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ABSTRACT. Measure theoretic characterization of the duality mappings of the space

L°°(β) and its product spaces L™(Ω)n is investigated. The duality mapping of

X = LCO(Ω) (resp. L°°(Ω)n) is a multi-valued mapping from X into its dual space

X* —ba(Ω) (resp. ba(Ω)n) which assigns to each v e X a weakly-star compact convex

subset of X* defined by F(v) = {/ e X* : <t>,/> = ||t;| |2 = | | / | | 2 } . The structure of the

values F(v) is discussed in terms of their extremal points. The extremal points are

characterized by means of the Jordan decomposition, Yosida-Hewitt decomposition and

the use of 0-1 measures in bα(Ω). The structure theorems are obtained through the full

application of Banach lattice theory, duality theory for general Banach spaces and

Yosida-Hewitt theory. It is also shown that the results presented in this paper are

applicable to the study of the dissipativity of quasilinear diffusion operators in function

spaces of L0 0 type.

0. Introduction

The purpose of this paper is to discuss a measure theoretic characterization

of the duality mapping of the Lebesgue space L°°(ί2) of essentially bounded

measurable functions over an open domain Ω in R^. Although the Banach

space L°°(Ω) is neither seperable nor reflexive, it is significant to study its

precise geometric structure and topological properties. First it is a Banach

lattice with respect to the natural ordering. Second it is the dual space of a

separable Banach space Lι(Ω). Third its dual space bα(Ω) is an extremely

large space of finitely additive bounded measures on the Lebesgue class Jί in

Ω. It is therefore significant to study the precise geometric structure and

topological properties of the spaces L°°(Ω) and bα(Ω). Our approach to these

"bad" Banach spaces is based on the effective use of the duality mapping of

L 0 0 (Ω) and it is expected that the results obtained in this paper will be applied

to general problems arised in nonlinear functional analysis as well as systems of

nonlinear partial differential equations which can be naturally formulated in

these important spaces.

The duality mapping of a Banach spaces J is a possibly multivalued

1991 Mathematics Subject Classification: 35K50

Key words and phrases: L 0 0 spaces, ba(Ω), duality map, 0-1 measure, purely finitely additive

measure



90 Joseph Jude PEIRIS

mapping from Xinto its dual space X* which assigns to each y i n l a subset of
X* defined by

where <f,/> stands for the value of / ε X* at the point v e X. The mapping
F is well-defined on all of X by the Hahn-Banach theorem and it is well-known
([!]> [2], [21]) that F(v) is weakly-star compact convex in X* for each v e X,
and that F is weakly-star demi-closed in the sense that if vn converges strongly
to v in X, fn ε F(vn) and / is a weak-star cluster point of the sequence
(fn : n I oo) then / ε F(υ). As treated in DiesteΓs book, the duality mappings
not only play an crucial role in studying the geometry of Banach spaces, but
also they are powerful tools to treat significant classes of nonlinear operators
formulated in general Banach spaces.

In this paper we investigate the structure and detailed properties of the
duality mapping F of the Lebesgue space L00 (Ω) under the assumption that Ω
is a bounded domain in Rd such that the Lebesgue measure of the boundary
dΩ is zero. This assumption is essential in connection with the representation
theorems for the space C(Ω) of continuous functions over the closed domain Ω
in R^ and the fine properties of finitely additive bounded measures in ba(Ω).
These problems are arised both in the investigations of quasilinear differen-
tial operators and in the study of weak-star derivatives of strongly absolutely
continuous functions which take their values in the dual Banach space L°°(Ω).
The results obtained in this paper suggest not only intrinsic properties possessed
by the dual mappings of general non reflexive Banach spaces but also in-
teresting applications to systems of nonlinear partial differential equations such
as quasilinear reaction-diffusion systems.

Our work is mainly devoted to three problems. The first aim is to
characterize the structure of the values F(υ), v e L00, by means of 0-1 measures
on the Lebesgue class Jί in Ω. The second purpose is to treat the duality
mappings of product spaces L°°(Ω)n equipped with the maximum norm.
Thirdly we make an attempt to illustrate the use of such duality mappings by
considering certain linear and quasilinear differential operators. In fact, our
results will be applied to a broad class of reaction-diffusion systems formulated
in a product space L°°{Ω)n subject to natural boundary conditions in the forth
coming paper [18]. Since the dual space L°°(Ω)* is identified with the space
ba(Ω) of finitely additive bounded measures on Jί which vanish on the sets of
Lebesgue measure zero, it is necessary to apply fully the integration theory with
respect to finitely additive measures and characterize the structure of the values
F(v), veLcc(Ω), in terms of finitely additive measure theory.

Three means are employed to treat the dual space ba(Ω) and investigate
the duality mapping F of L°°(Ω). Since ba(Ω) is also a Banach lattice, we
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fully apply the lattice structure. The first means is the Jordan decomposition

of measures in ba(Ω). A measure λ in F(v) is represented as \\λ\\λ = P + | | v + —

P~||v~, where λ = λ+ — λ~ is the Jordan decomposition of λ and v+, v~ e

ba(Ωγ are such that v = v+ - v~ in L°°(Ω), v+e F(v+) and v~eF(v-),
respectively. Hence our problem is reduced to the consideration of the value

of F for nonnegative elements v e Z,°°(ί2)+. The second means is the Hewitt-

Yosida decomposition theorem which states that any measure λ e ba(Ω) is

decomposed as the sum of a countably additive measure λc and a purely finitely

additive measure λp. By means of this decomposition, detailed properties of

elements in F(v) can be discussed along with various types of measures, their

total variations and scalar products <u, λ}. The third means is the use of 0-1

measures. A 0-1 measure (resp. 0-(—1) measure) is a fundamental type of

measure which assumes only two values 0 and 1 (resp. —1). The extremal

points of the weakly-star compact and convex set F(υ) are characterized in

terms of 0-1 (resp. 0-(-l)) measures and the set extF(t ) of extremal points

is represented by means of extF(ι;+) and extF(ιr) . In consequence, the

structure of F(v) is completely determined through the celebrated Krein-

Milman theorem by 0-1 and 0-(-l) measures belonging to F(v).

In the following sections it is shown that the above-mentioned fine

properties are particularly useful in dealing with various nonlinear operators in

L°°(ί2) and studying the geometry of the dual space ba(Ω). It is, however,

interesting to note that there are substantial differences between the case of

L°°(Ω) and the L00-space /°° = L°°(N) over an atomic measure space. In the

case of /°°, the Yosida-Hewitt decomposition is equivalent to the Dixmier

decomposition, since ba(N) is regarded as the third dual of the space Co of

sequences converging to 0. Therefore it is seen that the countably additive

parts λc correspond to elements in Z1 of absolutely summable sequences and

purely finitely additive parts λp are understood to be annihilators of the closed

subspace c0 of /°°. However, in the case of L°°(ί2), it is shown that any 0-1

measure is purely finitely additive. This is a contrast to the fact that a 0-1

measure λ in ba(N) is countably additive if it is regarded as an element of I1.

The unit surface S*(0,1) of the dual space ba(Ω) is much more complicated

than that of όα(N), since the predual Lι(Ω) does not have the Radon-Nikodym

property. In order to overcome this difficulty we connect the dual space

rca(Ω) of C(Ω) to ba(Ω) via the Hahn-Banach theorem and interpret 0-1

measures in ba(Ω) as "point masses" in a generalized sense.

Furthermore, in this paper, we make an attempt to characterize the duality

mappings of product L 0 0 spaces. This can be done by applying the results

obtained for the case of the duality mapping of L°° (Ω) and the extremal points

of the values of the duality mapping of L 0 0 ^ ) " are completely represented

as n-dimensional vectors of 0-1 measures in ba(Ω). These characterization
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theorems are useful for treating systems of nonlinear partial differential

equations as shown in the subsequent sections.

Section 1 contains some basic facts on the dual space ba(Ω) which is a

Dedekind complete Banach space. In section 2 the duality mapping F and

normalized duality mapping Fo of L°°(Ω) are introduced. We here review

basic facts on the Jordan decomposition of measures in ba(Ω) and briefly

review the Hewitt-Yosida theory. In section 3 we discuss 0-1 measures in

rca(Ω) and ba(Ω) and give fundamental results which play an important role in

the subsequent sections. It is shown here that any 0-1 measure is purely

finitely additive. Section 4 concerns the geometric structure of the normalized

duality mapping Fo of L°°(Ω). Here extremal points of the values FQ(V)

are characterized in terms of the Jordan decomposition and 0-1 measure.

