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ABSTRACT. A finite element analysis for a thermal convection problem with the infinite
Prandtl number is discussed. This problem is observed, for example, in the earth's
mantle convection and in some industrial plants such as glass melting furnaces, where
the Prandtl number is set to be infinite as a limit of high Prandtl numbers. A finite
element scheme for the thermal convection problem with the infinite Prandtl number
is presented. Error estimates of the finite element solution are established. Sample
numerical simulation results are shown, which agree well with the theoretical ones.

1. Introduction

Numerical simulations in thermal convection problems for fluid with high
or infinite Prandtl numbers have been a topic of interest for geophysicists
because of its application to the analysis of mantle convection [8], [9], [15], [16],
[19]. These problems appear also in some industrial plants such as glass
melting furnaces. Since the inside temperature of the glass furnace goes up to
about 1500 °C and direct measurement of physical quantities is quite difficult,
numerical simulation in thermal convection is a powerful tool for analyzing
phenomena in glass melting furnaces [11], [12], [14].

In the numerical simulation in the thermal convection problems, the
Boussinesq equations are commonly used as governing equations, where the
incompressible Navier-Stokes equations and energy equation are coupled with
the term of buoyant force induced by thermal expansion and the term of
thermal convection associated with the flow. When the kinematic viscosity of
the fluid is much greater than the thermal diffusion, the phenomena can be
approximated by equations in which the Prandtl number is assumed to be
infinite as a limit of high Prandtl numbers. The system of equations obtained
in this manner is a mathematical model of such thermal convection phenomena
with the infinite Prandtl number, which is observed in the glass manufacturing
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process and so on. The model has also been used in the analysis of mantle

movement in geophysics [9], [18].

The purpose of this paper is to present a finite element scheme for the

thermal convection problem with the infinite Prandtl number and to give error

estimates. To the best of our knowledge there is no literature discussing error

estimates for this problem. As for the treatment of conventional thermal

convection problems with finite Prandtl numbers, we refer to Boland et al. [1],

[2] in which they showed error estimates of the velocity and the temperature for

semi-discrete problems. Although our equations are simplified compared to

the original thermal convection problems, our results are based on a full discrete

problem and contain error estimates of the pressure. Our choice of finite

element bases is best possible in the sense of i^-norm for the velocity and L2-

norm for the pressure as well as temperature. See Remark 3.

The contents of the paper are as follows. In Section 2, governing

equations of the thermal convection flows of fluids with the infinite Prandtl

number are introduced. In Section 3, a finite element scheme for the problem

is presented. In Section 4, stability properties and error estimates of the finite

element solutions are analyzed. In section 5, sample numerical simulations are

performed.

In what follows, Ω is a bounded domain in Rd with boundary dΩ for

d = 2,3, and (0, T) is a time interval. L2(Ω) is the space of square-integrable

functions in Ω whose inner product and norm are denoted by ( , •) and || | | O β ,

respectively. LQ(Ω) is the space of L2-functions with zero mean value in

Ω. Hk(Ω) is the Sobolev space of functions whose derivatives of order less

than or equal to k lie in L2(Ω). The norm and semi-norm are denoted by

I l l U β a n d l'Uβ> respectively. HQ(Ω) is the space of if1(ί2)-functions

vanishing on the boundary dΩ. H~ι(Ω) denotes the dual space of the Sobolev

space HQ(Ω) whose norm is denoted by || ||_i β. The symbol ( , ) denotes

the duality pairing. C([0,T];X) is the space of continuous functions from

[0, T] to a Banach space X, whose norm is defined by

= max{\\v(t)\\x;te [

L2(0yT;X) is the space of functions from (0, T) to X satisfying

fτ ϊ 1 / 2

Hk(0, T; X) is the space of functions from (0, T) to X satisfying
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We employ the following three function spaces V = (Hl(Ω))d, Q = LQ(Ω) and

2. Governing equations for thermal convection phenomena with the infinite
Prandtl number

We formulate the governing equations and discuss the numerical analysis
of the problems of finding a velocity field u: (0, T) —• V, a pressure field
p : (0, T) -+ Q and a temperature field θ : (0, Γ) -> ψ that satisfy the following
equations in Ω x (0, Γ):

t)) + Vp(t)=EΘ(t), (1)

"(0=0, (2)

^ ( 0 + Raiι(ί) Vθ(ή = Λ0(f) +/(/), (3)

subject to the initial condition

θ(0) = θ°, (4)

where F<g>Z)(v) is the stress divergence term defined by

and .E e i?^ is a unit vector, (0, 1) or (0, 0, 1). Ra is the Rayleigh number and
/ : (0, T) —> H~ι(Ω) represents a source term. The system of equations (l)-(3)
is a model of thermal convection phenomena with the infinite Prandtl num-
ber. These equations are derived from a thermal convection model described
by the Boussinesq equations:

| ^ ( 0 + u(ή Vu(t) = -Pr Ra Vp(i) + 2PrF ® D(u(ή) + Pr RaEfl(ί), (5)

F-! i ( ί )=0, (6)

supplemented by initial conditions,

M (0) = «°,

where Pr denotes the Prandtl number. In (5) the last term represents the
buoyant force induced by thermal expansion. The coefficient of the pressure
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gradient term is expressed by the product of nondimensional numbers Pr and
Ra because the gradient of the reference pressure is considered to be the same
order as the buoyant force.

Since we consider the case of fluids with the infinite Prandtl number,
letting Pr tend to infinity implies

0 = -RaVp(t) + 2V ® D(u(ή) +

dt

Scaling the velocity u by the Rayleigh number and denoting the scaled velocity
by the same symbol u, we obtain equations (l)-(3).

3. A finite element scheme for the thermal convection problem with the infinite
Prandtl number

We consider a variational formulation of (l)-(3) in the following way:

φ ( ί ) , v) + b{v,p{ή) = (Eθ(ή, v), VVGF, te (0, Γ), (8)

b(u(ή,q) = 0, VqeQ, te (0, Γ), (9)

VψeΨ, ί e ( 0 , Γ ) . (10)

Here a is a bilinear form o n F x F and b is a bilinear form on V x Q defined
by

β(v, w) =2J2\ DvWDyMdx, b{v,q) = - £ f ^qdx,

respectively. c\ is a trilinear form on V xΨ xΨ and Co is a bilinear form on
ΨxΨ defined by

respectively. We use the same notation to represent inner products in L2(Ω)
and (L2(Ω))d,
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Ί,φ) = ψφdx,
JΩ

ViWidx, \>,we(L2{Ω))a,
Ω

which will not cause any confusion.

REMARK 1. If v e V satisfies divv = 0, then we have

c\(v,ψ,φ) = (v-V\l/)φdx.
JΩ

Preparing ourself for the case where the incompressibility is satisfied only
approximately, we employ the trilinear form c\ defined above to ensure that
ci(v, ψ, φ) = 0 for any functions v e V and φ e Ψ.

We now discretize (8)—(10). For the spatial discretization, we use the
finite element method. Let 3/, be a triangulation of Ω, where h denotes the
maximum diameter of all elements K e 3A . Let Vh <= V, Qh <= Q and Ψh^Ψ
be finite dimensional subspaces. For the time discretization, we introduce
a time increment τ > 0. The discrete solution is defined on the time

discretization t — nτ, n = 0,. . . ,NT = — . We employ the backward Euler

method for the time derivative. Thus the discrete problem is to find

W>KA"},S> c Vh x Qh x Ψh such that

β(«jf, v A ) + b(vh,p
n

h) = {Eθ"h, v A ), VvA e Vh, n = 0 , . . . , N τ , ( 1 1 )

b(ul qh) = 0, VqheQh>n = 0,..., NT, (12)

VφheΨh,n=l,...,NTt (13)

where Dτ is the forward difference operator defined by

^ G H~ι(Ω) is an approximation to/(nτ). The initial condition is given
as an approximation to θ° in such a way that θ® e Ψh> The system of
equations (11)—(13) is a finite element scheme for the thermal convection
problem for the infinite Prandtl number. It is clear from the estimate (15) in
the next section that the problem (11)—(13) is uniquely solvable for any θ® e Ψh

ι ) , n=l,...,NT.
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Corresponding to the norms of C([0, T]\ X) and L2(0, T; X), we define the
two norms below:

| |v* |U w Ξmax{||vA«||Λ,;n = 0,...,ΛΓΓ}) \\vh\\P(x) = | τ g | | v j f | | U

for discrete functions v/, = {vj*}^0 with values in a Hubert space X.

4. Analyses of the finite element scheme

Throughout this section, let (u%,p%, 0£;n = 0 , . . . , N T ) be the finite element
solution to (11)—(13) and let {u,p,θ) be the exact solution to (8)—(10) and
(4). The symbol C stands for various positive constants independent of h and
τ, which appear in the estimates treated below.

4.1. Stability analysis

We here discuss the stability of the finite element scheme (11)—(13). In the
analysis of the mixed finite element method, the uniform inf-sup condition [6]
plays a key role. We suppose that there exists a constant β > 0 independent of
h such that

sup,, *(VV*J, >β. (14)

This condition is satisfied for the P2/P1 element, for example. See Remark 3.

LEMMA 1. Suppose (14) is satisfied. Then we have

Kill,*. IWIkfl =S CK||o,o, n = 0,...,NT.

PROOF. Equations (11) and (12) are regarded as the finite element
approximation of the Stokes problem with external force Eθ%. Therefore the
results are well known [6]. •

The following theorem shows the stability of the finite element scheme

(11)-(13).

THEOREM 1. Suppose (14) is satisfied. Then we have

Nll/«((j5ri)'v IIΛII/«(L*). ll̂ ll/«(L2)n/2( î) ^ c { | | ^ | | o f 0 + ||ΛII/2(J5Γ-i)}. (15)

PROOF. Substituting 0jj into ψh in (13), and taking Remark 1 into
account, we have

(Dτθ
n

h-\θn

h) + \θn

h\lΩ = (Γh,θ
n

h), n=l,...,NT. (16)



A finite element analysis for a thermal convection problem 561

The right-hand side of (16) is estimated as follows:

/ fn fin\ <f I I Λ Π I I 2 _ι_ l II fn\\2

< 1 | 0 A » | 2 O + C 1 | | / A 1 2 1 O ,

where C\ > 0 is a constant appearing in the inequality

which is derived from the Poincare inequality. Using the inequality \β2 -
30c2 < (β - a)β, we have

l X , iI i f l. (17)
Summing up (17) from n = 1 through A: (<Nτ), we obtain

n=l n=\

From (18) and Lemma 1, we obtain (15). •

4.2. Error analysis

Here we discuss error estimates for the finite element solution to equations
(11)—(13). Suppose that a family of triangulations { 3 Λ } Λ is regular, i.e., the
non-degenerate condition is satisfied and the maximum side length tends to
zero. Let Pk be the space of all polynomials of degree less than or equal to
k. We define finite element spaces Vh, Qh and Ψh by Vh = {vh e V\ Vh\κ e
Pfc ( M ) ,#e3 Λ }, Qh = {qheQ',qh\kePk{p),Ke3h} and Ψh = {φh e Ψ',φh\κ e
Pkφ},K 6 3/,}, where k(u), k(p), and k(θ) are non-negative integers. In what
follows, we suppose the uniform inf-sup condition (14) is satisfied.

LEMMA 2. Suppose that ue C([0, T]; (Hk^+ι{Ω))d Γi F), />eC([0,Γ];
Hk^+ι(Ω)ΠQ) andθeC([0,T];L2(Ω)), and that (u,p,θ) is a solution. Then
we have

")|M(Λir)U(M)+1)β - h Λ ^ ) + 1 b ( « τ ) U ( / , ) + 1 > β + \\θ(nτ) - θn

h\\0^ (19)

for n = 0,..., Nj.

PROOF. We introduce ti£ e Vh and PleQh, n = 0,.. ., NT, defined by

a{un

h, vh) + b(vh,p
n

h) = (Eθ(m),vh), VvA e Vh, (20)

b{un

h,qh)=Q, VqheQh, (21)
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Subtracting (11) and (12) from (20) and (21) respectively, we obtain from
Lemma 1

I K - «*Ίli.ϋ, \\Ph -Pϊ\\o,a * Cy\\θ{nτ) - 0 A Ί O , Ω (22)

with a constant C\ > 0. On the other hand, since ("£,/*/*) is nothing but the
Stokes projection [6] of (u(nτ),p(nτ)) to Vh x Qh, there exists a constant C2 > 0
independent of h and τ such that

). (23)

Combining (22) and (23), we obtain (19). •

We now define the Poisson projection Ph : Ψ s ψ —• PhΨ e Ψh by

, Ψh) = co(ψ, ψh), Vψh e Ψh (24)

REMARK 2. The following results are well known [3].
(i) It holds that

, ^ Ω , VψeΨ.

and

(ii) Suppose the Poisson problem is regular in the sense that Δψ e L2(Ω)
and ψ e HQ(Ω) imply ψ e H2(Ω), e.g., the case where Ω is a convex polygonal
domain in R2. Then we have

II* -phψ\\OtΩ < chkw+ι\ψ\m+lΩ, vψeψnHW+1 (Ω).

The following theorem shows an error estimate for the finite element
solution to (11)—(13).

THEOREM 2. Suppose ueC([0ΊT];(Hk^+ι(Ω))dOV)nHλ(0,T](Hι(Ω))d),
peC([0, Γ];#*W+ 1(β) Π Q) and θ e C([0, T];Hk^+ι(Ω) Π Ψ) ΓiH2(0, Γ;
H~ι(Ω)), and that (u^p^θ) is a solution. Then we have

\\u ~ MAll/»((jyi)')> \\P -

< C{\\θ°h - Phθ(0)\\0,Ω + 11/ -ΛII/2^-1) + hk + τ}, (25)

where k = min{k(u),k(p) + 1,

PROOF. In the following Q, Ϊ = 1, . . . ,7 , are positive constants inde-
pendent of h and τ. We denote by θ% = Phθ(nτ) the Poisson projection at
t = nτ, n = 0,..., iV ,̂ and by e£ = θ\ — θ% the error between the finite element
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solution and their projection. From (10), (13), and (24) we derive

(Dτe
n

h~\ ψh) + R a cx (un

h~\ en

h, φh) + co(en

h, φh) = (εn

x + εn

2 + ε?> φh)

where εf, i= 1,2,3, are defined by

βf EE dl(nτ)-Dτθ
n

h-\ εn

2 EE R a { c ( « ( 4 9 ( 4 ' ) " ^iK"1 AV)}, ( 2 6 )

From (18) we have for n = 1,..., ΛΓΓ,

Ik* Ho,fl + * Σ kίl'fl < lkΛ°Ho,Ω + Q τ έ E lk/Ίl-i,o <27)
/=1 /=1 ί=l

We then estimate each term of the right-hand side of (27). Since

ε " = { f t { m ) ~ Vθ{m) ~θ{{n ~i)τ))}+\{i ~ Ph)w{m) - θ^n -i)τ)}

= -\ {,_(„-i)T}£lΞ(J)dί + - (i-ph)^(s)άs,
Tj(n-l)τ ^ ' τJ(n-l)τ "

we obtain, from Remark 2,

IkΠUo ̂  V Ϊ ka- +-^07 ' ( 2 8 )

where /„ = ((n - l)τ,nτ). On the other hand,

ε2" = Ra{c,(«(«τ) - u((n - l)τ), θ(nτ), •) + c,(iι((n - l)τ,θ{nτ) - θ"h, •

+ C 1 ( M ( ( H - 1 ) T ) - M A « - 1 , 0 A V ) } ,

and so we obtain, from Remark 2,

11*21-1,0 ̂  CtflKnτ) - «((» - l)τ)||liO||β(»τ)||liO

1 ̂  ^ 7I II Ot \ Ll(In;(H*(a)γ)

|u((ιι - l)τ) - "ΓMli.Ωll^llcαo.Γi /ίHΩ))}- (29)
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Substituting (26), (28) and (29) into (27) and using nτ < T, we obtain

(30)

for n = 1,... ,NT. Using the triangular inequality ||0jj - 0(/iτ)||O|O < ||έ?jj||o,β+
||0jj - θ(nτ)\\0Ω, combining (30) with Lemma 2, and applying the discrete
Gronwall inequality [7], we obtain

\\θn

h ~ θ(nτ)\\lΩ < C6\\\θ°h - 0Λ°||o
2

β + τ £ ll/ί -f{h)\\\Ω

+ τ 2 + h2k(θ)

for n= l,...,Nτ Combining (31) with Lemma 2, we obtain (25). •

When the Poisson problem is regular in the sense of Remark 2 (ii), the
error estimate can be refined as follows.

COROLLARY 1. Besides the assumptions of Theorem 2, suppose the Poisson
problem is regular and ue C([0,Γ];(Loo(fl))έ'). Then we have

\\U - W/*ll/oo((#l)')> \\P -Ph ll/oo (£2), | | 0 - 0*||/oo(£2)n/2(jyl)

< C{||0Λ° - Λ0(O)||OfO + 11/ -Λl l^- i ) + hk + τ}, (32)

wÂ r̂  k = min{k(u),k(p) + l,ik(0) + 1}.

PROOF. AS U e C([0, Γ]; (L 0 0 ^))^) and divw = 0, we have

Cι(u((n-l)τ\θ(nτ)-θn

h,φh) < Cλ\\u{{n - 1 ) T ) | | 0 > 0 0 | O | | ( /

where ci( , , ) is the trilinear form defined in Remark 1, || ||0,oo,β denotes the
L°°-norm of measurable functions over Ω and C\ > 0 is a constant independent
of h and τ. In the proof of Theorem 2, the fourth term in the bracket of the
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right-hand side of (30) can be replaced by

Λ llWllc([0JΓ];(L»(β))l')ll̂ llc([0>7'];̂ *(β)+i(fl))>

which implies (32). •

REMARK 3. Suppose that the domain Ω is bounded by a convex polygon

in R2. When the P2/P1/P1 interpolations are used for the velocity/pressure/

temperature fields, i.e., quadratic interpolation for the velocity, linear inter-

polations for the pressure and the temperature are employed, which are known

to satisfy the uniform inf-sup condition [13], we obtain the following error

estimates from (32) with k(u) = 2, k(p) = 1, and k(θ) = 1:

\\u~ MAII/°O((#I)')> \\p-Ph\\iπ(L2y l |0~ ^ l l /oo^np^i)

< C{||0° - Λ0(O)| |O | f l + 11/ -Λ||/2(J f-., + h2 + τ}. (33)

Furthermore, if we take θ°h = Phθ(0) and fh

n =f(nτ) (n=l,...,NT) when

feC([0,T]]H-ι(Ω))9 we have

\\u ~ Uh\\l*({H')dy \\P -Ph\\l<»(L2)i Wθ ~ θh\\l^(L2)Πl2(Hι) ^ ^ ^ + τ )

If θ°eH2(Ω) and fe C([0, T];H2(Ω)), we can take θ°h = Ihθ° and fh

n =

Ihf(nτ), n= 1,.. .,NT, where Ih is the interpolation operator. In this case the

same error estimates are also obtained.

REMARK 4. The stability and the error analysis discussed above can be

extended straightforwardly to the case where the velocity and the temperature

satisfy inhomogeneous boundary conditions.

5. Numerical results

In this section we perform numerical experiments to certify the theoretical

result discussed in the previous section. A sample problem is defined in the

square (-1,1) x (-1,1) and in the time interval (0, 3.2). The Rayleigh number

Ra is taken to be 100. The source term / of the energy equation and the

initial and the boundary conditions of the temperature are given so that the

solutions of equations (l)-(4) are as follows:

u =(0Λt2(x2 - l)2x2(x2

2 - 1), -0.4Ari(x? - \)(x2 - I ) 2 ) ,

p =t2(0ASxlx2 - 3.2JCJ*JC2 +4*1*2 + 1.6x^*| -

θ =t2(QA%x\ - 4.8XJ> + 8xi + 9.6x\xl - UΛxxx
2
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-l

Figure 1: Domain Ω and its subdivision for N = 10 (case (B)).

Table 1. Discretization parameters in each case.

Case

(A)

(B)

(C)

(D)

N

5

10

20

40

Element

Diameter h

0.5657

0.2828

0.1414

0.0707

Node Number

Velocity

121

441

1681

6561

Pressure

Temperature

36

121

441

1681

As for spatial discretization, uniform triangular elements are adopted. The
domain is divided into a union of N x N x 2 triangles. With Figure 1 we
illustrate a subdivision of the domain when N = 10. We use the P2/P1/P1
finite element approximation to the velocity/pressure/temperature fields.

Computation is performed for N = 5 (Case(A)), 10 (Case(B)), 20 (Case(C))
and 40 (Case(D)) using the finite element scheme presented in Section 3. The
discretization parameters in each case are shown in Table 1. Results of the
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Figure 2: The relative error versus element diameter when τ = h2.

computation are evaluated in relative errors between the exact solution and the
computational results:

Error -u{Hι) =
\\u -

IN/-

Error -p(L2) = rrr

\\P\\l«>(L2)

We first set the time increment τ = h2. The relations between the element
lengths and the relative errors are shown in Figure 2. The slopes calculated
from the results in cases (C) and (D) for velocity, pressure and temperature in
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Figure 3: The relative error versus element diameter when τ = h.

Figure 2 are 1.944, 1.946 and 1.939, respectively. The numerical results agree
well in the error order O(h2) derived from Corollary 1 with k{u) = 2, k(p) = 1,
k(θ) = 1 and τ = A2.

We next set τ = h. The relations between the element lengths and the
relative errors are shown in Figure 3. The slopes calculated from the results in
cases (C) and (D) for velocity, pressure and temperature are 0.942, 1.041 and
1.016, which also agree in the theoretical error order O(τ + h2) = O(h).

6. Conclusions

We established an error analysis of a finite element scheme for the thermal
convection problem with the infinite Prandtl number. In our model there
exists no time derivative for velocity, which makes it easy to obtain the error
estimate for the pressure. As a numerical experiment, sample simulation has



A finite element analysis for a thermal convection problem 569

been performed, and the simulation results agreed well with the theoretical
results.

The Rayleigh number, which is contained in the convection term in the
energy equation, becomes high if so does the Grashof number. In such case, it
is known that some "upwind' technique is necessary for the stable computation
[5], [13], [17]. We are planning to investigate some upwind and stabilized
methods [4], [10], for flows with high Rayleigh numbers with the infinite
Prandtl number.
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