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ABSTRACT. In this paper we determine the homotopy groups as the title indicates. This

is a grip to understand the homotopy groups of π*(L2S°), as well as the category of

L2-local CW-spectra at the prime 2. For example, the result indicates that an analogue

of the Hopkins-Gross theorem on duality would require the condition 2 \χ = 0 if it

holds at the prime 2.

1. Introduction

For each prime number /?, let K(n)^ denote the «-th Morava ^-theory with
coefficient ring K(n)^ = Fp[υn,υ~l] for « > 0 and K(0)^ = Q. Here vn has
dimension 2pn — 2 and corresponds to the generators υn of the coefficient ring
BP* — Z(pj[t;ι,ι;2,...] of the Brown-Peterson spectrum BP at the prime p. A
/7-local finite spectrum F has type n if K(i)+(F) = 0 for i<n and
K(n\(F) φ 0. Let Ln denote the Bousfield localization functor with respect to
the spectrum K(0)vK(l)v- vK(ri) (or equivalently to v~lBP) from the
category of p-local CW-spectra to itself. In this paper we compute the
homotopy groups of the /^-localization of a type 1 finite spectrum W with
BP*(W} = BP*/(2}®Λ(tι,t\,tz) as a J?P*(ΛP)-comodule at the prime 2.
Notice that S° is a type 0. Since W is a type 1 finite spectrum, it is closer to
iS0 than a type 2 spectrum or an infinite spectrum. By virtue of Hopkins
and RaveneΓs chromatic convergence theorem, we can say that the homotopy
groups π*(LnS

Q) will play a central role to understand the category of Lw-local
spectra.

Besides, the Hopkins-Gross theorem says that the Ln-localization of the
Spanier-Whitehead dual of a type n finite spectrum F is equivalent to the
Brown-Comenetz dual up to some kind of suspension in the category of K(n)#-
local spectra if p IF = 0, and if the prime is large so that the Adams-Novikov
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spectral sequence for LnF collapses. Note that LnF = LK^F for a type n
finite spectrum F. By the computations [9], [14] at the prime 3, the analogue
of Hopkins-Gross theorem seems to hold even at a small prime number. Our
theorem here shows that the analogue of Hopkins-Gross theorem should also
require the condition 2 \χ = 0 at the prime 2 if it holds. Note that for a
large prime, Devinatz and Hopkins [3] shows the necessity of the condition.

Throughout this paper, the prime is fixed to be 2 and every spectrum is
2-localized. In order to state our results, we prepare some notation:

k(n).=F2[υm],

= (]Γ α λtXt/υϊ I Aα e fc(l), ® K(2\ with ifo/if = θ},

W(2k] = the cofiber of vk : Σ*k W — > W,

^(oo)-holim W(2k).
~k

Here W is the cofiber of Hopkins-Mahowald's self map γ : Σ$ V — > V [4],
where F = M 2 Λ M η Λ Mv for the cofiber Mξ of the elements ξ = 2,η e πι(S°)
and v e π3(5°), and υ : Σ4 W — > W is the essential map given by v e
\Mι A Mη,M2 Λ Mη]4 inducing BP*(v) — v\ (see Lemma 2.3).

THEOREM 1.1. The Adams-Novίkov E^-termfor computing π*(L2PΓ(oo)) is
a k(\] ̂ -module

This theorem implies the following:

COROLLARY 1.2. The Adams-Novikov E^-term for computing π*(

for some k > 1 is a k(\} ^-module isomorphic to

€2 ® Λ(/ι21, /ι30,

if k = 1, and

if k> 1. /ίere Q<xα> denotes a k(\}^-module isomorphic to the direct sum of
K(\)J[v\}/(v\) generated by XΛ'S, which is also isomorphic to
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Since 2 lw(k) φ 0 (see Corollary 7.2), the condition 2 \x = 0 is necessary
for the analogue of the Hopkins-Gross theorem at the prime 2. In fact,
Corollary 1.2 shows that the homotopy groups of the finite spectrum W(k]
(k > 1 ) does not satisfy the duality, which is expected to hold if the analogue of
Hopkins-Gross theorem without the condition is valid in this case. As is seen
in Corollary 1.2 above, W(2) satisfies the duality in the £2 -term (or EΌo-term)
and 2 1 w^) Φ 0. So this indicates that there would be some non-trivial
extension in the spectral sequence, by which the duality fails to hold in the
homotopy groups of W(2).