Moreover, in this section, we exhibit how the characterization theorems may be

applied to quasilinear partial differential operators. Section 5 deals with the

duality mapping F of the product space U°(Ω)n. We here give character-

ization theorems for the values F(v),v = (υ\,... ,υn) e L°°(Ω) and extF(r) in

terms of F(vi) and QxtF(vj). Finally, we treat a typical quasilinear differential

operators in L°°(ί2)w by applying the characterization theorems.

1. The dual space of L°°(ί2)

Let Ω be an open bounded set in R^ such that dΩ is Lebesgue measure

zero, namely m(dΩ) = 0. It should be note that here the above assumption

allows us to identify L°°(Ω) with L°°(β). Let M be the class of all Lebesgue

measurable subsets of Ω. We denote by ba(Ω) the set of all finitely additive

bounded measures on Ji which vanish on sets of Lebesgue measure zero. In

this section we focus our attention on the Lebesgue measure space {Ω,M,m)

and outline the main points of the duality theory for the L0 0 space over

1.1. Properties of ba(Ω)

Basic to the duality theory for L°° spaces is the following representation

theorem:

REPRESENTATION THEOREM FOR L°°(ί2) [2, p. 296]. There is an isometric

isomorphism between L°°(ί2)* and ba(Ω) such that the corresponding elements

φeLco(Ω)* and λeba(Ω) satisfy the identity

<φ,u>= f u(ήλ(dή, forueL™(Ω),
JΩ

where the right hand side is Radon's integral
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In this subsection we first investigate that the space ba(Ω) is a Dedekind

complete Banach lattice and then apply the Hewitt-Yosida theorem to ba(Ω).

The space ba(Ω) is a linear space over R in the sense that (oίφ)(E) = ocφ(E)

a n d (λ + μ)(E) = λ(E)+μ(E) for λ,μeba(Ω), α e R a n d EeJί. A l s o ,

ba(Ω) is partially ordered in the sense that λ > μ if and only if (λ — μ)(E) > 0

for any E e Jt. Given λ, μ e ba(Ω) the join and the meet of λ and μ are

defined by

(λ A μ)(E) = inf{λ{T) + μ(E\T) : Γ c

These elements are well-defined in ba(Ω) and it is shown in [4, p. 7] and [2,

p. 162] that the system (ba(Ω), Λ , v ) is a Dedekind complete lattice as stated

below:

PROPOSITION 1.1.1. (a) For u,v,w e ba(Ω), (u v υ) A W = (u A W) V

(v A w) and (u A V) V W = (u v w) A (υ v w). (b) Every subset of the partially

ordered collection of additive scalar valued set functions on a field which has a

upper bound (lower bound) has a least upper bound (greatest lower bound).

We next define the positive part, negative part and the absolute value of an

element λ in ba(Ω) by

λ+ = λvθ,λ~ = {-λ) v 0 a n d \λ\=λv ( - A ) ,

respectively. Then for λ e ba(Ω),

(l . i . i) λ = λ+ - λ~, λ+ A λ~ = o, μ| = λ+ + λ~.

The first relation in (1.1.1) is nothing but the Jordan decomposition of

λ. Hence λ+ and λ~ are the positive and negative variation of λ, respectively.

For E e M, the total variation of υ(λ, E) of λ on E is defined by v(λ, E) =

λ+(E) + λ~(E). Moreover, the total variation v(λ,Ω) is defined to be the

norm ||Λ,|| of λeba(Ω). Clearly, λ,μeba(Ω) and \λ\ < \μ\ imply ||A|| < \\μ\\.

Combining these facts, one can formulate the following

THEOREM 1.1.2. The space (ba(Ω),\\ ||, Λ , V ) forms a Dedekind com-

plete Banach lattice.

Finally, the set {λ : λ e ba(Ω) and λ > 0} is called the positive cone of

ba(Ω) and denoted by ba(Ω)+.
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1.2. Decomposition of measures in ba(Ω)

In the space ba(Ω) there are two kinds of measures. A measure λ e ba(Ω)

is said to be countably additive if any pairwise disjoint sequence of sets

{An}™=ι in Jί the relation λ([j^=ιAn) = ΣZi λ(A») h o l d s O n t h e o t h e r

hand, λ e ba(Ω) is said to be purely finitely additive, if any countably additive

measure σ e ba(Ω) satisfying 0 < σ < v(λ, •) is identically zero.

Henceforth we write c.a. measure for countably additive measure and p.f.a.

measure for purely finitely additive measure. On c.a. and p.f.a. measures in

ba(Ω), some of the basic facts are listed in the following

PROPOSITION 1.2.1. Let μλ, μ2, λeba(Ω) and let λ — λ+ — λ~ be the

Jordan decomposition of λ. Then:

(a) If μι and μ2 are c.a. and μλ < λ < μ2, then so is λ.

(b) If μ\ and μ2 are both c.a. (resp. p.f.a.), then the following elements are all

c.a. (resp. p.fa.) μλ + μ2, ocμu μλ v μ2, and μλ A μ2

(c) If λ is p.f.a. then both λ+ and λ~ are p.f.a.

For the proof we refer to Hewitt-Yosida [20]. We now state the Hewitt-

Yosida decomposition theorem which plays a central role in our argument.

THEOREM 1.2.2. Any μ e ba(Ω) is uniquely decomposed as the sum of a c.a.

measure μc and a p.f.a. measure μp in the sense that μ = μc + μp.

1.3. Decomposition of Variation of λ in ba(Ω)

In this section we give a decomposition theorem for the total variations of

elements λ e ba(Ω) by means of the Hewitt-Yosida decomposition. To this

end we need the following lemma.

LEMMA 1.3.1. If λ e ba(Ω) is represented as λ = λ\ — λ2 for some λ\, λι e

ba(Ω)+ satisfying λ\ A λi = 0, then λ+ = λ\ and λ~ = λi.

PROOF. It is known ([4]) that the relation λ + v = λ A v + λ v v holds for

any λ,ve ba(Ω). This fact implies λ+ = λ v 0 = (λ\ - λ2) v 0 = (λ\ v λ2) -

X2 = λ\ - (λ\ A λι) = λ\. Hence λ\ = λ+. Similarly, we have λ2 — λ~. Π

The aimed decomposition theorem is stated as follows:

THEOREM 1.3.2. Let λεba(Ω) and let λ = λc + λp be its Yosida-Hewitt

decomposition. Then \\λ\\ = \\λc\\ + \\λp\\.

PROOF. The proof is given in the same way as in [10, p. 75]. Let λ e

ba(Ω) and let λ = λ+ — λ~. Applying Theorem 1.2.2. to λ+ and λ~ respec-

tively, we get the decompositions of λ+ and λ~ as λ+ = λ* + λp and λ~ = λ~ 4-
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λ~. Hence we can write λ = (λ+ + λ~) - (λ~ + λ~). Rearranging the terms

in the right-hand side, we get λ = (λ* - λ~) + (λ+ - λ~). Now we prove the

terms (λ* — λ~) and (λ* - λ~) are Jordan decompositions of λ+ and λ~,

respectively. Clearly λ+,λ~,λp and λ~ are non negative. Since λ+ < λ+ and

λ~ < λ~, we have 0 < λ+ A λ~ < λ+ Λ λ~ = 0. This implies λ+ Λ λ~ = 0.

Similarly λϊ Λ λ~ = 0. Then by Lemma 1.3.1 we obtain the desired

result. •

2. The duality mapping of L°°(Ω)

The so-called duality mapping of L0 0 (β) is a multi-valued mapping from

L°°(β) into ba(Ω) which assigns to each weL°°(β) the subset F(u) of

ba{Ω) defined by F(κ) = {λ eba{Ω) : <w,A> = ||w||2 = ||/l||2}, where (u,λ} =

SQu(x)λ(dx).
Since F(0) = {0} in ba(Ω), we mainly treat the normalized duality mapping

Fo of L°°(β) which is defined by F0(0) = S*(0,1), the unit surface of ba(Ω),

and

Fo(u) = {λeba(Ω) : < M > = ll«ll, IWI = 1} for u φ 0.

The aim of this section is to discuss the precise structure of the values Fo(u),

ueLcc(Ω), and topological properties of the normalized duality mapping Fo.

To this end, we begin by treating the Jordan decomposition of the scalar

product <w,A>.

2.1. Jordan decomposition of (u,λ)

We here discuss the Jordan decompositions of scalar products <w, λ} for

weL°°(β) and λeba(Ω). Our first result in this section is the following.

