Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations

Abdelfatah Bouziani
(Received April 30, 1996)

Abstract

The present paper is devoted to a proof of the existence and uniqueness of a strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations. The proof is based on an a priori estimate and on the density of the range of the operator generated by the studied problem.

1. Statement of the problem

In the domain $Q=(0, b) \times\left(0, T_{1}\right) \times\left(0, T_{2}\right)$, with $b<\infty, T_{1}<\infty$ and $T_{2}<$ ∞, we consider the one-dimensional pluriparabolic equation

$$
\begin{equation*}
\mathscr{L} v=\partial v / \partial t_{1}+\partial v / \partial t_{2}-\partial\left(a\left(x, t_{1}, t_{2}\right) \partial v / \partial x\right) / \partial x=f\left(x, t_{1}, t_{2}\right), \tag{1.1}
\end{equation*}
$$

where $a\left(x, t_{1}, t_{2}\right)$ satisfy the following assumptions:
H1. $c_{0} \leq a\left(x, t_{1}, t_{2}\right) \leq c_{1}, \partial a\left(x, t_{1}, t_{2}\right) / \partial x \leq c_{2}, \partial a\left(x, t_{1}, t_{2}\right) / \partial t_{p} \leq c_{3}, p=1,2$, $\left(x, t_{1}, t_{2}\right) \in \bar{Q}$.
H2. $\partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial t_{p}^{2} \leq c_{4}, \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial x^{2} \leq c_{5}, \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial t_{p} \partial x \leq c_{6}$, $p=1,2,\left(x, t_{1}, t_{2}\right) \in \bar{Q}$.
We pose the following problem for equation (1.1): to determine its solution v in Q satisfying the initial conditions

$$
\begin{array}{ll}
\ell_{1} v=v\left(x, 0, t_{2}\right)=\Phi_{1}\left(x, t_{2}\right), & \left(x, t_{2}\right) \in Q_{2}=(0, b) \times\left(0, T_{2}\right), \\
\ell_{2} v=v\left(x, t_{1}, 0\right)=\Phi_{2}\left(x, t_{1}\right), & \left(x, t_{1}\right) \in Q_{1}=(0, b) \times\left(0, T_{1}\right), \tag{1.3}
\end{array}
$$

the Neumann condition

$$
\begin{equation*}
\partial v\left(0, t_{1}, t_{2}\right) / \partial x=\mu\left(t_{1}, t_{2}\right), \quad\left(t_{1}, t_{2}\right) \in\left(0, T_{1}\right) \times\left(0, T_{2}\right) \tag{1.4}
\end{equation*}
$$

and the integral condition

$$
\begin{equation*}
\int_{0}^{b} v\left(x, t_{1}, t_{2}\right) d x=E\left(t_{1}, t_{2}\right), \quad\left(t_{1}, t_{2}\right) \in\left(0, T_{1}\right) \times\left(0, T_{2}\right) . \tag{1.5}
\end{equation*}
$$

[^0]Where $\Phi_{1}\left(x, t_{2}\right), \Phi_{2}\left(x, t_{1}\right), \mu\left(t_{1}, t_{2}\right), E\left(t_{1}, t_{2}\right), a\left(x, t_{1}, t_{2}\right)$ and $f\left(x, t_{1}, t_{2}\right)$ are known functions.

The data satisfies the following compatibility conditions:

$$
\begin{array}{ll}
\partial \Phi_{1}\left(0, t_{2}\right) / \partial x=\mu\left(0, t_{2}\right), & \int_{0}^{b} \Phi_{1}\left(x, t_{2}\right) d x=E\left(0, t_{2}\right) \\
\partial \Phi_{2}\left(0, t_{1}\right) / \partial x=\mu\left(t_{1}, 0\right), & \int_{0}^{b} \Phi_{2}\left(x, t_{1}\right) d x=E\left(t_{1}, 0\right)
\end{array}
$$

and

$$
\Phi_{1}(x, 0)=\Phi_{2}(x, 0)
$$

This type of problems is propounded in the mathematical modelling of technologic process of external elimination of gas, practises in the refining of impurities of Silicon laminae. In this case, $v\left(x, t_{1}, t_{2}\right)$ is the distribution of impurities in the lamina $\{0 \leq x \leq b\}$ at the time t_{1} and at the temperature $t_{2}, \Phi_{1}\left(x, t_{2}\right)$ is the distribution of impurities at the initial time and at the temperature $t_{2}, \Phi_{2}\left(x, t_{1}\right)$ is the distribution of impurities at the time t_{1} and at the initial temperature. The condition (1.4) means that the flow of diffusion throughout the left boundary is equal of $\mu\left(t_{1}, t_{2}\right)$, and the condition (1.5) is the total mass of impurities in the lamina $\{0 \leq x \leq b\}$.

The first investigation of mixed problems with integral conditions goes back to Cannon [8] in 1963. The author proved, with the aid of integral equation, the existence and uniqueness of the solution for a mixed problem which combine Dirichlet and integral conditions for the homogeneous heat equation. Kamynin [14] extended the result of [8] to the general linear second order parabolic equation in 1964, by using a system of integral equations.

Along a different line, mixed problems for second order parabolic equations which combine local and integral conditions were considered by Ionkin [13], Cannon-van der Hoek [9], [10], Cannon-Esteva-van der Hoek [11], Lin [16], Kartynnik [15], Benouar-Yurchuk [1], Shi [17] and Yurchuk [18]. Recently, mixed problems with only integral conditions for parabolic and hyperbolic equations have been treated in Bouziani [3] and Bouziani-Benouar [5], [6].

In this paper, the existence and uniqueness of a strong solution of problem (1.1)-(1.5) is proved. The method in the present paper is further elaboration of that in Bouziani [2], [4] and Bouziani-Benouar [7].

To achieve the purpose, we reduce the non homogeneous boundary conditions (1.4), (1.5) to homogeneous conditions, by introducing a new unknown function u defined as follows:

$$
u\left(x, t_{1}, t_{2}\right)=v\left(x, t_{1}, t_{2}\right)-\mathscr{U}\left(x, t_{1}, t_{2}\right),
$$

where

$$
\mathscr{U}\left(x, t_{1}, t_{2}\right)=\mu\left(t_{1}, t_{2}\right) x+3 x^{2} / b^{3} \cdot\left(E\left(t_{1}, t_{2}\right)-\frac{b^{2}}{2} \mu\left(t_{1}, t_{2}\right)\right),
$$

Then, the problem can be formulated in this way:

$$
\begin{gather*}
\mathscr{L} u=\notin-\mathscr{L} \mathscr{U}=f, \tag{1.6}\\
\ell_{1} u=u\left(x, 0, t_{2}\right)=\Phi_{1}\left(x, t_{2}\right)-\ell_{1} \mathscr{U}=\varphi_{1}\left(x, t_{2}\right), \tag{1.7}\\
\ell_{2} u=u\left(x, t_{1}, 0\right)=\Phi_{2}\left(x, t_{1}\right)-\ell_{2} \mathscr{U}=\varphi_{2}\left(x, t_{1}\right), \tag{1.8}\\
\partial u\left(0, t_{1}, t_{2}\right) / \partial x=0, \tag{1.9}\\
\int_{0}^{b} u\left(x, t_{1}, t_{2}\right) d x=0 . \tag{1.10}
\end{gather*}
$$

Here we assume that the functions $\varphi_{p}, p=1,2$, satisfies conditions of the form (1.9), (1.10), i.e., $\partial \varphi_{p}(0, \cdot) / \partial x=0, \int_{0}^{b} \varphi_{p}(x, 0) d x=0$, and such that $\varphi_{1}(x, 0)=\varphi_{2}(x, 0)$.

Instead of searching for the function v, we search for the function u. So, the strong solution of problem (1.1)-(1.5) will be given by: $v\left(x, t_{1}, t_{2}\right)=$ $u\left(x, t_{1}, t_{2}\right)+\mathscr{U}\left(x, t_{1}, t_{2}\right)$.

2. A priori estimate and its consequences

The problem (1.6)-(1.10) is equivalent to the operator equation

$$
L u=\mathscr{F},
$$

where $L u=\left(\mathscr{L} u, \ell_{1} u, \ell_{2} u\right), \mathscr{F}=\left(f, \varphi_{1}, \varphi_{2}\right)$. The operator L acts from B to F, where B is the Banach space of functions $u \in L^{2}(Q)$, satisfying (1.9) and (1.10), with the finite norm

$$
\|\partial u / \partial x\|_{0, Q}^{2}+\sup _{0 \leq \tau_{1} \leq T_{1}}\left\|u\left(x, \tau_{1}, t_{2}\right)\right\|_{0, Q_{2}}^{2}+\sup _{0 \leq \tau_{2} \leq T_{2}}\left\|u\left(x, t_{1}, \tau_{2}\right)\right\|_{0, Q_{1}}^{2}
$$

and F is the Hilbert space of vector-valued functions $\mathscr{F}=\left(f, \varphi_{1}, \varphi_{2}\right)$, obtained by completing the space $L^{2}(Q) \times L^{2}\left(Q_{2}\right) \times L^{2}\left(Q_{1}\right)$ with respect to the norm

$$
\|\mathscr{F}\|_{F}^{2}=\|f\|_{0, Q}^{2}+\left\|\varphi_{1}\right\|_{0, Q_{2}}^{2}+\left\|\varphi_{2}\right\|_{0, Q_{1}}^{2} .
$$

Let $D(L)$ be the set of all functions $u \in L^{2}(Q)$ for which $\partial u / \partial t_{1}, \partial u / \partial t_{2}$, $\partial u / \partial x, \partial^{2} u / \partial x^{2}, \partial^{2} u / \partial x \partial t_{1}, \partial^{2} u / \partial x \partial t_{2} \in L^{2}(Q)$ and satisfying conditions (1.9)(1.10).

Theorem 1. If the assumptions H 1 are satisfied, then for any function $u \in D(L)$, we have

$$
\begin{equation*}
\|u\|_{B} \leq c\|L u\|_{F} \tag{2.1}
\end{equation*}
$$

where $c>0$ is a constant independent of u.
Proof. Taking the scalar product in $L^{2}\left(Q^{\tau}\right)$ of equation (1.6) and the operator

$$
M u=2(b-x)\left[\Im_{x}\left(\partial u / \partial t_{1}+\partial u / \partial t_{2}\right)-a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right],
$$

where $Q^{\tau}=(0, b) \times\left(0, \tau_{1}\right) \times\left(0, \tau_{2}\right)$ and $\mathfrak{J}_{x} g=\int_{0}^{x} g\left(\xi, t_{1}, t_{2}\right) d \xi$, we obtain

$$
\begin{align*}
(\mathscr{L} u, M u)_{0, Q}= & 2 \int_{Q^{x}}(b-x) \partial u / \partial t_{1} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2} \tag{2.2}\\
& +2 \int_{Q^{x}}(b-x) \partial u / \partial t_{2} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \\
& +2 \int_{Q^{x}}(b-x) \partial u / \partial t_{1} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \\
& +2 \int_{Q^{x}}(b-x) \partial u / \partial t_{2} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2} \\
& -2 \int_{Q^{x}}(b-x) \partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \\
& -2 \int_{Q^{x}}(b-x) a\left(x, t_{1}, t_{2}\right) \partial u / \partial x \cdot \partial u / \partial t_{1} d x d t_{1} d t_{2} \\
& -2 \int_{Q^{x}}(b-x) a\left(x, t_{1}, t_{2}\right) \partial u / \partial x \cdot \partial u / \partial t_{2} d x d t_{1} d t_{2} \\
& +2 \int_{Q^{x}}(b-x) \partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x \\
& \cdot a\left(x, t_{1}, t_{2}\right) \partial u / \partial x d x d t_{1} d t_{2} .
\end{align*}
$$

The successive integration by parts of integrals on the right-hand side of (2.2) are straightforward but somewhat tedious. We only give their results

$$
\begin{align*}
& 2 \int_{Q^{r}}(b-x) \partial u / \partial t_{p} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{p}\right) d x d t_{1} d t_{2} \tag{2.3}\\
& \quad=\int_{Q^{r}}\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{p}\right)\right)^{2} d x d t_{1} d t_{2}, \quad p=1,2,
\end{align*}
$$

$$
\begin{align*}
& 2 \int_{Q^{r}}(b-x) \partial u / \partial t_{2} \cdot \mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2} \tag{2.4}\\
& \quad=2 \int_{Q^{r}} \mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right) \cdot \mathfrak{J}_{x}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2} \\
& \quad-2 \int_{Q^{x}}(b-x) \mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right) \cdot \partial u / \partial t_{1} d x d t_{1} d t_{2},
\end{align*}
$$

(2.5) $-2 \int_{Q^{x}}(b-x) \partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x \cdot \mathfrak{J}_{x} \partial u / \partial t_{1} d x d t_{1} d t_{2}$

$$
=\int_{Q_{2}^{z_{2}^{2}}} a\left(x, \tau_{1}, t_{2}\right) \cdot\left(u\left(x, \tau_{1}, t_{2}\right)\right)^{2} d x d t_{2}-\int_{Q_{2}^{t_{2}^{2}}} a\left(x, 0, t_{2}\right) \cdot\left(\varphi_{1}\left(x, t_{2}\right)\right)^{2} d x d t_{2}
$$

$$
-\int_{Q^{x}} \partial a\left(x, t_{1}, t_{2}\right) / \partial t_{1} \cdot u^{2} d x d t_{1} d t_{2}
$$

$$
-2 \int_{Q^{\Sigma}} \partial a\left(x, t_{1}, t_{2}\right) / \partial x \cdot u \cdot \mathfrak{J}_{x}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2}
$$

$$
+2 \int_{Q^{*}}(b-x) a\left(x, t_{1}, t_{2}\right) \partial u / \partial x \cdot \partial u / \partial t_{1} d x d t_{1} d t_{2}
$$

$$
\begin{align*}
-2 & \int_{Q^{:}}(b-x) \partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x \cdot \Im_{x}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \tag{2.6}\\
= & \int_{Q_{1}^{T_{1}^{1}}} a\left(x, t_{1}, \tau_{2}\right) \cdot\left(u\left(x, t_{1}, \tau_{2}\right)\right)^{2} d x d t_{1}-\int_{Q_{1}^{T_{1}^{1}}} a\left(x, t_{1}, 0\right) \cdot\left(\varphi_{2}\left(x, t_{1}\right)\right)^{2} d x d t_{1} \\
& -\int_{Q^{x}} \partial a\left(x, t_{1}, t_{2}\right) / \partial t_{2} \cdot u^{2} d x d t_{1} d t_{2} \\
& -2 \int_{Q^{\Sigma}} \partial a\left(x, t_{1}, t_{2}\right) / \partial x \cdot u \cdot \mathfrak{J}_{x}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \\
& +2 \int_{Q^{:}}(b-x) a\left(x, t_{1}, t_{2}\right) \partial u / \partial x \cdot \partial u / \partial t_{2} d x d t_{1} d t_{2}
\end{align*}
$$

$$
\begin{align*}
& 2 \int_{Q^{r}}(b-x) \partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x \cdot a\left(x, t_{1}, t_{2}\right) \cdot \partial u / \partial x d x d t_{1} d t_{2} \tag{2.7}\\
& \quad=\int_{Q^{r}}\left(a\left(x, t_{1}, t_{2}\right)\right)^{2}(\partial u / \partial x)^{2} d x d t_{1} d t_{2}
\end{align*}
$$

Substituting (2.3)-(2.7) into (2.2), we obtain
(2.8)

$$
\begin{aligned}
& \int_{Q^{x}}\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right)+\mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2}+\int_{Q_{2_{2}^{2}}} a\left(x, \tau_{1}, t_{2}\right) \cdot\left(u\left(x, \tau_{1}, t_{2}\right)\right)^{2} d x d t_{2} \\
&\left.+\int_{Q_{1}^{\tau_{1}}} a\left(x, t_{1}, \tau_{2}\right)\left(u\left(x, t_{1}, \tau_{2}\right)\right)^{2} d x d t_{1}+\int_{Q^{x}} a\left(x, t_{1}, t_{2}\right)\right)^{2}(\partial u / \partial x)^{2} d x d t_{1} d t_{2} \\
&=(\mathscr{L} u, M u)_{0, Q^{\varepsilon^{x}}}-2 \int_{Q^{x}} \partial a\left(x, t_{1}, t_{2}\right) / \partial x \cdot u \cdot\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right)+\mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right)\right) d x d t_{1} d t_{2} \\
&+\int_{Q_{2}^{\tau_{2}}} a\left(x, 0, t_{2}\right) \cdot\left(\varphi_{1}\left(x, t_{2}\right)\right)^{2} d x d t_{2}+\int_{Q_{1}^{\tau_{1}}} a\left(x, t_{1}, 0\right) \cdot\left(\varphi_{2}\left(x, t_{1}\right)\right)^{2} d x d t_{1} \\
&+\int_{Q^{r}}\left(\partial a\left(x, t_{1}, t_{2}\right) / \partial t_{1}+\partial a\left(x, t_{1}, t_{2}\right) / \partial t_{2}\right) u^{2} d x d t_{1} d t_{2} .
\end{aligned}
$$

We estimate the first term on the right-hand side of (2.8) by applying the Cauchy-Schwarz inequality and the Cauchy inequality

$$
\begin{align*}
(\mathscr{L} u, M u)_{0, Q^{r}} \leq & 2 b^{2} \int_{Q^{r}} f^{2} d x d t_{1} d t_{2}+2 b^{2} / c_{0} \cdot \int_{Q^{x}}\left(a\left(x, t_{1}, t_{2}\right)\right)^{2} f^{2} d x d t_{1} d t_{2} \tag{2.9}\\
& +c_{0} / 2 \int_{Q^{x}}(\partial u / \partial x)^{2} d x d t_{1} d t_{2} \\
& +1 / 2 \int_{Q^{r}}\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right)+\mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2} .
\end{align*}
$$

The remaining integral throughout Q^{τ} on the same side of (2.8) can be estimated as follows

$$
\begin{align*}
& -2 \int_{Q^{r}} \partial a\left(x, t_{1}, t_{2}\right) / \partial x \cdot u \cdot\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right)+\mathfrak{I}_{x}\left(\partial u / \partial t_{2}\right)\right) d x d t_{1} d t_{2} \tag{2.10}\\
& \leq 2 \int_{Q^{r}}\left(\partial a\left(x, t_{1}, t_{2}\right) / \partial x\right)^{2} u^{2} d x d t_{1} d t_{2} \\
& \quad+1 / 2 \int_{Q^{r}}\left(\mathfrak{I}_{x}\left(\partial u / \partial t_{1}\right)+\mathfrak{J}_{x}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2} .
\end{align*}
$$

By virtue of (2.9) and (2.10) and the conditions H1, we can transform (2.8) into (2.11)

$$
\begin{align*}
& c_{0} / 2\|\partial u / \partial x\|_{0, Q^{x}}^{2}+c_{0}\left\|u\left(x, \tau_{1}, t_{2}\right)\right\|_{0, Q_{2}^{\tau_{2}}}^{2}+c_{0}\left\|u\left(x, t_{1}, \tau_{2}\right)\right\|_{0, Q_{1}^{q_{1}}}^{2} \tag{2.11}\\
& \quad \leq 2 b^{2}\left(1+c_{1}^{2} / c_{0}\right)\|f\|_{0, Q}^{2}+c_{1}\left\|\varphi_{1}\right\|_{0, Q_{2}}^{2}+c_{1}\left\|\varphi_{2}\right\|_{0, Q_{1}}^{2} \\
& \quad+2\left(c_{2}^{2}+c_{3}\right)\|u\|_{0, Q^{r}}^{2} .
\end{align*}
$$

We eliminate the last term on the right-hand side of (2.11). To do that we use the following Lemma:

Lemma 1. If $f_{1}\left(\tau_{1}, \tau_{2}\right), f_{2}\left(\tau_{1}, \tau_{2}\right)$ and $f_{3}\left(\tau_{1}, \tau_{2}\right)$ are nonnegative functions on the rectangle $\left(0, T_{1}\right) \times\left(0, T_{2}\right), f_{1}\left(\tau_{1}, \tau_{2}\right)$ and $f_{2}\left(\tau_{1}, \tau_{2}\right)$ are integrable, and $f_{3}\left(\tau_{1}, \tau_{2}\right)$ is nondecreasing in each of its variables separately, then it follows from

$$
\begin{align*}
& \int_{0}^{\tau_{1}} \int_{0}^{\tau_{2}} f_{1}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}+f_{2}\left(\tau_{1}, \tau_{2}\right) \tag{2.12}\\
& \quad \leq c\left(\int_{0}^{\tau_{1}} f_{2}\left(t_{1}, \tau_{2}\right) d t_{1}+\int_{0}^{\tau_{2}} f_{2}\left(\tau_{1}, t_{2}\right) d t_{2}\right)+f_{3}\left(\tau_{1}, \tau_{2}\right)
\end{align*}
$$

that

$$
\begin{equation*}
\int_{0}^{\tau_{1}} \int_{0}^{\tau_{2}} f_{1}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}+f_{2}\left(\tau_{1}, \tau_{2}\right) \leq \exp \left(2 c\left(\tau_{1}+\tau_{2}\right)\right) \cdot f_{3}\left(\tau_{1}, \tau_{2}\right) \tag{2.13}
\end{equation*}
$$

Proof of Lemma 1. We write (2.12) in the form

$$
\begin{equation*}
T f_{1}+f_{2} \leq K f_{2}+f_{3} \tag{2.14}
\end{equation*}
$$

where

$$
T f_{1}=\int_{0}^{\tau_{1}} \int_{0}^{\tau_{2}} f_{1}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

and

$$
K f_{2}=\int_{0}^{\tau_{1}} f_{2}\left(t_{1}, \tau_{2}\right) d t_{1}+\int_{0}^{\tau_{2}} f_{2}\left(\tau_{1}, t_{2}\right) d t_{2}
$$

Since f_{1} is nonnegative function, (2.12) gives rise to

$$
\begin{equation*}
f_{2} \leq c K f_{2}+f_{3} \tag{2.15}
\end{equation*}
$$

Obviously the operator K preserves the inequality. If we apply it to (2.15) and multiply the result by c, we obtain

$$
c K f_{2} \leq c^{2} K^{2} f_{2}+c K f_{3}
$$

Hence

$$
T f_{1}+f_{2} \leq c^{2} K^{2} f_{2}+c K f_{3}+f_{3}
$$

Continuing this process, we obtain

$$
T f_{1}+f_{2} \leq c^{n+1} K^{n+1} f_{2}+\sum_{m=0}^{n} c^{m} K^{m} f_{3}
$$

It is easy to see that

$$
c^{n+1} K^{n+1} f_{2} \leq c^{n+1} 2^{n+1} /(n+1)!\cdot\left(\tau_{1}+\tau_{2}\right)^{n+1} \cdot \sup f_{2}
$$

which implies that the first term tends to zero as $n \rightarrow \infty$, while the second term on the right-hand side is majored by the function $\exp \left(2 c\left(\tau_{1}+\tau_{2}\right)\right)$. $f_{3}\left(\tau_{1}, \tau_{2}\right)$. The proof of Lemma 1 is complete.

Returning to the proof of Theorem, we denote the first term on the left-hand side of (2.11) by $f_{1}\left(\tau_{1}, \tau_{2}\right)$, the sum of the three first terms on the right-hand side of (2.11) by $f_{3}\left(\tau_{1}, \tau_{2}\right)$, and the last term on the same side of (2.11) by $K f_{2}$, by Lemma 1 we obtain

$$
\begin{aligned}
& \|\partial u / \partial x\|_{0, Q^{\tau}}^{2}+\left\|u\left(x, \tau_{1}, t_{2}\right)\right\|_{0, Q_{2}^{\tau_{2}}}^{2}+\left\|u\left(x, t_{1}, \tau_{2}\right)\right\|_{0, Q_{1}^{\tau_{1}}}^{2} \\
& \quad \leq c_{7} \cdot\left(\|f\|_{0, Q}^{2}+\left\|\varphi_{1}\right\|_{0, Q_{2}}^{2}+\left\|\varphi_{2}\right\|_{0, Q_{1}}^{2}\right),
\end{aligned}
$$

where

$$
c_{7}=2 / c_{0} \max \left(2 b^{2}\left(1+c_{1}^{2} / c_{0}\right), c_{1}\right) \exp \left(2\left(c_{2}^{2}+c_{3}\right)\left(T_{1}+T_{2}\right)\right)
$$

The right-hand side here is independent of $\left(\tau_{1}, \tau_{2}\right)$, hence replacing the left-hand side by its upper bound with respect to τ_{p} from 0 to $T_{p}, p=1,2$, thus obtaining (2.1), where $c=c_{7}^{1 / 2}$.

Proposition. The operator L from B into F is closable.
Proof. Suppose that $u_{n} \in D(L)$ is a sequence such that

$$
\begin{equation*}
u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } B \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
L u_{n \rightarrow \infty} \mathscr{F}=\left(f, \varphi_{1}, \varphi_{2}\right) \quad \text { in } F \tag{2.17}
\end{equation*}
$$

we must prove that $f \equiv 0, \varphi_{1} \equiv 0$, and $\varphi_{2} \equiv 0$.
Since $u_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ in B, then

$$
\begin{equation*}
u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } \mathscr{D}^{\prime}(Q) \tag{2.18}
\end{equation*}
$$

By virtue of the continuity of derivation of $\mathscr{D}^{\prime}(Q)$ in $\mathscr{D}^{\prime}(Q)$, (2.18) implies

$$
\begin{equation*}
\mathscr{L} u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } \mathscr{D}^{\prime}(Q) \tag{2.19}
\end{equation*}
$$

But, since $\mathscr{L} u_{n} \xrightarrow[n \rightarrow \infty]{ } f$ in $L^{2}(Q)$, then

$$
\begin{equation*}
\mathscr{L} u_{n} \xrightarrow[n \rightarrow \infty]{ } f \quad \text { in } \mathscr{D}^{\prime}(Q) \tag{2.20}
\end{equation*}
$$

By virtue of the uniqueness of the limit in $\mathscr{D}^{\prime}(Q)$, we conclude that $f \equiv 0$.
Moreover, by the fact that

$$
\begin{equation*}
\ell_{1} u_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \varphi_{1} \quad \text { in } L^{2}\left(Q_{2}\right) \tag{2.21}
\end{equation*}
$$

and the canonical injection from $L^{2}\left(Q_{2}\right)$ into $\mathscr{D}^{\prime}\left(Q_{2}\right)$ is continuous, (2.21) implies

$$
\begin{equation*}
\ell_{1} u_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \varphi_{1} \quad \text { in } \mathscr{D}^{\prime}\left(Q_{2}\right) . \tag{2.22}
\end{equation*}
$$

Moreover, since

$$
u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } B
$$

and

$$
\left\|\ell_{1} u_{n}\right\|_{0, Q_{2}}^{2} \leq\left\|u_{n}\right\|_{B}, \quad \forall n
$$

then, we have

$$
\begin{equation*}
\ell_{1} u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } L^{2}\left(Q_{2}\right), \tag{2.23}
\end{equation*}
$$

consequently

$$
\begin{equation*}
\ell_{1} u_{n} \xrightarrow[n \rightarrow \infty]{ } 0 \quad \text { in } \mathscr{D}^{\prime}\left(Q_{2}\right) . \tag{2.24}
\end{equation*}
$$

By virtue of the uniqueness of the limit in $\mathscr{D}^{\prime}\left(Q_{2}\right)$, (2.23) and (2.24) imply that $\varphi_{1} \equiv 0$. The reasoning is similar for proving that $\varphi_{2} \equiv 0$.

Let \bar{L} be the closure of the operator L with domain of definition $D(\bar{L})$.
Definition. A solution of the operator equation

$$
\bar{L} u=\mathscr{F}
$$

is called a strong solution of the problem (1.6)-(1.10).
By passing to limit, inequality (2.1) extends to strong solutions, i.e., we have the inequality

$$
\begin{equation*}
\|u\|_{B} \leq c\|\bar{L} u\|_{F}, \quad \forall u \in D(\bar{L}) \tag{2.24}
\end{equation*}
$$

Inequality (2.24) leads to the following results:
Corollary 1. If a strong solution of (1.6)-(1.10) exists, it is unique and depends continuously on $\mathscr{F}=\left(f, \varphi_{1}, \varphi_{2}\right) \in F$.

Corollary 2. The range $R(\bar{L})$ of the operator \bar{L} is closed and equals to $\overline{R(L)}$.

Thus, to prove the existence of a strong solution of the problem (1.6)(1.10) for any $\mathscr{F} \in F$, it remains to prove that the range $R(L)$ of the operator L is dense in F.

3. Solvability of the problem

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Assume that $a\left(x, t_{1}, t_{2}\right)$ satisfies the conditions H 2 . If, for some function $\omega \in L^{2}(Q)$ and for all $u \in D_{0}(L)=\left\{u / u \in D(L): \ell_{1} u=0, \ell_{2} u=0\right\}$, we have

$$
\begin{equation*}
(\mathscr{L} u, \omega)_{0, \ell}=0 \tag{3.1}
\end{equation*}
$$

then ω. vanishes almost everywhere in Q.
Proof. Relation (3.1) holds for any function u of $D_{0}(L)$, using this fact we can express it in a special form. First define g_{p} by the relation:

$$
g_{p}=\mathfrak{I}_{t}^{*} \omega_{p}=\int_{t_{p}}^{T_{p}} \omega_{p} d \tau_{p}, \quad p=1,2 .
$$

Let $\partial u / \partial t_{p}$ be a solution of the equation

$$
\begin{equation*}
-a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)=g_{p}, \quad p=1,2 \tag{3.2}
\end{equation*}
$$

where σ is a fixed number belonging to $[0, b]$ and $\mathfrak{I}_{x}^{*} g=\int_{x}^{b} g(\xi, t) d \xi$.
And let

$$
u=\left\{\begin{array}{ll}
0 & 0 \leq t_{p} \leq s_{p} \tag{3.3}\\
\int_{s_{1}}^{t_{1}} \int_{s_{2}}^{t_{2}} \partial^{2} u / \partial \tau_{1} \partial \tau_{2} d \tau_{1} d \tau_{2} & s_{p} \leq t_{p} \leq T_{p}
\end{array}, \quad p=1,2 .\right.
$$

We now have

$$
\begin{equation*}
\omega=\sum_{p=1}^{2} \mathfrak{I}_{t}^{*-1} g_{p}=\sum_{p=1}^{2} \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p} \tag{3.4}
\end{equation*}
$$

Lemma 2. The function ω defined by the relation (3.4) is in $L^{2}(Q)$.
Proof of Lemma 2. Let the inequality

$$
\begin{equation*}
\int_{0}^{b}\left(\mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right)^{2} d x \leq b^{4} / 12 \cdot \int_{0}^{b}\left(\partial u / \partial t_{p}\right)^{2} d x \tag{3.5}
\end{equation*}
$$

Indeed, the Cauchy-Schwarz inequality gives

$$
\begin{aligned}
\left(\mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right)^{2} & =\left(\int_{x}^{b}(\xi-x) \partial u / \partial t_{p} d \xi\right)^{2} \leq\left(\int_{x}^{b}(\xi-x)^{2} d \xi\right) \int_{0}^{b}\left(\partial u / \partial t_{p}\right)^{2} d x \\
& \leq(b-x)^{3} / 3 \cdot \int_{0}^{b}\left(\partial u / \partial t_{p}\right)^{2} d x
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\int_{0}^{b}\left(\mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right)^{2} d x & \leq 1 / 3 \cdot \int_{0}^{b}\left(\partial u / \partial t_{p}\right)^{2} d x \cdot\left(\int_{0}^{b}(\xi-x)^{3} d \xi\right) \\
& =b^{4} / 12 \cdot \int_{0}^{b}\left(\partial u / \partial t_{p}\right)^{2} d x
\end{aligned}
$$

By virtue (3.5) and by the fact that the conditions H 1 are satisfied, we deduce that $\partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{p} \cdot \mathfrak{J}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)$ is in $L^{2}(Q)$.

It remains to prove that $a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial^{2} u / \partial t_{p}^{2}\right)$ belongs to $L^{2}(Q)$. For this, we use t-averaging operators ρ_{ε} of the form

$$
\left(\rho_{\varepsilon} g\right)(x, t)=1 / \varepsilon \cdot \int_{-\infty}^{+\infty} \omega(s-t / \varepsilon) g(x, s) d s
$$

where $\omega \in C_{0}^{\infty}(0, T), \omega(t) \geq 0, \int_{-\infty}^{+\infty} \omega(t) d t=1$.
Applying the operators ρ_{ε} and $\partial / \partial t_{p}$ to equation (3.2), we obtain

$$
\begin{align*}
a(\sigma, & \left.t_{1}, t_{2}\right) \partial\left(\rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p} \tag{3.6}\\
= & -\partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{p} \cdot \rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)-\partial\left(\rho_{\varepsilon} g_{p}\right) / \partial t_{p} \\
& +\partial\left(a\left(\sigma, t_{1}, t_{2}\right) \rho_{\varepsilon} \mathfrak{J}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right. \\
& \left.-\rho_{\varepsilon} a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p} .
\end{align*}
$$

It follows from (3.6) that

$$
\begin{aligned}
& \left\|a\left(\sigma, t_{1}, t_{2}\right) \partial\left(\rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p}\right\|_{0, Q}^{2} \\
& \quad \leq 3 c_{3}^{2}\left\|\rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right\|_{0, Q}^{2}+3\left\|\partial\left(\rho_{\varepsilon} g_{p}\right) / \partial t_{p}\right\|_{0, Q}^{2} \\
& \quad+3 \| \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right. \\
& \left.\quad-\rho_{\varepsilon} a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p} \|_{0, Q}^{2} .
\end{aligned}
$$

Using properties of ρ_{ε} introduced in [12], yields

$$
\left\|a\left(\sigma, t_{1}, t_{2}\right) \partial\left(\rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p}\right\|_{0, Q}^{2} \leq c_{8}\left(\left\|\partial u / \partial t_{p}\right\|_{0, Q}^{2}+\left\|\partial g_{p} / \partial t_{p}\right\|_{0, Q}^{2}\right) .
$$

where

$$
c_{8}=\max \left(c_{3}^{2} b^{4} / 4,3\right)
$$

Since $\rho_{\varepsilon} g \underset{\varepsilon \rightarrow 0}{ } g$ in $L^{2}(Q)$, and the norms of $a\left(\sigma, t_{1}, t_{2}\right) \partial\left(\rho_{\varepsilon} \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p}$ in $L^{2}(Q)$ are bounded, we conclude $a\left(\sigma, t_{1}, t_{2}\right) \partial\left(\mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{p}\right)\right) / \partial t_{p} \in L^{2}(Q)$. The proof of Lemma 2 is complete.

Returning to the proof of Theorem 2, replacing ω in (3.1) by its representation (3.4), we have
(3.7) $\left(\partial u / \partial t_{1}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q}$

$$
\begin{aligned}
& +\left(\partial u / \partial t_{1}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q} \\
& +\left(\partial u / \partial t_{2}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \\
& +\left(\partial u / \partial t_{2}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q} \\
& -\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \\
& -\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q}=0 .
\end{aligned}
$$

Integrating each term of (3.7) by parts with respect to t, we obtain

$$
\begin{align*}
& \left(\partial u / \partial t_{1}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \tag{3.8}\\
& =1 / 2 \int_{Q_{2 s_{2}}} a\left(\sigma, s_{1}, t_{2}\right)\left(\mathfrak{J}_{x}^{*}\left(\partial u\left(x, s_{1}, t_{2}\right) / \partial t_{1}\right)\right)^{2} d x d t_{2} \\
& -1 / 2 \int_{Q_{s}} \partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{1} \cdot\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right)^{2} d x d t_{1} d t_{2}, \tag{3.9}\\
& \left(\partial u / \partial t_{2}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \tag{3.10}\\
& =1 / 2 \int_{Q_{1 s_{1}}} a\left(\sigma, t_{1}, T_{2}\right)\left(\mathfrak{I}_{x}^{*}\left(\partial u\left(x, t_{1}, T_{2}\right) / \partial t_{1}\right)\right)^{2} d x d t_{1} \\
& -1 / 2 \int_{Q_{s}} \partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{2} \cdot\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right)^{2} d x d t_{1} d t_{2}, \\
& \left(\partial u / \partial t_{2}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q} \tag{3.11}\\
& =1 / 2 \int_{Q_{1 s_{1}}} a\left(\sigma, t_{1}, s_{2}\right)\left(\mathfrak{J}_{x}^{*}\left(\partial u\left(x, t_{1}, s_{2}\right) / \partial t_{2}\right)\right)^{2} d x d t_{1} \\
& -1 / 2 \int_{Q_{s}} \partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{2} \cdot\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2} .
\end{align*}
$$

$$
\begin{align*}
&(3.12)-\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \tag{3.12}\\
&= \int_{Q_{s}} a\left(x, t_{1}, t_{2}\right) a\left(\sigma, t_{1}, t_{2}\right)\left(\partial u / \partial t_{1}\right)^{2} d x d t_{1} d t_{2} \\
&+1 / 2 \int_{Q_{s_{2}}} \partial a\left(x, T_{1}, t_{2}\right) / \partial t_{1} \cdot a\left(\sigma, T_{1}, t_{2}\right)\left(u\left(x, T_{1}, t_{2}\right)\right)^{2} d x d t_{2} \\
&-1 / 2 \int_{Q_{s}}\left(\partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial t_{1}^{2} \cdot a\left(\sigma, t_{1}, t_{2}\right)+\partial a\left(x, t_{1}, t_{2}\right) / \partial t_{1}\right. \\
&\left.\cdot \partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{1}\right) u^{2} d x d t_{1} d t_{2} \\
&-\int_{Q_{s}} \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial x \partial t_{1} \cdot a\left(\sigma, t_{1}, t_{2}\right) u \mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right) d x d t_{1} d t_{2} \\
&-1 / 2 \int_{Q_{s}} \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial x^{2} \cdot a\left(\sigma, t_{1}, t_{2}\right)\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right)^{2} d x d t_{1} d t_{2} . \\
&-\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q} \\
&= \int_{Q_{s}} a\left(x, t_{1}, t_{2}\right) a\left(\sigma, t_{1}, t_{2}\right)\left(\partial u / \partial t_{2}\right)^{2} d x d t_{1} d t_{2} \\
&+1 / 2 \int_{Q_{s_{1}}} \partial a\left(x, T_{1}, t_{2}\right) / \partial t_{2} \cdot a\left(\sigma, t_{1}, T_{2}\right)\left(u\left(x, t_{1}, T_{2}\right)\right)^{2} d x d t_{1} \\
&-1 / 2 \int_{Q_{s}}\left(\partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial t_{2}^{2} \cdot a\left(\sigma, t_{1}, t_{2}\right)+\partial a\left(x, t_{1}, t_{2}\right) / \partial t_{2}\right. \\
&\left.\cdot \partial a\left(\sigma, t_{1}, t_{2}\right) / \partial t_{2}\right) u^{2} d x d t_{1} d t_{2} \\
&-\int_{Q_{s}} \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial x \partial t_{2} \cdot a\left(\sigma, t_{1}, t_{2}\right) u \mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{2}\right) d x d t_{1} d t_{2} \\
&-1 / 2 \int_{Q_{s}} \partial^{2} a\left(x, t_{1}, t_{2}\right) / \partial x^{2} \cdot a\left(\sigma, t_{1}, t_{2}\right)\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2} .
\end{align*}
$$

By virtue the conditions of Theorem 2, we obtain

$$
\begin{align*}
& c_{0} / 2 \cdot \int_{Q_{2 s_{2}}}\left(\mathfrak{I}_{x}^{*}\left(\partial u\left(x, s_{1}, t_{2}\right) / \partial t_{1}\right)\right)^{2} d x d t_{2} \tag{3.14}\\
& \leq \\
& \quad c_{3} / 2 \cdot \int_{Q_{s}}\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right)^{2} d x d t_{1} d t_{2} \\
& \quad+\left(\partial u / \partial t_{1}, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q}
\end{align*}
$$

$$
\begin{align*}
& c_{0}^{2} \int_{Q_{s}}\left(\partial u / \partial t_{1}\right)^{2} d x d t_{1} d t_{2}+c_{0} c_{2} / 2 \cdot \int_{Q_{2 s_{2}}}\left(u\left(x, T_{1}, t_{2}\right)\right)^{2} d x d t_{2} \tag{3.18}\\
& \leq \\
& \quad\left(3 c_{1}^{2} / 4+c_{3}^{2} / 2+c_{4}^{2} / 4\right) \int_{Q_{s}} u^{2} d x d t_{1} d t_{2} \\
& \quad+\left(c_{1}^{2} / 4+c_{5}^{2} / 4+c_{6}^{2} / 2\right) \int_{Q_{s}}\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right)^{2} d x d t_{1} d t_{2} \\
& \quad-\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{1}\right)\right) / \partial t_{1}\right)_{0, Q} \tag{3.19}\\
& c_{0}^{2} \int_{Q_{s}}\left(\partial u / \partial t_{2}\right)^{2} d x d t_{1} d t_{2}+c_{0} c_{2} / 2 \cdot \int_{Q_{2 s_{2}}}\left(u\left(x, t_{1}, T_{2}\right)\right)^{2} d x d t_{1} \\
& \leq \\
& \quad\left(3 c_{1}^{2} / 4+c_{3}^{2} / 2+c_{4}^{2} / 4\right) \int_{Q_{s}} u^{2} d x d t_{1} d t_{2} \\
& \quad+\left(c_{1}^{2} / 4+c_{5}^{2} / 4+c_{6}^{2} / 2\right) \int_{Q_{s}}\left(\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{2}\right)\right)^{2} d x d t_{1} d t_{2} \\
& \quad-\left(\partial\left(a\left(x, t_{1}, t_{2}\right) \partial u / \partial x\right) / \partial x, \partial\left(a\left(\sigma, t_{1}, t_{2}\right) \mathfrak{I}_{x}^{*}\left((\xi-x) \partial u / \partial t_{2}\right)\right) / \partial t_{2}\right)_{0, Q} .
\end{align*}
$$

Combining the relations (3.14)-(3.19) and using (3.7), this yields
(3.20) $\left\|\partial u / \partial t_{1}\right\|_{0, Q_{s}}^{2}+\left\|\partial u / \partial t_{2}\right\|_{0, Q_{s}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial u\left(x, t_{1}, T_{2}\right) / \partial t_{1}\right)\right\|_{0, Q_{1 s_{1}}}^{2}$

$$
\begin{aligned}
& \quad+\left\|\mathfrak{I}_{x}^{*}\left(\partial u\left(x, s_{1}, t_{2}\right) / \partial t_{1}\right)\right\|_{0, Q_{2 s_{2}}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial u\left(x, t_{1}, s_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2} \\
& \quad+\left\|\mathfrak{I}_{x}^{*}\left(\partial u\left(x, T_{1}, t_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2}+\left\|u\left(x, t_{1}, T_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2} \\
& \quad+\left\|u\left(x, T_{1}, t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
& \leq \\
& \leq c_{9}\left(\left\|\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{1}\right)\right\|_{0, Q_{s}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial u / \partial t_{2}\right)\right\|_{0, Q_{s}}^{2}+\|u\|_{0, Q_{s}}^{2}\right),
\end{aligned}
$$

where

$$
c_{9}=\max \left(c_{3} / 2,3 c_{1}^{2} / 4+c_{3}^{2} / 2+c_{4}^{2} / 4,\left(c_{1}^{2}+c_{5}^{2}+c_{6}^{2}\right) / 4\right) / \min \left(c_{0}^{2}, c_{0} / 2, c_{0} c_{2} / 2\right) .
$$

Inequality (3.20) is basic in our proof. In order to use it, we introduce the new function

$$
\theta\left(x, t_{1}, t_{2}\right)=\int_{t_{1}}^{T_{1}} u_{\tau_{1}} d \tau_{1}+\int_{t_{2}}^{T_{2}} u_{\tau_{2}} d \tau_{2}
$$

Then

$$
\begin{gathered}
u\left(x, T_{1}, t_{2}\right)=\theta\left(x, s_{1}, t_{2}\right), \quad u\left(x, t_{1}, T_{2}\right)=\theta\left(x, t_{1}, s_{2}\right), \\
\partial u\left(x, t_{1}, T_{2}\right) / \partial t_{1}=\partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{1}, \quad \partial u\left(x, T_{1}, t_{2}\right) / \partial t_{2}=\partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{2}, \\
\partial u\left(x, s_{1}, t_{2}\right) / \partial t_{1}=-1 / 2 \cdot \partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{1}, \\
\partial u\left(x, t_{1}, s_{2}\right) / \partial t_{2}=-1 / 2 \partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{2} .
\end{gathered}
$$

Then (3.20) becomes

$$
\begin{align*}
\| \partial u / \partial t_{1} & \left\|_{0, Q_{s}}^{2}+\right\| \partial u / \partial t_{2}\left\|_{0, Q_{s}}^{2}+\left(1-3 c_{9}\left(T_{1}-s_{1}\right) / 4\right)\right\| \mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{1}\right) \|_{0, Q_{1 s_{1}}}^{2} \tag{3.21}\\
& +\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{1}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
& +\left(1-3 c_{9}\left(T_{1}-s_{1}\right) / 4\right)\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
& +\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2}+\left(1-3 c_{9}\left(T_{2}-s_{2}\right) / 4\right)\left\|\theta\left(x, t_{1}, s_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2} \\
& +\left(1-3 c_{9}\left(T_{1}-s_{1}\right) / 4\right)\left\|\theta\left(x, s_{1}, t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
\leq & \frac{3 c_{9}}{4}\left(\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta / \partial t_{1}\right)\right\|_{0, Q_{s}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta / \partial t_{2}\right)\right\|_{0, Q_{s}}^{2}+\|\theta\|_{0, Q_{s}}^{2}\right) .
\end{align*}
$$

Hence if $s_{p_{0}}>0$ satisfies $1-3 c_{9}\left(T_{p}-s_{p_{0}}\right) / 4=1 / 2, p=1,2$, (3.21) implies

$$
\begin{align*}
&\left\|\partial u / \partial t_{1}\right\|_{0, Q_{s}}^{2}+\left\|\partial u / \partial t_{2}\right\|_{0, Q_{s}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{1}\right)\right\|_{0, Q_{1 s_{1}}}^{2} \tag{3.22}\\
&+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{1}\right)\right\|_{0, Q_{2 s_{2}}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, s_{1}, t_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
&+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta\left(x, t_{1}, s_{2}\right) / \partial t_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2}+\left\|\theta\left(x, t_{1}, s_{2}\right)\right\|_{0, Q_{1 s_{1}}}^{2} \\
&+\left\|\theta\left(x, s_{1}, t_{2}\right)\right\|_{0, Q_{2 s_{2}}}^{2} \\
& \leq 3 c_{9} / 2 \cdot\left(\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta / \partial t_{1}\right)\right\|_{0, Q_{s}}^{2}+\left\|\mathfrak{I}_{x}^{*}\left(\partial \theta / \partial t_{2}\right)\right\|_{0, Q_{s}}^{2}+\|\theta\|_{0, Q_{s}}^{2}\right)
\end{align*}
$$

for all $\left(s_{1}, s_{2}\right) \in\left[T_{1}-s_{1_{0}}, T_{1}\right] \times\left[T_{2}-s_{2_{0}}, T_{2}\right]$.
We denote the sum of three terms on the right-hand side of (3.22) by $y\left(s_{1}, s_{2}\right)$. Hence, we obtain

$$
\left\|\partial u / \partial t_{1}\right\|_{0, Q_{s}}^{2}+\left\|\partial u / \partial t_{2}\right\|_{0, Q_{s}}^{2}-\left(\partial / \partial s_{1}+\partial / \partial s_{2}\right) y \leq 3 c_{9} y / 2 .
$$

Consequently,

$$
-\left(\partial / \partial s_{1}+\partial / \partial s_{2}\right)\left(y . \exp \left(3 c_{9}\left(s_{1}+s_{2}\right) / 2\right)\right) \leq 0 .
$$

Taking into account that $y\left(T_{1}, T_{2}\right)=0$, we obtain

$$
\begin{equation*}
\left(y \cdot \exp \left(3 c_{9}\left(s_{1}+s_{2}\right) / 2\right)\right) \leq 0 \tag{3.23}
\end{equation*}
$$

It follows that $\omega=0$ almost everywhere in $Q_{T-s_{0}}$. Proceeding in this way step by step, we prove that $\omega=0$ almost everywhere in Q. Therefore, the proof of Theorem 2 is complete.

Theorem 3. The range $R(L)$ of L coincides with F.
Proof. Since F is a Hilbert space, we have $R(L)=F$ is equivalent to the orthogonality of vector $W=\left(\omega, \omega_{1}, \omega_{2}\right) \in F$ to the set $R(L)$, i.e., if and only if the relation

$$
\begin{equation*}
(\mathscr{L} u, \omega)_{0, Q}+\left(\ell_{1} u, \omega_{1}\right)_{0, Q_{2}}+\left(\ell_{2} u, \omega_{2}\right)_{0, Q_{1}}=0 \tag{3.24}
\end{equation*}
$$

where u runs over B and $W=\left(\omega, \omega_{1}, \omega_{2}\right) \in F$, implies that $W=0$.
Putting $u \in D_{0}(L)$ in (3.24), we obtain

$$
(\mathscr{L} u, \omega)_{0, Q}=0
$$

Hence Theorem 2 implies that $\omega=0$. Thus, (3.24) takes the form

$$
\left(\ell_{1} u, \omega_{1}\right)_{0, Q_{2}}+\left(\ell_{2} u, \omega_{2}\right)_{0, Q_{1}}=0, \quad u \in D(L) .
$$

Since the quantities $\ell_{1} u, \ell_{2} u$ can vanish independently and the range of the operators ℓ_{1}, ℓ_{2} are dense in $L^{2}\left(Q_{1}\right)$ and $L^{2}\left(Q_{2}\right)$, respectively, the last equality above implies that $\omega_{1}=\omega_{2}=0$. Hence $W=0$. The proof of Theorem 3 is complete.

Remark. We can prove that our results remain in force for the case of multidimensional time:

$$
\sum_{m=1}^{n} \partial u / \partial t_{m}-\partial\left(a\left(x, t_{1}, t_{2}, \ldots, t_{n}\right) \partial u / \partial x\right) / \partial x=f
$$

with the appropriate initial conditions

$$
\ell_{m} u=\left.u\right|_{t_{m}=0}=\varphi_{m}\left(x, t_{1}, \ldots, t_{m-1}, t_{m+1}, \ldots, t_{n}\right), \quad m=1, \ldots, n
$$

References

[1] N. E. Benouar-N. I. Yurchuk, Mixed problem with an integral condition for parabolic equations with the Bessel operator, Differ. Uravn., 27 (1991), 2094-2098.
[2] A. Bouziani, Problème aux limites pour certaines équations de type non classique du troisième ordre, Bull. Class. Sci., Académie Royale de Belgique, 6 (1995), 215-221.
[3] A. Bouziani, Mixed problem with integral conditions for a certain parabolic equation, J. Appl. Math. Stochastic Anal., 9 (1996), 323-330.
[4] A. Bouziani, Mixed problem for certain nonclassical equations with a small parameter, Bull. Class. Sci., Académie Royale de Belgique, 5 (1994), 389-400.
[5] A. Bouziani-N. E. Benouar, Problème mixte avec conditions intégrales pour une classe d'équations paraboliques, C.R.A. Sci., Paris, Série 1, 321 (1995), 1177-1182.
[6] A. Bouziani-N. E. Benouar, Problème mixte avec conditions intégrales pour une classe d'équations hyperboliques, Bull. Belg. Math. Soc. 3 (1996), 137-145.
[7] A. Bouziani-N. E. Benouar, Problème aux limites pour une classe d'équations de type non classique pour une structure pluri-dimensionnelle, Bull. Polish Acad. Sci. Math. 43 (1995), 317-328.
[8] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963), 155-160.
[9] J. R. Cannon-J. van der Hoek, The existence and the continuous dependence for the solution of the heat equation subject to the specification of energy, Boll. Uni. Math. Ital. Suppl. 1 (1981), 253-282.
[10] J. R. Cannon-J. van der Hoek, An implicit finite difference scheme for the diffusion of mass in a portion of the domain, Numerical Solutions of Partial Differential equations, (J. Noye, ed), North-Holland, Amsterdam (1982), 527-539.
[11] J. R. Cannon-S. P. Esteva-J. van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, S.I.A.M. Numer. Anal. 24 (1987), 499-515.
[12] L. Gårding, Cauchy's problem for hyperbolic equations, University of Chicago, Lecture notes, 1957.
[13] N. I. Ionkin, Solution of boundary value problem in heat conduction theory with non local boundary conditions, Diff. Uravn. 13 (1977), 294-304.
[14] N. I. Kamynin, A boundary value problem in the theory of the heat conduction with non classical boundary condition, Th., Vychisl., Mat., Mat., Fiz. 43 (1964), 1006-1024.
[15] A. V. Kartynnik, Three point boundary value problem with an integral space variables conditions for second order parabolic equations, Diff. Uravn. 26 (1990), 1568-1575.
[16] Y. Lin, Parabolic partial differential equations subject to non-local boundary conditions, Ph.D. thesis, Washington state University, Pullman, WA, 1988.
[17] P. Shi, Weak solution to an evolution problem with a nonlocal contraint, SIAM. J. Math. Anal. 24 (1993), 46-58.
[18] N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Diff. Uravn. 22 (1986), 2217-2126.

> Institut National d'Enseignement Supérieur de Mécanique, Oum El Bouaghi, 04000 , ALGERIE

[^0]: 1991 Mathematics Subject Classification. 35K70
 Key words and phrases. Pluriparabolic equation, Nonlocal condition, Strong solution, A priori estimate.

