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Bifurcation theory for semilinear elliptic boundary value problems
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ABSTRACT. This expository paper is devoted to static bifurcation theory for a class of
degenerate boundary value problems for semilinear second-order elliptic differential
operators stimulated by a problem of chemical kinetics. Our approach is distinguished
by the extensive use of the ideas and techniques characteristic of the recent devel-
opments in the theory of partial differential equations.
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0. Introduction and results

Let D be a bounded domain of Euclidean space R^ with smooth boundary
dD; its closure D = D U dD is an ^-dimensional, compact smooth manifold

1991 Mathematics Subject Classification. Primary 35B32, 35J65; Secondary 35P15, 35P30.
Key words and phrases. Bifurcation, simple eigenvalue, super-subsolution method, semilinear

elliptic problem.



262 Kazuaki TAIRA

with boundary. We let

N 3 Λ^ , du

be a second-order, elliptic differential operator with real smooth coefficients on
D such that:

(1) βP(x) = <P(x), 1 < i, 7 < ΛΓ, and there exists a constant a$ > 0 such
that

(2) c(x) > 0 on 5.
First we consider the following linear boundary value problem: For given

functions g and φ defined in D and on δZ>, respectively, find a function u in Z>
such that

Au — g inD,

Bu := α — -f bu = φ on 3D.
dv

(0.1)

Here:
(1) aeC
(2) beC
(3) d/dv is the conormal derivative associated with the operator A:

-1 - V d' —

where n = (»ι,«2,. •• ,«jv) is the unit exterior normal to 3D (see Figure 1
below).

Figure 1
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It is easy to see that problem (0.1) is nondegenerate (or coercive) if and
only if either a ̂  0 on dD or a = 0 and b φ 0 on dD. In particular, if a = 1
and b = 0 on dD (resp. a = 0 and b = 1 on dD), then the boundary condition B
is the so-called Neumann (resp. Dirichlet) condition.

In this paper we shall study problem (0.1) under the condition that a > 0
on dD. More precisely we make the following assumptions on the functions
a,b and c:

(H.I) a(xf) >0 on dD.
(H.2) b(xf) > 0 on dD and b(xf) > 0 on M = {̂  e dD : a(xf) = 0}.
(H.3) c(x) > 0 in D.

The probabilistic meaning of condition (H.2) is that a Markovian particle is
definitely absorbed at the set M where no reflection phenomenon occurs; more
precisely a Markovian particle does not stay on the boundary dD for any
period of time until it "dies" at the time when it reaches the set M where the
particle is definitely absorbed (cf. [23]). Condition (H.3) makes it possible to
develop our machinery with a minimum of bother and the principal ideas can
be presented concretely and explicitly.

We associate with problem (0.1) an unbounded linear operator 21 from the
Hubert space L2(D) into itself as follows:

(a) The domain of definition D(U) is the space

D(lϊ) = {ue W^(ΰ] : Bu = 0}. (0.2)

(b) Uu = Au, ueD(U).
The first purpose of this paper is to prove that the first eigenvalue of 91 is

simple with positive eigenfunction:

THEOREM 0. If conditions (H.I), (H.2) and (H.3) are satisfied, then the
operator 21 is a nonnegative, selfadjoint operator. Moreover its first eigenvalue
λ\ is positive and simple and its corresponding eigenfunction \j/ι is positive
everywhere in D:

(Kψ^λϊψ, inL2(D),

\Ψι>0 in D.

Secondly, as an application of Theorem 0, we study local static bifurcation
problems for the following semilinear elliptic boundary value problem:

Au - λu + G(λ, u)=Q in Z>,

du (° 3)
u = a— + bu = Q ondD.

dv

Here G(λ,u) is a nonlinear operator, depending on a real parameter A, which
operates on the unknown function u. The word "bifurcation" means a
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"splitting", and in the context of nonlinear boundary value problems it
connotes a situation wherein at some critical value of λ the number of solutions
of the equation changes.

The second purpose of this paper is to discuss those aspects of local static
bifurcation theory for problem (0.3) in the framework of Holder spaces. A
survey paper Amann [1] is a good reference to static bifurcation theory for
nondegenerate boundary value problems for nonlinear second-order elliptic
differential operators.

We introduce a closed subspace C2^Θ(D] of C2+Θ(D) defined by the
formula

C2

B

+Θ(D) = {u e C2+Θ(D] :Bu = Oon dD},

and associate with problem (0.3) a nonlinear mapping F(λ, u) of R x C2β~θ(D)
into CΘ(D)9 0 < θ < 1, as follows:

F : R x C2+Θ(D) — * CΘ(D)

(λ, u)>->Au-λu + G(λ, u).

Suppose that there exists a curve Γ in the space R x C2^Θ(D] given by
Γ = {w(t) :tel}, where 7 is an interval, such that F(w) = 0 for all w e Γ. If
there exists a number TO e 7 such that every neighborhood of H>(TQ) contains
zeros of F not lying on Γ, then the point VV(TO) is called a bifurcation point for
the equation F(w) = 0 with respect to the curve 7". In many situations the
curve Γ is of the form {(λ,Q) : λ eR,0 e C|+<9(5)}. The basic problem of
bifurcation theory is that of finding the bifurcation points for the equation
F(w) = 0 with respect to Γ and studying the structure of the zeros of F near
such points.

The next theorem asserts that the point (λ\ , 0) is a bifurcation point for the
equation F(λ, u) = 0:

THEOREM 1. Let λ\ be the first eigenvalue of 21 with positive eigenfunc-
tion ψl9 and let G(λ,u) be a Ck map, k>3, of a neighborhood of (λι,0)
in R x Cβ+θ(D) into CΘ(D). Assume that the following four conditions are
satisfied:

( i )
(ii)
(iii)

Then the point (Aι,0) is a bifurcation point for the equation F(λ,u) = 0. In
fact, the set of solutions of F(λ, u) = 0 near (λ\ , 0) consists of two Ck~2 curves
Γ\ and Γ2 intersecting only at the point (λι,0). Furthermore the curve Γ\ is
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tangent to the λ-axis at (Λ,ι,0) and may be parametrized by λ as

Γι={(λ,uι(λ)):\λ-λι\<e},

while the curve Γ2 may be parametrized by a variable s as

Γ2 = {(λ2(s),sι//l + u2(s)) : \s\ < ε}.

Here the functions λ2(s) and u2(s) satisfy the conditions

265

We give two simple examples for Theorem 1 which deal with bifurcation
theory under conditions on the quadratic term and on the cubic term,
respectively:

EXAMPLE 1. We let

F(λ,u) = Au-λu

Then the set of solutions of F(λ,u) = 0 near (Λι,0) consists of two smooth
curves Γ\ and Γ2 which may be parametrized respectively by λ and s as follows
(see Figure 2 below):

Γl={(λ,0):\λ-λl\<ε},

Γ2 = {(λ2(s),sψl+u2(s)):\s\<ε}.

Here the function λ2(s) satisfies the conditions

Figure 2
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F(λ,u) = Au-

EXAMPLE 2. We let

Then the set of solutions of F(A, u) = 0 near (λ\, 0) consists of a pitchfork.
More precisely the two smooth curves Γ\ and ΓΊ may be parametrized
respectively by λ and s as follows (see Figure 3 below):

Γl = {(λ,0):\λ-λl\<ε},

Figure 3

Here the function λ2(s) satisfies the conditions

Thirdly we consider the following general nonlinear elliptic boundary value
problem: For given function f(x, ξ) defined on D x [0, oo), find a nonnegative
function u(x) in D such that

in D,

on 3D.
(0.4)

Problem (0.4) is the prototype of a class of nonlinear second-order elliptic
boundary value problems which arise in numerous application in physical
problems and in problems of Riemannian geometry.
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A solution u E C2(D) of problem (0.4) is said to be nontriυial if it does not
identically equal zero on D. A nontrivial solution u of problem (0.4) is said to
be positive if u(x) > 0 on D.

In order to state our existence theorem of positive solutions of problem
(0.4), we introduce a fundamental condition (slope condition) on the nonlinear
term/(*,<!;):

For a positive number σ, there exists a constant ω = ω(σ) > 0, inde-
pendent of jc e D, such that

f(x,ξ)-f(x,η)>-ω.(ξ-η}, xED,Q<η<ξ<σ. (R)σ

Geometrically, this condition means that the slope of the function /(x, •) is
bounded below, uniformly with respect to xeD.

A nonnegative function ψ E C2(D) is called a supersolution of problem
(0.4) if it satisfies the conditions

(Aψ-f(x,ψ)>0 in A
\ Bψ > 0 on dD.

Similarly a nonnegative function φ E C2(D) is called a subsolution of problem
(0.4) if it satisfies the conditions

(Aφ-f(x,φ)£θ in A
\ Bφ < 0 on dD.

The next theorem, which is a generalization of [1, Theorem 9.4] to the
degenerate case, asserts that the existence of an ordered pair of sub- and
supersolutions implies the existence of a solution of problem (0.4):

THEOREM 2. Assume that f ( x , ξ ) belongs to CΘ(D x [0,σ]), 0 < θ < 1, and
satisfies condition (R)σ for some σ > 0. If ψ and φ are respectively super- and
subsolutions of problem (0.4) satisfying 0 < φ(x) <ψ(x)<σon D, then there
exists a solution u e C2+Θ(D) of problem (0.4) such that φ(x) < u(x) < ψ(x) on
D.

In order to formulate our uniqueness theorem of positive solutions of
problem (0.4), we introduce another fundamental condition (sublinearity) on the
nonlinear term/(x, ξ):

We have for all 0 < τ < 1

f(*,τξ)>τf(x,ζ), x e A ί > 0 , (SI)

and _
/(x,0)>0, xeD. (S2)

Then our uniqueness theorem for problem (0.4) is stated as follows:
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THEOREM 3. Assume that f(x,ξ) belongs to CΘ(D x [0,σ]), 0 < θ < 1, for

every σ > 0, and satisfies condition (R)σ for every σ > 0 and also condition
(S). Then problem (0.4) has at most one positive solution.

As an application of Theorem 2, we can prove the following existence

theorem for positive solutions of problem (0.4) (cf. [7, Theorem 2]):

THEOREM 4. Assume that f(x,ζ) belongs to CΘ(D x [0,σ]), 0 < θ < 1, for
every σ > 0, and satisfies condition (R)σ for every σ > 0. If in addition the two

limits

/oW = limfe^, /„«,(*) =l im 4^
αo ς £-KJO ς

uniformly for all xe D and if we have

/αo (*)<*! </o(*), * E A (0.5)

problem (0.4) λαs α positive solution u ε C2+Θ(D).

If the nonlinear term /(x, ξ) is independent of x, then we can prove that

condition (0.5) is necessary and sufficient for the existence of positive solutions
of problem (0.4); more precisely we have the following generalization of [7,

Theorem 1] to the degenerate case:

THEOREM 5. Assume that /(*,{) =f(ξ) belongs to C*([0,σ]), 0 < θ < 1,
for every σ > 0, and satisfies condition (R)σfor every σ > 0, and further that the

function f(ξ)/ξ is strictly decreasing for 0 < ξ < oo. We let

, „
£|o ς <ϋ->oo ς

problem (0.4) te α positive solution u e C2+^(Z)) z/ αwd only if we have

loo < λι < k. (0.6)

Furthermore the solution u is unique in the space C2(D).

Now, as an application of Theorem 5, we study global static bifurcation

problems for semilinear elliptic boundary value problems. We shall only

restrict ourselves to some aspects which have been discussed in our papers with

K. Umezu [26], [27] and [28].
We consider the following semilinear elliptic boundary value problem:

Au - λu + h(u) =0 in D,

du (° 7)
u = a— + bu = Q on dD,

dv

where the nonlinear term h(ξ) is a function independent of x.
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The next corollary is an immediate consequence of Theorem 5:

COROLLARY 1. Assume that h(ξ) e C*([0,σ]), 0 < θ < 1, for every σ > 0
and that the function —h(ζ) satisfies condition (R)σfor every σ > 0, and further
that the function h(ξ)/ξ is strictly increasing for 0 < ξ < oo. We let

αo = lim — — , α^ = lim — — .
£10 ξ £-00 ξ

Then problem (0.7) has a unique positive solution u e C2+Θ(D] if and only if

λ\ + αo < λ < λ\ +αoo.

It is worth while pointing out that the bifurcation solution curve (A, u) of
problem (0.7) is "formally" given by the formula

A = A 1 + . (0.8)

Indeed, Theorem 0 tells us that the first eigenvalue λ\ is the unique eigenvalue
corresponding to a positive eigenfunction of the operator 21. Hence, if we
write problem (0.7) as

then we have λ\ = λ — h(u)/u. This proves formula (0.8).
For Corollary 1, we give four simple examples of the function h(ξ):

EXAMPLE 3 (The asymptotic linear case). If A: is a positive number, we
define a function h(ξ) of class C1 by the formula

for 0 < ξ < 1,

forξ> 1.

Then we have αo = 0, α^ = k and so λ\ < λ < λ\ + k. The situation may be
represented schematically by Figure 4.

EXAMPLE 4 (The asymptotic nonlinear case). h(ξ) = ξp, p > 1. In this
case we have αo = 0, αoo = oo and so λ\ < λ < oo. The situation may be
represented schematically by Figure 5.

EXAMPLE 5. h(ξ) — —\fζ. In this case we have αo = —oo, α^ = 0 and so
-co<λ<λ\. More precisely the point (Aι,oo) is a bifurcation point from



270 Kazuaki TAIRA

Figure 4

Figure 5

infinity for problem (0.7) in the sense of Amann [1, Section 19].
may be represented schematically by Figure 6 below.

The situation

u

Figure 6



Bifurcation theory for semilinear elliptic boundary value problems 271

EXAMPLE 6. h(ξ) = -exp[— {]. In this case we have αo = -oo, α^ = 0
and so -oo < λ < λ\. The point (AI, oo) is a bifurcation point from infinity
for problem (0.7) (see Figure 6).

Finally we consider the following semilinear elliptic eigenvalue problem:

Au - λg(u) =0 in Z>,

du
= Q ondD,

dv

where the nonlinear term g(ξ) is a function independent of x.
The next corollary, which is also an immediate consequence of Theorem 5,

generalizes [20, Theorem 2.1] and [30, Theorem 2.6] to the degenerate case:

COROLLARY 2. Assume that g(ξ) e C*([0,σ]), 0 < θ < \, for every σ > 0
and that the function g(ξ) satisfies condition (R)σ for every σ > 0, and further
that the function g(ζ)/ζ is strictly decreasing for 0 < ξ < oo. We let

Then problem (0.9) has a unique positive solution u e C2+Θ(D) if and only if

Roughly speaking, the bifurcation solution curve (A, u) of problem (0.9) is
given by the formula

u

λ = — — AI .

This can be shown by an argument similar to that for formula (0.8).
For Corollary 2, we give two important examples of the function g(ξ)

stimulated by a problem of chemical kinetics (cf. [2], [5]):

EXAMPLE 7 (The simple Arrhenius rate law). g(ξ) = exp[ί/(l +εξ)] with
ε > 0. The function g(ξ) describes the temperature dependence of reaction rate
for exothermic reactions obeying the simple Arrhenius rate law in circumstances
in which heat flow is purely conductive. In this context ε is a dimensionless
ambient temperature and A is a dimensionless heat evolution rate. The
equation Au — λg(ύ) — 0 represents heat balance with reactant consumption
ignored, where u is a dimensionless temperature excess, and the boundary
condition Bu = 0 represents the exchange of heat at the surface of the reactant
by Newtonian cooling. It is easy to verify that the function g(ξ)/ξ is strictly
decreasing for all ξ > 0 if ε > 1/4 = 0.25. If this is the case, we have /?0 = oo,
β^ = 0 and so 0 < Λ < oo. The situation may be represented schematically by
Figure 7 below. Roughly speaking, if the ambient temperature is so high (or
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the activation energy is so low) that the parameter ε exceeds the value 0.25,
then only a smooth progression of reaction rate with imposed ambient tem-
perature can occur; such a reaction may be very rapid but it is only accelerating
and lacks the discontinuous change associated with criticality and ignition (cf.
[5, Table 1]). This result is a generalization of [21, Example] to the degenerate
case (cf. [8], [10]).

EXAMPLE 8 (The bimolecular rate law). g(ξ) = \/l +e£exp[£/(l +e{)]
with ε > 0. The function g(ξ) describes the temperature dependence of
reaction rate obeying the bimolecular rate law. It is easy to verify that the
function g(ζ)/ξ is strictly decreasing for all ξ > 0 if 6 - 4\/2 < ε < 6 + 4y/2.
If this is the case, we have β0 = oo, βm = 0 and so 0 < λ < oo (see Figure 7
below). Rephrased, if the ambient temperature parameter ε exceeds the value
6-4^ = 0.343146, then only a smooth progression of reaction rate with
imposed ambient temperature can occur (cf. [5, Table 1]).

By Examples 7 and 8, we find that ignition phenomena are normally
shown by strongly exothermic reactions in which heat is transferred only by
conduction but such criticality is lost in systems of high ambient temperature
or low activation energy. The hydrogen-atom torch and the sodium-halogen
flame exemplify such systems.

The rest of this paper is organized as follows.
In the first section, Section 1, we present a brief description of the theory

of positive mappings in ordered Banach spaces ([1], [15]) and local static
bifurcation theory from a simple eigenvalue ([9], [11], [16]) which form a
function analytic background in the proof of main results. The material in this
section is given for completeness, to minimize the necessity of consulting many
references.

-> λ

Figure 7



Bifurcation theory for semilinear elliptic boundary value problems 273

A general class of semilinear second-order elliptic boundary value
problems satisfies the maximum principle. Roughly speaking, this additional
information means that the operators associated with the boundary value
problems are compatible with the natural ordering of the underlying function
spaces. Consequently we are led to the study of nonlinear equations in the
framework of ordered Banach spaces. In particular we give a sharper version
of the famous Kreϊn-Rutman theorem for strongly positive, compact linear
operators (Theorem 1.1).

Section 2 is devoted to the proof of Theorem 0. There is a standard
method of reducing problem (0.1) to an equivalent integral equation on the
boundary in an appropriate function space. More precisely, by using the
Green and Poisson operators for problem (0.1) we transform problem (0.1) to
the study of a pseudo-differential operator T on the boundary (Proposition
2.2), which may be considered as a generalization of the classical potential
approach. The main difficulty in this approach lies in the fact that we have to
establish a priori estimates for problem (0.1). To do so, we use the LP theory
of pseudo-differential operators to prove that conditions (H.I) and (H.2) are
sufficient for the existence of a parametrix for the operator T (Lemma
2.3). Next the maximum principle, which stems from a second-order equation,
gives us various a priori information about the possible solutions of problem
(0.1). In this way we can prove an existence and uniqueness theorem for
problem (0.1) in the framework of Holder spaces (Theorem 2.1).

Furthermore the maximum principle tells us that the resolvent K of
problem (0.1) is a positive operator in the ordered Banach space C(D)
(Proposition 2.8). In order to obtain an abstract formulation of this fact, we
introduce an ordered Banach subspace Ce(D) of C(Z>) which combines the
good properties of the resolvent K with the good properties of the natural
ordering of C(D). Here the function e is the unique solution of the linear
boundary value problem

Ae = 1 in Z>,

e = 0 on dD,

and the ordered Banach space Ce(D) is defined by the formula

Ce(D) = {u e C(D) : there exists a constant c > 0 such that — ce <u < ce},

with norm

\\u\\e = inf{c > 0 : -ce <u < ce}.

This setting has the advantages that it takes into consideration in an optimal
way the a priori information given by the maximum principle and that it is
amenable to the methods of abstract functional analysis. We recall that Taira
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[25] proved Theorem 0 by using the theory of Feller semigroups in functional
analysis. In this paper we give a direct proof of Theorem 0 by making use of
the theory of positive mappings in ordered Banach spaces (Theorem 2.9).

In Section 3 we prove Theorem 1. Theorem 1 follows by applying local
static bifurcation theory from a simple eigenvalue (Theorem 1.2).

Section 4 is devoted to the proof of Theorems 2 and 3. We transpose the
nonlinear problem (0.4) into an equivalent fixed point equation for the
resolvent K in an appropriate ordered Banach space. More precisely, by
applying the resolvent K for problem (0.1) we transform problem (0.4) into a
nonlinear operator equation in the ordered Banach space C(D]

u = K(F(u))=K{f( ,u( ))) (0.10)

in such a way that as much information as possible is carried over to the
abstract setting. By condition (R)σ, it follows that the map H, defined by
H(u) = K(F(u))) leaves invariant the ordering of the space C(D) (Lemma
4.1). In the case of an increasing map it suffices to verify that H maps two
points of a bounded, closed and convex set into itself in order to apply
Schauder's fixed point theorem (Lemma 4.2). This is a much easier task than
to verify the standard hypotheses for an application of the same theorem.

The fact that the resolvent K is strongly positive has important con-
sequences. Namely, if u > v and u φ v on D, then the function H(u) — H(v)
is an interior point of the positive cone Pe of the ordered Banach space
Ce(D}. This implies that the map H is a strongly increasing self-map of Ce(D]
(Lemma 4.6). The proof of Theorem 3 is based on a uniqueness theorem of
fixed points of strongly increasing and strongly sublinear mappings in ordered
Banach spaces (Theorem 4.4).

Section 5 is devoted to the proof of Theorem 4. Theorem 4 follows from
a straightforward application of Theorem 2 if we construct explicitly super- and
subsolutions of problem (0.4). First, by using the positive eigenfunction ψl of
problem (0.1) we have a subsolution φε — εψl for ε > 0 sufficiently small. On
the other hand, in order to construct a supersolution of problem (0.4) we make
good use of the positivity lemma (Lemma 5.1) and the existence and
uniqueness theorem for problem (0.1) (Theorem 2.1).

In the final section, Section 6, by applying Green's formula we show that
condition (0.6) is necessary for the existence of positive solutions of problem
(0.4). This proves Theorem 5.

1. Functional analytic preliminaries

In this section we present a brief description of basic definitions and results
about the theory of positive mappings in ordered Banach spaces ([1], [15]) and
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local static bifurcation theory from a simple eigenvalue ([9], [11], [16]) which
form a functional analytic background in the sequel.

1.1. Theory of positive mappings in ordered Banach spaces. Let X be a

nonempty set. An ordering < in A" is a relation in X which is reflexive,
transitive and antisymmetric. A nonempty set together with an ordering is
called an ordered set.

Let V be a real vector space. An ordering < in V is said to be linear if
the following two conditions are satisfied:

(i) If x,y e V and x <y, then we have x + z < y + z for all z e V.
(ii) If x,y e V and x < y, then we have ouc < ay for all α > 0.
A real vector space together with a linear ordering is called an ordered

vector space.
If x,y e V and x < y, then the set [x,y] = {z e X : x < z <y} is called an

order interval.
If we let Λ , Λ ΊQ={XE F :x>0},

then it is easy to verify that the set Q has the following two conditions:
(iii) If x,y e β, then ax + βy e Q for all α,β > 0.
(iv) If x 7^ 0, then at least one of x and — x does not belong to Q.

The set Q is called the positive cone of the ordering <.
Let E be a Banach space E with a linear ordering <. The Banach space

E is called an ordered Banach space if the positive cone Q is closed in E. We
say that Q is generating if, for each x e E there exist vectors u,v e Q such that
x = u — v. It is to be expected that the topology and the ordering of an
ordered Banach space are closely related if the norm is monotone: If 0 < u < v,
then \\u\\ < \\v\\.

A linear operator L : E —> E is said to be strongly positive if Lx is an
interior point of Q for every x e β\{0}.

The next theorem, which is a sharper version of the famous Kreϊn-Rutman
theorem for strongly positive compact linear operators, will play a fundamental
role in the sequel (cf. [15, Chapter 2]):

THEOREM 1.1. Let E be an ordered Banach space and L : E —> E a linear
operator. Assume that L is strongly positive and compact and that all the
eigenvalues of L are positive. Then we have the following'.

(a) The operator L has a positive eigenfunction XQ ε Q with eigenvalue
AO > 0 : LXQ = λ<>XQ.

(b) An eigenvalue corresponding to a positive eigenfunction of L is simple.
(c) The operator L has a unique positive eigenfunction.
(d) An eigenvalue corresponding to a positive eigenfunction is greater than

the remaining eigenvalues of L.
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1.2. Local bifurcation theory. This subsection is devoted to local static
bifurcation theory for problem (0.3). By making use of bifurcation theory
from a simple eigenvalue essentially due to Crandall-Rabinowitz [11], we
discuss the changes that occur in the structure of the solutions of F(λ, u) = 0 as
λ varies near the first eigenvalue λ\ of the operator 91. For detailed studies of
bifurcation theory, the reader is referred to Chow-Hale [9] and Nirenberg [16].

1.2A. Differentiability. Let X, Y be Banach spaces, U an open set in X and
/ : U — > Y a map. We say that the map/ is (Frechet) differentiable at a point
x e U if there exist a continuous linear operator A : X — > Y and a map ψ
defined for all sufficiently small h in X, with values in Y, such that

(f(x + h)=f(x)+Ah+\\h\\ψ(h),

We remark that the continuous linear operator A is uniquely determined by /
and x. The operator A is called the (Frechet) derivative of / at jc, and is
denoted by Df(x) or/'(;c). A map/ is said to be (Frέchet) differentiable on U
if it is (Frechet) differentiable at every point of U. In this case the derivative
Df is a map of U into the Banach space B(X, Y) of all continuous (bounded)
linear operators:

D f : U—*B(X,Y)

u\-+Df(u).

If in addition Df is continuous from U into B(X, Y), we say that/ is of class
C1.

If the derivative Df is differentiable at a point x e U (resp. in U), we say
that / is twice differentiable at x (resp. in U). The derivative of Df at x is
called the second derivative of/ at x, and is denoted by D2f(x). This is an
element of the Banach space B(X,B(X, Y}} which can be naturally identified
with the space Bι(X, Y) = B(X,X-, Y) of all continuous bilinear mappings of
X x X into Y.

By induction on k, we define a k times differentiable mapping f of U into
Y as a (k — 1) times differentiable mapping whose (k — l)-th derivative Dk~lf
is differentiable in U. The derivative Dkf = D(Dk~lf) is called the λ>fλ
derivative of/. The derivative Dkf(x] at a point c e £7 can be identified with
an element of the space Bk(X, Y) of all continuous fc-linear mappings of
X x X x x X into Y. A map/ : U — > 7 is said to be of class Cr (r > 2) in
C7 if all the derivatives D^f exist and are continuous in U for \ <k <r.

Here it is worth while pointing out that if X = R, then the space B(X, Y)
can be identified with the space Y; so the space Bk(R, Y) can be identified
with the space Y for general k > 2.
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Now we assume that the Banach space X is the product space of two
Banach spaces X\ and X2\

X = Xι x X2.

For each point x = (x\,x2) e U c X, one can consider the partial mappings

F\ uι *

F2 :u2*

of open subsets of X\ and X2 respectively into Y. We say that / is differ-
entiable with respect to the first (resp. second] variable if the mapping F\(u\)
(resp. F2(u2}} is differentiable at x\ (resp. at x2). The derivative DF\(x\) (resp.
DF2(x2)) is an element of the Banach space B(X\, Y) (resp. B(X2, Y)), and is
called the partial (Frechet) derivative of f at (x\,x2) with respect to the first
(resp. second) variable. We write

2) =fXl(xι,x2)=DFι(Xl),

2) =fX2(x\,x2) = DF2(x2).

One can define inductively the partial (Frechet) derivatives D*XiD^2f for general
j and k.

1.2B. Bifurcation from a simple eigenvalue. In this subsection we study the
equation of the form

where F(-,i) depends on a real parameter t. In other words, F(t,x) is a
nonlinear operator, depending on the parameter t, which operates on the
unknown vector x. One of the first questions to be answered is whether or not
the equation F(t, x) = 0 has any solution x for a given value of t. If it does,
the question of how many solutions it has arises, and then how this number
varies with t. Of particular interest is the process of bifurcation whereby a
given solution of F(t, x) = 0 splits into two or more solutions as t passes
through some critical value.

Let F(t, x) be a mapping of a Banach space R x X into a Banach space
Y. Suppose that there exists a curve Γ in the space R x X given by
Γ = (w(f) :*€/}, where / is an interval, such that F(w) = 0 for all w e Γ. If
there exists a number TO e 7 such that every neighborhood of vv(τo) contains
zeros of F not lying on Γ, then the point H>(TO) is called a bifurcation point for
the equation F(w) = 0 with respect to the curve 7".

The next theorem gives sufficient conditions in order that a point (ίo,0) be
a bifurcation point for the equation F(t,x) = Q (see [11, Theorem 1.7], [16,
Theorem 3.2.2], [9, Chapter 6, Theorem 6.1]):
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THEOREM 1.2 (The bifurcation theorem). Let F(t,x) be a Ck map, k > 3,

of a neighborhood of (fo, 0) in a Banach space R x X into a Banach space Y

such that

Assume that the following four conditions are satisfied:

(i) F,(f0,0) = 0.
(ii) The null space N(Fx(t$, 0)) is one dimensional, spanned by a vector XQ.

(iii) The range R(Fx(t$,ϋ)) has codimension one in the space Y.

(iv) F,,(f0, 0) e R(Fx(t^ 0)) and Fίx(tQ, 0)x0 φ R(Fx(t0, 0)).
Then the point (fo,0) is a bifurcation point for the equation F(t,x] — 0. In

fact, the set of solutions of F(t,x] = 0 near (ίo,0) consists of two Ck~2 curves Γ\

and Γ2 intersecting only at the point (*o,0). Furthermore the curve Γ\ is

tangent to the t-axis at (fo,0) and may be parametrized by t as

Γl={(t,xl(t)):\t-tQ\<ε},

while the curve ΓΊ may be parametrized by a variable s as

Here the functions tι(s) and X2(s) satisfy the conditions

The conditions in Theorem 1 .2 are based on the linear approximation, and

are independent of the nonlinearities. The following two corollaries analyze in

detail the nonlinear nature of the problem; it is essential to know some

properties of the nonlinearities in x in the map F(t,x).

The first corollary deals with local bifurcation theory under generic

conditions on the quadratic term (see [9, Chapter 6, Corollary 6.2]):

COROLLARY 1.3. Let F(t,x) be a Ck map, k > 3, of a neighborhood of

(fo,0) in a Banach space R x X into a Banach space Y. Assume that the

following five conditions are satisfied:

( i ) F(t, 0) = 0 for all \t - to\ sufficiently small.

(ii) The null space N(Fx(tQ,0)} is one-dimensional, spanned by a vector

*o
(iii) The range R(Fx(t$,0)} has codimension one in the space Y.

(iv) Fίx(t

(v) Fxx(

Then the set of solutions of F(t,x) = Q near (fo,0) consists of two

Ck~2 curves Γ\ and ΓΊ which may be parametrized respectively by t and s as
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follows:

Λ={(ί,0):|ί-ί0|<4,

Γ2 = {(h(s),sxϋ + x2(s)) : \s\ < ε}.

Here the functions 12(3) and X2(s) satisfy the conditions

The second corollary deals with local bifurcation theory under generic
conditions on the cubic term (see [9, Chapter 6, Corollary 6.4]):

COROLLARY 1.4. Let F(t,x) be a Ck map, fc > 3, of a neighborhood of
(fo,0) in a Banach space R x X into a Banach space Y. Assume that the

following six conditions are satisfied:
( i ) F(t, 0) = 0 for all \t - *0| sufficiently small.
(ii) The null space N(Fx(tQ,Q)) is one-dimensional, spanned by a vector XQ.
(iiϊ) The range R(Fx(tQ,Q)) has codimension one in the space Y.
(iv) Ftx(t
(v) Fxx(

(vi) Fm

Then the set of solutions of F(t,x)=Q near (/o,0) consists of a pitch-
fork. More precisely the two Ck~2 curves Γ\ and Γ2 may be parametrized
respectively by t and s as follows:

Here the functions t2(s) and x2(s) satisfy the conditions

2. Proof of Theorem 0

In this section we give a simple and direct proof of Theorem 0 by making
use of the theory of positive mappings in ordered Banach spaces (Theorem
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2.9). The proof of Theorem 0 is divided into three subsections, Subsections
2.1, 2.2 and 2.3. In Subsection 2.1 we prove an existence and uniqueness
theorem for problem (0.1) in the framework of Holder spaces (Theorem
2.1). By using this theorem, we prove the selfadjointness of 31 in Subsection
2.2 (Theorem 2.6) and the positivity of the resolvent associated with problem
(0.1) in Subsection 2.3 (Proposition 2.8), respectively.

2.1. Existence and uniqueness theorem for problem (0.1). In this subsection we
prove an existence and uniqueness theorem for problem (0.1) in the framework
of Holder spaces which will play an important role in the proof of Theorem 0.

First we introduce a subspace of the Holder space Cl+θ(dD), 0 < θ < 1,
which is associated with the boundary condition

du ,
Bu = a — + bu

dv

in the following way: We let

Cl+θ(dD = {φ = aφl + bφ2 : 9l e C1+*(3Λ), φ2 e C2+θ(dD}},

and define a norm

\9\cl+°(dD) = inf{|Pιlc'-"(d/>) + \Ψ2\c^(dD) '-<P = a<P\ + bφ2}.

Then it is easy to verify that the space C\+e(dD) is a Banach space with respect
to the norm | |cι+*(5m. We remark that the space Cl+θ(dD) is an "inter-
polation space" between the spaces C2+θ(dD] and Cl+θ(dD).

The purpose of this subsection is to prove the following:

THEOREM 2.1. If conditions (H.I), (H.2) and (H.3) are satisfied, then the
mapping

(A, B) : C2+Θ(D) —> CΘ(D) 0 C\+θ(dD}

is an algebraic and topological isomorphism for all 0 < θ < 1.

PROOF. The proof is divided into four steps.
(i) Let g be an arbitrary element of CΘ(D), and φ an arbitrary element of

Cl+θ(dD) such that

φ = aφλ + bφ2, φv e Cl+θ(dD), φ2 e C2+θ(dD).

First we show that the boundary value problem

(Au = g in A
[Bu = φ ondD

can be reduced to the study of an operator on the boundary.
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To do so, we consider the Neumann problem

Av = g in D,

,n (2-1)
0ι on cD.

By [13, Theorem 6.31], one can find a unique solution v in the space C2+Θ(D)
of problem (2.1). Then it is easy to see that a function uεC2+θ(D) is a
solution of problem (0.1) if and only if the function w = u — v e C2+Θ(D) is a
solution of the problem

( Aw = 0 in D,

\ Bw = φ — Bv on 3Z).

Here we remark that

Bv = a — + Zw = α !̂ 4- ftt; on 3Z>,
dv

so that

£w = φ - Bv = b(φ2 - υ) e C2+θ(dD).

However we know that every solution w e C2+Θ(D) of the homogeneous
equation Aw — 0 can be expressed by means of a single layer potential in the
following form (cf. [23, Theorem 8.2.4]):

where the operator 9 : C2+θ(dD] — > C2+6>(/5) is the Poisson operator, that is,
the function w = &\l/ is the unique solution of the Dirichlet problem

ί Aw

\ w =

Aw = 0 in D,

on dD.

Thus we have the following:

PROPOSITION 2.2. For given functions g e CΘ(D) and φ = aφλ -h bφ2 e
ίAer^ βxwte a solution uεC2+θ(D) of problem (0.1) if and only if

there exists a solution ψ e C2+θ(dD) of the equation

Tψ := B0>\l/ = b(φ2 - v) on dD. (2.2)

Furthermore the solutions u and ψ are related as follows:

where v€ C2+Θ(D) is the unique solution of problem (2.1).
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(ii) We study the operator T in question. It is known (see [14, Chapter
XX], [18, Chapter 3]) that the operator

is a first-order, pseudo-differential operator on the boundary dD.
The next lemma is an essential step in the proof of Theorem 2.1:

LEMMA 2.3. If conditions (H.I) and (H.2) are satisfied, then there exists a
parametrix E in the Hδrmander class L® l>2(dD) for T which maps Ck+θ(δD)
continuously into itself for any nonnegative integer k.

PROOF. By making use of [14, Theorem 22.1.3] just as in the proof of [24,
Lemma 5.2], one can construct a parametrix EeL^ΛdD) for T:

ET=TE = I mod IT00 (dD) .

The boundendness of E : Ck+θ(dD) -» Ck+θ(dD) follows from an application
of a Besov-space boundedness theorem [6, Theorem 1], since we have

(iii) We consider problem (0.1) in the framework of Sobolev spaces of Lp

style, and prove an Lp version of Theorem 2.1.
If A: is a positive integer and 1 <p < oo, we define the Sobolev space

Wkj)(D) = the space of functions u e LP(D) whose

derivatives Dαw, |α| < fc, in the sense of

distributions are in LP(D),

and let

Bk-λ/PιP(dD} — the space of the boundary values φ of functions

w e Wk*(D).

In the space Bk~l/p>p(dD) we introduce a norm

: u e Wk*(D),u\dD = φ}.

The space Bk~l^p(dD) is a Banach space with respect to the norm

I * \ffi-ι/rf(dD)'> more precisely it is a Besov space (see [4], [29]).
We introduce a subspace of Bl~l/p>p(dD) which is an Lp version of

Cl+θ(dD). We let

= {φ = aφl + bφ2 : φλ e B
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and define a norm

It is easy to verify that the space B\~l'PJ)(dD] is a Banach space with respect to
the norm | \£-vp,p(dDy

Then we can obtain the following Lp version of Theorem 2.1 (see [24,
Theorem 1]):

THEOREM 2.4. If conditions (H.I), (H.2) and (H.3) are satisfied, then the
mapping

(A,B) : W2'p(D)^Lp(D)®B\-l'™(dD]

is an algebraic and topological isomorphism for all 1 <p < oo.
(iv) Now we remark that

C\+θ(dD} ci B\

Thus we find from Theorem 2.4 that problem (0.1) has a unique solution
u G W^p(ΰ] for any g e CΘ(D] and any φ = aφl+ bφ2 e C\+e(dD). Further-
more, by virtue of Proposition 2.2 it follows that the solution u can be written
in the form

u = v + 0ty, Ό 6 C2+Θ(D), ψ e B2~l/p>p(dD).

However Lemma 2.3 tells us that

\l/ e C2+θ(dD),

since we have by equation (2.2)

ψ = E(Tψ) = E(b(φ2 - v)) mod C°°(3/)).

Therefore we obtain that

The proof of Theorem 2.1 is complete. Π

Furthermore, by combining Proposition 2.2 and Lemma 2.3 we can obtain
the following regularity theorem for problem (0.1) (see [24, Theorem 5.1]):

THEOREM 2.5. If conditions (H.I), (H.2) and (H.3) are satisfied, then we
have, for all s € R and all p > 1,

u e Lp(D), Au G WS~2'P(D}, Bu e Bs-l-l/p^p(dD) =>ue WS*(D}.
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2.2. Selfadjointness of the operator 91. First we show that the operator 91,
defined by formula (0.2), is a nonnegative, selfadjoint operator in the Hubert
space L2(D) (see [22, Theorems 7.3 and 7.4]):

THEOREM 2.6. If conditions (H.I), (H.2) and (H.3) are satisfied, then the
operator 91 is nonnegative and selfadjoint in L2(D).

PROOF. (1) Let 91* be the adjoint operator of 81. We shall show that:

91* = 91. (2.3)

First we prove that the adjoint operator 91* is an extension of the operator
91:

91 c 91*. (2.4)

By Green's formula, we have for all functions u and v in C2(D)

(Au'ϋ-U'Av)dx=\ (^'ϋ-u~
D idD\δv dv

(2.5)

However, if in addition the functions u and υ satisfy the boundary conditions

du
dv'

dv
dv'

on

ondD,

then it follows that

du \
~dv "\fa\ /0\

*• . U)-(β)
Λ V

._
on dD.

Thus we obtain that

du
-5-
dv

Ih

TV

= 0 on dD, (2.6)

since we have

(a, b] ^(0,0) ondZλ

Therefore, combining formulas (2.5) and (2.6) we find that for all functions u,
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t;eC2(5)lΊZ)(2I)

[I (Au'ϋ-u Av)dx = Q,

or equivalently

However it is easy to see that the functions in C2(Z>)Γ)Z>(2I) are dense in the
domain £>(2I).

Summing up, we have proved that

(ϊlii, v) = (w, Slϋ), M, υ 6 D(W).

This proves assertion (2.4).
Next we prove that

/>(«Γ)c/>(«). (2.7)

Let v be an arbitrary element of the domain D(SΓ). Theorem 2.4 with
p = 2 tells us that the operator

is bijective. Thus there exists an element VQ e /)(9I) such that

Then, by assertion (2.4) it follows that for all u e

(fflw, i? - CD) = (H, «*ι? - fflco) = 0.

This proves that

since the operator ?I : Z)(9I) — >L2(D) is bijective.
Therefore we have proved assertion (2.7) and hence assertion (2.3).
(2) Finally it remains to show that the operator 21 is nonnegative:

(2lM,w)>0, M e />(«). (2.8)

It suffices to prove estimate (2.8) for all functions w e C2(D) ΠZ>(2I).
By conditions (H.I) and (H.2), we find that

u(xf) = 0 onM={xf εdD: atf) = 0},

and
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Hence we have by the divergence theorem

This proves estimate (2.8).
The proof of Theorem 2.6 is complete. Π

2.3. Positivity of the resolvent K. First we let

W%P(D] = {u e W^p(ΰ] : Bu = 0 on dD}.

By Theorem 2.1, we can introduce a continuous linear operator

K : Lp(D] —> WJf(D)

as follows: For any g e LP(D), the function u = Kg e W^P(D) is the unique
solution of the problem

Γ Au = g in Z),

I Bu = 0 on dD.

Furthermore, by the Ascoli-Arzela theorem we find that the operator K,
considered as

is compact. Indeed it follows from an application of Sobolev's imbedding
theorem that W2tp(D) is continuously imbedded into C2~N/P(D) for all
N <p < oo.

Then, by using Theorem 2.5 we can obtain the following:

CLAIM 2.1. A function ue LP(D), 1 < p < oo, is a solution of the problem

ί Au = λu in D,

I Bu = 0 on dD
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if and only if it satisfies the operator equation

u = λKu in C(D). (2.9)

For two functions u and υ in C(B), we write u < v if u(x) < v(x) for all
xeD. Then it is easy to verify that the space C(D] is an ordered Banach
space with the linear ordering < and the positive cone

P={ueC(D) :w>0on5}.

However we shall introduce another ordered Banach subspace of C(D) for the
fixed point equation (2.9) which combines the good properties of the resolvent
K with the good properties of the natural ordering of C(D).

In doing so, we need the following:

LEMMA 2.7. Assume that hypotheses (H.I), (H.2) and (H.3) are satis-
fied. If v e CΘ(D) and if v > 0 but vφQ on D, then the function
u = Kv e C2+Θ(D) satisfies the following conditions:

(a) u(xf) = 0 on M = {xf e dD : a(xf) = 0}.
(b) u(xf) > 0 on D\M.
(c) For the conormal derivative du/dv of u, we have

onM.
ov

Moreover the operator K is positive, that is, the operator K maps the positive
cone P into itself.

PROOF. (1) First, since the function u = KvεC2+θ(D] satisfies the con-
dition

Au = v>0 in Z>,

it follows from an application of the weak maximum principle (see Appendix,
Theorem 7.1) that the function u may take its negative minimum only on the
boundary dD.

However we have the following:

CLAIM 2.2. The function u = Kv does not take its negative minimum on the
boundary dD. In other words, the function u is nonnegative on D.

PROOF. Assume to the contrary that there exists a point x^e dD such that

u(4) < o.
If Λ(*O) = 0, then we have, by conditions (H.I) and (H.2),

o = Bu(4) - a(4)^(4) + b(4)u(4) = b(4>u(4) < o.
This is a contradiction.
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If a(xf

Q) > 0, then it follows that

' Au(x) = v(x) > 0 in Z>,

(yo) =mmxeδu(x) < 0,

u(x) > u(xf

Q) in D.

Thus it follows from an application of the boundary point lemma (see Theorem
7.3) that

so that

0 = Bu(4) = a(4) ̂  (4) + b(4)u(4) < a(4) ̂  (4) < 0.

This is also a contradiction. Π

(2) Furthermore we have the following:

CLAIM 2.3. "The function u = Kv is strictly positive in D.

PROOF. In view of Claim 2.2, we assume to the contrary that there exists
a point JCG e D such that

φb) = 0.

Then we obtain from the strong maximum principle (see Theorem 7.2) that

M(JC) ΞΞ 0 in D,
so that

v(x) = Au(x) = 0 mD.

This contradicts the condition that v is not the zero function in D. Q

(3) PROOF OF LEMMA 2.7. If there exists a point xf

Q e dD such that

then we have by Claim 2.3

Au(x) = v>0 in D,

u(x) > 0 in D.

Thus it follows from an application of the boundary point lemma that
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This implies that

a(4) = 0,

since we have

Conversely, if a(^} = 0, then by conditions (H.I) and (H.2) it follows that
i(*ό) > 0. This implies that

u(4) = 0,

since we have 0 = Bu(xfQ) =
Summing up, we have proved that

u(x) >Q&

Assertion (c) is an immediate consequence of the boundary point lemma,
since the function u attains its minimum 0 at the set M.

Finally, in order to prove the positivity of K, let v be an arbitrary function
in C(D) such that v(x) > 0 and v(x) φ 0 on D. Then, by using Friedrichs'
mollifiers we can find a sequence {vj} a Cl(D) satisfying the conditions

( Vj(x) > 0 on Z>,

Vj -+Ό in C(D).

Hence we have, by assertions (a) and (b),

(Kvj€C2(D),
\ Kvj(x) > 0 on D,

and so

Kv(x) = lim Kvj(x) > 0 on D.

The proof of Lemma 2.7 is complete. Π

Now we introduce an ordered Banach space which is associated with the
operator K : C(D) -> Cl(D). If we let

then it follows from an application of Lemma 2.7 that the function e belongs to
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C2+Θ(D) and satisfies the conditions

e(x) > 0

e(x>) = 0

£<*><»

on D\M,

on M,

on M.

By using the function e = Kl, we can introduce a subspace of C(D) as follows:

Ce(D) = {u e C(Z>) : there exists a constant c> 0 such that — ce <u< ce}.

The space Ce(D) is given a norm by the formula

\\u\\e = inf{c > 0 : -ce < u < ce}.

If we let

Pe = Ce(D) Γ(P={uE Ce(D) : u > 0 on (5)},

then it is easy to verify that the space Ce(D] is an ordered Banach space having
the positive cone Pe with nonempty interior. Indeed, every function u e Ce(D)
which satisfies the conditions

u(x) > 0 on D\M,

u(xf) =0 on M,

onM
' OV

belongs to the interior of Pe.
The next proposition tells us that one may consider the fixed point

equation (2.9) in the ordered Banach space Ce(D) in the proof of Theorems 2
and 3 in Section 4:

PROPOSITION 2.8. The operator K maps C(D) compactly into Ce(D). More-
over, K is strongly positive, that is, ifveP and v φ 0 on D, then the function Kv
is an interior point of Pe.

PROOF, (i) First, by the positivity of K we find that K maps C(D) into
Ce(D). Indeed, since we have — ||u|| < v(x) < \\v\\ on D for all ve C(D), it
follows that

-|M|Al(jί) < KΌ(X) < \\v\\Kl(x) on D.

This proves that — ce < Kv < ce with c = \\v\\.
(ii) Next we prove that K : C(D) — > Ce(D) is compact. To do so, we let

C1

B(D) = {UE Cl(D) :Bu = Qon dD}.
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Since K maps C(D) compactly into C1

B(D}, it suffices to show that the inclusion
mapping

ι:Cl

B(D)-+Ce(D) (2.10)

is continuous.
(ii-a) We verify that i maps C\(D) into Ce(D).
Let u be an arbitrary function in the space CB(D). Since we have, for

some neighborhood U of M in dD,

0 in U,

\ ?!
Uv

it follows that

?<0 inU,
dv

du du

= f o = ϊh> i

e ( a\oe oe

\b)dv δv

Hence there exists a constant c\ > 0 such that

mU.

Thus, by using Taylor's formula we can find a neighborhood W of U in D and
a constant C2 > 0 such that

\u(x)\ < c2e(x) in W.

On the other hand, since we have, with some constant α > 0,

e(x)>u o

we can find a constant cτ> > 0 such that

<c3

'(*)

Therefore we have, with c =

— ce(x) < w(x) < ce(x) on Z).

This proves that u€Ce(D).
(ii-b) Now we assume that

in C1
B(D)9

in Ce(D).
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Then there exists a sequence {ς,}, Cj —> 0, such that

\\Uj~ v\\<cj\\e\l

so that uj —> v in C(D). Hence it follows that u = v. By the closed graph
theorem, this proves that the mapping i is continuous.

(iii) It remains to prove the strong positivity of K.
(iii-a) We show that, for any v > 0 but v φ 0 on D, there exist constants

β > 0 and γ > 0 such that

βe(x) < Kv(x) < γe(x) on 5. (2.11)

By the positivity of K, one may modify the function v in such a way that
v e Cl(D). Furthermore, since the functions u = Kv and e = K\ vanish only
on the set M, it suffices to prove that there exists a neighborhood W of M in D
such that

βe(x)<u(x) mW. (2.12)

Recall that we have, in a neighborhood U of M in dD,

du( a\ou .
u= l - τ — in (7,

V b) dv

and also
/ a\ de .

•= (-τ)τ- in 17,
V 6/ dv

p < 0 in U.
ψ

Thus we have, for β sufficiently small,

u(xf) - ^(x7) > 0 in 17,

: 0 in (7.

Therefore, by using Taylor's formula we can find a neighborhood W of M
in Z> such that

M(JC) - βe(x) > 0 in JF.

This proves estimate (2.12).
(iii-b) Finally we show that the function u = Kv is an interior point of

Pe. Take
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where β is the same constant as in estimate (2.11). Then, for any function
w e Ce(D) satisfying

\\w-Kv\\e<ε,

we have by estimate (2.11)

w < Kv + εe < (γ + ε)e,

and also

> Kv — εe > - e.

This implies that w e Pe, that is, the function Kv is an interior point of Pe.
The proof of Proposition 2.8 is complete. Π

Now we consider the resolvent K as an operator in the ordered Banach
space Ce(D), and characterize the eigenvalues and positive eigenfunctions of K.

First Proposition 2.8 tells us that the operator

K : Ce(D) —> Ce(D)

is strongly positive and compact. This implies that K has a countable number
of positive eigenvalues, μy, which may accumulate only at 0. Hence they may
be arranged in a decreasing sequence

μl>μ2>

where each eigenvalue is repeated according to its multiplicity.
The next theorem is an immediate consequence of Theorem 1.1:

THEOREM 2.9. The resolvent K, considered as an operator K : Ce(D) —»
Ce(D), has the following spectral properties'.

(1) The largest eigenvalue μl is simple, Le., μλ > μ2, and it has a positive
eigenfunction ψl.

(2) No other eigenvalues, μ^ j > 2, have positive eigenfunctions.

2.4. End of Proof of Theorem 0. By Claim 2.1 and assertion (2.10), it is easy
to see that

Wu = λu mL2(D)^Ku = -u in Ce(D).
Λ

Therefore Theorem 0 follows by combining Theorem 2.6 and Theorem 2.9. Π
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3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Theorem 1 follows
from an application of local static bifurcation theory from a simple eigenvalue
(Theorem 1.2). We shall apply Theorem 1.2 with

X = C2

B

+Θ(D) = {UE C2+Θ(D) :Bu = Qon 3D},

Y=CΘ(D),

F(t,x):=Au-λu+G(λ,u).

First Theorems 2.6 tells us that 21 is a nonnegative, selfadjoint operator in
the Hubert space L2(D). Hence we have, for each λ > 0, the following
orthogonal decomposition:

L2(D) = N(Vί - λl) ® R(SΆ - λl). (3.1)

However it follows from an application of the regularity theorem for problem
(0.1) (Theorem 2.5) that

N(W - λl) = {ue C2

B

+Θ(D) :(A-λ)u = 0 in /)},

and also

R(M - λl) Π CΘ(D) = {(A -λ)u:ue C2+Θ(D)}.

Thus, by restricting decomposition (3.1) to the space CΘ(D) and also by
taking λ = λ\ we obtain the orthogonal decomposition

CΘ(D) = {ue C%-Θ(D) : (A - λι)u = 0 in D} 0 {(A - λι)u : u e C2^Θ(D}}

= N(Fu(λl,0))®R(Fu(λl,0)). (3.2)

By virtue of decomposition (3.2), it is easy to verify conditions (2) and (3) of
Theorem 1.2. Indeed, by Theorem 0 we find that the null space N(Fu(λι,Q)) is
one dimensional, spanned by the eigenfunction \j/l.

Therefore Theorem 1 follows by applying Theorem 1.2 with X = Cl+θ(D),
Y = CΘ(D) and F(t, x) := Au-λu+ G(λ, u}.

The proof of Theorem 1 is complete. Q

We remark that Examples 1 and 2 follow from a straightforward
application of Corollaries 1.3 and 1.4, respectively.

4. Proof of Theorems 2 and 3

This section is devoted to the proof of Theorems 2 and 3. We transform
problem (0.4) into operator equation (0.10) in the ordered Banach space
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C(D). By condition (R)σ, it follows that the map H, defined by H(u) =
K(F(u}}, leaves invariant the ordering (Lemma 4.1). In the case of an
increasing map, it suffices to verify that H maps two points of a bounded,
closed and convex set into itself in order to apply Schauder's fixed point
theorem. This essential step in the proof of Theorem 2 is done in Lemma
4.2. The proof of Theorem 3 is based on a uniqueness theorem of fixed points
of strongly increasing and strongly sublinear mappings in ordered Banach
spaces (Theorem 4.4).

