HIROSHIMA MATH. J. **28** (1998), 1–5

A remark on homology localization

Tetsusuke OHKAWA

(Received January 20, 1994) (Received December 27, 1996)

ABSTRACT. A. K. Bousfield [1], [2] introduced the notion of localization of spaces and spectra with respect to homology functor h and proved the exsitence theorem. In this note we introduce a variation of this notion, (h, n)-localization, which interpolates a contractible space or spectrum pt and the localization $L_h(X)$ of the original space or spectrum X and prove the existence theorem along the arguments of [1], [2].

1. Statement of results

Let $\mathscr{C}, \mathscr{L}, \widetilde{\mathscr{C}}, \widetilde{\mathscr{I}}$ denote the categories of *CW*-complexes, *CW*-spectra and their homotopy categories respectively.

DEFINITION. Let \mathscr{A}, \mathscr{B} be categories and $\mathscr{F} : \mathscr{A} \to \mathscr{B}$ a functor.

i) $C \in Ob(\mathscr{A})$ is called \mathscr{F} -local if $f^* : \mathscr{A}(B, C) \to \mathscr{A}(A, C)$ is bijective for any $A, B \in Ob(\mathscr{A})$ and any $f : A \to B$ such that $\mathscr{F}(f)$ is an isomorphism.

ii) A morphism $g: A \to C$ is called an \mathscr{F} -localization map of A if C is \mathscr{F} -local and $\mathscr{F}(g)$ is an isomorphism. In this case C is called an \mathscr{F} -localization of A.

Let h be a generalized homology functor and n an integer. Let $\alpha = (h, n)$ be the functor defined by $\alpha(X) = (h_k(X)|k < n)$ from $\mathcal{D}(=\tilde{\mathscr{C}} \text{ or } \tilde{\mathscr{F}})$ to $\{(A_k|k < n); A_k \in Ab\}$, where Ab is the category of abelian groups. Then we can prove the following.

THEOREM 1. Let h be a generalized homology functor which is representable by a spectrum and $\alpha = (h, n)$ the functor above for an integer n. Then it holds that

i) Any object $X \in Ob(\mathcal{D})$ has an α -localization map.

ii) Let $f: X \to Y$ and $g: X \to Z$ be α -localization maps of X. Then there exisits a map $k: Y \to Z$ such that $k \circ f \simeq g$. Moreover, such a map k is always an isomorphism in the category \mathcal{D} .

Note that (h, n)-localization of X is unique up to homotopy by this theorem. This may be called also half h-localization and denoted by $L_h^n(X)$.

Tetsusuke OHKAWA

REMARK. Let $h_2 = H_2(-, \mathbb{Z} \oplus \mathbb{Z}_2)$. Then there is no h_2 -localization map of the real projective plane \mathbb{RP}^2 for the functor $h_2 : \tilde{\mathscr{C}} \to Ab$.

PROOF. Assume that $f: \mathbb{RP}^2 \to Y$ is an h_2 -localization map. Since the map $S^m \to pt$ is an h_2 -isomorphism for $m \neq 2$, Y should be an Eilenberg-MacLane complex K(G,2). Moreover G = 0 since $H_2(\mathbb{RP}^2, \mathbb{Z}) = 0$. This contradicts the fact that $H_2(\mathbb{RP}^2, \mathbb{Z}_2) \neq 0$.

2. Proof of Theorem 1

We shall prove theorem 1 only for the case of CW complexes or more precisely simplicial sets. The case of CW-spectra can be proved similarly and moreover we can give a sligtly clearer proof by using the additive and triangulable properties. If X is a simplicial set, #X denotes the cardinality of the set of non-degenerate simplices of X. Let γ be a fixed cardinal number greater than the cardinality of $\sum_{k < n} \#h_k(pt)$ and \aleph_0 . A map $f: X \to Y$ is called an α -isomorphism, if $\alpha(f)$ is an isomorphism. An α -isomorphism $f: X \to Y$ is called a versal α -isomorphism (resp. versal α -epimorphism) if 'Z is α -local' is equivalent to ' $f^*: [Y, Z] \to [X, Z]$ is bijective (resp. surjective)' for any Z.

