An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures

Yoshihiro MIZUTA (Received July 30, 1996)

ABSTRACT. Our aim in this paper is to discuss the behavior at infinity of functions u for which $\Delta^m u \ge 0$ on \mathbb{R}^n in the weak sense. For this purpose we give a representation of u by means of modified Riesz kernels of order 2m.

1. Statement of results

A function u is called polyharmonic of order m in an open set $G \subset \mathbb{R}^n$ if $\Delta^m u = 0$ on G, where Δ denotes the Laplace operator, or Laplacian.

We study the existence of fine limits at infinity for functions u on \mathbb{R}^n such that $\Delta^m u$ is a nonnegative measure. To do so, we first consider a condition for polyharmonic functions to be polynomials, and establish an integral representation for u, as a generalization of Riesz decomposition theorem for superharmonic functions.

For a multi-index $j = (j_1, ..., j_n)$ and a point $x = (x_1, ..., x_n)$, we follow the usual notation:

$$|j| = j_1 + \dots + j_n,$$

$$j! = j_1! \times \dots \times j_n!,$$

$$x^j = x^{j_1} \times \dots \times x^{j_n}$$

and

$$D^{j} = \left(\frac{\partial}{\partial x}\right)^{j} = \left(\frac{\partial}{\partial x_{1}}\right)^{j_{1}} \cdots \left(\frac{\partial}{\partial x_{n}}\right)^{j_{n}}.$$

Consider the Riesz kernel of order 2m

$$R_{2m}(x) = \begin{cases} |x|^{2m-n} & \text{if } 2m < n \text{ or if } 2m - n \text{ is a positive odd integer,} \\ |x|^{2m-n} \log(1/|x|) & \text{if } 2m - n \text{ is a nonnegative even integer} \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B30

Key words and phrases. Polyharmonic functions, Riesz decomposition theorem, capacity, fine limits at infinity.

and its remainder term of Taylor's expansion

$$R_{2m,\ell}(x, y) = R_{2m}(x - y) - \sum_{|j| \le \ell} \frac{x^j}{j!} [D^j R_{2m}](-y),$$

where ℓ is a nonnegative integer. Letting B(x, r) denote the open ball centered at x with radius r, we consider the function

$$K_{m,\ell}(x) = \begin{cases} R_{2m}(x-y) & \text{when } y \in B(0,1), \\ R_{2m,\ell}(x,y) & \text{when } y \in \mathbb{R}^n - B(0,1) \end{cases}$$

(cf. Hayman-Kennedy [3]).

Here note that R_{2m} is polyharmonic of order m outside the origin and

$$\Delta^m R_{2m} = c^{-1} \delta_0$$

with the Dirac measure δ_x at x and a constant $c \neq 0$. As will be seen later, $K_{m,\ell}(\cdot, y)$ is also polyharmonic of order m outside y for any fixed $y \in \mathbb{R}^n$.

For a nonnegative measure μ on \mathbb{R}^n , we define

$$K_{m,\ell}\mu(x) = \int_{\mathbb{R}^n} K_{m,\ell}(x,y) d\mu(y).$$

We first give a condition for this potential to have a meaning.

THEOREM 1. Let μ be a nonnegative measure on \mathbb{R}^n and ℓ be a nonnegative integer such that $\ell \geq 2m-n$. If

(2)
$$\int_{\mathbb{R}^n} (1 + |y|)^{2m - n - \ell - 1} d\mu(y) < \infty$$

holds, then

(3)
$$\int_{\mathbb{R}^n} |K_{m,\ell}(x,y)| d\mu(y) \in L^1_{loc}(\mathbb{R}^n).$$

Moreover, in case $2m \le n$, (2) is equivalent to (3).

Next we give an integral representation for functions u such that $\Delta^m u$ is a positive measure on \mathbb{R}^n , as a generalization of Riesz decomposition theorem.

