family {x,-} c B(0, 2) - B(0, 1)
such that

3B(0, 1) c

and

: °°\xJtδ)-B(0,2R)

Thus (2) is seen to hold.

4. Proof of Theorem 2

We need the following properties of Km^, which are found in [5, Lemmas
1 and 3].

LEMMA 7. For each y e R", the function x -» Km ,(x, y) z's polyharmonic
of order m in Rn — {y}; in fact,

with the constant c in (1).

For this, it suffices to note that
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J [βJ'«2m] ( -y) with f(t) = R2m(tx - y)

is a polyharmonic polynomial for any nonnegative integer k and any fixed

y 7* 0 (cf. [3, Lemma 4.4.1]).

LEMMA 8. Let S^2m-n. If 1 ̂  \y\ < 2|x| and \x - y\ ̂  2"1 |x|, then

LEMMA 9. // \y\ ̂  1 and \x - y\ < 2~l\x\, then

l^m,X*> y)\ ̂  M\x - y\2m~n in case 2m < n,

I Kw.Xx, y)\ ̂  Ml\x\2m~n + \x- y\2m~n log (|x|/|x - 3;])] in case 2m ̂  n.

Suppose μ = Amu is a nonnegative measure on R" and (4) holds. Let φ

be a nonnegative function in C£(Rn) such that φ = 1 on J3(0, 1) and φ = 0

outside β(0, 2). For r > 0, set φr(x) = φ(r~1x). If r is large enough, then we

have

\
JB(0,2r)

\u(x)\dx
r)

^ Mr~2m+ίf+w,

so that

ί (1 + \y\)2m-*-'-ldμ(y) = Γ μ(B(0, r))d(-(l +
jRn JO

< oo.

Thus (2) is satisfied, and hence we can consider the potential Kmfμ. For

R > 0, write

Γ Γ
£m,/μ(x)= Kmtf(x,y)dμ(y)+ Km,A*>

J B(0,2R) J Rn-B(0,2R)

Then, in view of Lemmas 6 and 7, fe2 is absolutely convergent in B(0, jR) and

Jw/c2 = 0 in 5(0, K).
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By Lemma 7, we have

Amkt = c~lμ in B(0, R).

Hence it follows that AmKm^μ = c~1μ. Now, letting

we see that

AmP = Amu-μ = Q,

which implies that P is polyharmonic of order m in R".
Let r > 2. We have by Lemma 6

JB(o,r]
, ~n-- mn

)Γ)B(0,M/2)

when \y\ ̂  1. If 1 ̂  |^| < 2r, then it follows from Lemmas 8 and 9 that

I.,,,,, ,«,.,,,,'*-

f < fI I m, A ' J71 = I
J B(y, \y\) J B(y,

2m

since |Xm,Xx, y)\ ̂  M|x|2m~n when \y\ ̂  1 and 2~l\x\ £\x - y\<\y\ on ac-
count of Lemmas 6 and 8. Hence we establish

ί \Km.,(x>
JB(0,r)

when \y\ ̂  2r, and

ί \Km9,(x9y)\dx£
Jβ(0,r)

when 1 ̂  bl < 2r. If |y| < 1, then

ί |Km,,(x, y)|dx ^ ί |x - y|2--"(l + |log |x - y\\)dx ^ Mr2m log r.
Jβ(0,r) Jβ(0,r)

Consequently we derive
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ί \Km,fμ(x)\dx 5Ξ (Y I \Km,f(x, y)\dx]dμ(y)
Jβ(0,r) J \Jβ(0,r) /

^Mr«+/+ι ^2m-n-s-ί

jR"-β(0,2r)

5(o, 2r)-.B(O,I) i y\

-f M[r2-logr]μ(B(0,l)),

so that (2) implies that

limr-'-1-" \Km^μ(x)\dx = 0
r-»oo Jβ(0,r)

because 2m — n — £ — 1<0. Using assumption (4), we establish

(10) limr-'-1-" |P(x)|dx = 0.

Now Theorem 4 implies that P is a polynomial. We also see from (10) that
the degree of P is at most /.

REMARK 5. In view of Lemma 1, (10) implies that

lim |x|-/-1|P(x)|dx = 0.
M-+OO

5. Proof of Theorem 3

For |x| > 1, write

_ Γ

+ ί Kmt,(x,y)dμ(y)
jB(0,2\x\)-B(x,\x\l2)

f
" i I ** ιιι /\^j

J*(*,M/2)
9y)dμ(y)

U2(x)

By Lemma 6, we have

(ί/^xJI^MIxK L-«o,!W,
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which together with (5) gives

lim \x\~'~aUι(x) = Q.
|x|-*oo

By Lemma 8, we find

|l/2(x)| ^ M|x|2w-"[l + log |x|]μ(B(0, 1))

+ M\x\'

Since a > 0, we derive for |x| > R > 1,

\U2(x)\ ^ M[|x|2m-"log \x\-]μ(B(0, 1))

+ M|x
1l(0^_B(OΛ)

M2m~n~
M |x|'+α I \y\2m-n-'~adμ(y).

jB(0,2\x\)-B(0,R)

Consequently it follows that

^M jRw-B(0,ί
lim sup |xΓ'-β|l/2(x)| ^ M \ \y\2m-n-^adμ(y\

,R)

which proves

lim |x|~'~βl/2(x) = 0-

Finally we are concerned with the fine limit of ί/3 at infinity. For this

purpose, note from Lemma 9 that

I l/3(x)| ^ M |x - j|2m~"dμ();) in case 2m < n,
^M

73(x)| ^ M
JBU,

I t/3(x)| ^ M log (|x|/|x — y\)dμ(y) in case 2m = n
JB(x,\x\/2)

for |x| ^ 1. By (5) we can find a sequence {αj of positive numbers such

that lim at = oo and
i-»oo

(11) ; α^-^-^+^^μίBj) < oo,
i=l

where Bt = {x : 2ί-1 < |x| < 2i+2}. Consider

Et = {x:21^ |x| < 2ί+1, |l/3(x)| > aϊ
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In what follows, we treat the case 2m = n only, because the case 2m < n can

be treated similarly. If x e Ei9 then B(x, |x|/2) c Bi9 so that

αΓι2<('+«> < |I/3(X)| ^ M f log (2ί+3/l* - y\)dμ(y)

= M I log(2/|2' i-2x-2- i-
jBt

Hence, setting £j = 2~i~2Ei, we have

which together with (11) gives

f C2m(£;) < oo.

If we set

00

then E is seen to have all the required properties.
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