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ABSTRACT. We consider a linear elliptic differential equation in the whole space and

show the existence and uniqueness of nodal rapidly-decaying solutions with prescribed

zeros. By using the Prϋfer transformation, we give a comprehensive view to the

problem. We also prove the existence and the uniqueness of solutions to the equation

on the unit ball and the exterior of it with various boundary conditions.

1. Introduction

In this paper we consider the existence and uniqueness of nodal rapidly-
decaying radial solutions to

(1.1) Au + ξK(\x\)u = 0 in /?",

where n > 2 and ξ > 0 is a parameter. Concerning K(r\ we impose

(K) K(r) > 0 on (0, oo), K(r) e C^O, oo), rK(r) e Ll(09 oo).

Since we are interested in radial solutions, we consider the ordinary
differential equation

((r"-\)r + r»-iξK(r)u = 0, r > 0,
( }

As for (1.2), it is unnecessary to restrict n to integer values. We do not
require ur(0; ξ) = 0, however, we can deduce limrφ0r

w~1Mr(r; ξ) = 0 from rK(r) e
Lx(0, 1) and (1.2) can be solved with only initial value w(0) = 1. Note that
under (K), (1.2) has a unique global solution in the class C[0, oo)ΠC2(0, oo)
for any ξ > 0 (see, e.g., Ni-Yotsutani [8]) and that any solution of (1.2) has
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only finite number of zeros on (0, oo) (see, e.g., Naito [6]). We denote the
unique solution by u(r; ξ).

From the O.D.E. theoretic point of view, there are many results on the
existence and non-existence of oscillatory solutions and their behaviors. See
for instance, Chapters 1 and 2 of Kiguradze and Chanturia [5], in which

they treat equations of the form u" = p(t)u, and the references therein. We
should note that (1.2) is reduced to u" = p(t)u by u(r) = v(t)/t and t := rπ~2

with a possible singularity of p(t) at the origin. However, such an "eigenvalue
problem" as in this paper has not been investigated with full of attention.

Moreover, from the Hubert space approach (partial differential equations)
point of view, it is worth seeking a solution which decays at the rate r2~n

as r -* oo. We call a solution of this type a rapidly-decaying solution.

Once we know that u(r; ξ) is not oscillatory, it is natural to ask whether
there exists a rapidly-decaying solution with j zeros on (0, oo) for any j =
0, 1, 2, ....

Concerning positive solutions, M. Naito [6] proved the existence of a
positive rapidly-decaying solution to (1.2) under (essentially the same condition
as) (K). Later Edelson and Rumbos [2] showed the uniqueness of positive
rapidly-decaying solutions. They treated (1.1) with nonradial K(x) and gener-
alized M. Naito's results to partial differential equations.

As for solutions with zeros, M. Naito [6] also proved the existence of
nodal rapidly-decaying solutions under the additional condition rn~lK(r) e

Ll(Q, oo).
Here we efficiently use the Prufer transformation to give a comprehensive

view to prescribed zeros problems.
Let us describe the matter more precisely. From the Prufer transforma-

tion point of view [9] (see also Hartman [3], p. 332), the condition rn~lK(r) e
Ll(Q, oo) ensures the continuity of the argument θ with respect to ξ, where
we put u = p cos θ and — rn~lur = p sin θ. Then we have

θr = r^-v sin2 θ + ξrn~lK(r) cos2 θ > 0

similar to (3.5) in Section 3. Since r~(π~1) sin2 θ = rn~lu2/ρ2 and since
p(0; ξ) = 1, the first term of the right-hand side is always integrable on [0, oo).
As for the second term, on the other hand, if

f00

rn~lK(r)dr < oo,
Jo

then we can show that θ(oo; ξ) is defined and continuous with respect to ξ.