THEOREM 2. Let u be a function on \mathbb{R}^n such that $\mu = \Delta^m u \ge 0$ in the weak sense. If there exists a nonnegative integer ℓ such that $\ell \ge 2m - n$ and

(4)
$$\limsup_{r\to\infty} r^{-\ell-n} \int_{B(0,r)} |u(x)| dx < \infty,$$

then u is of the form

$$u(x) = c \int_{\mathbb{R}^n} K_{m,\ell}(x, y) d\mu(y) + P(x),$$

where c is the constant in (1) and P is a polynomial of degree at most ℓ .

In case 2m < n, we consider the usual Riesz capacity of order 2m, which is defined by

$$C_{2m}(E) = \inf \mu(\mathbf{R}^n)$$

for a set $E \subset \mathbb{R}^n$, where the infimum is taken over all nonnegative measures μ on \mathbb{R}^n such that

$$R_{2m}\mu(x) = \int R_{2m}(x-y)d\mu(y) \ge 1$$
 whenever $x \in E$.

In case 2m = n, we define the logarithmic capacity

$$C_n(E) = \inf \mu(B(0, 1))$$

for a set $E \subset B(0, 1)$, where the infimum is taken over all nonnegative measures μ on B(0, 1) such that

$$\int \log \frac{2}{|x-y|} d\mu(y) \ge 1 \quad \text{whenever } x \in E.$$

Finally we are concerned with the fine limits at infinity for the generalized potentials $K_{m,\ell}\mu$.

THEOREM 3. Let ℓ be a nonnegative integer, $2m \le n$ and $0 < a \le 1$. If μ is a nonnegative measure on \mathbb{R}^n satisfying

(5)
$$\int_{\mathbb{R}^n} (1+|y|)^{2m-n-\ell-a} d\mu(y) < \infty,$$

then there exists a set $E \subset \mathbb{R}^n$ such that

$$\lim_{|x|\to\infty, x\in\mathbb{R}^{n-E}}|x|^{-\ell-a}K_{m,\ell}\mu(x)=0$$

and E is 2m-thin at infinity, that is,

$$(6) \qquad \sum_{i=1}^{\infty} C_{2m}(E_i') < \infty,$$

where $E'_i = \{x : 2^{-2} \le |x| < 2^{-1}, 2^{i+2}x \in E\}.$

The case m = 1 was proved in [4, Theorem 1].

REMARK 1. In case 2m < n, (6) may be replaced by

$$\sum_{i=1}^{\infty} 2^{-i(n-2m)} C_{2m}(E_i) < \infty,$$

where $E_i = \{x \in E : 2^i \le |x| < 2^{i+1}\}.$

2. Polyharmonic functions

Let us begin with a condition under which polyharmonic functions are polynomials. In fact we show the following result.

THEOREM 4. Let u be a polyharmonic function of order m on \mathbb{R}^n . If there exists $a \ge 0$ for which

(7)
$$\lim_{r \to \infty} \inf r^{-a-n} \int_{B(0,r)} u^{+}(x) dx = 0,$$

then u is a polynomial, where u^+ denotes the positive part of u, that is, $u^+(x) = \max \{u(x), 0\}$.

For the harmonic case, see the book of Hayman-Kennedy [3]. If u satisfies two sided inequalities:

$$|u(x)| \le M(1+|x|)^a,$$

then the conclusion of Theorem 4 is clearly true by considering the Fourier transform of $\Delta^m u$. We also note that Theorem 4 was essentially proved by Armitage [1]; in fact, his theorem states that a polyharmonic function u is a polynomial if

(8)
$$\lim_{r \to \infty} r^{-a-n+1} \int_{S(0,r)} u^{+}(x) dS(x) = 0$$

for some $a \ge 0$, where S(0, r) denotes the spherical surface $\partial B(0, r)$.

In this paper, we use the symbol M to denote an absolute positive constant whose value is unimportant and may change from line to line.

REMARK 2. If (8) holds, then

$$\lim_{r\to\infty}r^{-a-n}\int_{B(0,r)}u^+(x)dx=0.$$

We know a mean-value inequality for polyharmonic functions:

LEMMA 1 (cf. [6, Lemma 2]). If u is polyharmonic of order m in B(x, r), then

$$|\mathcal{V}^k u(x)| \leq M r^{-k-n} \int_{B(x,r)} |u(y)| \, dy,$$

where M = M(k, m) is a positive constant independent of x and r, and ∇^k denotes the gradient iterated k times.