THEOREM 2.1.1. Let u e L°°(β)\{0} and λ e Fo(u). Let u = u+ -u~ and

λ = λ+ — λ~. Then we have

(2.1.1) <uχE,λ) = <u+χE,λ+} + (u-χE,λ-} forEeJί.

If in particular, E = Ω, then

(2.1.2) <«M+> = | |«+ | |μ+ | | = | |u| |p+ | |,<M-,r> = ||«-|||μ-|| = ||«||

Moreover, if ||̂ / —1| < ||w|| then λ± = 0, respectively.

PROOF. We first prove the following identity.

(2.1.3) <uχE,λ} = <\u\χE,Ό(λr)y = \\u\\υ(λ,E), for any E e J(.
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In view of the definition of FQ, we can write ||w|| = <w, λ) = <uχE,λy +

<MXΩ\E, λ>- H e n c e < u χ E , λ) < <\u\χE, υ(λ, •)> < <\\u\\χE, υ(λ, •)> and<uχΩ\E, λ) <

<\u\XΩ\E>v(λr)> < <M\Xa\Eiv(h')y s i n c e U\\ = 1, these estimates together

imply

||w|| = <M, λ} = (uχE, λ} -f <MXΩ\E, λ}

< <\u\χE, υ(λ, •)> + <\u\χΩ\E, υ(λ, •)> < < | | « | | ^ , υ(λ, •)> + <\\u\\χΩ\E, v(λ, •)>

= | |« | | i ;(λ,£) + \\u\\v(λ,Ω\E) = \\u\\v(λ,Ω)

= \\u\\\\λ\\ = \\u\\.

Comparing the corresponding terms in this estimate, we obtain the desired

identity (2.1.3). Since u = u+ - u~ and λ = λ+ — λ~, we have

(2.1.4)

But from (2.1.3) we see that

= iu
+
χ
E
^
+
y + <u

+
χ
E
,λ~ y + <u~χ

E
,λ

+
y + <u-χ

E
,λ-y

Comparing the right hand sides of these two relations yields (u+χE,λ~y +

(u~χE,λ~y = 0. Hence from (2.1.4) we obtain the first assertion (2.1.1).

Putting E = Ω in equation (2.1.1) gives <w,A> = ||w|| = <w+,X+> + <w~,λ~y.

Since <w+,A+> < | | W

+ | | | |A + | | ,<i ι- ,r> < ||iι-|| | | r | | and μ + | | + | | r | | = |μ | | = 1,

we have

\\u-\\ \\λ~\\ < \\u\\ \\λ+\

Comparing the corresponding terms of this series of estimate we obtain

(2.1.2). Finally, suppose ||w+|| < ||w|| and μ + | | > 0. Then ||w+|| μ + | | <

||u|| μ + | | . But from (2.1.2) ||w+|| μ + | | = \\u\\ | μ + | | , and so ||w|| | μ + | | <

||M|| μ + | | . Since \\u\\ > 0, this is a contradiction. Hence we obtain the last

assertion. •

The following immediate consequence of Theorem 2.1.1 deduces a remarkable

property of FQ(U).
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COROLLARY 2.1.2. Let u e L°°(ί2)\{0} and let λ e F0(u). Ifue L°°(f2)+,

then λ>0. If -ue L°°(ί2)\ then λ<0.

REMARK 2.1.3. This result states that the duality mapping FQ(U) is order

preserving in the sense that U2-u\ eL°°(ί2)+ implies Fo(«2 — u\) ^ba(Ω)+.

We now state the main result of this subsection.

THEOREM 2.1.4. Let u eL°°(ί2)\{0}, λeF0(u), and λ = λ+-λ~. Then

λ is written as λ = \\λ+\\v+— \\λ~\\v~, where v+e Fo(u+), v~ e Fo(u~) and

μ+l|v+Λ|μ-||v- = o.

PROOF. First we prove the result for the case λ+ = 0 and then discuss the

general case. Since p | | = 1, we have | |λ"| | = 1 and <w~,Λ~> = ||w"|| by the

second identity in (2.1.2) this shows that λ~ GFO(U~). Therefore, putting v~ =

X~ and taking any element v+ of Fo(u+), we obtain a desired representation

for λ. Similarly, in the case of λ~ = 0, we obtain a desired representation

by setting v+ = λ+ and choosing an arbitrary element v~ of FQ{U~). NOW we

assume both λ+ and λ~ are non zero. Let v+ = /l+/||>ί,+ || and v~ = λ~/

\\λ~\\. From Theorem 2.1.1 we infer that (u±,v±s) = H^H and v± e iΓ

0(w±),

respectively. Now ||A+||v+ Λ | | r | | v - = \\λ+\\(λ+/\\λ+\\) Λ | | r | | ( r / | | r | | ) =

λ+ Λ λ = 0 . This completes the proof. •

2.2. Hewitt-Yosida decomposition of (u,λy

In this subsection we give a decomposition theorem for the scalar product

PROPOSITION 2.2.1. Let u e L°°(f2)\{0} and, λ e F0(u) and let λ = λc + λp

be the Hewitt- Yosida decomposition of λ. Then we have

PROOF. Since, \\λc\\ + \\λp\\ = \\λ\\ by Theorem 1.3.2, we have ||w|| =

> = < M , + V < <\u\Aλc,.)> + <\u\,Ό(λpr)> < \\u\\ \\λc\\ + \\u\\ \\λp\\ <

+ \\λp\\) < \\u\\. Using the same idea as in the Theorem 2.1.1 the

desired equalities are obtained by comparing the corresponding terms in the

above series of estimates. Π

3. 0-1 measures in C(Ω)* and L°°(f2)*

Our objective here is to show that 0-1 measures in ba(Ω) are all p.f.a.. To

this end we consider the space rca(Ω) of regular countably additive set
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functions defined on Ω. We denote by C(Ω) the space of set of all continuous

functions defined on Ω. Since Ω is compact, it is known that there is

an isometric isomorphism between rca(Ω) and the dual space of C(Ω)* as in

the case of ba(Ω).

REPRESENTATION THEOREM FOR C(fl)* ([2, p. 265]) There exists an iso-

metric isomorphism between C(Ω)* and rca(Ω) such that the corresponding

elements φ e C(Ω)* and λerca(Ω) satisfies the identity

iφ, u) = f u(t)λ(dt) for u e C(β).
JΩ

Through out this section we denote the class of all Borel measurable sets in Ω

by Λ(Ω).

3.1. 0-1 measures in rca(Ω) and ba(ίί)

In this section we introduce the notion of 0-1 measures on Jt and that of

0-1 measure on <%{Ω). In what follows, these 0-1 measures play an essential

role.

DEFINITION 3.1.1. Let (S,Σ,μ) be a measure space. A measure on Σ is

said to be a 0-1 measure, if either λ(E) = 1 or λ(Ec) = 1 for any E e Σ.

We generically denote by δ and ω 0-1 measures in rca(Ώ) and ba(Ω),

respectively. In order to discuss the 0-1 measures, we introduce two sets

and Jt{ω) defined by

= {Ee Λ{O) : δ(E) = 1} and Jt(ω) = {E e Jt: ω(E) = 1}.

We first need the following lemma.

LEMMA 3.1.2. The class Jt(ω) and (%(δ) form the bases of ultrafilters in Jt

and &(Ω), respectively.

Our first result is stated as follows:

THEOREM 3.1.3 (a) For any δ e rca(Ω) there is a unique point a e Ω such

that for all neighbourhoods U of a, UΠΩe M{δ) and f]^(δ) = {a}, (b) For

any ω e ba(Ω) there exists a unique point a e Ω such that for any neighbourhood

Uofa} UΠΩE Jt(ω), ()JK(ω) = {a}, and f]J((ω) = 0 , where ~M{ω) = {A :

PROOF, (a) Let δ be a 0-1 measure in rca(Ω). Since Ω is bounded in R^

there exists a closed cube C\ which contains Ω. Hence δ(ΩΠ C\) = δ(Ω) = 1.