PROPOSITION 1. Let X, Y, Z be simplicial sets with $X, Z \subset Y$. If the inclusion maps $X \subset Y$ and $X \cap Z \subset Z$ induce α -isomorphisms, then the inclusion map $X \cup Z \subset Y$ also induces an α -isomorphism.

PROOF. This follows from the five lemma applied to the Mayer-Vietoris exact sequence:

$$\begin{array}{c} h_k(X \cap Z) \to h_k(X) \bigoplus h_k(Z) \to h_k(X \cup Z) \to h_{k-1}(X \cap Z) \to h_{k-1}(X) \bigoplus h_{k-1}(Z) \\ \cong \downarrow \qquad \qquad \cong \downarrow \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \\ h_k(Z) \longrightarrow h_k(Y) \bigoplus h_k(Z) \to \qquad h_k(Y) \longrightarrow \qquad h_{k-1}(Z) \longrightarrow h_{k-1}(Y) \bigoplus h_{k-1}(Z) \end{array}$$

for k < n.

PROPOSITION 2. Let X, Y be simplicial sets with $X \subset Y$. If the inclusion map $f: X \to Y$ induces an α -isomorphism, then the inclusion map $X \times [0,1] \cup Y \times \{0,1\} \subset Y \times [0,1]$ also induces an α -isomorphism.

Proof is similar to the above.

PROPOSITION 3. Let X, Y, Z be simplicial sets such that $X, Z \subset Y, \#Z < \gamma$ and the inclusion map $f: X \to Y$ is an α -isomorphism. Then there is a subcomplex W of Y such that $Z \subset W, \#W < \gamma$ and the two inclusion maps $g: X \cap W \to W$ and $g': X \cup W \to Y$ are α -isomorphism. **PROOF.** We shall construct a tower $(W_m|m=0,1,2,3,...)$ such that i) $W_0 = Z$, ii) $W_0 \subset W_1 \subset W_2 \subset \cdots \subset Y$, iii) $\#W_m < \gamma$ for $m \ge 0$ and iv) for every homology class $a \in h_k(W_m \cap X)$ with k < n which vanishes in W_m vanishes in $W_{m+1} \cap X$. First put $W_0 = Z$. Assume that W_m is defined. Since the inclusion map $X \subset Y$ is an α -isomorphism, for every homology class $a \in h_k(W_m \cap X)$ with k < n which vanishes in W_m , there is a finite subcomplex W(a,m) of X such that a vanishes in $W(a,m) \cup (W_m \cap X)$. And also for every homology class $b \in h_k(W_m)$, there are finite subcomplex W'(b,m) of X and finite subcomplex W''(b,m) of Y such that b is realized in W'(b,m) and the realizatios coincide with each other in W''(b,m). Let W_{m+1} be the union of all such W(a,m)'s, W'(b,m)'s, W''(b,m)'s and W_m , then we get a desired $W = \bigcup_{m=0}^{\infty} W_m$ by Proposition 1, since the inclusion $g: X \cap W \to W$ is an α isomorphism by the construction and $h_k(W) = \lim h_k(W_m)$.

PROPOSITION 4. There exists a simplicial pair $P \subset Q$ which is a versal α -epimorophism.

PROOF. Let C be the set of all non isomorphic simplicial pairs $X_{\lambda} \subset Y_{\lambda}$ such that the inclusion map induces an α -isomorphism and $\#Y_{\lambda} < \gamma$. Write that $C = \{X_{\lambda} \subset Y_{\lambda} | \lambda \in \Lambda\}$. Then the pair $P = \bigcup_{\lambda \in \Lambda} X_{\lambda} \subset Q = \bigcup_{\lambda \in \Lambda} Y_{\lambda}$, where \bigcup means disjoint union, is a desired pair. In fact, let $X \subset Y$ be any α isomorphism, Z any space such that induced map $[Q, Z] \rightarrow [P, Z]$ is surjective and $f : X \rightarrow Z$ any map. Then by Proposition 3, we can extend f to Y by a transfinite induction as in Lemma 11.3 of [1]. By Proposition 2 this gives also uniqueness of the extension up to homotopy.