Suppose that u(r; ξ) -> c > 0 as r -> oo (as we will see in Lemma 2.4 that
lim,..̂  u(r; ξ) ¥^Q exists unless lim,.̂  rn~2u(r\ ξ) is finite). If rK(r) e L*(l, oo)
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and if rn~lK(r)φLl(\, oo), then we get

p sin θ = -rn~\ = ξ sn'lK(s)uds -> oo

as r -> oo, which implies p -> oo as r -> oo. However, as we will see in Lemma
2.2, 0(oo; ξ) < oo for any ξ (u has only a finite number of zeros). Hence
0(oo; ξ) must satisfy cos 0(oo; ξ) = 0. Otherwise, M cannot converge to c.
This indicates that 0(oo; ξ) is not continuous with respect to ξ. So we employ
the method used in Kabeya, Yanagida and Yotsutani [4], Y. Naito [7] and
Yanagida and Yotsutani [10]. That is, we must connect the solution u(r; ξ)
at r = 1 with the solution ύ(r\ ξ) to

\rn-lύr\ + rn~^K(r)u = 0, 1 < r,

lim rn~2u(r) = /?,
.r->oo

with suitable β. By the connection, we can get the desired asymptotic
behavior.

THEOREM 1.1. Suppose that (K) holds. Then there exists a unique increas-
ing positive sequence {ξj}™=ι with ξj -> oo as j -* oo such that u(r; ξj) has exactly
(j - 1) zeros and limr^00r

n"2 |M(r; ξj)\ e (0, oo).

As a by-product of the proof of Theorem 1.1, we show the existence
and uniqueness of solutions with prescribed zeros to

(1.4)

(rn-lύr\ + rn~lξK(r)ύ = 0, 0 < r < 1,

ώ(0) = 1,

tίr(l) sin φ + ύ(l) cos φ = 0,

where φ e ( — π/2, π/2].

THEOREM 1.2. Suppose that (K)

(i) // 0 < φ < π/2, ί/ien ί/i^r^ βx/sί5 α unique positive increasing sequence
such that the unique solution ύ(r; ξj) to (1.4) /ιαs exactly j zeros on (0, 1)
for 7 = 0, 1, 2, ....

(ii) // — π/2 < φ < 0, f/ien f /ιere βxisίs α unique positive increasing sequence
{ξj} such that the unique solution ύ(r; ξj) to (1.4) has exactly j zeros on
(0,1) for 7 = 1, 2, 3, ....

Similarly, we consider a singular boundary value problem
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(1.5)

(rn 1ύr)r + rn lξK(r)ύ = 0, 1 < r,

lim rn~2u(r) = β,
r-»oo

.wr(l) sin φ + w(l) cos φ = 0,

where φ e [ — π/2, π/2) and β > 0. It is sufficient to put β = 1 only for (1.5),
however, we need to vary β to show Theorem 1.1.

THEOREM 1.3. Suppose that (K) holds.

(i) // —π/2 < φ < tan-1(n — 2), then there exists a unique positive increasing

sequence {ξj} such that the unique solution ύ(r\ ξj} to (1.5) has exactly j
zeros on (1, oo) for 7 = 0, 1, 2, . ...

(ii) If tan-1(n — 2) < φ < π/2, ί/ien there exists a unique positive increasing
sequence {ξj} such that the unique solution u(r; ξj) to (1.5) has exactly j
zeros on (1, oo) for 7 = 1 , 2, 3, ....

It is proved that the condition rK(r) e 1̂ (0, oo) does not admit any oscilla-
tory solutions (see e.g., Lemma 2.2 or M. Naito [6]). However, we will show
that the number of zeros of u(r\ ξ) increases as ξ -> oo (Proposition 2.1).

To make sure that there is a solution with prescribed zeros, we use the
Prίifer transformation as used in Y. Naito [7] and Yanagida and Yotsutani
[10]. By this transformation, it becomes easy to show the existence of solu-
tions in Theorems 1.2 and 1.3 having prescribed zeros and satisfying the
boundary condition.

Concerning Theorem 1.1, we must choose a suitable β to match ύ(r; ξ)
with ύ(r\ ξ) at r = 1.

These results are closely related to the limiting behavior of radial solutions

to Au + K(\x\)\u\p~^u = 0 in RΠ as p - > l + 0 . For positive solutions, the
limiting behavior of solutions to this equation was investigated by Yanagida
and Yotsutani [11]. It is known that in rK(r) 61^(0, oo) case the behavior

has the most various features (see [11]). These Theorems enable us to gener-
alize the results of [11] to nodal solutions. We will discuss this in the
forthcoming paper.

2. Preliminaries

We collect the fundamental properties of solutions to (1.2) and (1.3), and
the asymptotic behavior of them as £->oo. While many of the properties
are seen in M. Naito [6] and Ni-Yotsutani [8], we give proofs for the self-

containedness. As for the asymptotic behavior of zeros of a solution, we use

the Prϋfer transformation.
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LEMMA 2.1. Let u be a solution to (1.2). Then u satisfies

(i) r"~1w r->0 as r -> +0.
(ii) rn~2\u\ is nondecreasing near r = oo provided \u\ > 0 near r = oo.

PROOF. From (1.2), rn~lur is monotone decreasing near r = 0. So
limr^+0r

/l~1wr exists. If lim^+or"""1^ < 0, then lim r_+ 0M = oo. This con-
tradicts w(0) = 1. Similarly, if lim^+or""1!^ > 0, then we also get a contradic-
tion. (i) is proved.

As for (ii), the equation

(rn~lur\ + ζrn'lK(r)u = 0

is written as

(2.1) J_L(r"-2«)rj + ξrK(r)u = o.
(/ J r

We may suppose that u > 0 near r = oo. From (2.1), (rn~2u)r/rn~3 is montone
decreasing near r = oo. If limr_00(rπ~2w)r/r/I~3 > 0, then the assertion is proved.
If limr^00(rw~2u)r/rw~3 < 0, then there exist positive constants c > 0 and r0 > 0
such that (rn~2u)r < — crn~3 for r > r0. Then we have

(2.2) -rS-2u(r0) < rn~2u(r) - r5~2u(r0) < --^(rn~2 - rS~2).

Letting r -> oo in (2.2), we get a contradiction since n > 2. The proof is
complete.

LEMMA 2.2. Suppose that (K) holds. Then the solution w(r; ξ) has at most
finite number of zeros on (0, oo).

PROOF. To the contrary, suppose that u(r; ξ) has infinitely many zeros
on (0, oo ). Let a > 0 be sufficiently large such that u(a\ ξ) > 0 and ur(a; ξ) = 0.
Moreover, let z > a be the smallest zero of w(r; ξ) on [α, oo), that is, κ(r; ξ) > 0
on [α, z). Then, from (1.2) we have ur(r; ξ) < 0 on (α, z). Using this property,
we obtain

sK(s)uds
n~2 o

ξ, Γ z 1
n ~ 2 ja

 S Sj

ί ξ Γ00

>]l-^- sK(s),
L ^ ^ Jα

φ; ξ) > 0
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by sK(s) e 1 (̂0, oo ) provided a > 0 is sufficiently large. This is a contradic-
tion.

Using the argument similar to that of the proof of Lemma 2.2, we get
the asymptotic behavior of u(r; ξ) as r -» oo for sufficiently small ξ > 0.

LEMMA 2.3. Suppose that (K) holds. Then for the solution w(r; ξ\ there
hold u(r\ ξ) > 0 on [0, oo) and

lim u(r; ξ)>0
r- *oo

for any sufficiently small ξ > 0.

PROOF. Let ξ > 0 satisfy

(2.3) 1 -- ^— sK(s)ds > 0.
H — 2 Jo

Now for such ξ > 0, put

= sup{r > 0|ιι(r; ξ) > 0 on [0, r)}.

Suppose that there exists ξ > 0 satisfying (2.3) such that z(ξ) < oo. Then we
have

π-2

|
z(ί)

sK(s)dS

sK(s)ds > 0

since 1 > u(r; ξ) > 0 on (0, z(ξ)) and since (2.3). This is a contradiction. Thus
we have z(ξ) = 00 for ξ > 0 sufficiently small. In this case, we can show
ur < 0 for any r > 0 and we have

w(r; ξ) > 1 ^— sK(s)ds > 0.
* — 2 Jo

Since w(r; ξ) is monotone decreasing, we obtain

ζ Γ00

lim w(r; ξ) > 1 -̂ sK(s)ds > 0
r-^oo W ~~ 2 Jo

by (2.3). The proof is complete.
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By Lemma 2.3, w(r; ξ) does not change its sign near r = oo. Concerning
the limiting behavior of the solution u(r\ ξ\ we can classify it into two classes
by (ii) of Lemma 2.1: lim r_+0 0r' l~2 |w| is finite or not. We call a solution of
the latter class a slowly-decaying solution. As we have seen in the previous
lemma, we have specified the limiting behavior of w(r; ξ) if ξ > 0 is sufficiently
small. The next lemma implies that a slowly-decaying solution always has
a non-zero limit.

LEMMA 2.4. Suppose (K) holds. Then the solution u(r; ξ) satisfies either

l im|fi(r;ί) |e(0, oo)

or

PROOF. The assertion was proved in Lemma 1 of M. Naito [6], however,
we give a proof for the sake of self-containedness.

Let t (r) be a solution of (1.2) with lim,.̂  rn~2v = β > 0. This implies
that there exists r0 > 0 such that u > 0 on [r0, oo). Put

Then we can see that w(r) is a solution of

(r'^wJr + ξr"-lK(r)w = 0.

From ΓHospitaΓs rule, we have

s^V
1™ J'Olim w(r) = lim ———^ = — lim -̂  =

r-*αo r-*oo
1!̂ ) (n - 2)β

since

and since limr^ao

rn~ίvr exists. Thus we find that v and w are linearly indepen-
dent. Since the equation is linear, any solution of (1.2) can be written as a
linear combination of v and w, that is, u = c±v + c2w with constants ct and
c2. The conclusion comes from whether c2 = 0 or not.

By Lemma 2.2, the number of zeros of u(r; ξ) is finite for any fixed ξ.
Now we show the number of zeros tends to infinity as ξ -> oo.
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PROPOSITION 2.1. For any N e NU {0}, there exists ξN>0 such that the
solution u(r\ ξN) to (1.2) has at least N zeros on (0,1).

PROOF. Let 0 < r0 < rx < 1 be fixed. Set KQ = min[rojri]K(r) > 0. Now
we consider the ordinary differential equation

(2.4) (rΓ\)r + ξr^K0u = 0.

Any solution to (2.4) can be written explicitly as

/ l£rn~lK λ
(2.5) ιι(r) = α({) sin β /^-r^r + /»«) cos

where α(ξ) and β(ξ) are constants dependent on ξ but independent of r.
The number of zeros of (2.5) on [r0, rt] tends to infinity as ξ -> oo. Since

rn-ι < rn-ι and r»-iχ0 < r

n~lK(r) on [r0, rj, the number of zeros of w(r; ξ)

on [ΓQ,^] also tends to infinity as ξ -> oo by Sturm's comparison theorem
(see e.g., Hartman [3] Theorem 3.1, p. 334). The proof is complete.

Similar to Proposition 2.1, for the problem (1.3) we have a dual version
of Proposition 2.1.

PROPOSITION 2.2. For any N e N U {0}, there exists ξN>Q such that the
solution w(r; ξN) to (1.3) has at least N zeros on (1, oo).

PROOF. Using the Kelvin transformation v(t) = rn~2ύ(r\ t = 1/r, we
reduce the problem (1.3) to (1.2) and get the conclusion by Proposition
2.1.

3. The Prufer transformation

To prove the existence of a solution with prescribed zeros, we efficiently
use the Prufer transformation.

Let

(3.1) u(nξ) = pcosθ

and

(3.2) -r"-1ιιr(r;ξ) = p s i n β

where p(r; ξ) = (u2 + (rn~lur)
2)ΐ/2 and θ = θ(r\ ξ) are continuous functions of

r satisfying p(0; ξ) = 1 and 0(0; ξ) = 0, respectively. Moreover they are also
continuously dependent on parameter ξ (see e.g., Theorem 7.4, p. 9 of Codding-
ton and Levinson [1]). We begin with enumerating fundamental lemmas.