LEMMA 2. If u is polyharmonic of order m in \mathbb{R}^n , then

(9)
$$\lim_{r \to \infty} r^{-n-k} \int_{B(0,r)} u(y) dy = 0$$

whenever k > 2m - 2.

This is an easy consequence of finite Almansi expansion (cf. [2, Proposition 1.3]), which states that u is written as

$$u(x) = \sum_{i=1}^{m} |x|^{2i-2} u_i(x)$$

with harmonic functions u_i . By the mean value property, we have

$$\int_{B(0,r)} u(x)dx = \int_{0}^{r} \left(\int_{\partial B(0,1)} u(t\Theta)d\Theta \right) t^{n-1}dt$$

$$= \sum_{i=1}^{m} \int_{0}^{r} \left(\int_{\partial B(0,1)} u_{i}(t\Theta)d\Theta \right) t^{2i-2+n-1}dt$$

$$= \sum_{i=1}^{m} \left[Mu_{i}(0) \right] \int_{0}^{r} t^{2i-2+n-1}dt$$

$$= \sum_{i=1}^{m} M_{i}u_{i}(0)r^{2i-2+n},$$

which proves (9).

PROOF OF THEOREM 4. Since $|u| = 2u^+ - u$, Lemma 1 gives

$$|\nabla^{k} u(x)| \leq Mr^{-n-k} \int_{B(x,r)} |u(y)| dy$$

$$\leq Mr^{-n-k} \int_{B(0,2r)} |u(y)| dy$$

$$= 2Mr^{-n-k} \int_{B(0,2r)} u^{+}(y) dy - Mr^{-n-k} \int_{B(0,2r)} u(y) dy$$

$$= I_{1} - I_{2}$$

for $x \in B(0, r)$. By our assumption,

$$\lim_{r \to \infty} \inf I_1 = 0$$

for $k \ge a$. On the other hand, in view of Lemma 2,

$$\lim_{r\to\infty}I_2=0$$

when k > 2m - 2. Thus, if k > a + 2m - 2, then

$$|\nabla^k u(x)| = 0$$
 for any $x \in \mathbf{R}^n$,

which implies that u is a polynomial.

REMARK 3. In view of Lemma 2, (7) may be replaced by

$$\liminf_{r\to\infty} r^{-a-n} \int_{B(0,r)} |u(x)| dx = 0.$$

REMARK 4. Professor Suita kindly informed the author that Theorem 4 can be proved by the use of the expansion into spherical harmonics, instead of our Lemma 1.

3. Proof of Theorem 1

First we prepare some lemmas, as generalizations of the corresponding lemmas in [4] concerning the case m = 1.

LEMMA 3. For
$$r > 0$$
, $R_{2m,\ell}(rx, ry) = r^{2m-n}R_{2m,\ell}(x, y)$.

LEMMA 4. If T is a rotation about the origin, then

$$K_{m,\ell}(Tx, Ty) = K_{m,\ell}(x, y).$$

PROOF. For t > 0, let $f(t) = R_{2m}(tx - y)$. Then note that

$$R_{2m,\ell}(x, y) = f(1) - f(0) - \dots - (\ell!)^{-1} f^{(\ell)}(0).$$

If T is a rotation about the origin, then |tTx - Ty| = |tx - y|, so that

$$R_{2m}(tTx - Ty) = R_{2m}(tx - y).$$

Hence it follows that $R_{2m,\ell}(Tx, Ty) = R_{2m,\ell}(x, y)$. Now the required assertion is proved.

LEMMA 5. If $2m \le n$, then there exists $\delta > 0$ such that

$$A = \lim_{r \to \infty} \inf \left(\inf_{y \in B(x,\delta)} r^{n-2m+\ell+1} |K_{m,\ell}(x,ry)| \right) > 0$$

for any $x \in \mathbb{R}^n$ with |x| = 1, where A does not depend on x.

PROOF. Let $x \in \mathbb{R}^n$ with |x| = 1 be fixed. For t > 0 and $y \in \mathbb{R}^n$, let $f(t) = f(t; y) = R_{2m}(tx - y)$. Then we have by Lemma 3

$$t^{2m-n-\ell-1}R_{2m,\ell}(x,t^{-1}y) = t^{-\ell-1}R_{2m,\ell}(tx,y)$$

$$= t^{-\ell-1}[f(t) - f(0) - \dots - (\ell!)^{-1}t^{\ell}f^{(\ell)}(0)]$$

$$\to [(\ell+1)!]^{-1}f^{(\ell+1)}(0)$$

uniformly for $y \in B(x, 1/2)$ as $t \to 0$. Note that $f(t; x) = R_{2m}(tx - x) = |1 - t|^{2m-n}$ when 2m < n and $f(t; x) = -\log |1 - t|$ when 2m = n. Hence we see that

$$\lim_{t\to 0} t^{2m-n-\ell-1} R_{2m,\ell}(x, t^{-1}x)$$

is a non-zero constant. Therefore there exists $\delta > 0$ such that

$$A = \liminf_{r \to \infty} \left(\inf_{y \in B(x,\delta)} r^{n-2m+\ell+1} |R_{2m,\ell}(x,ry)| \right) > 0.$$

In view of Lemma 4, we see that A does not depend on x, and the required assertion now follows.

The following lemma can be derived by the use of mean value theorem (cf. [4] and [5]).

LEMMA 6. Let
$$\ell \ge 2m - n$$
. If $|y| \ge 1$ and $|y| \ge 2|x|$, then
$$|K_{m,\ell}(x,y)| \le M|x|^{\ell+1}|y|^{2m-n-\ell-1}.$$

PROOF OF THEOREM 1. First suppose (2) holds. For R > 1, write

$$|K_{m,\ell}| \mu(x) = \int_{\mathbb{R}^{n-B(0,2R)}} |K_{m,\ell}(x,y)| d\mu(y) + \int_{B(0,2R)} |K_{m,\ell}(x,y)| d\mu(y)$$
$$= u_R(x) + v_R(x).$$

In view of Lemma 6, $u_R(x)$ is bounded on B(0, R). On the other hand, since

$$v_{R}(x) \leq \int_{B(0,2R)} |R_{2m}(x-y)| \, d\mu(y) + \sum_{|j| \leq \ell} \left| \frac{x^{j}}{j!} \right| \int_{B(0,2R)-B(0,1)} |[D^{j}R_{2m}](-y)| \, d\mu(y),$$

we see that v_R is locally integrable on \mathbb{R}^n . Thus $|K_{m,\ell}|\mu$ is integrable on B(0, R). Since R is arbitrary, (3) follows.

Next let $2m \le n$ and suppose (3) holds. Then there exists $x_0 \ne 0$ such that

$$\int_{\mathbb{R}^n} |K_{m,\ell}(x_0,y)| d\mu(y) < \infty.$$

In view of Lemma 5, we can find $\delta > 0$ and R > 1 such that

$$|K_{m,\ell}(x,y)| \ge M \, |y|^{2m-n-\ell-1} \quad \text{whenever} \ |x|=1, \ |y|>R \ \text{and} \ y/|y| \in B(x,\delta),$$

so that Lemma 3 gives

$$|K_{m,\ell}(x_0,y)| = |x_0|^{2m-n} |K_{m,\ell}(x_0/|x_0|,y/|x_0|)| \ge M |x_0|^{\ell+1} |y|^{2m-n-\ell-1}$$

whenever $|y| > R|x_0|$ and $|y/|y| - x_0/|x_0|| < \delta$. Hence we have

$$\begin{split} & \infty > \int_{\varGamma(x_0,\,\delta) - B(0,\,R|x_0|)} |K_{m,\,\ell}(x_0,\,y)| \, d\mu(y) \\ & \geq M \, |x_0|^{\ell+1} \int_{\varGamma(x_0,\,\delta) - B(0,\,R|x_0|)} |y|^{2m-n-\ell-1} \, d\mu(y), \end{split}$$

so that

$$\int_{\Gamma(x_0,\delta)-B(0,R|x_0|)} |y|^{2m-n-\ell-1} d\mu(y) < \infty,$$

where $\Gamma(x_0, \delta) = \{y : |y/|y| - x_0/|x_0|| < \delta\}$. Since $K_{m,\ell}\mu$ is finite almost everywhere on B(0, 2) - B(0, 1), we can find a finite family $\{x_j\} \subset B(0, 2) - B(0, 1)$ such that

$$\partial B(0, 1) \subset \bigcup_{i} B(x_{i}/|x_{i}|, \delta)$$

and

$$\int_{\varGamma(x_j,\delta)-B(0,\,2R)} |y|^{2m-n-\ell-1} d\mu(y) < \infty.$$

Thus (2) is seen to hold.

4. Proof of Theorem 2

We need the following properties of $K_{m,\ell}$, which are found in [5, Lemmas 1 and 3].

LEMMA 7. For each $y \in \mathbb{R}^n$, the function $x \to K_{m,\ell}(x,y)$ is polyharmonic of order m in $\mathbb{R}^n - \{y\}$; in fact,

$$\Delta^{m}K_{m,\ell}(\cdot,y)=\Delta^{m}R_{2m}(\cdot-y)=c^{-1}\delta_{\nu}$$

with the constant c in (1).

For this, it suffices to note that

$$f^{(k)}(0) = \sum_{|j|=k} \frac{x^j}{j!} [D^j R_{2m}](-y)$$
 with $f(t) = R_{2m}(tx - y)$

is a polyharmonic polynomial for any nonnegative integer k and any fixed $y \neq 0$ (cf. [3, Lemma 4.4.1]).

LEMMA 8. Let
$$\ell \ge 2m - n$$
. If $1 \le |y| < 2|x|$ and $|x - y| \ge 2^{-1}|x|$, then $|K_{m,\ell}(x,y)| \le M|x|^{\ell}|y|^{2m-n-\ell}\log(4|x|/|y|)$.

LEMMA 9. If $|y| \ge 1$ and $|x - y| < 2^{-1}|x|$, then

$$|K_{m,\ell}(x,y)| \le M|x-y|^{2m-n}$$
 in case $2m < n$,

$$|K_{m,\ell}(x,y)| \le M[|x|^{2m-n} + |x-y|^{2m-n}\log(|x|/|x-y|)]$$
 in case $2m \ge n$.

Suppose $\mu = \Delta^m u$ is a nonnegative measure on \mathbb{R}^n and (4) holds. Let φ be a nonnegative function in $C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi = 1$ on B(0, 1) and $\varphi = 0$ outside B(0, 2). For r > 0, set $\varphi_r(x) = \varphi(r^{-1}x)$. If r is large enough, then we have

$$\mu(B(0, r)) \leq \int \varphi_r(x) d\mu(x)$$

$$= \int u(x) \Delta^m \varphi_r(x) dx$$

$$\leq M r^{-2m} \int_{B(0, 2r)} |u(x)| dx$$

$$\leq M r^{-2m+\ell+n},$$

so that

$$\int_{\mathbb{R}^n} (1+|y|)^{2m-n-\ell-1} d\mu(y) = \int_0^\infty \mu(B(0,r)) d(-(1+r)^{2m-n-\ell-1}) < \infty.$$

Thus (2) is satisfied, and hence we can consider the potential $K_{m,\ell}\mu$. For R>0, write

$$K_{m,\ell}\mu(x) = \int_{B(0,2R)} K_{m,\ell}(x,y)d\mu(y) + \int_{\mathbb{R}^{n-B(0,2R)}} K_{m,\ell}(x,y)d\mu(y)$$
$$= k_1(x) + k_2(x).$$

Then, in view of Lemmas 6 and 7, k_2 is absolutely convergent in B(0, R) and

$$\Delta^m k_2 = 0 \quad \text{in } B(0, R).$$

By Lemma 7, we have

$$\Delta^m k_1 = c^{-1} \mu$$
 in $B(0, R)$.

Hence it follows that $\Delta^m K_{m,\ell} \mu = c^{-1} \mu$. Now, letting

$$P(x) = u(x) - cK_m \mu(x),$$

we see that

$$\Delta^m P = \Delta^m u - \mu = 0,$$

which implies that P is polyharmonic of order m in \mathbb{R}^n .

Let r > 2. We have by Lemma 6

$$\int_{B(0,r)\cap B(0,|y|/2)} |K_{m,\ell}(x,y)| dx \le M|y|^{2m-n-\ell-1} \min \{r^{n+\ell+1}, |y|^{n+\ell+1}\}$$

when $|y| \ge 1$. If $1 \le |y| < 2r$, then it follows from Lemmas 8 and 9 that

$$\int_{B(0,r)-B(0,|y|/2)-B(y,|y|)} |K_{m,\ell}(x,y)| dx \le M r^{n+\ell} |y|^{2m-n-\ell} \log \frac{4r}{|y|}$$

and

$$\int_{B(y,|y|)} |K_{m,\ell}(x,y)| dx \le M \int_{B(y,|y|)} \left(|x|^{2m-n} + |x-y|^{2m-n} \log \frac{2|y|}{|x-y|} \right) dx$$

$$\le M |y|^{2m}$$

since $|K_{m,\ell}(x,y)| \le M|x|^{2m-n}$ when $|y| \ge 1$ and $2^{-1}|x| \le |x-y| < |y|$ on account of Lemmas 6 and 8. Hence we establish

$$\int_{B(0,r)} |K_{m,\ell}(x,y)| \, dx \le M r^{n+\ell+1} |y|^{2m-n-\ell-1}$$

when $|y| \ge 2r$, and

$$\int_{B(0,r)} |K_{m,\ell}(x,y)| \, dx \le M r^{n+\ell} |y|^{2m-n-\ell} \log \frac{4r}{|y|}$$

when $1 \le |y| < 2r$. If |y| < 1, then

$$\int_{B(0,r)} |K_{m,\ell}(x,y)| dx \le \int_{B(0,r)} |x-y|^{2m-n} (1+|\log|x-y||) dx \le Mr^{2m} \log r.$$

Consequently we derive

$$\int_{B(0,r)} |K_{m,\ell}\mu(x)| dx \le \int \left(\int_{B(0,r)} |K_{m,\ell}(x,y)| dx \right) d\mu(y)$$

$$\le Mr^{n+\ell+1} \int_{\mathbb{R}^{n}-B(0,2r)} |y|^{2m-n-\ell-1} d\mu(y)$$

$$+ Mr^{n+\ell} \int_{B(0,2r)-B(0,1)} |y|^{2m-n-\ell} \log \frac{4r}{|y|} d\mu(y)$$

$$+ M[r^{2m} \log r] \mu(B(0,1)),$$

so that (2) implies that

$$\lim_{r \to \infty} r^{-\ell - 1 - n} \int_{B(0, r)} |K_{m, \ell} \mu(x)| \, dx = 0$$

because $2m - n - \ell - 1 < 0$. Using assumption (4), we establish

(10)
$$\lim_{r \to \infty} r^{-\ell - 1 - n} \int_{B(0, r)} |P(x)| dx = 0.$$

Now Theorem 4 implies that P is a polynomial. We also see from (10) that the degree of P is at most ℓ .

REMARK 5. In view of Lemma 1, (10) implies that

$$\lim_{|x|\to\infty} |x|^{-\ell-1} |P(x)| dx = 0.$$

5. Proof of Theorem 3

For |x| > 1, write

$$\begin{split} K_{m,\ell}\mu(x) &= \int_{\mathbb{R}^{n-B(0,\,2|x|)}} K_{m,\,\ell}(x,\,y) d\mu(y) \\ &+ \int_{B(0,\,2|x|)-B(x,\,|x|/2)} K_{m,\,\ell}(x,\,y) d\mu(y) \\ &+ \int_{B(x,\,|x|/2)} K_{m,\,\ell}(x,\,y) d\mu(y) \\ &= U_1(x) + U_2(x) + U_3(x). \end{split}$$

By Lemma 6, we have

$$|U_1(x)| \le M|x|^{\ell+1} \int_{\mathbb{R}^{n-B(0,2|x|)}} |y|^{2m-n-\ell-1} d\mu(y),$$

which together with (5) gives

$$\lim_{|x|\to\infty}|x|^{-\ell-a}U_1(x)=0.$$

By Lemma 8, we find

$$|U_2(x)| \le M|x|^{2m-n} [1 + \log|x|] \mu(B(0, 1))$$

$$+ M|x|^{\ell} \int_{B(0, 2|x|) - B(0, 1)} |y|^{2m-n-\ell} \log(|x|/|y|) d\mu(y).$$

Since a > 0, we derive for |x| > R > 1,

$$\begin{split} |U_2(x)| &\leq M [|x|^{2m-n} \log |x|] \mu(B(0,1)) \\ &+ M |x|^{\ell} \int_{B(0,R)-B(0,1)} |y|^{2m-n-\ell} \log (|x|/|y|) d\mu(y) \\ &+ M |x|^{\ell+a} \int_{B(0,2|x|)-B(0,R)} |y|^{2m-n-\ell-a} d\mu(y). \end{split}$$

Consequently it follows that

$$\limsup_{|x| \to \infty} |x|^{-\ell - a} |U_2(x)| \le M \int_{\mathbb{R}^{n - B(0, R)}} |y|^{2m - n - \ell - a} d\mu(y),$$

which proves

$$\lim_{|x| \to \infty} |x|^{-\ell - a} U_2(x) = 0.$$

Finally we are concerned with the fine limit of U_3 at infinity. For this purpose, note from Lemma 9 that

$$|U_3(x)| \le M \int_{B(x,|x|/2)} |x-y|^{2m-n} d\mu(y) \qquad \text{in case } 2m < n,$$

$$|U_3(x)| \le M \int_{B(x,|x|/2)} \log(|x|/|x-y|) d\mu(y) \qquad \text{in case } 2m = n$$

for $|x| \ge 1$. By (5) we can find a sequence $\{a_i\}$ of positive numbers such that $\lim_{i \to \infty} a_i = \infty$ and

(11)
$$\sum_{i=1}^{\infty} a_i 2^{-i(n-2m+\ell+a)} \mu(B_i) < \infty,$$

where $B_i = \{x : 2^{i-1} < |x| < 2^{i+2}\}$. Consider

$$E_i = \{x : 2^i \le |x| < 2^{i+1}, |U_3(x)| > a_i^{-1} 2^{i(\ell+a)} \}.$$

In what follows, we treat the case 2m = n only, because the case 2m < n can be treated similarly. If $x \in E_i$, then $B(x, |x|/2) \subset B_i$, so that

$$a_i^{-1} 2^{i(\ell+a)} < |U_3(x)| \le M \int_{B_i} \log (2^{i+3}/|x-y|) d\mu(y)$$

$$= M \int_{B_i} \log (2/|2^{-i-2}x - 2^{-i-2}y|) d\mu(y).$$

Hence, setting $E'_i = 2^{-i-2}E_i$, we have

$$C_{2m}(E_i') \leq Ma_i 2^{-i(\ell+a)} \mu(B_i),$$

which together with (11) gives

$$\sum_{i=1}^{\infty} C_{2m}(E_i') < \infty.$$

If we set

$$E=\bigcup_{i=1}^{\infty}E_{i},$$

then E is seen to have all the required properties.

References

- [1] D. H. Armitage, A polyharmonic generalization of a theorem on harmonic functions, J. London Math. Soc. (2) 7 (1973), 251-258.
- [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983.
- [3] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
- [4] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math. Soc. (2) 27 (1983), 97-105.
- [5] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
- [6] Y. Mizuta, A theorem of Hardy-Littlewood and removability for polyharmonic functions satisfying Hölder's condition, Hiroshima Math. J. 25 (1995), 315-326.

The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739, Japan