Divide C\ into 2d = numbers of closed cubes by using planes parallel to planes
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spanned by two coordinate axes, where the diameter of any cube is one half of
the diameter of C\. Since δ is 0-1 measure we should have one and only
one cube, say C2, which contains the support of δ, namely, δ(C2Γ\Ω) = 1
and diam(C2) =5diam(Ci). Now we divide Cι into 2d numbers of closed
cubes in the same way as before and find a cube, say C3, with diam(C3) =
\ diam(Ci) and δ(ΩPiCτ,) = 1. Continuing this process one find a sequence of
closed cubes {Cn}™=ι such that Cn 2 Cn+\ and diam(Cw) = 2~n+1 diam(Ci) for
all n. By Baire's category theorem, f)™=ιCn φ 0 and f]Cn is a singleton
set such that f]^=ιCn = {a} for some aeRd. Now we demonstrate that
any neighbourhood of U of a, UΠΩ is in <9{δ). Suppose U is any open
neighbourhood of a, then by the construction of cubes we should have at least
one cube contained in U. That is, Cnf)Ώ c UΠΩ and δ(Cn ΠΏ) = 1. Hence
δ(UΓιΏ) = \. To show that ()&(δ) = {a}, we proceed as follows: Let {£/„}
be a sequence of open neighbourhoods of a with f)™=ιUn = {a}. Then it
follows from the previous result that UnΠEe &(δ) for any E e09(δ) and
n > 1. Since δ is countable additive, δ({a}ΠE) = lim,,-^ <$([/„HE) = 1, and
so aeE and {a}e&(δ). Thus we have (\8S(δ) = {a}, this completes the
proof of assertion (a). In the same way as in the proof of (a), we may prove
the first half of assertion (b). So, it suffices to show that [\Jί{ω) = 0 . Let
a e Ω. Since the Lebesgue measure of a singleton set {a} is zero, co({a}) = 0.
T h e r e f o r e Ω\{a} e Jί{ω) for a n y aeΩ a n d f)Jΐ(ω) a f]aeΩ(Ω\{a}) =

0. This completes the proof of (b). •

DEFINITION 3.1.4. To any 0-1 measure δerca(Ω) or ωeba(Ω) there
corresponds a unique point aeΩ. The singleton set {a} is called the essential
support of δ or ω.

We now give a remarkable result on p.f.a. measures in ba(Ω).

THEOREM 3.1.5. Any 0-1 measure in ba(Ω) is purely finitely additive.

PROOF. Let Bn denote a closed ball in R^ with center at origin and radius
n, where n is a positive integer. Let ω be any 0-1 measure in ba(Ω) and
σ e ba{Ω) a countably additive measure in ba(Ω) such that 0 < σ < ω. Choose
«o such that ω(ΩΓ\Bno) = 1. The essential support of ω lies in Ω. Let a
be the point determined by Theorem 3.1.3. Then ω(UΠΩ) = l for any
neighbourhood U of a. Referring to the proof of Theorem 3.1.3, we consider
the closed cubes Cn, such that diam (Cn) = 2~n+ι dmm(Bno), ω(CnΠΩ) = l
and f]Cn = {a}. Let Ωn = CnΠΩ and Nn = Ω\Ωn. Then ω{Nn) = ω(Ω) -
ω(Ω») = 1 - 1 = 0 . Further Nn \ as n -> oo and [JNn = Ω\{a}. Since 0 <
σ(Nn) < ω(Nn) = 0 for any n and σ is countably additive, we have σ(\J Nn) =
lim σ(Nn) = 0. Now Ω\{a} a Nn a Ω implies that σ(Ω) > σ(\jNn) >
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σ(Ω) - σ({a}). Since σ({a}) = 0 this gives σ(Ω) > 0 > σ(Ω). It follows that

σ(Ω) = 0. This means that ω is p.f.a. •

3.2. Hahn-Banach Extension

In the previous section we have discussed some typical properties of 0-1

measures in ba(Ω) and rca(Ω). In this section we make an attempt to treat

0-1 measures in the spaces via the Hahn-Banach Theorem. We first refer to

the following theorem in [20] which is very useful for constructing new 0-1

measures.

THEOREM 3.2.1. Let $ be a subfamily of Jί which has the measure

theoretic finite intersection property: For any finite family E\,Eι, En of S,

the intersection is not Lebesgue measure zero. Then there exists a 0-1 measure

ω on Ji such that ω{E) = 1 for any E e $.

THEOREM 3.2.2. If Ω is compact and ω is a 0-1 measure in ba(Ω), then
ω\c(Ω) = ^a, where a is the essential support of ω.

PROOF. Let a be the point given by Theorem 3.1.3 and consider

a decreasing sequence {Cn} of closed cubes such that diam(C«) =

2~n+x dmm(Bno), ω(Cnf)Ω) = 1 and f]Cn = {a}. Let u e C(Ώ). Then

_ u(s) dω(s) = u(s)dω(s).
JΩ JCnΠΩ

im u(s)dω(s) = u(a).
-^^JCMΩ

Since u is continuous over Ω we have

lim

This shows that

col ~ — o I I

Of concerning above theorem we have following remark.

REMARK 3.2.3. It should be noted that the Hahn-Banach extension of any

point mass δa on C(Ω) to LCO(Ω) is not always a 0-1 measure. Infact for

a e Ω, Define two families s$ and ^ of open rectangles in R^ by

where [a—,a) = f\[ai—,Λ, ) and ( a,a + - ) = ΓTί ai,ai

Jt-\. Then
V n ) -LiV n ) V n) i i V nj
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define i\ and Si as

δ\ = {Ώf)A J e 4 S2

Then both Si and $2 have the measure theoretic finite intersection property

mentioned in Theorem 3.2.1. Therefore one finds ω\ and a>2 e ba(Ω) such that

co\(E\) = 1 for any E\ e S\ and ωι{E2) = 1 for E2 e $2- Further, it is obvious

that ωi φ C02 and U>\\C(Q\ = U>I\C(Q) — &a> Let α = 2~λ[ω\ + ω-ι). Then ||α|| =

1 and α | c , φ = <Sα, but α is not a 0-1 measure. •

The following is already given in [20, p. 60], although it is a useful fact for

the treatment of nonlinear operators in L0 0 spaces.

THEOREM 3.2.4. Let ωeba(Ω) be a 0-1 measure in ba(Ω). Then ω is

multiplicative in the sense that

4. Geometric structure of the duality mapping

In this section we discuss the precise structure of the values Fo(u),u e L 0 0.

4.1. Extremal Points of Fo(iι)

In this subsection we make an attempt to characterize the extremal points

of FQ(U) in terms of 0-1 measure and discuss the precise geometrical structure of

the convex sets Fo(w), u e L°°(Ω).

Our first result is the following characterization theorem for the extremal

points of the values Fo(u), u e

THEOREM 4.1.1. Let ueLcc(Ω)+ and λeF0(u). Then, λ is an extremal

point of FQ(U) if and only if λ is a 0-1 measure.

PROOF. Suppose first that λ is a 0-1 measure. Let α,/?>0, α + /? =

l,/lo,Ai eF0(u) and let λ = θLλo+βλ\. We note that λ0 > 0 and λ\ > 0 by

Corollary 2.1.2. Now let E be an arbitrary element of Jί. If λ(E) = 0, then

λo(E) = λλ(E) = 0. Assume that λ(E) = 1. If 0 < λo{E) < 1, then \\λχ\\ >

λ\{E) = β~ι(l - oLλ0{E)) > β~\\ - α) = 1, which contradicts the fact that

\\λ\\\ = 1. Hence λo(E) must be 1 and λ\(E) = 1 in a similar manner. This

means that λ — λo = λ\ and so that λ is an extremal point.

Conversely, suppose that λ is an extremal point of FQ(U). T O the con-

trary, we assume that there is £Ό e M such that 0 < λ(Eo) < 1. Since u > 0,

we infer from Corollary 2.1.2 that λ > 0. We then define two bounded

additive set functions λ\ and λ2 on Jί by
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λχ(E) = λ(EΠEo) and λ2(E) = λ(EΠE^),

where E is an arbitrary element in Jί. Then Ai, A2 > 0. Since E = (EΠEQ) U

(EΠEξ) for any set £ in Ji we have A(£) = λ(EΠE0) + A^EΠl^). That is

λ(E) = λι(E) + A2(£) for £ e ΛT. Since A > 0, we have ||λ|| = ||>Li|| + ||A2|| =

1. Set, vi = λι/\\λι\\ and v2 = λ2/\\λ2\\. Then vi, v2 > 0, ||vi|| = ||v2|| = 1 and

Λ=|μi | |vi4-| |A 2 | |v2. Since ||u|| = <w,A> = <w,Ai+A2> = <w,Ai> + <κ,A2> <

||Ai|| ||w|| + ||A2|| \\u\\ < \\u\\. Comparing the corresponding terms of the above

estimates we get ||Ai|| \\u\\ = <AI,M> and ||A2|| \\u\\ = <^2,w> Namely ||w|| =

<«#,>L1||>Li||-1> = <u,λ2\\λ2\\-1}. Hence ||u|| = <«, V/>, for i = 1,2. This implies

that VieFo(u) for / = 1,2. Since A is an extremal point and λ= ||Ai||vi +

||A2||v2, we should have the relations vi = v2 = A. Therefore 0 < λ(Eo) =

v2(Eo)\\λ2\\~ιλ(EoΠEo:) = 0, which is a contradiction. This implies that A

cannot take any values between 0 and 1 and so that A is a 0-1 measure. •

The above theorem states that for ueLco(Ω)+, the extremal points of

Fo(u) consists of only 0-1 measures. In order to treat the general case u e

L°°(Ω)\{0}, we need a fundamental theorem in functional analysis.

4.2. Krein-Milman Theorem

The celebrated Krein-Milman theorem is fundamental in the subsequent

discussions.

THEOREM 4.2.1 (KREIN-MILMAN). If K is a compact subset of a locally

convex linear topological space X and E the set of its extremal points, the closed

convex hull cδ(E) of E contains K. If K is convex, cδ(E) = cδ{K) and cδ(E) =

K.

Given a subset K of ba{Ω) = L°°(β)*, we denote by e x t ^ the set of all

extremal points of K.

THEOREM 4.2.2. If ueLcc(Ω)+, then F0{u) contains at least one 0-1

measure, and Fo(u) is a weakly-star convex hull of the 0-1 measures in FQ(U).

PROOF. Since F0(u) is a convex and weakly-star compact subset of ba(Ω),

it is a weakly-star convex hull of exti<o(w) by Krein-Milman's theorem.

Theorem 4.1.1 then implies that exti<o(w) the consist of 0-1 measures. This

completes the proof. •

Now we prove the result for general case. Let u e L°°(Ω), u = u+ - u~,

and assume that ||w+|| > 0 and | |«"| | > 0. Moreover, let E% = {t: u(ή > 0},

EQ = {t: u(t) < 0}, E+ = {t: u(t) > 0} and E~ = {t: u[f) < 0}. Clearly, £+

and EQ are disjoint. Employing these sets, we have the following lemma.
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LEMMA 4.2.3. If v+ e F0(u+) and v~ e Fo{u~), then v+{E+) = V~(EQ) = 1

and v+(E~) = v~(E+) = 0.

PROOF. Let φ+ ecxtFo(u+) and φ~~ eextίb(w~) We first show that

φ+(E+) = φ~(Eo) = 1. Suppose φ+{E£) = 0. Then | | W

+ | | = <u+,φ+) =

(u+χE+,φ+y = 0. This is a contradiction. Similarly, it is impossible to

assume that φ~{E^) = 0. It follows that φ+{E+) = φ~{E~) = l and φ+(E~) =

φ~(E+) = 0. Now let v+ e F0(u+) and v" e F0(u~). Then, by Theorem 4.2.3,

there exist generalized sequences {φ*} and {φβ} such that ^ e co[exti*o(w+)],

φβ e co[extFo(u~)] and {φ*} and {^} converge, respectively, to v+ and v"

in the weak-star topology of ba(Ω). Hence we have (χE+,φχ} = Φ^(EQ) =

l><XEϊ>Φβ>= Φβ(Eo) = 1, and consequently, v+(£+) = (χE+,v+} =

limα<χE:+,^|~> = 1 and V~(EQ) = liτnβφβ(Eΰ) = 1. Thus, the first assertion is

obtained. The last assertion follows from the additivity of v+, v~ and the fact

that v+(Ω) = v"(β) = 1. •

PROPOSITION 4.2.4. Let u e L°°(fl), w+ Φ 0 and u~ φO. If v+ e F0(w+)

and v~ e Fo(u~), then V + Λ V " = 0 and <M+, V~> = <w~, v+> = 0.

PROOF. Let E e Jt. Then by the definition of the meet v+ Λ V~ and

Lemma 4.2.3, we have

+(Γ) + v~(EΠTc)}

But the right side turns out to be 0 if we take T = EΠEQ. Thus the first

assertion is obtained. The last assertion follows from Lemma 4.2.3 and the

relations

(4.2.1) <M+,v-> = < W

+ ^-,v-> = 0

and (4.2.1) with u+ and v~ replaced respectively by u~ and v+. •

Using the result obtained above, we obtain a converse of Theorem 2.1.4.

THEOREM 4.2.5. Let u e L°°(ί2)\{0}, u = u+ - u~, v+ e F0(u+), and v~ e

Fo(u~). Let α, β be any nonnegatίve numbers satisfying α + β = 1 and α||w+|| +

/?||w~|| = ||M||, and define λ = αv+ — βv~. Then λ e FQ(U) and, in this case, λ+ =

αv+ and λ~ = βv~.

PROOF. Let v+ e Fo(u+) and v~ e FQ(U~). Then v+ Λ V~ = 0 by Propo-

sition 4.2.4. We here observe that if A, v e ba(Ω)+ and λ A V = 0, then

od Λ βv = 0 for a,β > 0. If we define λ = αv+ — βv~ then by Lemma 1.3.1
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αv+ - βv~ gives the Jordan decomposition of λ, namely, λ+ = αv+ and λ~ =

βv~. Hence ||A|| = α||v+ | | +/?||v~|| = 1. On the other hand, we see from

Proposition 4.2.4 and the restriction on a,β that <w, λ} = α<w+, v+> +

β(u~,v~) = \\u\\. This shows that λeFo(ύ), and the proof is complete. •

Combining Theorem 4.2.5 with Theorem 2.1.4, we obtain the main result

of this section.

THEOREM 4.2.6. For u e L°°(ί2)\{0}, we have

(4.2.2) F0(u) =

where the union is taken over all oc,β>0 satisfying (x + β=l and α | | w + | | +

/?| |w~| | = | |w | | . Therefore we have:

( i ) // | | i r || < ||κ|| then F0(u) = F0(u+).

(ii) If \\u+\\ < \\u\\ then F0(u) = F0(-u-).

(iii) If \\u+\\ = | | i r | | = ||w||, then F0(u) = co[F0(u+)ΌFo(-u-)] and extF0(u) =

extFo(u+)[JextFo(-u-).

PROOF. Theorem 2.1.4 states that any element λ of Fo(u) lies in the set

||A+||JFb(«+) + ||A~||Fo(—M"), and so FQ(U) is contained in the right-hand side of

(4.2.2). The converse inclusion follows from Theorem 4.2.5. We now prove

(i) through (iii). If ||w~|| < ||w|| then only α = 1 and β = 0 must be taken;

hence Fo(u) coincides with Fo(u+). Similarly, if | |M + | | < \\u\\ then Fo(u) =

—Fo(u~) = Fo(—u~). However in the case of ||w+|| = ||w~|| = \\u\\, we can take

any non-negative numbers a,β with α - f / ? = l . This implies that FQ(U) =

co[.Fo(w+) UFo(—u~)]. To get the last assertion of (iii) we first observe that the

set of extremal points of the set W = Fo(u+)Ό Fo(—u~) is exactly the set of

those of Fo(u+) and FQ(—U~), namely

(4.2.3) QxtW = QxtF0(u+){jQxtFQ{-u-).

In fact, it is clear that ext W a exti<b(w+) UextiΓo(—u~). Conversely, suppose

that φ is an extremal point of Fo(u+) and that φ is written as φ = cnλ + βv for

some oc,β > 0 with α + β = 1 and some λ,v e W. First, both λ and v can not

belong to Fo(—u~) by Lemma 4.2.3. Next let λeFo(u+), v e Fo(-u~), and

let E^ be the sets specified as in Lemma 4.2.3 then (od + /?v)(is(j~) = —β < 0

by Lemma 4.2.3. This contradicts the fact that φ is a 0-1 measure. Con-

sequently, both v and λ must belong to Fo(u+). But, in this case, λ = v =

φ since φ e exti*b(w+). Thus, extFo(w+) c ext W. Similarly, QxtFo(—u~) a

ext W and so we have (4.2.3). We then show that ext W = ext[co W\ Since

both the set W and its weakly-star closed convex hull are weakly- star compact,

the extremal points of co[ W] are points in W by [2, p. 440]. From this we see
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that ext[co W] c ext W. Conversely, let λ e ext W. Then (4.2.3) states that λ

belongs to extF0(w+) or extF0(-u~); w e m a Y assume without loss of generality

that λ e Fo(u+). Suppose now that λ = aλ\ + (1 - α)^2 for some α e (0,1) and

some λi, Λ.2 e co W. Then we must have λ\ G FO(U+). In fact, if λ\ φ Fo(u+),

then λ\ = oίiμγ + (1 - αi)vi for some oc\ e [0,1) and μλ e F0{u+) and some vi e

Fo(-W), while λi = 0L2μ2 + (1 - α2)v2 for some α2 e [0,1], μ2 e iΓ

0(w+) and v2 e

Fo(—w~) Let EQ be the set specified as in Lemma 4.2.3. Then Lemma

4.2.3 yields that λ(E$) = - α ( l - αi) - (1 - α)(l - α2) < 0. This contradicts

the assumption that XEFQ(U+). But, λeFo(u+); hence it follows that λ =

λ\ = λ2. This means that λ e ext[co W\. Consequently, combining the above-

mentioned shows the last assertion of (iii). •

4.3. Typical examples: A,βA

In this subsection we exhibit how the duality mapping Fo of L°°(Ω), where

Ω is a domain with smooth boundary, may be used to prove the dissipativity of

some typical linear and quasilinear diffusion operators. To this end, we need

the maximum principle stated in Gilbarg and Trudinger [5].