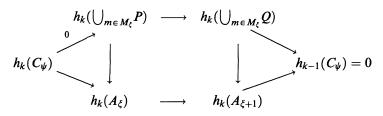
From now on we shall fix this *versal* α -epimorphism and $p: P \rightarrow Q$ denotes the inclusion map.

PROOF of THEOREM 1. Let X be any simplicial set. We construct a tower $(A_{\xi}|\xi : \text{ ordinal numbers})$ by the transfinite induction as follows. Let $A_0 = X$, and suppose that A_{ξ} is defined. Let $M_{\xi} = \text{CMap}(P, A_{\xi})$ where CMap(K, L) denotes the set of all maps from K to L, and define $A_{\xi+1}$ as the push out in the following push out square diagram in the category of simplicial sets:

$$\bigcup_{\substack{m \in M_{\xi}} P \xrightarrow{\psi} \bigcup_{m \in M_{\xi}} Q} \\
\varphi \\
\downarrow \\
A_{\xi} \subset A_{\xi+1},$$

where φ is the composition of the disjoint uion $\bigcup_{m \in M_{\xi}} m$ and the codiagonal (=folding) map $\bigcup_{m \in M_{\xi}} A_{\xi} \to A_{\xi}$ and ψ is the disjoint $\bigcup_{m \in M_{\xi}} p$. We see that

 $A_{\xi} \to A_{\xi+1}$ is an α -isomorphism, because ψ is an α -isomorphism in the following diagram (k < m)



for k < n. For the limit ordinal, define $A_{\xi} = \bigcup_{\xi < \zeta} A_{\xi}$. Note that for any ordinals ξ , ζ with $\xi < \zeta$, the inclusion map $A_{\xi} \subset A_{\zeta}$ in an α -isomorphism because $h_k(A_{\zeta}) = \lim_{\xi < \zeta} h_k(A_{\xi})$. Let κ be the smallest ordinal with cardinality greater than #P. Then any map $k : P \to A_{\kappa}$ passes A_{ξ} for some $\xi < \kappa$, hence k is extendable to a map from Q which passes $A_{\xi+1}$. Moreover this is shown to be unique up to homotopy by using Proposition 2. Therefore A_{κ} is α -local because $P \subset Q$ is versal α -epimorphism. Uniqueness of (h, n)-localization follows by the definition itself.

COROLLARY. Let h_* be a generalized homology functor which is representable by a spectrum. Then we can construct the following natural sequence:

$$L_h(X) \to \cdots \to L_h^{n+1}(X) \to L_h^n(X) \to \cdots \to \{pt\}.$$

EXAMPLES. Hereafter we consider in the stable category \mathscr{S} or $\tilde{\mathscr{S}}$.

1. If h is the stable homotopy functor $\pi, L_{\pi}(X) = X$ and $L_{\pi}^{n}(X)$ is obtained from X by killing homotopy of dim $\geq n$. Moreover if h is connective, hocolim_{$n\to-\infty$} $L_{h}^{n}(X)$ is contractible.

2. If h is periodic, for example h = K, the complex K-homology theory, $L_h^n(X) = L_h(X)$ for any n.

3. In the case $h_* = (\pi \oplus K)_*$, we obtain an interesting sequence which interpolates X and $L_k(X)$. holim $_{n\to\infty}L_h^n(X) = X$ since h contains π as a factor. Let $A = M(\mathbb{Z}_p)$ be the Moore spectrum mod p (p:prime), $f : \Sigma^*A \to A$ be the Adams'K-equivalence map and B be the cofiber of f. Then the map $B \to \{pt\}$ is an (h, O)-isomorphism. This implies that hocolim $_{n\to-\infty}L_h^n(X) = L_K(X)$.

References

[1] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.

[2] _____, The localization of spectra with respect to homology, Topology 18 (1979), 257-281.

Department of Industrial and Management System Engineering, Faculty of Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan