Quantum deformations of certain prehomogeneous vector spaces I

Atsushi Kamita, Yoshiyuki Morita and Toshiyuki Tanisaki
(Received November 13, 1997)

Abstract

We shall construct a quantum analogue of the prehomogeneous vector space associated to a parabolic subgroup with commutative unipotent radical.

0. Introduction

Let g be a simple Lie algebra over the complex number field \mathbb{C}, and let $\mathfrak{p}=\mathfrak{I} \oplus \mathfrak{m}^{+}$be a parabolic subalgebra of \mathfrak{g}, where \mathfrak{I} is a maximal reductive subalgebra of \mathfrak{p} and \mathfrak{m}^{+}is the nilpotent part. We denote by \mathfrak{m}^{-}the nilpotent subalgebra of \mathfrak{g} such that $\mathrm{I} \oplus \mathfrak{m}^{-}$is a parabolic subalgebra of \mathfrak{g} opposite to \mathfrak{p}. Take an algebraic group L with Lie algebra I.

In this paper we shall deal with the case where $\mathfrak{m}^{ \pm}$is nonzero and commutative. Then m^{+}consists of finitely many L-orbits.

Our aim is to give a quantum analogue of the prehomogeneous vector space $\left(L, \mathfrak{m}^{+}\right)$. More precisely, we shall construct a quantum analogue A_{q} of the ring $A=\mathbb{C}\left[\mathfrak{m}^{+}\right]$of polynomial functions on \mathfrak{m}^{+}as a noncommutative $\mathbb{C}(q)$ algebra endowed with the action of the quantized enveloping algebra $U_{q}(\mathfrak{l})$ of \mathfrak{I}, and show that for each L-orbit C on \mathfrak{m}^{+}there exists a two-sided ideal $J_{C, q}$ of A_{q} which can be regarded as a quantum analogue of the defining ideal J_{C} of the closure \bar{C} of C. Such an object was intensively studied in the cases $\mathrm{g}=\operatorname{sl}_{n}$ (see Hashimoto-Hayashi [3], Noumi-Yamada-Mimachi [10]) and $\mathfrak{g}=\mathfrak{s o}_{2 n}$ (see Strickland [13]).

Our method is as follows. Since \mathfrak{m}^{-}is identified with the dual space of m^{+}via the Killing form, A is isomorphic to the symmetric algebra $S\left(\mathfrak{m}^{-}\right)$. By the commutativity of m^{-}the enveloping algebra $U\left(\mathfrak{m}^{-}\right)$is naturally identified with the symmetric algebra $S\left(\mathrm{~m}^{-}\right)$. Hence we have an identification $A=$ $U\left(\mathfrak{m}^{-}\right)$. Then using the Poincaré-Birkhoff-Witt type basis of the quantized enveloping algebra $U_{q}(\mathrm{~g})$ (Lusztig [9]) we obtain a natural quantization A_{q} of A as a subalgebra of $U_{q}(\mathrm{~g})$. The algebra A_{q} has a canonical generator system satisfying quadratic fundamental relations. In particular, it is a graded algebra. The adjoint action of $U_{q}(\mathfrak{g})$ on $U_{q}(\mathrm{~g})$ is defined using the Hopf

[^0]algebra structure, and we can show that A_{q} is preserved under the adjoint action of $U_{q}(\mathrm{I})$. As a $U_{q}(\mathrm{I})$-module A_{q} is a direct sum of finite dimensional irreducible submodules.

Let C be a non-open L-orbit on m^{+}. It is known that J_{C} is an I-stable homogeneous ideal generated by the lowest degree part J_{C}^{0}. Since A is a multiplicity free l -module, there exist unique $U_{q}(\mathrm{l})$-submodules $J_{C, q}$ and $J_{C, q}^{0}$ of A_{q} satisfying $\left.J_{C, q}\right|_{q=1}=J_{C}$ and $\left.J_{C, q}^{0}\right|_{q=1}=J_{C}^{0}$. We can show that $J_{C, q}$ is a twosided ideal of A_{q} and that $J_{C, q}$ is generated by $J_{C, q}^{0}$ both as a left ideal and a right ideal. The proof uses the quantum counterpart of the results on a generalized Verma module of g whose maximal proper submodule is explicitly described in terms of J_{C} (see Enright-Joseph [2], Tanisaki [14]).

Explicit descriptions of A_{q} and $J_{C, q}$ in each individual case will be given in our subsequent papers.

1. Quantized enveloping algebras

Let \mathfrak{g} be a simple Lie algebra over the complex number field \mathbb{C} with Cartan subalgebra \mathfrak{h}. Let $\Delta \subset \mathfrak{h}^{*}$ and $W \subset G L(\mathfrak{h})$ be the root system and the Weyl group respectively. For each $\alpha \in \Delta$ we denote the corresponding root space by g_{α}. We fix an ordering on Δ, and denote the set of positive roots by Δ^{+}and the set of simple roots by $\left\{\alpha_{i}\right\}_{i \in I_{0}}$, where I_{0} is an index set. We set

$$
\mathbf{n}^{+}=\bigoplus_{\alpha \in \Delta^{+}} \mathbf{g}_{\alpha}, \quad \mathbf{n}^{-}=\bigoplus_{\alpha \in \Delta^{+}} \mathbf{g}_{-\alpha} .
$$

For $i \in I_{0}$ let $h_{i} \in \mathfrak{h}, \varpi_{i} \in \mathfrak{h}^{*}$ and $s_{i} \in W$ be the simple coroot, the fundamental weight, the simple reflection corresponding to i respectively. Take $e_{i} \in \mathfrak{g}_{\alpha_{i}}$ and $f_{i} \in \mathfrak{g}_{-\alpha_{i}}$ satisfying $\left[e_{i}, f_{i}\right]=h_{i}$. Let $():, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ be the invariant symmetric bilinear form such that $(\alpha, \alpha)=2$ for short roots α. Set

$$
d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2 \quad\left(i \in I_{0}\right), \quad a_{i j}=\alpha_{j}\left(h_{i}\right)=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \quad\left(i, j \in I_{0}\right)
$$

For a subset I of I_{0} we set

$$
\begin{gathered}
\Delta_{I}=\Delta \cap \sum_{i \in I} \mathbb{Z} \alpha_{i}, \quad W_{I}=\left\langle s_{i} \mid i \in I\right\rangle, \\
\mathfrak{l}_{I}=\mathfrak{h} \oplus\left(\bigoplus_{\alpha \in \Delta_{I}} \mathfrak{g}_{\alpha}\right), \quad \mathfrak{n}_{I}^{+}=\bigoplus_{\alpha \in \Delta^{+} \backslash \Delta_{I}} \mathfrak{g}_{\alpha}, \quad \mathfrak{n}_{I}^{-}=\bigoplus_{\alpha \in-\Delta^{+} \backslash \Delta_{I}} \mathfrak{g}_{\alpha} .
\end{gathered}
$$

For a Lie algebra \mathfrak{a} we denote by $U(\mathfrak{a})$ the enveloping algebra of \mathfrak{a}.
Let us recall the definition of the quantized enveloping algebra $U_{q}(\mathfrak{g})$ (Drinfel'd [1], Jimbo [7]). It is an associative algebra over the rational function field $\mathbb{C}(q)$ generated by the elements $\left\{E_{i}, F_{i}, K_{i}, K_{i}^{-1}\right\}_{i \in I_{0}}$ satisfying the
following fundamental relations:

$$
\begin{aligned}
& K_{i} K_{j}=K_{j} K_{i}, \\
& K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1, \\
& K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j}, \\
& K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{i j}} F_{j}, \\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-k} E_{j} E_{i}^{k}=0 \quad(i \neq j), \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-k} F_{j} F_{i}^{k}=0 \quad(i \neq j),
\end{aligned}
$$

where $q_{i}=q^{d_{i}}$, and

$$
[m]_{t}=\frac{t^{m}-t^{-m}}{t-t^{-1}}, \quad[m]_{t}!=\prod_{k=1}^{m}[k]_{t} \quad\left[\begin{array}{c}
m \\
n
\end{array}\right]_{t}=\frac{[m]_{t}!}{[n]_{t}![m-n]_{t}!} \quad(m \geq n \geq 0) .
$$

For $i \in I_{0}$ and $n \in \mathbb{Z}_{\geq 0}$ we set

$$
E_{i}^{(n)}=\frac{1}{[n]_{q_{i}}!} E_{i}^{n}, \quad F_{i}^{(n)}=\frac{1}{[n]_{q_{i}}!} F_{i}^{n} .
$$

The algebra $U_{q}(\mathrm{~g})$ is endowed with a Hopf algebra structure via the following formula:

$$
\begin{aligned}
& \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes K_{i}^{-1}+1 \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes 1+K_{i} \otimes F_{i}, \\
& \varepsilon\left(K_{i}\right)=1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \\
& S\left(K_{i}\right)=K_{i}^{-1}, \quad S\left(E_{i}\right)=-E_{i} K_{i}, \quad S\left(F_{i}\right)=-K_{i}^{-1} F_{i},
\end{aligned}
$$

where $\Delta: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ and $\varepsilon: U_{q}(\mathfrak{g}) \rightarrow \mathbb{C}(q)$ are the algebra homomorphisms giving the comultiplication and the counit respectively, and $S: U_{q}(\mathrm{~g}) \rightarrow U_{q}(\mathrm{~g})$ is the algebra anti-automorphism giving the antipode.

We define the adjoint action of $U_{q}(\mathbf{g})$ on $U_{q}(\mathbf{g})$ as follows. For x, $y \in U_{q}(\mathrm{~g})$ write $\Delta(x)=\sum_{k} x_{k}^{1} \otimes x_{k}^{2}$ and set $(\operatorname{ad} x)(y)=\sum_{k} x_{k}^{1} y S\left(x_{k}^{2}\right)$. Then

$$
\mathrm{ad}: U_{q}(\mathrm{~g}) \rightarrow \operatorname{End}_{\mathbb{C}(q)}\left(U_{q}(\mathrm{~g})\right)
$$

is a homomorphism of algebras.

Define subalgebras $U_{q}\left(\mathfrak{n}^{ \pm}\right), U_{q}(\mathfrak{h})$ and $U_{q}\left(\mathrm{l}_{I}\right)$ for $I \subset I_{0}$ by

$$
\begin{aligned}
& U_{q}\left(\mathfrak{n}^{+}\right)=\left\langle E_{i} \mid i \in I_{0}\right\rangle, \quad U_{q}\left(\mathfrak{n}^{-}\right)=\left\langle F_{i} \mid i \in I_{0}\right\rangle, \quad U_{q}(\mathfrak{h})=\left\langle K_{i}^{ \pm 1} \mid i \in I_{0}\right\rangle, \\
& U_{q}\left(\mathfrak{l}_{I}\right)=\left\langle K_{i}^{ \pm 1}, E_{j}, F_{j} \mid i \in I_{0}, j \in I\right\rangle .
\end{aligned}
$$

For $i \in I_{0}$ define an algebra automorphism T_{i} of $U_{q}(\mathfrak{g})$ by

$$
\begin{aligned}
& T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}, \\
& T_{i}\left(E_{j}\right)= \begin{cases}-F_{i} K_{i} & (i=j) \\
\sum_{k=0}^{-a_{i j}}\left(-q_{i}\right)^{-k} E_{i}^{\left(-a_{i j}-k\right)} E_{j} E_{i}^{(k)} & (i \neq j),\end{cases} \\
& T_{i}\left(F_{j}\right)= \begin{cases}-K_{i}^{-1} E_{i} & (i=j) \\
\sum_{k=0}^{-a_{i j}}\left(-q_{i}\right)^{k} F_{i}^{(k)} F_{j} F_{i}^{\left(-a_{i j}-k\right)} & (i \neq j) .\end{cases}
\end{aligned}
$$

(see Lusztig [9]). For $w \in W$ choose a reduced expression $w=s_{i_{1}} \cdots s_{i_{k}}$ and set $T_{w}=T_{i_{1}} \cdots T_{i_{k}}$. It is known that T_{w} does not depend on the choice of the reduced expression.

For $I \subset I_{0}$ let w_{I} be the longest element of W_{I} and define a subalgebra $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$by

$$
U_{q}\left(\mathfrak{n}_{I}^{-}\right)=U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{w_{I}}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)
$$

Let w_{0} be the longest element of W. Take a reduced expression $w_{I} w_{0}=$ $s_{i_{1}} \cdots s_{i_{m}}$ of $w_{I} w_{0}$ and set

$$
\beta_{k}=s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right), \quad Y_{\beta_{k}}=T_{i_{1}} \cdots T_{i_{k-1}}\left(F_{i_{k}}\right), \quad Y_{\beta_{k}}^{(n)}=T_{i_{1}} \cdots T_{i_{k-1}}\left(F_{i_{k}}^{(n)}\right)
$$

for $k=1, \ldots, m$. Then it is known that $\left\{\beta_{k} \mid 1 \leq k \leq m\right\}=\Delta^{+} \backslash \Delta_{I}$, and that $\left\{Y_{\beta_{1}}^{\left(d_{1}\right)} \cdots Y_{\beta_{m}}^{\left(d_{m}\right)} \mid d_{1}, \ldots, d_{m} \in \mathbb{Z}_{\geq 0}\right\}$ is a basis of $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$. We note that this basis depends on the choice of the reduced expression of $w_{I} w_{0}$ in general.

Let $\tau: U_{q}(\mathrm{~g}) \rightarrow U_{q}(\mathrm{~g})$ be the algebra anti-automorphism given by

$$
\tau\left(K_{i}\right)=K_{i}^{-1}, \quad \tau\left(E_{i}\right)=E_{i}, \quad \tau\left(F_{i}\right)=F_{i} \quad\left(i \in I_{0}\right)
$$

Lemma 1.1. (i) $\tau T_{w_{I}}\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right)=U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.
(ii) Let $i, j \in I$ be such that $w_{I}\left(\alpha_{i}\right)=-\alpha_{j}$. Then we have

$$
\begin{aligned}
& \left(\operatorname{ad} F_{i}\right)\left(\tau T_{w_{I}}(x)\right)=\tau T_{w_{I}}\left(\left(\operatorname{ad} E_{j}\right)(x)\right), \quad\left(\operatorname{ad} E_{i}\right)\left(\tau T_{w_{I}}(x)\right)=\tau T_{w_{I}}\left(\left(\operatorname{ad} F_{j}\right)(x)\right) \\
& \left(\operatorname{ad} K_{i}\right)\left(\tau T_{w_{I}}(x)\right)=\tau T_{w_{I}}\left(\left(\operatorname{ad}\left(K_{j}^{-1}\right)\right)(x)\right)
\end{aligned}
$$

for any $x \in U_{q}(\mathfrak{g})$.

Proof. (i) We have $\tau T_{k}=T_{k}^{-1} \tau$ for any $k \in I_{0}$, and hence $\tau T_{w}=T_{w^{-1}}^{-1} \tau$ for any $w \in W$. Hence

$$
\begin{aligned}
\tau T_{w_{I}}\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) & =\tau T_{w_{I}}\left(U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{w_{I}}^{-1}\left(U_{q}\left(\mathfrak{n}^{-}\right)\right)\right. \\
& =T_{w_{I}}^{-1}\left(U_{q}\left(\mathfrak{n}^{-}\right)\right) \cap U_{q}\left(\mathfrak{n}^{-}\right)=U_{q}\left(\mathfrak{n}_{I}^{-}\right) .
\end{aligned}
$$

(ii) We have

$$
\tau T_{w_{I}}\left(E_{j}\right)=\tau T_{w_{I} s_{j}} T_{s_{j}}\left(E_{j}\right)=\tau T_{w_{I} s_{j}}\left(-F_{j} K_{j}\right)=-\tau\left(F_{i} K_{i}\right)=-K_{i}^{-1} F_{i} .
$$

Here we have used the formula:

$$
T_{y}\left(F_{k}\right)=F_{\ell}, \quad T_{y}\left(K_{k}\right)=K_{\ell} \quad\left(y \in W, k, \ell \in I_{0}, y\left(\alpha_{k}\right)=\alpha_{\ell}\right)
$$

(see Lusztig [9]). Hence

$$
\begin{aligned}
\tau T_{w_{I}}\left(\left(\operatorname{ad} E_{j}\right)(x)\right) & =\tau T_{w_{I}}\left(\left(E_{j} x-x E_{j}\right) K_{j}\right)=K_{i}\left(z\left(-K_{i}^{-1} F_{i}\right)-\left(-K_{i}^{-1} F_{i}\right) z\right) \\
& =F_{i} z-\left(K_{i} z K_{i}^{-1}\right) F_{i}=\left(\operatorname{ad} F_{i}\right)(z)
\end{aligned}
$$

with $z=\tau T_{w_{I}}(x)$. Other formulas are proved similarly.
Proposition 1.2. $\quad\left(\operatorname{ad} U_{q}\left(l_{I}\right)\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) \subset U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.
Proof. We see easily that $\left(\operatorname{ad} U_{q}(\mathfrak{h})\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right)=U_{q}\left(\mathfrak{n}_{I}^{-}\right)$. Hence it is sufficient to show that $U_{q}\left(\mathfrak{n}_{I}^{-}\right)$is stable under ad E_{i}, ad F_{i} for $i \in I$.

Let $i \in I$ and define $j \in I$ by $\alpha_{j}=-w_{I}\left(\alpha_{i}\right)$. By Lemma 1.1 we have

$$
\begin{aligned}
\left(\operatorname{ad} E_{i}\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) & =T_{w_{I}}^{-1} \tau^{-1} \tau T_{w_{I}}\left(\operatorname{ad} E_{i}\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right)=T_{w_{I}}^{-1} \tau^{-1}\left(\operatorname{ad} F_{j}\right)\left(\tau T_{w_{I}} U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) \\
& \subset T_{w_{I}}^{-1} \tau^{-1}\left(\operatorname{ad} F_{j}\right)\left(U_{q}\left(\mathfrak{n}^{-}\right)\right) \subset T_{w_{I}}^{-1}\left(U_{q}\left(\mathfrak{n}^{-}\right)\right)
\end{aligned}
$$

Let us show $\left(\operatorname{ad} E_{i}\right)\left(U_{q}\left(\mathfrak{n}^{-}\right)\right) \subset U_{q}\left(\mathfrak{n}^{-}\right)$. For any $y \in U_{q}\left(\mathfrak{n}^{-}\right)$we can write

$$
\left[E_{i}, y\right]=K_{i} r_{1}(y)-r_{2}(y) K_{i}^{-1} \quad\left(r_{1}(y), r_{2}(y) \in U_{q}\left(\mathfrak{n}^{-}\right)\right)
$$

and hence $\left(\operatorname{ad} E_{i}\right)(y)=K_{i} r_{1}(y) K_{i}-r_{2}(y)$. On the other hand by Jantzen [5] we have

$$
\left\{y \in U_{q}\left(\mathfrak{n}^{-}\right) \mid r_{1}(y)=0\right\}=U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{i}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)
$$

Hence we have to show $U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{w_{I}}^{-1} U_{q}\left(\mathfrak{n}^{-}\right) \subset U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{i}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)$. It is sufficient to show for any $y \in W$ and $k \in I_{0}$ satisfying $s_{k} y<y$ that $U_{q}\left(n^{-}\right) \cap$ $T_{s_{k} y}^{-1} U_{q}\left(\mathfrak{n}^{-}\right) \subset U_{q}\left(\mathfrak{n}^{-}\right) \cap T_{y}^{-1} U_{q}\left(\mathfrak{n}^{-}\right)$. This follows from Lusztig [9]. Therefore we have $\left(\operatorname{ad} E_{i}\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) \subset U_{q}\left(\mathfrak{n}_{I}^{-}\right)$. Then we see from Lemma 1.1 that $\left(\operatorname{ad} F_{\ell}\right)\left(U_{q}\left(\mathfrak{n}_{I}^{-}\right)\right) \subset U_{q}\left(\mathfrak{n}_{I}^{-}\right)$.

Let $U_{q}^{0}\left(\mathfrak{n}^{-}\right)$be the $\mathbb{C}\left[q^{ \pm 1}\right]$-subalgebra of $U_{q}\left(\mathfrak{n}^{-}\right)$generated by $\left\{F_{i}^{(n)} \mid i \in I_{0}\right.$, $\left.n \in \mathbb{Z}_{\geq 0}\right\}$. We have a natural \mathbb{C}-algebra homomorphism $\varphi: U_{q}^{0}\left(\mathfrak{n}^{-}\right) \rightarrow U\left(\mathfrak{n}^{-}\right)$ given by $\dot{F}_{i}^{(n)} \rightarrow f_{i}^{n} / n!$, and it induces the isomorphism $\mathbb{C} \otimes_{\mathbb{C}\left[q^{ \pm}\right]} U_{q}^{0}\left(\mathfrak{n}^{-}\right) \simeq$ $U\left(\mathfrak{n}^{-}\right)$where $\mathbb{C}\left[q^{ \pm 1}\right] \rightarrow \mathbb{C}$ is given by $q \mapsto 1$. For $I \subset I_{0}$ the restriction of φ to $U_{q}^{0}\left(\mathfrak{n}_{I}^{-}\right)=U_{q}^{0}\left(\mathfrak{n}^{-}\right) \cap U_{q}\left(\mathfrak{n}_{I}^{-}\right)$gives a surjective \mathbb{C}-algebra homomorphism $\varphi_{I}: U_{q}^{0}\left(\mathfrak{n}_{I}^{-}\right) \rightarrow U\left(\mathfrak{n}_{I}^{-}\right)$inducing $\mathbb{C} \otimes_{\mathbb{C}[q \pm 1]} U_{q}^{0}\left(\mathfrak{n}_{I}^{-}\right) \simeq U\left(n_{I}^{-}\right)$.

For $N \in \mathbb{Z}_{>0}$ set

$$
U_{q, N}(\mathfrak{g})=\mathbb{C}\left(q^{1 / N}\right) \otimes_{\mathbb{C}(q)} U_{q}(\mathfrak{g})
$$

and let $U_{q, N}\left(\mathfrak{n}^{ \pm}\right), U_{q, N}(\mathfrak{h}), U_{q, N}\left(\mathfrak{l}_{I}\right), U_{q, N}\left(\mathfrak{n}_{I}^{-}\right)$be the $\mathbb{C}\left(q^{1 / N}\right)$-subalgebras of $U_{q, N}(\mathrm{~g})$ generated by $U_{q}\left(\mathfrak{n}^{ \pm}\right), U_{q}(\mathfrak{h}), U_{q}\left(\mathfrak{l}_{I}\right), U_{q}\left(\mathfrak{n}_{I}^{-}\right)$respectively.

2. Highest weight modules

For a $U(\mathfrak{h})$-module M and $\mu \in \mathfrak{h}^{*}$ we set

$$
M_{\mu}=\{m \in M \mid h m=\mu(h) m \quad(h \in \mathfrak{h})\} .
$$

It is called a weight space of M with weight μ. A $U(\mathfrak{h})$-module M satisfying $M=\bigoplus_{\mu} M_{\mu}$ and $\operatorname{dim} M_{\mu}<\infty$ for any μ is called a weight module. We define its character $\operatorname{ch}(M)$ as the formal infinite sum

$$
\operatorname{ch}(M)=\sum_{\mu} \operatorname{dim} M_{\mu} e^{\mu}
$$

A $U(\mathbf{g})$-module M is called a highest weight module with highest weight $\lambda \in \mathfrak{h}^{*}$ if there exists $m \in M_{\lambda} \backslash\{0\}$ satisfying $M=U(\mathbf{g}) m, \mathbf{n}^{+} m=0$. Such m is determined up to a nonzero constant multiple and is called the highest weight vector of M. For each $\lambda \in \mathfrak{h}^{*}$ there exists a unique (up to an isomorphism) irreducible highest weight module with highest weight λ, which we denote by $L(\lambda)$. Since highest weight modules are weight modules, their characters are defined. For $I \subset I_{0}$ set

$$
\mathfrak{h}_{I}^{*}=\bigoplus_{i \in I_{0} \backslash I} \mathbb{C} \varpi_{i} \subset \mathfrak{h}^{*}
$$

For $\lambda \in \mathfrak{h}_{I}^{*}$ we define a $U(\mathfrak{g})$-module $M_{I}(\lambda)$ by

$$
M_{I}(\lambda)=U(\mathfrak{g}) /\left(\sum_{h \in \mathfrak{b}} U(\mathfrak{g})(h-\lambda(h))+U(\mathfrak{g}) \mathfrak{n}^{+}+U(\mathfrak{g})\left(\mathfrak{l}_{I} \cap \mathfrak{n}^{-}\right)\right)
$$

It is a highest weight module with highest weight λ and the highest weight vector $m_{I, \lambda}=\overline{1}$, where $\overline{1}$ denotes the element of $M_{I}(\lambda)$ corresponding to $1 \in U(\mathfrak{g})$. Moreover it is a rank one free $U\left(\mathfrak{n}_{I}^{-}\right)$-module generated by the
highest weight vector $m_{I, \lambda}$, and hence we have

$$
\operatorname{ch}\left(M_{I}(\lambda)\right)=\frac{e^{\lambda}}{\prod_{\alpha \in \Delta^{+} \backslash \Delta_{I}}\left(1-e^{-\alpha}\right)} .
$$

It contains a unique maximal proper submodule $K_{I}(\lambda)$, and we have $L(\lambda)=M_{I}(\lambda) / K_{I}(\lambda)$.

Now we define the corresponding notions for the quantized enveloping algebras. Set

$$
\mathfrak{h}_{\mathbf{Z}}^{*}=\left\{\lambda \in \mathfrak{b}^{*} \mid \lambda\left(h_{i}\right) \in \mathbb{Z}\left(i \in I_{0}\right)\right\}=\bigoplus_{i \in I_{0}} \mathbb{Z} \varpi_{i} \subset \mathfrak{h}^{*}
$$

For a $U_{q, N}(\mathfrak{h})$-module M the weight space M_{μ} with weight $\mu \in \mathfrak{h}_{\mathbf{Z}}^{*} / N$ is defined by

$$
M_{\mu}=\left\{m \in M \mid K_{i} m=q_{i}^{\mu\left(h_{i}\right)} m \quad\left(i \in I_{0}\right)\right\} .
$$

We call a $U_{q, N}(\mathfrak{b})$-module M a weight module if $M=\bigoplus_{\mu} M_{\mu}$ and $\operatorname{dim} M_{\mu}<\infty$ for any $\mu \in \mathfrak{h}_{\mathbf{z}}^{*} / N$. Let M be a $U_{q, N}(\mathfrak{g})$-module. If there exists $m \in M_{\lambda}$ satisfying $U_{q, N}(\mathrm{~g}) m=M, E_{i} m=0\left(i \in I_{0}\right)$, then M is called a highest weight module with highest weight λ and m is called its highest weight vector. There exists a unique irreducible highest weight module $L_{q, N}(\lambda)$ with highest weight λ. Highest weight modules are weight modules. For $I \subset I_{0}$ set

$$
\mathfrak{b}_{i, \mathbf{Z}}^{*}=\bigoplus_{i \in I_{0} \backslash I} \mathbb{Z} \varpi_{i} \subset \mathfrak{b}^{*} .
$$

For $\lambda \in \mathfrak{h}_{I, \mathbf{Z}}^{*} / N$ we define a highest weight module $M_{I, q, N}(\lambda)$ by
$M_{I, q, N}(\lambda)=U_{q, N}(\mathfrak{g}) /\left(\sum_{i \in I_{0}} U_{q, N}(\mathfrak{g})\left(K_{i}-q_{i}^{\lambda\left(h_{i}\right)}\right)+\sum_{i \in I_{0}} U_{q, N}(\mathfrak{g}) E_{i}+\sum_{j \in I} U_{q, N}(\mathfrak{g}) F_{j}\right)$.
Its highest weight vector is given by $m_{I, \lambda, q, N}=\overline{1}$. Since $M_{I, q, N}(\lambda)$ is a rank one free module generated by $m_{I, \lambda, q, N}$, we have

$$
\operatorname{ch}\left(M_{I, q, N}(\lambda)\right)=\operatorname{ch}\left(M_{I}(\lambda)\right)
$$

We have a unique maximal proper submodule $K_{I, q, N}(\lambda)$ of $M_{I, q, N}(\lambda)$, and hence $L_{q, N}(\lambda)=M_{I, q, N}(\lambda) / K_{I, q, N}(\lambda)$.

Proposition 2.1. Let $I \subset I_{0}$ and $\lambda \in \mathfrak{h}_{I, \mathbb{z}}^{*} / N$. Let Y be a subset of $U_{q}^{0}\left(\mathfrak{n}_{I}^{-}\right)$such that $Y m_{I, \lambda, q, N} \subset K_{I, q, N}(\lambda)$ and $U(\mathfrak{g}) \varphi_{I}(Y) m_{I, \lambda}=K_{I}(\lambda)$. Then we have $U_{q, N}(\mathrm{~g}) Y m_{I, \lambda, q, N}=K_{I, q, N}(\lambda)$ and $\operatorname{ch}\left(L_{q, N}(\lambda)\right)=\operatorname{ch}(L(\lambda))$.

Proof. Let M be any highest weight $U_{q, N}(g)$-module with highest weight λ. Take a highest weight vector $m \in M$ and set

$$
M^{0}=U_{q}^{0}\left(\mathfrak{n}^{-}\right) m, \quad \bar{M}^{0}=\left.M^{0}\right|_{q=1}=\mathbb{C} \otimes_{\mathbb{C}[q \pm 1 / N]} M^{0} .
$$

Then we can show as in Lusztig [8] that M^{0} is stable under the actions of E_{i}, $F_{i},\left(K_{i}-K_{i}^{-1}\right) /\left(q_{i}-q_{i}^{-1}\right)\left(i \in I_{0}\right)$ and that \bar{M}^{0} becomes a highest weight $U(\mathfrak{g})-$ module with highest weight λ via the operators

$$
e_{i}=\bar{E}_{i}, \quad f_{i}=\bar{F}_{i}, \quad h_{i}=\frac{\overline{K_{i}-K_{i}^{-1}}}{q_{i}-q_{i}^{-1}} \quad\left(i \in I_{0}\right) .
$$

In particular we have

$$
\operatorname{dim} M_{\mu}=\operatorname{dim}\left(\bar{M}^{0}\right)_{\mu} \geq \operatorname{dim} L(\lambda)_{\mu}
$$

Now we set

$$
M=M_{I, q, N}(\lambda) / U_{q, N}(\mathfrak{g}) Y m_{I, \lambda, q, N}, \quad m=\overline{m_{I, \lambda, q, N}} \in M
$$

By the above argument \bar{M}^{0} is a highest weight $U(\mathrm{~g})$-module with highest weight λ and the highest weight vector \bar{m}. Moreover, since $Y m=0$, we have $\varphi_{I}(Y) \bar{m}=0$. Hence we have $\bar{M}^{0} \simeq L(\lambda)$. It follows that

$$
\operatorname{dim} L_{q, N}(\lambda)_{\mu} \leq \operatorname{dim} M_{\mu}=\operatorname{dim}\left(\bar{M}^{0}\right)_{\mu}=\operatorname{dim} L(\lambda)_{\mu} \leq \operatorname{dim} L_{q, N}(\lambda)_{\mu} .
$$

Therefore we have $M \simeq L_{q, N}(\lambda)$ and $\operatorname{ch}\left(L_{q, N}(\lambda)\right)=\operatorname{ch}(L(\lambda))$.

3. Parabolic subalgebras with commutative nilpotent radicals

In the rest of this paper we fix $I \subset I_{0}$ satisfying $n_{I}^{+} \neq\{0\}$ and $\left[\mathfrak{n}_{I}^{+}, \mathfrak{n}_{I}^{+}\right]=\{0\}$ (see, for example, [14] for the list of (\mathfrak{g}, I)'s satisfying the condition). We have $I=I_{0} \backslash\left\{i_{0}\right\}$ for some $i_{0} \in I_{0}$.

We set $\mathfrak{I}=\mathfrak{l}_{I}, \mathfrak{m}^{ \pm}=\mathfrak{n}_{I}^{ \pm}$for simplicity.
Proposition 3.1. The element $Y_{\beta} \in U_{q}\left(\mathfrak{m}^{-}\right)$for $\beta \in \Delta^{+} \backslash \Delta_{I}$ does not depend on the choice of a reduced expression of $w_{I} w_{0}$.

Proof. For $i, j \in I_{0}$ set

$$
r(i, j)=(\overbrace{i, j, i, j, \ldots}^{m_{i j}}),
$$

where $m_{i j}$ denotes the order of $s_{i} s_{j} \in W$. Let $s_{i_{1}} \cdots s_{i_{r}}$ be a reduced expression of $w \in W$. Then $s_{j_{1}} \cdots s_{j_{r}}$ is a reduced expression of w if and only if $\left(j_{1}, \ldots, j_{r}\right)$ can be obtained from $\left(i_{1}, \ldots, i_{r}\right)$ by successively exchanging a subsequence of the form $r(i, j)$ to $r(j, i)$.

We first show that for any reduced expression $s_{i_{1}} \cdots s_{i_{r}}$ of $w_{I} w_{0}$ the sequence $\left(i_{1}, \ldots, i_{r}\right)$ does not contain a subsequence of the form $r(i, j)$ with $m_{i j} \geq 3$. Assume that there exists a subsequence $r(i, j)$ with $m_{i j}=3$ in $\left(i_{1}, \ldots, i_{r}\right)$. We have $\left(i_{p}, i_{p+1}, i_{p+2}\right)=(i, j, i)$ for some p. Set $y=s_{i_{1}} \cdots s_{i_{p-1}}$.

Then we have

$$
\beta_{p}=y\left(\alpha_{i}\right), \quad \beta_{p+1}=y s_{i}\left(\alpha_{j}\right)=y\left(\alpha_{i}+\alpha_{j}\right), \quad \beta_{p+2}=y s_{i} s_{j}\left(\alpha_{i}\right)=y\left(\alpha_{j}\right),
$$

and hence $\beta_{p}+\beta_{p+2}=\beta_{p+1}$. This contradicts the commutativity of \mathfrak{m}^{-}. Thus the sequence $\left(i_{1}, \ldots, i_{r}\right)$ does not contain a subsequence of the form $r(i, j)$ with $m_{i j}=3$. Similarly we can show that there does not exist a subsequence of the form $r(i, j)$ with $m_{i j}=4,6$.

Therefore it is sufficient to show that for two reduced expressions

$$
s_{i_{1}} \cdots s_{i_{p}} s_{i} s_{j} s_{j_{1}} \cdots s_{j_{q}}, \quad s_{i_{1}} \cdots s_{i_{p}} s_{j} s_{i} s_{j_{1}} \cdots s_{j_{q}}, \quad\left(s_{i} s_{j}=s_{j} s_{i}\right)
$$

of $w_{I} w_{0}$ the resulting Y_{β} 's are the same. This follows from $T_{i}\left(F_{j}\right)=F_{j}$, $T_{j}\left(F_{i}\right)=F_{i}$, and $T_{i} T_{j}=T_{j} T_{i}$.

We fix a reduced expression $w_{I} w_{0}=s_{i_{1}} \cdots s_{i_{r}}$ and set $\beta_{p}=s_{i_{1}} \cdots s_{i_{p-1}}\left(\alpha_{i_{p}}\right)$. Set

$$
\begin{aligned}
Q^{+} & =\sum_{i \in I_{0}} \mathbb{Z}_{\geq 0} \alpha_{i}, \quad Q_{I}^{+}=\sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}, \\
U_{q}\left(\mathfrak{m}^{-}\right)^{m} & =\sum_{p_{1}, \ldots, p_{m}=1}^{r} \mathbb{C}(q) Y_{\beta_{p_{1}}} \cdots Y_{\beta_{p_{m}}} \quad(m \geq 0) .
\end{aligned}
$$

Lemma 3.2. We have

$$
\begin{aligned}
U_{q}\left(\mathfrak{m}^{-}\right) & =\bigoplus_{m=0}^{\infty} U_{q}\left(\mathfrak{m}^{-}\right)^{m} . \\
U_{q}\left(\mathfrak{m}^{-}\right)^{m} & =\bigoplus_{\sum_{p} m_{p}=m} \mathbb{C}(q) Y_{\beta_{1}}^{\left(m_{1}\right)} \cdots Y_{\beta_{r}}^{\left(m_{r}\right)}=\bigoplus_{\gamma \in m a_{0}+Q_{I}^{+}} U_{q}\left(\mathfrak{m}^{-}\right)_{-\gamma}
\end{aligned}
$$

Here $U_{q}\left(\mathfrak{m}^{-}\right)_{-\gamma}$ is the weight space with respect to the adjoint action of $U_{q}(\mathfrak{h})$ on $U_{q}\left(\mathfrak{m}^{-}\right)$.

Proof. Set

$$
V_{0}^{m}=\bigoplus_{\sum_{p} m_{p}=m} \mathbb{C}(q) Y_{\beta_{1}}^{\left(m_{1}\right)} \cdots Y_{\beta_{r}}^{\left(m_{r}\right)}, \quad V_{1}^{m}=\bigoplus_{\gamma \in m a_{i_{0}}+Q_{I}^{+}} U_{q}\left(\mathfrak{m}^{-}\right)_{-\gamma}
$$

By $\beta_{p} \in \alpha_{i_{0}}+Q_{I}^{+}$we have $V_{0}^{m} \subset U_{q}\left(\mathfrak{m}^{-}\right)^{m} \subset V_{1}^{m}$. . Since $U_{q}\left(\mathfrak{m}^{-}\right)=\bigoplus_{m} V_{0}^{m}$, we obtain $V_{0}^{m}=U_{q}\left(\mathfrak{m}^{-}\right)^{m}=V_{1}^{m}$ and $U_{q}\left(\mathfrak{m}^{-}\right)=\bigoplus_{m=0}^{\infty} U_{q}\left(\mathfrak{m}^{-}\right)^{m}$.

By Lemma 3.2 we can write

$$
\begin{equation*}
\boldsymbol{Y}_{\beta_{p_{1}}} \boldsymbol{Y}_{\beta_{p_{2}}}=\sum_{\substack{s_{1} \leq s_{2} \\ \beta_{p_{1}}+\beta_{p_{2}}=\beta_{s_{1}}+\beta_{s_{2}}}} a_{s_{1}, s_{2}}^{p_{1}, p_{2}} Y_{\beta_{s_{1}}} Y_{\beta_{s_{2}}} \quad\left(a_{s_{1}, s_{2}}^{p_{1}, p_{2}} \in \mathbb{C}(q)\right) \tag{3.1}
\end{equation*}
$$

for $p_{1}>p_{2}$.

Proposition 3.3. The $\mathbb{C}(q)$-algebra $U_{q}\left(\mathfrak{m}^{-}\right)$is generated by the elements $\left\{Y_{\beta_{p}} \mid 1 \leq p \leq r\right\}$ satisfying the fundamental relations (3.1) for $p_{1}>p_{2}$.

Proof. It is sufficient to show that any element of the form $Y_{\beta_{t_{1}}} \cdots Y_{\beta_{t_{n}}}$ ($1 \leq t_{i} \leq r$) can be rewritten as a linear combination of the elements of the form $Y_{\beta_{s_{1}}} \cdots Y_{\beta_{s_{n}}}\left(1 \leq s_{1} \leq \cdots \leq s_{n} \leq r\right)$ by a successive use of the relations (3.1) for $p_{1}>p_{2}$. For $1 \leq k \leq r$ let V_{k} be the subalgebra of $U_{q}\left(\mathfrak{m}^{-}\right)$generated by $\left\{Y_{\beta_{p}} \mid 1 \leq p \leq k\right\}$. By Lusztig [9] we have

$$
V_{k}=\bigoplus_{m_{1}, \ldots, m_{k}} \mathbb{C}(q) Y_{\beta_{1}}^{\left(m_{1}\right)} \cdots Y_{\beta_{k}}^{\left(m_{k}\right)}
$$

We shall show by the induction on k that any element of the form $Y_{\beta_{t_{1}}} \cdots Y_{\beta_{t_{n}}}$ ($1 \leq t_{i} \leq k$) can be rewritten as a linear combination of the elements of the form $Y_{\beta_{s_{1}}} \cdots Y_{\beta_{s_{n}}}\left(1 \leq s_{1} \leq \cdots \leq s_{n} \leq k\right)$ by a successive use of the relations (3.1) for $k \geq p_{1}>p_{2}$. It is trivial for $k=1$. Assume that $k \geq 2$ and the assertion is proved up to $k-1$. We shall show the statement by induction on n. It is obvious for $n=0$. Assume that $n>0$ and the statement is already proved up to $n-1$. Take j such that $t_{1}=\cdots=t_{j}=k, t_{j+1} \neq k$. We use induction on j. Assume that $j=0$. Then we have $t_{1} \neq k$. By using the inductive hypothesis on n we may assume that $t_{2} \leq \cdots \leq t_{n} \leq k$. If $t_{n}<k$, then we have $t_{i} \leq k-1$ for any i, and hence the statement holds by the inductive hypothesis on k. If $t_{n}=k$, then we can apply the inductive hypothesis on n to $Y_{\beta_{t_{1}}} \cdots Y_{\beta_{t_{n-1}}}$, and hence the statement also holds. Assume $0<j<n$. Then we have

$$
Y_{\beta_{t_{1}}} \cdots Y_{\beta_{t_{n}}}=Y_{\beta_{k}}^{j} Y_{\beta_{t_{j+1}}} \cdots Y_{\beta_{t_{n}}}
$$

with $t_{j+1} \neq k$. Applying (3.1) for $\left(p_{1}, p_{2}\right)=\left(k, t_{j+1}\right)$ we obtain

$$
Y_{\beta_{k}} Y_{\beta_{j_{j+1}}}=\sum_{\substack{s_{1} \leq s_{2} \leq k \\ \beta_{k}+\beta_{j_{j+1}}=\beta_{s_{1}}+\beta_{s_{2}}}} a_{s_{1}, s_{2}}^{k, t_{j+1}} Y_{\beta_{s_{1}}} Y_{\beta_{s_{2}}}
$$

Since $s_{1}<k$ by the condition $\beta_{k}+\beta_{t_{j+1}}=\beta_{s_{1}}+\beta_{s_{2}}$, we can apply the inductive hypothesis on j to $Y_{\beta_{k}}^{j-1} Y_{\beta_{s_{1}}} Y_{\beta_{s_{2}}} Y_{\beta_{j_{j+2}}} \cdots Y_{\beta_{t_{n}}}$, and the statement holds. If $j=n$, then we have $Y_{\beta_{t_{1}}} \cdots Y_{\beta_{t_{n}}}=Y_{\beta_{k}}^{n}$, and the statement is obvious.

Since \mathfrak{m}^{-}is commutative, $U\left(\mathfrak{m}^{-}\right)$is isomorphic to the symmetric algebra $S\left(\mathfrak{m}^{-}\right)$. By identifying \mathfrak{m}^{-}with $\left(\mathfrak{m}^{+}\right)^{*}$ via the Killing form of $\mathfrak{g}, S\left(\mathfrak{m}^{-}\right)$is naturally identified with the algebra $\mathbb{C}\left[\mathfrak{m}^{+}\right]$of polynomial functions on \mathfrak{m}^{+}. Hence we have an identification $U\left(\mathfrak{m}^{-}\right)=\mathbb{C}\left[\mathfrak{m}^{+}\right]$. We denote by $\mathbb{C}\left[\mathfrak{m}^{+}\right]^{m}$ ($m \in \mathbb{Z}_{\geq 0}$) the subspace of $\mathbb{C}\left[\mathfrak{m}^{+}\right]$consisting of homogeneous polynomials with degree m.

Set

$$
\mathfrak{h}_{\mathbf{Z}}^{*}(I,+)=\left\{\lambda \in \mathfrak{h}_{\mathbf{Z}}^{*} \mid \lambda\left(h_{i}\right) \geq 0(i \in I)\right\}
$$

For $\lambda \in \mathfrak{h}_{\mathbf{Z}}^{*}(I,+)$ we denote the finite dimensional irreducible $U(\mathfrak{l})$-module (resp. $U_{q}(\mathrm{l})$-module) with highest weight λ by $V(\lambda)$ (resp. $V_{q}(\lambda)$). We can decompose the finite dimensional I-module $\mathbb{C}\left[\mathrm{m}^{+}\right]^{m}$ into a direct sum of submodules isomorphic to $V(\lambda)$ for some $\lambda \in \mathfrak{h}_{\mathbf{Z}}^{*}(I,+)$. Moreover, it is known that

$$
\operatorname{dim} \operatorname{Hom}_{\mathfrak{l}}\left(V(\lambda), \mathbb{C}\left[\mathfrak{m}^{+}\right]\right) \geq 1 \quad\left(\lambda \in \mathfrak{h}_{\mathbf{Z}}^{*}(I,+)\right)
$$

and hence we have

$$
\mathbb{C}\left[\mathfrak{m}^{+}\right]^{m} \simeq \bigoplus_{\lambda \in \Gamma^{m}} V(\lambda)
$$

for finite subsets Γ^{m} of $\mathfrak{h}_{\mathbf{Z}}^{*}(I,+)$ satisfying $\Gamma^{m} \cap \Gamma^{m^{\prime}}=\varnothing$ for $m \neq m^{\prime}$ (see Schmid [11], Takeuchi [12], Johnson [6] for the explicit description of Γ^{m}). On the other hand, since $U_{q}\left(\mathrm{~m}^{-}\right)^{m}$ is a finite dimensional $U_{q}(\mathfrak{l})$-module whose character is the same as that of $\mathbb{C}\left[\mathrm{m}^{+}\right]^{m}$, we have

$$
U_{q}\left(m^{-}\right)^{m} \simeq \bigoplus_{\lambda \in \Gamma^{m}} V_{q}(\lambda)
$$

Let L be the algebraic group corresponding to I. It is known that the set of L-orbits on m^{+}is a finite totally ordered set with respect to the closure relation. Hence we can label the orbits by
$\left\{L\right.$-orbits on $\left.\mathrm{m}^{+}\right\}=\left\{C_{0}, C_{1}, \ldots, C_{t}\right\}, \quad\{0\}=C_{0} \subset \bar{C}_{1} \subset \cdots \subset \bar{C}_{t}=\mathrm{m}^{+}$.
Set

$$
\mathscr{I}\left(\bar{C}_{p}\right)=\left\{f \in \mathbb{C}\left[\mathfrak{m}^{+}\right] \mid f\left(\bar{C}_{p}\right)=0\right\}
$$

Since $\mathscr{I}\left(\bar{C}_{p}\right)$ is an I-submodule of $\mathbb{C}\left[\mathrm{m}^{+}\right]$, we have

$$
\mathscr{I}\left(\bar{C}_{p}\right)=\bigoplus_{m} \mathscr{I}^{m}\left(\bar{C}_{p}\right), \quad \mathscr{I}^{m}\left(\bar{C}_{p}\right)=\mathscr{I}\left(\bar{C}_{p}\right) \cap \mathbb{C}\left[\mathfrak{m}^{+}\right]^{m} \simeq \bigoplus_{\lambda \in \Gamma_{p}^{m}} V(\lambda)
$$

for a subset Γ_{p}^{m} of Γ^{m}. Moreover the following fact is known (see, for example, [14]):

Proposition 3.4. Let $p=0, \ldots, t-1$.
(i) $\mathscr{I}^{m}\left(\bar{C}_{p}\right)=0$ for $m \leq p$.
(ii) $\mathscr{I}^{p+1}\left(\bar{C}_{p}\right)$ is an irreducible I-module, i.e. Γ_{p}^{p+1} consists of a single element v_{p}.
(iii) $\mathscr{I}\left(\bar{C}_{p}\right)$ is generated by $\mathscr{I}^{p+1}\left(\bar{C}_{p}\right)$ as an ideal of $\mathbb{C}\left[\mathrm{m}^{+}\right]$.

PROPOSITION 3.5. For $p=0, \ldots, t-1$ there exists a unique $\lambda_{p} \in \mathfrak{h}_{I}^{*}$ such that $K_{I}\left(\lambda_{p}\right)=\mathscr{I}\left(\bar{C}_{p}\right) m_{I, \lambda_{p}} . \quad$ Moreover, we have $\lambda_{p} \in \mathfrak{h}_{I, \mathbf{Z}}^{*} / 2$.

Let v^{p} be the highest weight vector of the I-module $\mathscr{I}^{p+1}\left(\bar{C}_{p}\right)\left(\simeq V\left(v_{p}\right)\right)$. Then we have

$$
\begin{aligned}
K_{I}\left(\lambda_{p}\right) & =\mathscr{I}\left(\bar{C}_{p}\right) m_{I, \lambda_{p}}=U\left(\mathfrak{m}^{-}\right) \mathscr{I}^{p+1}\left(\bar{C}_{p}\right) m_{I, \lambda_{p}} \\
& =U\left(\mathfrak{m}^{-}\right)\left(\left(\operatorname{ad} U\left(\mathfrak{I} \cap \mathfrak{n}^{-}\right)\right)\left(v^{p}\right)\right) m_{I, \lambda_{p}} \\
& =U\left(\mathfrak{m}^{-}\right)\left(U\left(\mathbb{I} \cap \mathfrak{n}^{-}\right)\right) v^{p} m_{I, \lambda_{p}}=U\left(\mathfrak{n}^{-}\right) v^{p} m_{I, \lambda_{p}}
\end{aligned}
$$

and hence $K_{I}\left(\lambda_{p}\right)$ is a highest weight module with highest weight $\lambda_{p}+v_{p}$.
We set

$$
\begin{aligned}
& \mathscr{I}_{q}^{m}\left(\bar{C}_{p}\right)=\bigoplus_{\lambda \in \Gamma_{p}^{m}} V_{q}(\lambda) \subset U_{q}\left(\mathfrak{m}^{-}\right)^{m}, \quad \mathscr{I}_{q}\left(\bar{C}_{p}\right)=\bigoplus_{m} \mathscr{I}_{q}^{m}\left(\bar{C}_{p}\right) \subset U_{q}\left(\mathfrak{m}^{-}\right), \\
& \mathscr{I}_{q, N}^{m}\left(\bar{C}_{p}\right)=\mathbb{C}\left(q^{1 / N}\right) \otimes_{\mathbb{C}(q)} \mathscr{I}_{q}^{m}\left(\bar{C}_{p}\right) \subset U_{q, N}\left(\mathfrak{m}^{-}\right)^{m}, \\
& \mathscr{I}_{q, N}\left(\bar{C}_{p}\right)=\bigoplus_{m} \mathscr{I}_{q, N}^{m}\left(\bar{C}_{p}\right) \subset U_{q, N}\left(\mathfrak{m}^{-}\right) .
\end{aligned}
$$

Here we identify $U_{q}\left(\mathfrak{m}^{-}\right)^{m}$ with $\bigoplus_{\lambda \in \Gamma^{m}} V_{q}(\lambda)$.
Proposition 3.6. For $p=0, \ldots, t-1$ we have

$$
\operatorname{ch}\left(L_{q, 2}\left(\lambda_{p}\right)\right)=\operatorname{ch}\left(L\left(\lambda_{p}\right)\right), \quad K_{I, q, 2}\left(\lambda_{p}\right)=U_{q, 2}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q, 2}^{p+1}\left(\bar{C}_{p}\right) m_{I, \lambda_{p}, q, 2} .
$$

Proof. We shall only give a sketch of the proof. We can prove a quantum analogue of the determinant formula for the contravariant forms on generalized Verma modules given by Jantzen [4]. It implies that $K_{I, q, N}(\lambda)_{\mu}=0$ if and only if $K_{I}(\lambda)_{\mu}=0$. In particular, we have $K_{I, q, 2}\left(\lambda_{p}\right)_{\lambda_{p}+v_{p}} \neq 0$ and $K_{I, q, 2}\left(\lambda_{p}\right)_{\lambda_{p}+v_{p}+\alpha_{i}}=0$ for any $i \in I_{0}$. Let $v m_{I, \lambda_{p}, q, 2}\left(v \in U_{q, 2}\left(\mathfrak{m}^{-}\right)_{v_{p}}\right)$ be a nonzero element of $K_{I, q, 2}\left(\lambda_{p}\right)_{\lambda_{p}+v_{p}}$. Then for $i \in I$ we have

$$
\begin{aligned}
\left(\left(\operatorname{ad} E_{i}\right)(v)\right) m_{I, \lambda_{p}, q, 2}= & \left(E_{i} v-v E_{i}\right) K_{i} m_{I, \lambda_{p}, q, 2} \\
& \in \mathbb{C}\left(q^{1 / 2}\right) E_{i} v m_{I, \lambda_{p}, q, 2} \subset K_{I, q, 2}\left(\lambda_{p}\right)_{\lambda_{p}+v_{p}+\alpha_{i}}=\{0\} .
\end{aligned}
$$

Hence $\left(\operatorname{ad} E_{i}\right)(v)=0$ for any $i \in I$. It follows that v is a highest weight vector of the $U_{q, 2}(\mathrm{I})$-module $V_{q, 2}\left(v_{p}\right)$. We may assume $v \in U_{q}^{0}\left(\mathfrak{m}^{-}\right)$and $\varphi_{I}(v) \neq 0$. By Proposition 2.1 we conclude that $\operatorname{ch}\left(L_{q, 2}\left(\lambda_{p}\right)\right)=\operatorname{ch}\left(L\left(\lambda_{p}\right)\right)$ and $K_{I, q, 2}\left(\lambda_{p}\right)=$ $U_{q, 2}(g) v m_{I, \lambda_{p}, q, 2}$. Then we have

$$
\begin{aligned}
K_{I, q, 2}\left(\lambda_{p}\right) & =U_{q, 2}(\mathfrak{g}) v m_{I, \lambda_{p}, q, 2} \\
& =U_{q, 2}\left(\mathfrak{m}^{-}\right)\left(U_{q, 2}(\mathfrak{l}) \cap U_{q, 2}\left(\mathfrak{n}^{-}\right)\right) U_{q, 2}(\mathfrak{h}) U_{q, 2}\left(\mathfrak{n}^{+}\right) v m_{I, \lambda_{p}, q, 2} \\
& =U_{q, 2}\left(\mathfrak{m}^{-}\right)\left(U_{q, 2}(\mathfrak{l}) \cap U_{q, 2}\left(\mathfrak{n}^{-}\right)\right) v m_{I, \lambda_{p}, q, 2} \\
& =U_{q, 2}\left(\mathfrak{m}^{-}\right)\left(\left(\operatorname{ad}\left(U_{q, 2}(\mathfrak{l}) \cap U_{q, 2}\left(\mathfrak{n}^{-}\right)\right)(v)\right) m_{I, \lambda_{p}, q, 2}\right. \\
& =U_{q, 2}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q, 2}^{p+1}\left(\bar{C}_{p}\right) m_{I, \lambda_{p}, q, 2} .
\end{aligned}
$$

Theorem 3.7. We have

$$
\mathscr{I}_{q}\left(\bar{C}_{p}\right)=U_{q}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right)=\mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right) U_{q}\left(\mathfrak{m}^{-}\right) .
$$

Proof. By Proposition 3.6 we have

$$
\operatorname{ch}\left(U_{q}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right)\right)=\operatorname{ch}\left(U_{q, 2}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q, 2}^{p+1}\left(\bar{C}_{p}\right)\right)=\operatorname{ch}\left(\mathscr{I}\left(\bar{C}_{p}\right)\right)
$$

and hence $\mathscr{I}_{q}\left(\bar{C}_{p}\right)=U_{q}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right)$. Let us show $U_{q}\left(\mathfrak{m}^{-}\right) \mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right)=$ $\mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right) U_{q}\left(\mathfrak{m}^{-}\right)$. Since $\tau T_{w_{I}}$ is an anti-automorphism of the algebra $U_{q}\left(\mathfrak{m}^{-}\right)$ (see Lemma 1.1), it is sufficient to show that $\tau T_{w_{I}}$ preserves $\mathscr{I}_{q}^{p+1}\left(\bar{C}_{p}\right)$. Since $U_{q}\left(\mathfrak{m}^{-}\right)$is a multiplicity free $U_{q}(\mathfrak{l})$-module, we have only to show that $\tau T_{w_{I}}\left(V_{q}(\lambda)\right)$ is a $U_{q}(\mathrm{l})$-submodule isomorphic to $V_{q}(\lambda)$ for any $\lambda \in \bigcup_{m} \Gamma^{m}$. By Lemma 1.1 we see easily that $\tau T_{w_{I}}\left(V_{q}(\lambda)\right)$ is an irreducible $U_{q}(\mathrm{l})$-module with lowest weight $w_{I}(\lambda)$. Hence we have $\tau T_{w_{I}}\left(V_{q}(\lambda)\right) \simeq V_{q}(\lambda)$.

References

[1] V. G. Drinfel'd, Hopf algebra and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[2] T. J. Enright, A. Joseph, An intrinsic analysis of unitarizable highest weight modules, Math. Ann. 288 (1990), 571-594.
[3] M. Hashimoto, T. Hayashi, Quantum multilinear algebra, Tohoku Math. J., 44 (1992), 471-521.
[4] J. C. Jantzen, Kontravariante Formen auf indzierten Darstellungen halbeinfacher Liealgebren, Math. Ann. 226 (1977), 53-65.
[5] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, 1995.
[6] K. Johnson, On a ring of invariant polynomials on a hermitian symmetric spaces, J. Alg. 67 (1980), 72-81.
[7] M. Jimbo, A q-difference analogue of $U(\mathrm{~g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[8] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249.
[9] G. Lusztig, Quantum groups at roots of 1, Geometriae Dedicata 35 (1990), 89-114.
[10] M. Noumi, H. Yamada, K. Mimachi, Finite dimensional representations of the quantum group $G L_{q}(n ; \mathbb{C})$ and the zonal spherical functions, Japan. J. Math. 19 (1993), 31-80.
[11] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80.
[12] M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
[13] E. Strickland, Classical invariant theory for the quantum symplectic group, Adv. Math. 123 (1996), 78-90.
[14] T. Tanisaki, Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, to appear in Algebraic groups and their representations, Proceedings of the NATO ASI conference, Kluwer Academic Publishers, Dordrecht, 1998.

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima, 739-8526, Japan

[^0]: 1991 Mathematics Subject Classification: Primary 17B37; Secondary 17B10, 20G05.
 Key words and Phrases: Quantum groups, highest weight modules, semisimple Lie algebras.