4.1. Proof of Theorem 2. (1) First we replace the function c(x) by the
function c(x) + ω, where ω > 0 is the same constant as in condition (R)σ, and
consider instead of problem (0.4) the following problem:

n A

Bu = 0 on dD, ^ ' )ω

where F(u) is the Nemytskii operator of /(*,{) defined by the formula

Pb(x)=f(x,u(x)), xeD.

It is clear that problem (0.4) is equivalent to problem (0.4)ω. Furthermore,
since/ e CΘ(D x [0,σ]), it is easy to verify that problem (0.4)ω is equivalent to
an operator equation

u = Kω(ωu + F(u)) in C(5), (4.1)

just as in Subsection 2.3. Here KM : C(D] — > Cl(D) is the compact operator
introduced in Subsection 2.3 with c replaced by c + ω.

(2) We let

Hω(u) = Kω(ωu + F(u}}, u e C(D).

The next lemma asserts that the map Hω leaves invariant the ordering of
the ordered Banach space C(D):

LEMMA 4.1. The operator Hω : [φ,ψ] — > C(D) is increasing. Here [φ,\l/] is

the order interval defined by the formula

PROOF. Let u and v be arbitrary functions in C(D) satisfying φ < u
<ψ on (D). Then we have

ω(υ(x) - u(x)) + (Fυ(x) - Fu(x))

0 if υ(x) = u(x),

if
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and so by condition (R)σ

ω(v - w) + (Fu -Fv)>0 on D.

However Lemma 2.7 tells us that £<y : C(Z>) —> C(Z>) is positive. Thus it
follows that

Hω(v) - Hω(u) = Kω(ω(v - ii) + (F(ι ) - F(n))) > 0 on 5,

or equivalently,

Hω(u) < Hω(v) on D.

This proves that Hω is increasing. Π

Moreover we have the following:

LEMMA 4.2. The operator Hω maps the order interval [φ,\l/] into itself.

PROOF. Let u be an arbitrary function C(Z>) satisfying φ < u < ψ on
D. Then it follows from an application of Lemma 4.1 that

Hω(φ) < Hω(u) < Hω(ψ) on D.

Hence, in order to prove the lemma it suffices to show that

φ<Hω(φ), Hω(ψ)£ψ on D.

If we let

then we have

Γ (A 4- ω)υ = ωtfr 4- ̂ (^J in D,

I A? = 0 on aD.

But, since ψ is a supersolution of problem (0.4), it follows that

(A 4- ω)(t; — ψ) = ω\// 4- ^(t/0 — (A 4- ω)^

and

B(υ - ψ) = -̂  ̂ 0 on δZ).

Thus, using the maximum principle as in the proof of Lemma 2.7 we find that

Hω(ψ) = v <ψ on D.



Bifurcation theory for semilinear elliptic boundary value problems 297

Indeed, if the function v — ψ takes its positive maximum m at an interior point
co e D, then we have

(A + ώ)(v -

This contradicts the condition: (A + ω)(v - ψ) < 0 in D. On the other hand, if
v — ψ takes the positive maximum m at a boundary point xf

Q e dD, then it
follows from an application of the boundary point lemma (Lemma 7.3) that

Hence we have, by conditions (H.I) and (H.2),

B(v - ./OK) = α(4) -(v- t)(4) + b(4)m > 0.

This contradicts the condition: B(v — ψ)<Q on dD.
Similarly we can prove that

φ<Hω(φ) on D.

The proof of Lemma 4.2 is complete. Π

(3) Now we need an extension of Brouwer's fixed point theorem to the
infinitedimensional case, due to Schauder (see [3, Theorem 2.4.3], [19, Prop-
osition 3.60]):

THEOREM 4.3 (Schauder's fixed point theorem). A compact mapping f of a
closed bounded convex set K in a Banach space X into itself has a fixed point
xeK:f(x) =x.

Since K^ : C(D) — > Cl(D) is compact, it follows from Lemma 4.2 that
the mapping Hω : [φ, ψ] — » [φ, ψ\ is compact. Furthermore the order interval
[φ,\l/] is closed, bounded and convex in the space C(D). Therefore, applying
Schauder's fixed point theorem we can find a solution u e [̂ , ψ] of equation
(4.1).

Now the proof of Theorem 2 is complete. Π

4.2. Proof of Theorem 3. (1) Our proof of Theorem 3 is based on the
following uniqueness theorem of fixed points of strongly increasing and strongly
sublinear mappings in ordered Banach spaces (see [1, Theorem 24.2]):

THEOREM 4.4. Let (E, Q) be an ordered Banach space having the positive
cone Q with nonempty interior. If σ is a positive number, we let

Qσ = {ueQ: \\u\\ < σ}.

Assume that a mapping f : Qσ — > E satisfies the following two conditions:
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(A) / is strongly increasing, that is, if u, v e Qσ and if u < v and v ̂  u,
then f(v) —f(u) is an interior point of Q.

(B) / is strongly sublinear, that is, /(O) > 0 and ifueQσ and w ̂  0, then
f(τu) — τf(u) is an interior point of Q for every 0 < τ < 1 .

Then the mapping f has at most one positive fixed point.

In the proof of Theorem 3 we shall apply Theorem 4.4 with

E=Ce(D),

Q = Pe = Ce(D)nP = {u e Ce(D) : u > 0},

(2) If σ is a positive number, we let

(P~e)σ = {uePe:\\u\\e<σ}.

It suffices to prove Theorem 3 in the space (Pe}σ for every σ > 0. Indeed, if u\
and U2 are two positive solutions of problem (0.4), then one can find a constant
σ > 0 such that ||m||e, ||n2||e < σ, so that uly u2 e (P~e)σ.

If we take a constant ω = ω(σ) > 0 given in condition (R)σ, then we have
the following:

LEMMA 4.5. The operator Hω maps (P~e)σ into Pe.

PROOF. Let u be an arbitrary function in (P~e}σ> Then we have, by
condition (R)σ with ζ = u and η = 0 and condition (S2),

F(u) > F(0) -ωu> -ωu on D,

so that

ωu + F(u) > 0 on D.

Hence it follows from an application of Proposition 2.8 that

Hω(u) = Kω(ωu + F(u)) e Pe. Q

Moreover the next lemma asserts that the map Hω is a strongly increasing
selfmap of the space Ce(D):

LEMMA 4.6. The operator Hω : (Pe)σ — > Pe is strongly increasing.

PROOF. Lemma 4.6 follows by combining Lemma 4.1 and Proposition

2.8. Π

On the other hand the next lemma verifies the strong sublinearity of the
map Hω:
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LEMMA 4.7. The operator Hω : (Pe)σ —> Pe is strongly sublinear.

PROOF. Let u be an arbitrary function in (Pe)σ but u / 0. Then we have
by condition (S)

( f ( x , τu(x)} > τf(x, u(x)} if u(x) > 0,

\/(x, τu(x)} = /(*,0) > 0 if u(x) = 0.

This implies that

ωτu + F(τu) — τ(ωu + F(u)}

= F(τu) - τF(u) > 0 and φ 0 on D.

Hence it follows from an application of Proposition 2.8 that the function

Hω(τu) - τHω(u) = Kω(ωτu + F(τu) - τ(ωu + F(u)))

is an interior point of Pe. Π

(3) Combining Lemmas 4.5, 4.6 and 4.7, we have proved that the
mapping Hω : (Pe)σ —> Pe satisfies conditions (A) and (B) of Theorem 4.4 with
E = Ce(D) and Q = Pe. Therefore Theorem 3 follows from an application of
the same theorem.

The proof of Theorem 3 is complete. Π

5. Proof of Theorem 4

In this section we prove Theorem 4. Theorem 4 follows from an
application of Theorem 2 if we construct explicitly super- and subsolutions of
problem (0.4). First, by using the positive eigenfunction ψl of problem (0.1)
we have a subsolution φε = ε^j for ε > 0 sufficiently small. On the other
hand, in order to construct a supersolution of problem (0.4) we make good use
of the positivity lemma (Lemma 5.1) and the existence and uniqueness theorem
for problem (0.1) (Theorem 2.1), just as in the proof of [12, Theorem 2.2].

(I) First we construct a subsolution of problem (0.4).
By condition (0.5), we can find a constant c\ > 0 such that

/(*,{)^λιf, X 6 5 , 0 < ί < c ι . (5.1)

On the other hand, Theorem 0 tells us that the linearized boundary value
problem

(Aφ = λ\ψ in D,

\ Bφ = 0 on dD
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has a positive eigenfunction ιj/l e C2+Θ(D). If we let

Φe = εψ\

for ε > 0 sufficiently small, we may assume that

max φε < c\ .
D

Then we have by condition (5.1)

( Aφε -f(χ, φε) < λιφε - λλφε = 0 in A

\ Bφε = 0 on dD.