THEOREM 4.3.1. (STRONG MAXIMUM PRINCIPLE). Let UGJV^2(Ω) and

assume that Δu > 0 in Ω, where A is the Laplacian operator in Ω. Then, if the

closure of a ball B is contained in Ω and supβ u = supΩ u > 0, then the function u

must be a constant in Ω.

LEMMA 4.3.2. Let u e WX'P{Ω) for some p> d and Aue L°°(Ω). If u has

nonnegative maximum at some a e Ω, then there exists a 0-1 measure ω G ba(Ω)

concentrated at a such that (Au,ω} < 0.

PROOF. Let 5 be a ball in Ω with center at a. Let ε > 0 and define

Eε = {x e B : Au < ε}. First we prove that m(Eε) > 0. To this end, we

suppose that Au > ε a.e. in B. We then select a ball B' in B with center at a

whose compact closure is contained in B. Since the point a at which u takes

nonnegative maximum is contained in B\ we have sup u = sup u > 0 and
XEB' XE B

Au>0 a.e. in B'. From Theorem 4.3.1 one can conclude that the function u

must be a constant function in B. Hence Au = 0 in B. But this contradicts

our assumption that Au > ε. Therefore m(Eε) > 0. Let $ = {Eε : ε > 0}.

Then it is easily seen that the intersection of any finite subcollection of $ is a

Lebesgue non null set. By Theorem 3.2.1 one finds a 0-1 measure ω with

the property that E e δ ω{E) = 1 for any E e δ. Then {Au, ω> = J β Audω =

j E Audω < ε. Since this is true for any ε > 0, we have <JM,ω> < 0. Hence

the proof is complete. •
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In view of this result, we show that Δ is dissipative in LCO{Ω) under

Dirichlet boundary conditions.

THEOREM 4.3.3. Let p>d. Let D{A) = {ue W2^{Ω) : Δu e L°°(ί2) and

u\dΩ = 0} and define Au = Δu for u e D(A). Then A is dissipative in LCC(Ω).

PROOF. TO show that A is dissipative we have to prove that for any pair

u,veD(A), there exists λeFo(u — v) such that {Au — Av, λ} < 0. Let u,υe

D(A). Then Δu, Δv e L0 0 (Ω) and w, v\δΩ = 0. Therefore u - v = 0 on dΩ. We

then assume that u — v Φ 0 in Ω. Hence \u — v\ must have positive maximum

at some interior point of Ω. Suppose u(ά) — v(a) is the maximum of \u — v\

for some a e Ω. (Otherwise change the role of u and v and exploit the fact

Fo{v — ύ) = -Fo(u - v).) Then by Lemma 4.3.2 there exists a 0-1 measure ω

in ba{Ω) concentrated at a such that (Δ(u — v),ω} < 0. Since u — veC(Ω)

and co\C(Q) =δa, we have ω e Fo(u — v). •

REMARK 4.3.4. Although Δ is dissipative in L°°(f2), it is not strongly

dissipative in L°°(β).

To show this we set Ω = [—1,1] and the differential operator (d/dx)2 in

LCO(Ω) subject to the Dirichlet boundary condition. We then consider the

function u(x) on [—1,1] defined by

ί W - 2 + s i n - ) + 2 , XΦO
V xJ

0, x = 0.

It is easy to see that u takes its maximum at 0. Then it follows from Theorem

4.3.2 that there is ω e Fo(u) such that <Jw,ω> < 0. But the second derivative,

u" behaves like sin-. Hence using Theorem 3.2.1 we can construct 0-1
x

measures ωi and ωι in Fo(u) such that <zfw,α>i> < 0 and <Jw,ω2> > 0. This

means that Δ is not strongly dissipative in L°°(Ω).

As a second example we consider a quasilinear diffusion operator βΔ. In

order to formulate the operator we impose the following three conditions.

(i) β e C(Ώ x Rd) and there exists c> 0 such that β>conΏxRd.

(ii) a e Cx(dΩ) and α > 0 o n dΩ.

We then define D(A) to be the set,

{v eLco(Ω):ve W2'P(Ω) forp > d, β( ,Vv)Δv e L°°(fl),

dv/dv + av = 0 on dΩ}

and formulate a quasilinear diffusion operator



On the duality mapping of L0 0 spaces 107

Av = β( ,Vu)Av veD(A),

where δ/δv is the derivative with respect to the outward normal direction.

Applying Theorem 4.3.3 and Theorem 3.2.4 one can show that A is

dissipative in L°°(Ω). More precisely, we obtain the following.

THEOREM 4.3.5. The operator A is m-dissipative in L°°(Ώ) and the

resolvent (I — λA)~ι is order-preserving in L°°(ί2) for λ > 0.

PROOF. Let u,veD(A). Suppose u φ v. Since u-veC(Ώ), \u-v\

must have the positive maximum. We may assume that there is a e Ω such

that u(a) — v(a) is the maximum of \u — v\. (Otherwise change the role of u

and v.) Now the boundary condition for the operator A prevents the point

a from belonging to δΩ, and so a e Ω. Then Vu(a) = Vv(a) and, by the

argument in the proof of Theorem 4.3.3, there is a 0-1 measure ωa e Fo(u — v)

which has the essential support at a and satisfies (A(u — v),ωa} < 0. From

this and Theorem 3.2.4 it follows that (Au - Av,ωa} = (β( ,Vu)Au,ωa} -

(β(ΊVv)Av,ωay = β{a,Vu(a))<Au,ωa} - β(a,Vv{a)){Av1ωa

s) = β(a,Vu(a))

(A(u — v),ωa} < 0. Hence A is dissipative in L°°(ί2).

In order to prove that A is m-dissipative in L°°(ί2), it suffices to show that

R(I - λA) = L°°(ί2) for some λ > 0. To this end, we find a sufficiently large

λ > 0 and a solution ueD(A) of the equation u — λβ(x, Vύ)Au = v for any

veL€C(Ω). This equation is transformed into the equation u = Γvu, where

Γυu = (I —
\ Vλβ(;Vu)J'

For an appropriate α e (1/2,1) we introduce a space Y = Z)((-J) α ) . Then it

is shown that for a sufficiently large λ > 0 the mapping Γv maps Y into itself

and the Schauder fixed point theorem is applied to solve u = Γvu. For the

precise proof we refer to [18, Theorem 5]. Therefore the resolvent (I — λA)~ι

exists for λ > 0. We then show that each (/ - λA)~ι is order-preserving.

Let f,ge L°°(ί2) and λ > 0. Then there exist u,υe D(A) such that u-

λAu = f and v — λAv = g. Suppose that / > g in L°°(Ω). Suppose that there

is a point b e Ώ such that

v(b) - u(b) = s u p { y ( x ) - u(x) :xeΏ}>0

Just as the discussion for the dissipativity of A we see that there is a 0-1

measure a>b e ba{Ω) centered at b such that

(Av-Au,ωby <0

Since (u - v,cob) < 0, we obtain

</ - g, a>b) = (u - λAu - v + λv, ωb} < λ(Av - Au, ω^> < 0.
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This contradicts the assumption that f>g. Therefore (/— λA)~x is order
preserving. •

5. Duality mappings of L™(Ω)n

This section is devoted to the precise study of the duality mappings of
product L°° spaces. Let X* denotes the dual space of a Banach space X. For
v e X and / e X* the value of / at v is written as <ι?,/>. In this section we
give a representation theorem for X*, the dual space of the product space
X = X\ x Xι x x Xn, where Xi9 for / = 1,... ,n are given Banach spaces.
We represent a generic element v of X as (v\,V2,...,vn), where Vj e Xt for
/ = 1,...,«. The following result is basic to the subsequent discussions.

THEOREM 5.1.1 (REPRESENTATION THEOREM). Let veX and \\v\\ =

\fi=ι\\vi\\' Then for any heX* there exists unique f = C/1,/2, >fn) £
X{ x X,* x X* such that

i=\

for any v = (vu ... ,υn) e X Moreover ||Λ|| = Σ/ii ll/ill md X* = Xf x
x* x... χi;.

5.1. Properties of the duality mapping of L°°(β)π

Let X = X\ x Xi x x Xn be a Banach space and X* its dual
space. The duality mapping F(v) is defined by

F(v) = {feX*: <*,/> = | |r | |2 = | |/| |2}, reX,

and the normalized duality mapping Fo of X is defined by JFo(O) = S*(0,1), the
unit surface of X, and

Fo(v) = {/ G X* : <r,/> = HI, |[/Ί| = 1}, r e X\{0}.

Now we give a proposition of nontrivial result which we use later extensively.
The following three product spaces are isometrically isomorphic. Also, for the
product spaces X x Y, X x Y x Z, we employ the max norm ||(x, y)\\ = \\x\\ Λ
\\y\l 11(^7^)11 = 11*11 Λ \\y\\ A \\Z\\ forxel, yeY and zeZ. Also, for the
product spaces X* x Y*, X* x Y* x Z* we employ the norms by | |(/,#)| | =
11/11 + \\g\\, ||(/,flf, A)|| = 11/11 + Hffll + ||A|| for / e Γ j e Γ and A e Z*.

PROPOSITION 5.1.2. Lei JΓ, Y,Z be Banach spaces and let X*, Y*,Z* be
their respective duals. Then we have fallowings:
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(i) (XxYxZ)~(XxY)xZ~Xx(YxZ),

(ii) (X x Y x Z)* ~ (X x Y)* x Z* ~ X* x (Y x Z)* ~ X* x Y* x Z*.

Let X be a product Banach space with the maximum norm. Then FQ has

the following basic properties:

PROPOSITION 5.1.3. Let feFo(v), v = (v\,v2,...,vn) and f =

(fιJi,.--Jn)' Then (vhfiy = \\vi\\\\fi\\ and \\vt\\ < \\v\\ implies £ = 0 for

i= l,...,w.

PROOF. From the definition of the normalized duality mapping it follows

that

V INI = <v,/> = Σ <v- fi> * Σ INI WfiW * f V Mf )
1=1 1=1 \ί=l / \/=l

Since J]f=1 H/,-11 = 1, the above estimates together imply <«i,yj> = | |/ j | | ||ϋ, || for

Ϊ = 1,. . . ,Λ. Next, let ||ι?i|| < ||»|| and suppose that ftφQ. Then, by the

definition of F o , we have

MI = <υ-ft> * Σ l l ^ n HΛ

This is a contradiction, and we must have ft• = 0. •

REMARK 5.1.4. (i) Suppose that ||t>i|| = |M| and \\vj\\ < \\v\\ for j φ i.

Then, by Proposition 5.1.3, fj = O for j Φ i. Hence, ||v|| = ||i;/|| = <»,/> =

YJi=iiviJi> = < y n / > 5

 w h i c h implies ||t7( || = <!>,•,/;> and | | / | | = 1. This means

that /;• 6 F0(ι>/). Hence F0(ϋ) = (0, . . . ,F0(ι?,),... ,0) if ||v|| > ||v, || for 7 # 1.

(ii) It is also clear from Proposition 5.1.3 that if ft Φ 0 then ||y/|| = ||t?||.

Proposition 5.1.3 and its Remark 5.1.4 leads to following

LEMMA 5.1.5. Let v= (vuυ2,. .,υn) and f = (f{,f2,,fn) e F0(v).

(i) // ||t;;|| < | |r | | for j Φ i then F0(v) = (0, . . . . F o ^ ), ,0).

(ii) // IMI = IMI for all i then F0(v) = [j (αiFo(ί;i),α2Fo(^), ,
*nFθ(Όn)). α^2,..,α^0

PROOF. Assertion (i) is already verified in Remark 5.1.4. We then prove

the second assertion (ii) by induction. First we show the result for n = 2. Let

/ = (/i>Λ)> Γ = (^1^2) and (/i,/2) e Fo(v\,v2). Then by the definition of Fo

we have | M = ||ι;2|| = IK^,^)!! = <(ι>i,t>2),C/i,/2)> = <vufι> 4- <^,/ 2 ><

INI ll/ill + ||U2|| IIΛII < lki|| = ||i^||. From this we have (υuf{> = ||t;i|| \\fx\\

and <%,/2> = |N| | |/2l | . Let / ί = / 1 / | | / 1 | | and f'2=f2/\\f2\\. Then /{ e
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F0(vι) a n d f'2eF0{υ2). Set α = | | / 1 | | a n d β=\\f2\\, t h e n a + β = l , a n d

so Wυβf'2)e \J (αFo(»i),^Fo(»2)). This means that (/,,/2)e

(«Fo(pi),i8Fo(»2)) Hence
^ = l

(5.1.1) F o ί o i . ^ c U (F0(Pi),/b(»2)).

We next prove the reverse inclusion (5.1.1) as follows. Let ( / ί , / ^ ) ^

(J (α/Γo0>i)>jW'b(ί>2)). Then there exists oc,β such that / ( = α/1?

ot,β>O,a+β=\

fieFoW, f'2=βf2, f2eF0(v2). Then <(oi,»2), (/ί,/^)> = <(»i,»2),

(«/ί,/ϊ/2)> = <«Ί,«/ί> + <f2,jS/2> = *<Vuf{>+β<V2,f'2> = | | » l | | (=| |»2 | |)

which gives <(»i,»2),C/ ί,/2)> = ll(«Ί,»2)ll,ll/ίlH-||/ill = l Therefore we
have (/ ί ,/ 2 )eF 0 (β i ,»2) , which shows that \J («F0(»i), A^o(»2)) «=

). Combining this with (5.1.1), we have Fo(v\,V2) = \J
α,y9>0,α+^=l

j βFo(v2))- Hence the proof is complete for n = 2.

Now we assume that the assertion (ii) for n = p. To prove that the

Assertion (ii) is also true for n = p + 1, we employ the following notation. Let

X' = χx x χ2 x x Xp, and write an element in X' as v'. Then we can write

v = (vf, υp+ι) and F0(v) = F0(v', υp+ι).

Applying the result for the case of n = 2, we have

F0(v)= U (aF0(v'), βF0(vp+i))
a,β>O,ot+β=\

U α ( U (αi

a,β>0,θL+β=l ^ = i α / = l

= U ( U (u0liFo(vi),(X0t2Fo(V2),...,0UXpFo(Vi)), βF0{vp+ι))α/>0

= U U ((θl(X\Fo{vι),<XOC2Fθ(v2),...,Oί(XpFo(Vi)), βF0(vp+\))

α,>0

= y ((αίFo(»i),^Fo(»2),...)α;Fo(ι»/)),α^.,Fo(»jH.i)),

α/>0
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where α = αα, for / = 1,...,/? and α^+1 = /?. Hence the result is true for n =

/?+ 1. By the induction principal we obtain the desired result. •

We can now state the above theorem in a more general setting:

THEOREM 5.1.6.

F0(v) = U
Σ n

, = i α < = 1

α,>0,/e/

Finally, we prepare the following lemma:

LEMMA 5.1.7. Let f,ge F0(v). If f φθ for any i, then α/j + gx , Φ 0 for

any α > 0.

PROOF. By Proposition 5.1.3, <!>,,/,> = | |^ | | ||y;.|| and <!>,-,#> = ||

Hence <z;z ,αy;. + ^, > = α ^ , / , ) + <^,/-> = ||ϋ/||(α||y;.|| -h | | ^ | |), which implies
α/i + Qi # 0. This completes the proof of the Lemma. •

5.2. Extremal Points in F0(f)

In this subsection we make an attempt to give a characterization of the

extremal points of Fo(v)). First we prepare the following which plays a major

roll in the following.

PROPOSITION 5.2.1. For any f ε QxtFo(v), f = (f\,f2, ,/„) has only one

nonzero component.

PROOF. Suppose / has two or more non-zero componenets. Then by

Proposition 5.1.3, ||v/|| = ||t?||, for the corresponding i s. Now by Lemma 5.1.5

for these i's (0, . . . , / ] • , . . . , 0) e Fo(vi). Without lost of generality suppose

Φ 0. Then,

s i n c e C^l/ l l^ i IU o , —, o ) , c o , ^ i / C i — 11^1 II), ^ ^ / C i — ll^^x II). —. _>^/Ci — ll^i ID)
Fo(v) by

Theorem 5.1.5 and / is an extremal point of Fo(v) we have

Thus / = 0, and this gives a contradiction. Hence the proof is complete.

D
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PROPOSITION 5.2.2. Let v = (v\, v2,..., vn) e X. Then we have:

( i ) e x t ( 0 , „ .,F0(vi),... , 0 ) = ( 0 , . . . , e x t F 0 ( i ? / ) , . . . , 0 ) ,

(ii) ext{\Jj=l(SijFo(vi),S2jFo(v2), .. ,δnjFo(υn))}

J ( v 2 ) , . . . ,δnjextF0(vn))

PROOF, (i): Without loss of generality we may assume that / = 1. Then

we show that ext(F0(i?i),0,... ,0) = (extF0(ι;i),0,... ,0). Let ( / , 0 , . . . , 0 ) e

ext^oί^OjO,... ,0). Assume that there exist α e (0,1) and / 1 ? / 2 e Fo(v\) such

that (/,0,. . . ,0) = α(/ 1 ,0, . . . ,0) + ( l - α ) ( / 2 , 0 , . . . , 0 ) . Since C/1,0,... ,0),

(/ 2 ,0, . . . ,0)e(F 0 ( i? i) ,0, . . . ,0) and (/,0,.. .,0) eext(/b(»i),0,...,0), we have

(/,0,. . . ,0) = (/ 1,0,...,0) = (/ 2,0,...,0) which implies f = fx=f2. This

shows that / e extF0(vi), and as that (/, 0,...,0) e (extF0(i?i),0,..., 0). Next

let (/, 0, . . . , 0) e (extF0(v\), 0, . . . , 0), which means that / e extF0(vι). Sup-

pose that there exist α(0,1) e (0,1) and (f{, 0, . . . , 0), ( / 2 , 0 , . . . , 0 ) e ί o W

such that (/, 0, . . . , 0) = α(/i, 0, . . . , 0) + (1 - α ) ( / 2 , 0 , . . . , 0). This gives that

f = fx=f2 and also we have fuf2 eFo(υ\). Since f eextFo(v\), we have

f = fλ=f2 and (/,0,. . . ,0) = (/ 1,0,...,0) = (/ 2 ,0,. . . ,0). Thus we have

(ii): Since (Fo(ϋi),O,...,O),(O,Fo(f?2),O,...,O),...,(O,...,O,/b(ϋι.)) are

subsets of the union []j=ι(δijFo(vι),δ2jFo(v2),... ,δnjFo(vn)), for any ie

{l,...,w}, we have by the first result (i)

ext I U (δijFo(Όι),δyFo(Ό2),... ,δnjFo(vn)) 1 Π {0,... ,fb(i>/),... ,0)

c ext{0,..., ,Fo(Όi),... ,0)} = (0, . . . ,extFo(ι?, ), -.. ,0).

Therefore

ext< \J(δyFo(vi),... ,δnjFo(vn)) > Π {J(δyFo(vι),δ2jFo(v2), • • • ,δnjFo(vn))
[j=i J 7=1

n

c= \J(δυextFo(vι),δ2jextFo(v2),... ,δnjextF0(vn)).

From this it follows that

ί " 1
ext{ U(Vo(»i), ΛjFo(vn)) } <= U(ayextFo(»i), , ^

1=1 J 7=1
To show the inverse implication

ί 1
ext< U(5i7 Fo(ϋ, ) , . . . ,δnjFo(vn)) > = (J(^i 7 extF 0 (ι; i), . . . ,<JΛ7-extF0(υB)),

U=l J 7=1
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let i e {1,...,«} and (0,. . . ,/J,...,0) e (0,. . . ,extF 0(u/),... ,0). Suppose

then that there exist α e (0,1) and A = (Ai,..., Aπ), g = ( # i , . . . , gn) e

{JJ=i(βijMv\), iδnjMvn)) such that (0, . . . ,/J,.. . ,0) = a* + (1 - α)#. This

implies that A7 = ^ = 0 for / / j and /j = αA, + (1 — α)gf, . Since /j e extFo(u )

we have y; = A, = gh Therefore (O,...,fi,...,O)eext{\JJssl(διjFo(Όi),...J

δnjFo(vn)}. Since i is arbitrary, we conclude that {Jj=ι(δ\jextFo(vn),...,

^ extF0(i;Λ)) c ext{(J"=1 (5 y F 0 (u i) , . . . , ί^-Foίi;,,))}. Thus we obtain the

desired assertion (ii). •

THEOREM 5.2.3. Let v = (v\,..., vn) e X. TΆen ίA^ ^eί o/ extremal points

of Fo(v) is characterized by

QxtF0(v) = \J (δyGxtFo(vι),... ,δnjextFo(vn)).
\\Vj\HM

PROOF. Using the Theorem 5.1.6 we can write

Fo(v) = U (ot\Fo(v\),...,ocnFo(vn))

α,>0,/6/

where / = {/: ||t7|| = \\vi\\} cz {1,2, . . . ,«} . F o r simplicity in the proof we

assume here that

Fo(v) = [j (αiFo(i i ) , . . . , (xnF0(vn)).

Therefore \JJ=ι{δyFo{vι),δ2jFo{v2),... ,δnjF0(Όn)) cz F0(v). Hence

extFo(ι ) Π J jj(^o(^i), AjFoM) I c extj p

Combine this with Proposition 5.2.2 gives

), ΛjF0(vn)}

Then by Proposition 5.2.1 we have extFo(r) c= ( J n

= 1 ( ^ l y ext F o ( ι ; i ) , . . . ,

δnj QxtFo(vn)). To get reverse inclusion, let (/, 0 , . . . , 0) e (extFo(v\), 0 , . . . , 0).

Suppose that there exist α e (0,1) and (f{, / 2 , . . . , / J , (^i ,g2,...,gn)e F0(v)

such that ( / , 0 , . . . , 0 ) = α ( / 1 , / 2 , . . . , / n ) + ( l - α ) ( f l f i , ^ 2 , . . . , ^ ) . This gives

( / , 0 , . . . , 0 ) = (α/ 1 + ( l - α ) f l f 2 , α / 2 + ( l - α ) ^ 2 , . . . ) F r o m Lemma 5.1.7 it

follows that /-, 0/ = 0 for 2 < / < «. Hence / = α / 1 4 - ( l - α)gfi. S i n c e / i s an



114 Joseph Jude PEIRIS

extremal point of Fo(v\), f = f\ = 9\- Therefore (/,0, . . . ,0) e extFo(t^). In
the same way as above we can prove if ( 0 , . . . , / , . . . , 0) e (0 , . . . , extFo(vi),...,
0) then (O,...,yj,O,...,O) eF0(v). This shows that \JJ=ι(δυextF0(v\),...,
δnj extFo(vn)) aextFo(v), and the proof of the theorem is complete. •

5.3. A typical example in Z,°°(f2)3

We here illustrate the use of Theorem 5.2.3 by considering a quasilinear
diffusion operator in L°°(ί2)3. In order to formulate the operator we impose
the following conditions:

(i) β(€ C(Ω x Rd) and there exists c> 0 such that βf>c on Ώx Rd for

i = l , 2 , 3 .
(ii) en e Cι(dΩ) and a, > 0 on dΩ for i = 1,2,3.

We then define D(s/) to be the set

D(si) = < v = (Vi) 6 L°°(β)3 : Vi e W2'P(Ω) for p > d, β^-.Vv^Avi e L°°(fl),

—- + apt = 0 on dΩ, i = 1,2,3 >,
ov )

and formulate a quasilinear diffusion operator

Then we have following theorem.

THEOREM 5.3.1. si is dissίpative in L°°(ί2)3.

PROOF. We must prove that for any pair of u,v e D(s/), there exists
feFo(v) such that

Let » = («i,«2»W3) and v = (v\,t>2,t?3). Without loss of generality we may
assumme that \u\ —v\\ = ||« —1?||. Now consider the first component of the
left-hand side (βλ{ ,Vuι)Δu\ -βλ(ΊVv\)Avι). Then by Lemma 4.3.2 there
exist a 0-1 measure f\GFo(u\—v\) such that (βx(',Vu\)Δu\ —β\(-,Vv\)
Av\}<0. Then since this measure is an extremal point of Fo(u\—v\),
Theorem 5.2.3 implies that (/i,0,0) e Fo(u — v). This implies (s/(u) — s/(v),
(ωi,0,0)><0. Since (^,0,0) e F0(u - v), it follows that si is dissipative.

REMARK 5.3.2. Finally, we would like to add the following comment.
Theorem 3.1.5 remains valid in the case where Ω is unbounded and ω has its
support at infinity.
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