As we have noticed above, W is a type one finite spectrum. The fol-
lowing would be a mile stone to understand the homotopy groups π*(L2*Sί°):

COROLLARY 1.3. The Adams-Novikov E^-term for computing π*(L2W] is
a k(\] ^-module isomorphic to

o ® Λ(b) ® C(ao)p

θ (C(oo)<A2i,A30,A2iA30> θ C(3)<A3ι,λ3θλ3i» ® Λ(p).

Here C'(oo)<l> = {i^/u/ | i, j zZ,iΦ 0, j > 0} and b e π4(L2 W}.

2. Finite spectra

We denote BP the Brown-Peterson spectrum and E(2) the Johnson- Wilson
spectrum. The coefficient rings are B = BP* = Z(2)[ι>ι, ι>2> - •] and E =
E(2)^ = Z(2) [ΌI , Ό2 , ι>2 l ] - W e a l s o h a v e p = BP* (Bp] = BP* [t i ̂ 2 , - -] and
L = E(2)^®BP®BE(2}^ and (B,P) and (E,L) are the Hopf algebroids.
Then the ^2-terms of the Adams-Novikov spectral sequences for computing the
homotopy groups π * ^ ) and π*(L2X) are given by Ext*P(B,BP*(X)) and
Ext*L(E,E(2)t(X)), respectively. Here we denote L2 : ¥ -> !? the Bousfield
localization functor with respect to E(2), in which ^ denotes the homotopy
category of 2-local CW^-spectra. The Ext groups Ext^(F, M) for a Hopf
algebroid (F, G) and a G-comodule M are obtained as a cohomology of a
cobar complex (Ωs

GM,ds : ΩS

GM -> ΩglM)s. Here

Ω*GM = M®FG®F •- ®FG (s factors of G),

and
s

ds(m ®g) = ψ(m) ®g

for the comodule structure ψ : M -> M ®F G and At : G®s -> G®(s+lϊ defined
by Ai(g\ ® •- ®gs] = g\® -- ® A(gt] ® ® gs, where J : G -> G ® F G is
the diagonal of G.
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Let Mα for an element α e π^S 0) denote a cofiber of the map a : Sk — » SQ

representing the homotopy class α. Consider a spectrum X = Mη Λ Mv and
the inclusion / : 5° — > X to the bottom cell.

LEMMA 2.1. [4] There exits an essential map γ : Σ5 X — > X such that
γi€π*(X) is detected by the class h^ = [t2 H ---- ] of the E^-term

PROOF. The cofiber sequences

50 » Mη _% S\ and

induce the exact sequences

> π,_ 4 M — , . . - , and

+ πs(S»] + ns(Mη] π,_2(

We further know the homotopy groups of spheres:

(2.2) π0(S°) = Z, πι(S°)=Z/2<ι/>, π2(5°)

π3(5°) - Z/8<v> π4(^°) - 0 - π5(S°), π6(5°) = Z/2<v2>

with a relation 4v = //3. By these, we obtain π5(Ar) = Z/2</vv> and
π e ^ ) ^ Z, where veπs(Mη) and π̂ v = v. We further see that v*(/vv) =
/vvv = ivvv = 0. Chasing the commutative diagram

[X,X}5

ns(X)

we have an element ye [A^A^ such that iηi*(γ) = ivV
Note that veπ3(5°) is detected by h\\ — [t\ - v\t\] e E\tl/(B,B) and

hM = [t2 + a(t%-viti)]eExtl'6(B,BP*(Mn)) is sent to h\\ by πη*. Here
BP+(Mη) = B® Λ(a] with ψ(a) =a + t\ and \a\ = 2. Since π*v = v, filt v < 1,
and so v is detected by /*2o- q.e.d.
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LEMMA 2.3. There exists a map v : Σ4M2 Λ Mη — > MI Λ Mη such that

PROOF. Consider the exact sequence

πi(Mη) - ^ π 4(M 2 Λ Mη) -

associated to the cofiber sequence SQ — >• *S° - ^ MI -̂ -» Sl. Then we obtain
π4(M2) = Z/2<^> by a computation with (2.2), where nή — η2. Note that the
element η is detected by v\ of the ^-term of the Adams-Novikov spectral
sequence for computing π*(M2 Λ Mn). In fact, the differential d^ induces
the connecting homomorphism on E$ -terms, which sends v\ to h\Q since
dι(v\) — AIO in the ^-term for π*(M2). Since 2^ = 0 and ηή = 0, η is extended
to v e [M2 Λ Λf̂ , Λ/2 Λ M^]4 as desired. q.e.d.

COROLLARY 2.4. Γλere exw^ a spectrum ¥2 such that BP*(Y2) =
BP*/(2, v\] ® Λ(ά) with \a\ = 2.

Consider the spectrum W = Λf2 Λ /)(^4ι), where i)(^4ι) denotes the cofiber
of γ (cf. [4]). That is, W fits into the cofiber sequence

(2.5) Σ5M2 Λ X-^M2 Λ X— +W

Then by Lemma 2.3, we obtain the self map v : Σ4 W — > W such that
BP*(v) = v\. We write t j " 1 FT = holim PF and define a spectrum JF(oo) by the
cofiber sequence v

(2.6) W^>v\lW— >W(ao).

Note that fΓ(oo) is given another way: Define a spectrum W(2k) by the
cofiber sequence

and the map w(A:) : 274

(2.7)

ϊF(2Jk + 2) by the commutative diagram

Σ««w ^—^ W

Now JF(oo) is given by

W(oo) = holim W(2k)

These show the following
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PROPOSITION 2.8. The E(2}^-homology of these spectra are as follows:

E(2\(X)=E(2\®Λ(a,b),

= E(2)J(2)®Λ(a,b,c),

= »r'£(2)./(2) ®Λ(a,b,c),

E(2),(W(2k)) = E(2)J(2,v?)®Λ(a,b,c),

Here \a\ = 2, \b\ = 4 and \c\ = 6 with coaction \j/(ά) = a + t\, ψ(b) = b + t\ and
ψ(c) =

3.

In this section we will compute H*K(2)^ = Ext*L(E,K(2)^® Λ(a,b,c)).
Here H*M = Ext*L(E,M®Λ(a,b,c)) for an L-comodule M, and K(2}^ is the
L-comodule K(2\ = E(2)J(2,υι) = F2[v2^}.

To compute these modules, we introduce Hopf algebroids (5, ̂ 2) =
(B, 5(^2,̂ 3, . •]) whose structure inherits from (B,P), and

(A,Σ) = (A, A ®BP2 ®BA) = (F2[υι,Ό2,Όϊl],A[t2,t3,.. ]/(ηR(vi) : i > 2)).

Since we see that

M ® Λ(a,b] = M\3ΣA,

the change of rings theorem (cf. [12, Th. Al.3.12]) shows

(3.1) /ΓM = Extjμ,M(x)Λ(c)).

Take M = K(2)^. Then we have a short exact sequence

(3.2) 0

of Z'-comodules.

THEOREM 3.3. H*K(2)^ = K(2)^ ® Λ(h2\,hw,hι\,p), where the generators
are represented by the cocycles of the cobar complex as follows: hι\ = [ί̂ ],
AM = [tί\ (i = 0,1) and p = [v^5t4 +

PROOF. Note first that ΈxfΣ(A,K(2),)=ExfΣ,(
κ(2') >κ(2') ) f o r Σ' =

Σ/(v\). Since K(2)t consists of primitive elements,

Ext*Σ(A,K(2)t) = K(2).
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whose right hand factor is determined in [6, p. 239] to be
Λ(λ2i,λ3θ,Λ3i,/>) Apply the functor Ext*Σ(A,—) to the short exact sequence
(3.2), and we have the long exact one

. Tj-.+ S'—1 / A V(^\ \ ^ Cv+ 5 ( A YO\ \ v ΐ]sΊfO\
• ' > .CXl^ ^vϊ, .lY^ZJ^ j > Jj/Xl^^Λ, Λ. \^ΔJ^) >• ΓL Λ^^ZJ^ >• ,

where δ(x) = h^x since the comodule structure on c shows [do(c)] = /Z2o by
definition of do of the cobar complex. This shows the theorem. q.e.d.

4. Bockstein spectral sequence

Consider the Γ-comodule M/ = E(2)J(2, ι?f) = lim E(2)J(2, ι?f). Then
the colimit of short exact sequences *

for k > 0 gives rise to another short exact one

0 — > * ( 2 ) - i * Af'-^ Jlf1

where ^(x) — x/υ\. Noticing that H*— is a homology functor, we have the
long exact sequence

0

Then by [8, Remark 3.11], we can show

LEMMA 4.1. If a submodule Bs = £ α C(oo)<jcα> 0 ^ C(nβ)(yβy of
HSM\ satisfies the following two conditions, then HSM\ = B*.

1. Ίmφ+cff1,
2. The set {^(v^yβ/v^)}^ is linearly independent over J?Ί.

In fact, we obtain the exact sequence — >HSK(2)^ - ^ Bs - ^ B1 - ^
Hs+lK(2)t — > if B5 satisfies the conditions of Lemma 4.1. Then just use
[8, Remark 3.11] to certify the lemma.

LEMMA 4.2. In the cobar complex Ω^A®Λ(c),

</l(*3θ)=0.

Hereto = fe + vict2andtu =t\ + v\v\tτ> + v^v^tt + »ι(ι?J16/5 + ^ht\ +
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PROOF. By HazewinkePs and Quillen's formulae, we obtain

3

Δ(*ύ = Σ ** ® *3-' ~v^h ® *ΐ('2 ® * + ! ® '2) + '2 ® '2)
*=0

-h ϋ?(fι ® *ι)4(/2) - »ι (*ι ® h}A(t(} - 2v2(tι

in P ® 5 P . Now sending t\ to 0 and the formula ψ(c) = c + h show the first
equation.

For the second, we compute:

4- ^ ^

if (g> ί2) mod(ι?ί),

Now using the relations ι?z = 0 = //Λ(ϋz) in 27 for i > 2, we see the second
equation. q.e.d.

LEMMA 4.3. We have a cochain R^ e Ω1

ΣA such that d\(Rk) = 0 mod(ι;j:)
and Rk = v^U + v^t\ mod(ι?ι).

PROOF. Note that t\ = v^U mod(t ι) in Σ by the relation ηR(vβ) = 0, and
d\(R) = 0 mod(ϋι) for R = v^U + i J 1 0 ^ since /? = [R]. Now put /^ = R2\
and we see the lemma. q.e.d.

For the next theorem, we introduce the &(!)„ -modules

) , = C(oo)<A2i,A30>®C(3)<A3i>,

). - C(oo)<A21A3o> θ C(3)<A3oA3i>.

By definition, there exists an integer k > 0 for each element x e
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E%(W(co)) such that v%x = 0. Then Lemma 4.3 shows that xRk e £%(W(ao)),
and then we denote it by xp.

THEOREM 4.4. The E2-term E%*(L2W(ao)) of the Adams-Novikov spectral
sequence computing π*(W(oo)) is isomorphic to a direct sum of k(\] ̂ -modules
F(s\ and F(ί -!)./».

PROOF. We proceed to prove the theorem by checking the conditions 1
and 2 of Lemma 4.1 for each s. Put £P = C(oo)5 and we see easily that the
conditions 1 and 2 are satisfied.

For s= 1, we just check the condition 2, that is, if the set {δ(h $\/v\}} is
independent. By Lemma 4.2, we compute δ(\f2h^\/v\) = i^Aii/bi, which is
obviously non-zero.

This shows that Im φφ = {x/υ\ \xeH2K(2)^x φ K(2)^h2\h^y}. Thus
B2 = F(2}^ ®F(\)^ρ contains Im φ^. Lemma 4.2 also shows

vs~3h2\h3Qh3ι and

Thus the condition 2 for B2 is satisfied and so H2M\ = B2. Besides, the
formulae above show that the image of φ* in H3M\ is the ^(2),, -module over
{h2\hwp/v\,hwhτ>\p/v\}. Furthermore, we see that

Therefore we obtain H*M\ and Im φ+ = 0 c H*M\. For n > 4, since
Im φ+ = 0, we set R1 = 0 and get HnM\ = 0 by Lemma 4.1. q.e.d.

5. The Adams-Novikov differentials

In this section, we compute differentials of the Adams-Novikov spectral
sequence. By Theorem 4.4, we see that £"2(^(00)) = 0 if s > 3, and so the all
Adams-Novikov differentials dr are zero except for dτ> : E^(W(c/o)) —>
E2(W(ao)). In order to study the exceptional case, recall [6], [5] the spectra D
and Z (which is denoted by X in [5]). Let Γ̂<1> be the Mahowald ring
spectrum with BP*(X(iy) = B/(2}[tι\. Then υ\ e π2(X(iy) is extended to the
self map v\ : Σ2 Γ̂<1> —> Aχi>, whose cofiber is D. C is defined by the cofiber
sequence X<\y -> v^λX<\y -+ C and Z is the cofiber of γ : Σ5 C -> C defined
by Λ 2 oeπ 5 (^<l». Note that C = hqlim C(n) and Z = holim Zn, where
C(n) and ZΛ is defined by the following commutative diagram of cofiber
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sequences:

(5.1) Σ2nC

Z = holim ZΛ

Then

(5.2)

and since D = C(l),

(5.3) Zi is a cofiber of y : 275 Z) — » Z>, where y is obtained from the element

PROPOSITION 5.4. TΛe E^-term of the Adams-Novikov spectral sequence
computing πif(L2Z'i) is the tensor product of Λ(hw,h-$\,p) and a direct sum of
k(\\-modules K(2),[v2},vlK(2)+[v3},h2iK(2Uv3] and

PROOF. By (5.3), we have an exact sequence

ES

2-\L2D]

and
we obtain

(5.5)

by [6, Th. 2.1]. Therefore,

In fact, we can deduce that ^3(1^) = 0 from [6, Th. 7.1], and so we see the
special sequence collapses. By the definition (5.1) of Zn, we have the cofiber
sequence Σ2 Z\ — U Z2 — » Z\ . This gives rise to the long exact sequence

of ^2-tenns. Since <5(ι>3) = h2\ as is seen in [5], the proposition follows from
(5.5). q.e.d.

PROPOSITION 5.6. In the Adams-Novikov spectral sequence computing
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PROOF. By Theorem 4.4, we see that

(5.7)

for ε e {1,2} and for some λ e F2 in the £3 = E2-term of the Adams-Novikov
spectral sequence for τr*(L2JΓ(oo)). Here 6t = 6s- 2j - 22 + 2ε. In fact,
έ/3(ι£/t>/) should be infinitely t?ι -divisible because of the naturality of differ-
entials and existence of the map v : Σ4 W(ao) — » W(co). Consider now the
cofiber sequence

^Σ4 JF(oo) -% W(ao) - U Σ5 W(2] —>

obtained from the homotopy colimit of cofiber sequences Σ4k W(2) —>
W(2k + 2) —> W(2k) —^ Σ4k+l W(2), where w* = w(fc) w(2) for w(fc) in
(2.7). Since d^(ιf2/υ{~2) = v*dι(\f2/v{] = 0 in the £2-term by (5.7), 'i%/v{~2 is a
permanent cycle of the spectral sequence for π*(L2^(oo)). Therefore, the
equation (5.7) also produces the relation

in homotopy groups π*(W(2)). Consider the commutative diagram

JF(oo) W(2)

Now send (5.8) by ϊ, we have

Since i^/t?/ is a permanent cycle in the spectral sequence for π*(L2Z) by the
main theorem of [5], i*(ι>2/v{~2) = i*(ι%(ι%/Ό{)) = 0. On the other hand,
i+v^vfaihwp is not zero if ε = 2 by Proposition 5.4. Therefore we see that
λ = 0 in this case.

Now suppose that ε = 1. Put V = M 2 Λ Mη Λ M v = M2 Λ X. Then we
have a cofiber sequence Σ5 V ^ V -> JΓ by the definition (2.5) of W. The
inclusion map V -^ W also yields the map F2 r t —» W(2ri) for each n, where Vn

is a cofiber of v" : Σ2n V —> V in which the map ι?ι is given in [2]. We also
have a map t i : Vn —>• FΠ+ι fitting into the commutative diagram

W(2n
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Taking its homotopy colimit gives us a map K : K(oo) — > W(co). The relation
(5.7) is pulled first back to d3(vs

2/v{+2) = λvfaihwp/υ] in El(L2W(ao)) by t;*
and then back it to the one in the spectral sequence for π*(L2F(oo)) by K*.
Thus,

(5.9)

for some x e £2^2^(00)). This is sent to

d3(vs

2/v{+l) = λv

by the map v\ : Σ2 F(oo) — > F(oo). Send this to £2(^2^(00)) again, and we
obtain d3(v^/v{+λ} = λυ^h^ih^p / v{. This is the case where ε = 2, and so we

obtain A = 0 as we have studied above. q.e.d.

This proposition and Theorem 4.4 imply that dr = 0 for all r in the
Adama-Novikov spectral sequence for computing π*(W(oo)), and hence we
obtain

THEOREM 5.10. The Adams-Novikoυ spectral sequence for computing
π*(W(ao)) collapses from E2-term. That is, E^ = EJ.

By this and Theorem 4.4, we see Theorem 1.1 in the introduction.

6. Homotopy groups

Recall [2] the self map Ό\ : Σ2 Y -> Y for Y = M2 Λ Mη. Then Ravenel's
computation [10] shows the following

LEMMA 6.1. π*(t;j~1y) = K(l)^ ® ^(p\), where pλ is represented by the

cocycle uj~3(ί2 — *ι) H- v^4V2t\ of the cobar complex.

PROOF. Since BP*(Y) = BP*/(ΐ) ® Λ(ά) with coaction ψ(a)=a + t\, the
EΊ -term of the Adams-No vikov spectral sequence computing πφ(t;j"1 Y) is given
by

by the change of rings theorem [7]. We then have a long exact sequence

in which Ex4(1)tJr(1)(A:(l).,Λ:(l)φ)=Λ:(l),[Aιo]®^(/»ι) shown in [10].
Furthermore, the structure on a yields δ(x) = xh\$. Thus we see that E\(v^1 Y)
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Since E*2(v?Y)=0 if
s > 1, dr = 0 in the Adams-Novikov spectral sequence, and we see that
E^fa1 Y) = Es

2(υ\lY}. The sparseness of the spectral sequence implies the
triviality of the problem of extension and we obtain the homotopy groups.

q.e.d.

LEMMA 6.2. π*(v\lM2 Λ X) = K(l)+ ®A(pl,b), where \b\=4 and the

Adams-Novikov filtration of b is 0.

PROOF. Note that MI Λ X = Y Λ Mv. The generator v e πι(SQ) induces
the map v : Σ3 t^1 Y -> ϋf l Y. Then, v, : BP*(vϊl Y) -> J S P , ^ 1 F) is trivial
and so we have a long exact sequence

of ^2-terms. We compute BP*( Y Λ Afv) = BP*/(2) <g> Λ(α, 6) with |6| = 4 and
= i + t\, and so we compute

= [v\t\ ®x] = [d(v\ax)\

= 0,

in which we use the relations ηR(v2)=0 = V2 in ^(1)^^(1) and ηR(v2) =
V2 + v\t[ — v\t\. Thus we have the desired homotopy groups. The filtration
of b is read off from the short exact sequence turned from the above long exact
sequence. q.e.d.

LEMMA 6.3. π*(ι;jf ! W) = £"(!)„ ® Λ(b, ΛIO), where |A2o| = 5 am/ ίÂ
Adams-Novikov filtration of h^ is 1.

PROOF. We see that the map 1 Λ γ : Σ5M2 Λ X — > M2 Λ A" induces an

isomoφhism Έ%(v\lM2 Λ Â ) ^ .Ejί^Γ 1^ Λ A") by Lemma 2.1, since /?! = /?2o
and δ(x) = xhw> Now consider the exact sequence associated to the cofiber
sequence (2.5) that defines W, and we obtain the lemma in the same manner as
the above one. q.e.d.

These lemmas imply the following

COROLLARY 6.4. The Ei-term Es

2(v^lW) of the Adams-Novikov spectral
sequence for π*(v\l W] is isomorphic to K(\\ ® A(b) if s = 0, 1, and 0 if s > 1.

7. Self homotopy sets

By (2.3), we obtain BP*(W(2k)) = BP*/(2,v* ) ®A(a,b,c). The E2-
terms for computing π*(L2W(2k)} are read off from Theorem 4.4, which are
stated in Corollary 1.2. Furthermore, we see that
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PROPOSITION 7.1. [W(2k), W(2k)]_4k_7 = Z/4 for k>Q.

PROOF. Note first that [M2, W(2Jc)]s = 0 if s < -I. A filtration given by
the skeleton of W(2k) yields a spectral sequence

V [M2) W(2k)]s+J =* [W(2k), W(2k)]s.
JεJk

Here Jk = {0, 2, 4, 6, 4A: + 1 , 4A: -f 3, 4k + 5, 4A: + 7}. Therefore, we have

[M2, FF(2*)]0 £ [JF(2*), tfWU-T

Besides, [M2, W(2k)]0 = [M2,M2]0 = Z/4 and we have the proposition.
q.e.d.

COROLLARY 7.2. 2 1 ̂ ^ j 7̂  0 for k > 0.

PROOF. Take a generator xe[W(2k),W(2k)]_^k_Ί. Then x induces a
map x, : [W(2k), W(2k)]Q -> [W(2k), W(2k)]_4k_Ί such that jc*(2 \w(7k)) =
2 :̂ 7̂  0 by Proposition 7.1. q.e.d.

8. Homotopy groups

Applying the homotopy theory E(2)^(-) to the cofiber sequence (2.6)
generates the short exact sequence 0 -> E(2)+(W) -> t;f1

JE'(2)j(e(FF) ->
£"(2)^(^(00)) —^0, and hence the long exact sequence

of ^2-terms. The ^-terms E$(vϊlW) and E$(L2W(ao)) are determined in
Corollary 6.4 and Theorem 4.4. Therefore, the long exact sequence splits into
the exact sequences

0 -> Έ%(L2W] -> K(\\ ® A(b) - , C(oo)<l>

-> E\(L2W) -> ^(1),, ® yl(ft) -> 0, and

0 -» ^ ( L 2 ^ ( o o ) ) -> ^ ( L s F F ) ^ 0 (j > 0).

These show Corollary 1.3 in the introduction.
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