This proves that the function φε e C2+Θ(D) is a subsolution of problem (0.4).
(II) In order to construct a supersolution of problem (0.4), we make use

of the following lemma (see [15, Theorem 2.16]):

LEMMA 5.1 (The positivity lemma). Let T : Ce(D) —> Ce(D) be a strongly
positive, compact linear operator and λ$ the largest eigenvalue of T. Then, for
any given positive function g e Ce(D) the equation

λv - TV = g

has a unique positive solution v e Ce(D) for each λ > λ$.

(III) By condition (0.6), we can find constants CΊ > 0 and 0 < d < λ\
such that

Hence, if we let

k = 1 +max{|/(x,£)l : x ε 5,0 < ξ < c2},

then we have

/(*, 0 < (λi -d)ξ + k, xeD,ξ>0. (5.2)

We show that the boundary value problem

= (λι-r f) t f r + λ: in A

ψ = 0 ondD ( ' }

has a positive solution ψ e C2+Θ(D).
First it is easy to see that ψ e C2+Θ(D) is a solution of problem (5.3) if and

only if it satisfies the following operator equation:

ψ = (λι - d)Kψ 4- Kk in Ce(D). (5.4)

However we remark that the largest eigenvalue (λ\ — d)/λ\ of the operator
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(λ\ — d)K is less than 1, and that the function Kk is positive on D. Thus,
using Lemma 5.1 and Theorem 2.1 we can find a positive solution ψ e C2+Θ(D)
of equation (5.4), or equivalently, a solution of problem (5.3).

Then we have by condition (5.2)

k) = 0 in A
on dD.

This proves that the function ψ e C2+Θ(D) is a supersolution of problem (0.4).
(IV) One may assume that the super- and subsolutions ψ, φε satisfy the

condition

φε < ψ on D.

Indeed it suffices to note that the functions φε = ε\//l and ψ behave like the
function e = K\ (see the proof of Proposition 2.8). Furthermore, if we take a
constant σ > 0 such that

max φε, max ψ < σ,
D D

then it follows that the functions ψ and φε are respectively super- and sub-
solutions of problem (0.4) such that 0 < φε(x) < ψ(x) < σ on D.

Therefore Theorem 4 follows from an application of Theorem 2. Π

6. Proof of Theorem 5

By Theorem 4, it suffices to prove that condition (0.6) is necessary for the
existence of positive solutions of problem (0.4). Our proof is inspired by [7,
Section 3].

(I) Theorem 2.6 tells us that the operator 2ί, defined by formula (0.2), is
a nonnegative, selfadjoint operator in L2(D), and has a compact resolvent.
Hence we find that the first eigenvalue λ\ of 21 is characterized by the following
formula:

λι =min{(«fi,u) :ιι e/)(«), IHI = 1}, (6.1)

where \\-\\ is the norm on L2(D).
(I-a) First we show that

λ, < /o. (6.2)

Since the function f ( ξ ) / ζ is strictly decreasing, it follows that

o. (6.3)
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Let w e C2(D) be a positive solution of problem (0.4):

Au =/(ιι) in D,

u > 0 in D,

Bu = 0 on dD.

Here we have used the fact that every positive solution of problem (0.4) is
strictly positive in D (see Lemma 2.7). Then, since we/)(2I), we have by
inequality (6.3) with ζ = u(x)

(ffln,κ) = (Au,u) = [ /(ιι)ιιΛc < /o [
Jz> J

Hence inequality (6.2) follows by using formula (6.1).
(I-b) Next we show that

A ι < / o o (6.4)

If u e C2(D) is a positive solution of problem (0.4), we let

where \\u\\^ =max^w. We remark that d>l^.
Now we consider the eigenvalue problem

( Au — du = λu in Z),

\ Bu = 0 on dD,

and let λ\(d) be its first eigenvalue. Then, by formula (6.1) we find that

λι(d) = min{((9l - dl)u,u):ue />(«), \\u\\ = 1} = λ\ - d.

Furthermore we have the following:

CLAIM 6.1. λ\(d) = λ\ - d > 0.

PROOF. First, by Theorem 0 one may assume that the first eigenvalue
λ\(d) has a positive eigenfunction ψeC2+θ(D):

' Aψ — dψ = λ\ (d)ψ in D,

ψ>0 in D,

^ = 0 on dD.

Since the function f ( ζ ) / ξ is strictly decreasing, it follows from formula (6.5)
that

f(u(x)}>du(x), xeD.
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Hence we have

(9Iw, ψ) = (Au,ψ) = f f(u)ψdx > d \ uψdx. (6.6)
JD JD

On the other hand, by the selfadjointness of 21 it follows that

(«κ, ι/0 = («, %A) = (K, Aψ) = I u(λι (d) + d)ψ dx. (6.7)
JD

Thus, combining formulas (6.6) and (6.7) we obtain that

'4ψ dx > 0.λι(d) f HI/
Jz>

This proves Claim 6.1, since we have u > 0, ψ > 0 in D. Π

Summing up, we have proved inequality (6.4):

λ\ > d> /oo.

The desired inequality (0.6) follows from inequalities (6.2) and (6.4).
(II) Finally we prove the uniqueness of positive solutions of problem

(0.4) (cf. [7, Section 2]).
Let ι/, e C2(Z>), i= 1,2, be two positive solutions of problem (0.4):

Aui=f(ui] in A

Ui > 0 in D,

Bui = 0 on 3D.

The next claim is an essential step in the proof of uniqueness of positive
solutions (cf. [7, Lemma 1]):

CLAIM 6.2. u\/u2) u2/uι e C(D).

PROOF. Since the function f ( ζ ) / ζ is strictly decreasing, we can find two
nonnegative constants ω/, ι= 1,2, such that

f(ut) + ωiUi > 0 in D.

Indeed it suffices to take

Then the solutions wz, i— 1,2, are expressed in the following form:

ui = Kωt(f(uϊ)+ωϊuϊ),

f ( u i ) -f COM > 0 in Z),
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where Kωi is the resolvent of the boundary value problem

{ (A + a>i)u = φ in D,

Bu = Q on dD.

Hence Claim 6.2 follows from the strong positivity of the resolvents K^.,
i= 1,2 (see inequality (2.11)). Π

By Claim 6.2, we can apply Green's formula to obtain that

.f £„«,*,_
JD 3*, dxy , y

f ^MI , f 5t<ι /ι4
- ^-1/1^+ -jl M

JSΛ ov Jaί) dv \uι

+ ί ±,f^dx.ID jjίi dxi dxj

f du2 - , f 8u2fu
2Λ ,

- —u2dσ+\ -ζ-[ — ]dσ.
IdD dv }dD dv \u2J

u2

Here we remark that the four integrals over dD in the last line of formula (6.8)
vanish. Indeed it suffices to note that

~dv
U2

= 0 on dD,

since the solutions u\ and u2 satisfy the boundary conditions

ondD

and since (α, Z>) 7^ (0,0) on dD.
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Therefore we find that

f (f^J-
J/Λ «1 «2

n /

+ ί Y" fl^Γ— - — — ̂  (— - — —
JD ί^bi ^ \d*ι "2 A*// \d*y "2 d*/

This implies that u\ = 1*2 in D, since the function f(ζ)/ζ is strictly decreasing.
The proof of Theorem 5 is now complete. Π

7. Appendix: The maximum principle

Let D be a bounded domain of Euclidean space R^, with boundary dD,
and let A be a second-order elliptic differential operator with real coefficients
such that

Au(x) = - «*(*) - (x) + 6' (x) ~ (x) + c(x)u(x),

where:
(1) cfj e C(RN), afj = cί1 and there exists a constant aQ > 0 such that

^eR^, ί=({ 1 >ί 2 l . . . J{Λ Γ) 6RΛ r .

(2) bt E C(RN), l<i<N.
(3) c € C(RN) and c(x) > 0 in D.
First we have the following (see [23, Theorem 7.1.1]):

THEOREM 7.1 (The weak maximum principle). Assume that a function
u € C(D) Π C2(D) satisfies one of the conditions

Au>Q and c> 0 in Z>;

Au > 0 and c>0 in D.

Then the function u may take its negative minimum only on the boundary dD.

Secondly we have the following (see [17, Chapter 2, Section, 3, Theorem
6], [23, Theorem 7.2.1]):
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THEOREM 7.2 (The strong maximum principle). Assume that a function
u e C(B) Π C2(D) satisfies the condition

Au>0 in D.

Then, if the function u attains its nonpositive minimum at an interior point of D,
then it is constant.

Now assume that D is a domain of class C2, that is, each point of the
boundary dD has a neighborhood in which dD is the graph of a C2 function of
N—l of the variables x\,X2,... ,XN We consider a function ueC(D)Γ\
C2(Z>) which satisfies the condition

Au > 0 in D,

and study the conormal derivative du/dv at a point where the function u takes
its nonpositive minimum.

The boundary point lemma reads as follows (see [17, Chapter 2, Section 3,
Theorem 8], [23, Lemma 7.1.7]):

LEMMA 7.3 (The boundary point lemma). Let D be a domain of class
C2. Assume that a function u e C(D] Π C2(D) satisfies the condition

Au>Q in D,

and that there exists a point xfQ of the boundary dD such that

x) < 0,

u(x) >

Then the conormal derivative (δu/dv)(xf

Q) of u at the point x^, if it exists,
satisfies the condition
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