LEMMA 3.1. Under (K), there holds θr(r; ξ) > 0 for r > 0.
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PROOF. Since ur(r\ ξ) = r~(π~1)(r/I~1Mr) and -(rn~lur)r = ξrn~lK(r)u9 we get

(3.3) pr cos θ - (p sin θ)θ, = -Γ^p sin θ

and

(3.4) pr sin θ + (p cos θ)θr = ξrn~lK(r)p cos θ.

Multiplying (3.3) and (3.4) by — sin θ and by cos θ, respectively, we obtain

(3.5) pθr = r~(n~l)p sin2 θ + ξrn~lK(r)p cos2 θ > 0.

Since p > 0 and K(r) > 0, we get the conclusion.

LEMMA 3.2. Under (K), there holds lim sup^^ 0(1; ξ) = oo.

PROOF. This comes from Proposition 2.1.

LEMMA 3.3. Under (K), there hold lim$_>+0p(l; ξ)= I and limξ_>+0 0(1; ξ) =
0.

PROOF. Let us put

r0K) = sup{r > 0|ιι(r; ξ) > 0 on (0, r)}.

Then for 0 < r < r0(ξ), we have

0 > wr(r; ξ) = -4=ι \ s^K^uds > —^ \ sn-1

r Jo r Jo

and

? Γ'
sK(s)ds.>l--i- f Γ

n~ 2 Jo

Hence r0(ξ)-^oo as ^-> +0, and we have

'lim ιι(l; ξ) = 1,
ί->o

lim MΓ(1; ξ) = 0.

^-o
This establishes the conclusion.

In turn, we put

(3.6) δ(r; {) = p^ cos Θβ9

(3.7) -^-^(r ^^^sin^,

and lim^^ θβ(r; ξ) = π/2. By ΓHospitaΓs rule, we get
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β = lim r ϊ = -z— 2 lim r""1"-
» il £ r-*oor->oo

Hence we have

lim p,(r; {) = (n - 2)0.
r-*αo

Hereafter, until Section 5, we omit the suffix β. The following are dual
versions of Lemma 3.1, 3.2, and 3.3, respectively. Lemma 3.4 is nothing but
Lemma 3.1.

LEMMA 3.4. Under (K), there holds 0Γ(r; ξ) > 0 for r> 0.

LEMMA 3.5. Under (K), there holds lim inf^ 0(1; ξ) = — oo.

These are proved in the same way as the proofs of Lemmas 3.2 and 3.3.

LEMMA 3.6. Under (K), there hold lim^0p(l; ξ) = βj(n - 2)2 + 1 and

oβ(l;ξ) = tan-1(n-2).

PROOF. Let R(ζ) = inf{r > 0|fl(r; ξ) > 0 and (r"-2fi)r > 0 on [r, oo)}.
is well-defined by Lemma 2.1. Then for re(R(ξ\ oo), we have

sK(s)Uds-(n-2)β
J r

and

ί/(r) = r"-2 s-*"-1 -ξ tK(t)Udt + (n - Ί ) β d s
f* f Γ00 1

= r"-2 s-*"-1^ -ξ tK(t)Udt + (n - Ί)β\
Jr I Js J

w~2

where Ϊ7 = r"~2u. Then we have

-(n - 2)β < r"-\(r) < ξβ I 5 (̂5)̂ 5 - (n - 2)β,'f

and

/ ξ f0 0 \ .
19 l--Γo tK(t)Λ ) ̂  I/(r) ̂  /ϊ,

\ " Z Jr /

for r e (R(ξ), oo). Letting ί -. 0, we get R(ζ) -» 0, Iimc4o ΰr(l; ί) = -(n - 2)β
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and limξ^QU(l; ξ) = β. This implies that

and

lim p(l; ξ) = βj(n - 2)2 + 1.

4. Proof of the Uniqueness

Before showing the existence of a solution, we prove the uniqueness. The
comparison lemma is very useful.

LEMMA 4.1. Suppose that ξ' > ξ > 0. Then u(r; ξ') oscillates faster than
u(r\ ξ); more precisely, if ξ' > ξ > 0, then 0(r; ξ') > θ(r; ξ) for r e (0, oo) where
θ is defined in (3.1)-(3.2).

PROOF. As we have seen in (3.5), θ satisfies

pθr = r-(n~1}p sin2 θ + ξrn~lK(r)p cos2 θ.

In the interval [r0, oo) for any r0 > 0 there is no singularity in the right-hand
side, so we can use Prufer's comparison theorem to get the conclusion. Thus
we have only to show the statement near the origin. First we choose r0 > 0
so that u(r\ ξ'\ u(r\ ξ) > 0 on [0, r0]. Such r0 > 0 exists because w(0; ξ) =
w(0; £')=!. By Green's formula, for any 0 < ε < r < r0, we have

Ls^Msi ξ')u(s; ξ) - φ; ξ')u,(s; ξ))]; = -({' - ξ) \ s"'1 K(s)u(s; ξ)u(s; ξ')ds.
Jε

From (i) of Lemma 2.1, we get ε""1tιr(β; ξ) -> 0 and ε""1ιιr(ε; ξ')->0 as ε^O.
By sπ"1X(s)w(s; ξ)u(s; ξ') e L^O, 1), we obtain

r^Kίr; ξ')u(r, ξ) - tι(r; ξ')u,(r, ξ)) = -(ξf - ξ) [' s*-*K(s)u(s; ξ)u(s; ξ')ds.
Jo

This implies

p(r; {)p(r; {')(sin fl(r; {') cos β(r; 0 - sin θ(r; ξ) cos fl(r; ξ')) > 0,

that is,

sin(0(r; {') - β(r; ί)) > 0.

Thus θ(r; ξ) < θ(r; ξ') for 0 < r < r0 by 0(0; ξ) = 0 and the continuity of θ
with respect to ξ. Recalling that we can apply Prufer's comparison theorem
on [r0, oo), we obtain

0(r; ξ) < θ(r, ξ') for r > 0.
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PROPOSITION 4.1. There exists at most one solution to (1.4).

PROOF. This is immediate from Lemma 4.1.

PROPOSITION 4.2. There exists at most one solution to (1.5).

PROOF. The conclusion comes from Lemma 4.1 and the Kelvin transfor-
mation.

5. Proof of Theorems

Before proving Theorem 1.1, we prove Theorems 1.2 and 1.3. Let

Γ={(θ(l9ξ)9p(l 9ξ))\ξe(09co)}

and

fj(β) = {&(!; ξ) +jπ, J%(1; ξ))\ξ e (0, oo)}

where 7 = 0, 1, 2, .... Then Γ is a curve in R2 starting from (0,1) and
6^(1; ξ) -> oo as β -» oo. Similarly, /)(/?) is a curve starting from (tan-1(n — 2) +
7'π, β^(n - 2)2 + 1) and 0(1: ξ) -> -oo as ξ -> oo.

PROOF OF THEOREM 1.2. We note that

lim 0(1; ξ) = 0 and lim sup 0(1; ξ) = oo

by Lemmas 3.2 and 3.3. Let ξj be the smallest number such that

ί^0'1*2"") 0 < φ < π / 2 ,
φ+jπ (7 = 1,2,3,...) -π/2<φ<0,

which implies that

w(l; ξy) sin φ + ιιr(l; £/) cos φ = 0.

In view of Lemma 3.1, 0(r; c^ ) is a strictly increasing function of r e(0, 1), so
0(r; ξy) varies from 0 to 0(1; ξj) as r does from 0 to 1. Hence u(r; ξj) has
exactly j zeros on (0,1). Moreover, by Proposition 4.1, such ξj is unique.
Finally the monotonicity of {ξj} follows from Lemma 4.1 and the divergence
of ξj comes from Proposition 2.1. The proof is complete.

PROOF OF THEOREM 1.3. We note that

lim 0(1; ξ) = tan^n - 2) and lim 0(1; ξ) = -oo
(*-» +0 ξ- oo

by Lemmas 3.5 and 3.6. Let ξj be the smallest number such that
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Ψ -jn (j = 0, 1, 2,...) -π/2<φ< taiΓ1^ - 2),

φ -jπ (j = 1, 2, 3,...) tan^n - 2) < φ < π/2,

which implies that

fi(l; ζj) sin φ + wr(l; ξj) cos φ = 0.

In view of Lemma 3.1, 0(r; |y) is a strictly increasing function of re( l , oo),

which varies from 0(1; ξj) to π/2. Hence δ(l; £,.) has exactly 7 zeros on (1, oo).
Moreover, by Proposition 4.2, such |7 is unique. This shows the conclu-

sion. Finally the monotonicity of {ξj} follows from Lemma 4.1 and the
divergence of ξj comes from Proposition 2.2. The proof is complete.

Now we are in a position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. First we note that by the linearity of the equa-
tion,

This implies that PΓj(β) = Pfj(l), where P is the orthogonal projection from
R2 to Rβ. Hence from β(ί; ξ) > 0 for ξ > 0, η(β) lies entirely beneath Γ if

β > 0 is sufficiently small, and /}(/?) lies entirely above Γ if j? is sufficiently
large. We claim that in the interval [0, tan~x(n — 2) + yπ], there exists ξj > 0

such that 0(1; ξj) = 0(1; ξj) +jπ.

We also note that Γ is continuously parametrized by ξ and so is Γj(β).
Now, for any φ > 0, let ξ(φ) > 0 and ξ(φ) > 0 satisfy 0(1; ξ(φ)) = φ and

0(1; ξ(φ)) +jπ = φ, respectively. That is, ξ(φ) and ξ(φ) are the inverse function

of 0(1; •) and 0(1; •), respectively. We show that they are continuous and
monotone.

We define Φ(φ) = ξ(φ) — ξ(φ). Taking Lemma 4.1, Propositions 4.1, and
4.2 into account, we find that 0(1; ξ) and 0(1; ξ) are one-to-one onto mappings
from R+ = [0, oo) to R+. Moreover, by Lemma 4.1, 0(1; ξ) is an increasing
function of ξ and 0(1; ξ) is a decreasing one. In addition, by the continuity
of 0(1; ξ) and 0(1; ξ\ there hold

0(1; M) = 0(1; M)

and

0(1; M) = 0(1; M)

for any subset M c R+. Thus 0(1; ξ) and 0(1; ξ) are homeomorphisms from
R+ onto itself. So the inverse mappings ξ(φ) and ξ(φ) are continuous.
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We note that Φ(0) = -ξ(0) < 0 and Φίtan'1^ - 2) +;π) =
2) + jπ) > 0. Then by the intermediate value theorem, there exists φj such

that Φ(φj) = 0. That is, ξ(φj) = ξ(φj) and we set ξ(φj) =: ξj. Since ξ(φ) is
increasing and since ξ(φ) is decreasing, φj is unique. This shows that unique-
ness of the desired solution.

Now we choose βj so that

&(!; ξ(φj)) +jπ, fail; ξ(φj)) = (φj + ;π, βjPl(l; ξj)) €

is on Γ. This implies that

0(1; ξj) = 0(1; ξj) + jπ, p(l; ξj) = pβj(l; &

that is,

u(l; ξj) = (- iyft«(l; ξj), ur(l; ξ}) = (- iy/?,.»r(l;

Hence

u(r; y = ( - iy#ΰ(r; ξ,) on (0, oo)

and

by the uniqueness of solutions to (1.1). Moreover, since

0(0; £,) = 0

and

lim θ(r; £,) = ^,
r-» oo -̂

the total variation of θ(r; ξj) as r varies from 0 to oo is (7 + l/2)π. This

implies that u(r; ξj) has exactly j zeros on [0, oo) and lίmr^aor
n~2\u(r;ξj)\e

(0, oo ). The monotonicity and the divergence of ξ is ensured by Lemmas
4.1, the continuity of θ(r; θ) with respect to ξ for any fixed r > 0, Proposition
2.1 and Proposition 2.2. The proof is complete.
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