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ABSTRACT. We consider a holomorphic structure on a homogenous space of the

diffeomorphism group of a circle using the theory of quasiconformal mappings.

Introduction

The geometric quantization provides interesting pictures of infinite di-

mensional homogeneous spaces of the Frechet Lie group Diff+ Sl of orien-
tation preserving diίfeomorphisms of a circle [5], [11], [18]. From the structure

of the Lie algebra of Diff+ S\ it follows that Tl\Dίff+ Sl and PSU(l,l)\
Diff+Sl have invariant almost complex structures formally satisfying the
integrability condition. This naturally leads to a question whether Tl\Diff+ Sl

and PSU(l, l)\Diff+ Sl are homogeneous complex manifolds in a usual sense
or not (cf. [13], [16]). In contrast with a finite dimensional Lie group or its
loop group, the Lie group Dίff+ Sl has no analytic structure and the expo-
nential mapping cannot be a local isomorphism around the origin (cf. [12]).
In order to overcome the undesirable property H. Omori introduced the
concept of IHL-Lie groups and developed the infinite dimensional differential
geometry [14], [15]. As he pointed out, the Frobenius theorem does not hold
in the category of Frechet manifolds in general. Thus in this paper we take a
direct approach, that is to say, we construct a holomorphic coordinate system,
which is closely related to the analytic realization of Diff+ Sλ/Tl by A. A.
Kirillov [10]. Our construction is based on the theory of quasiconformal
mappings. Especially the variational formula by L. V. Ahlfors and L. Bers for
the solutions of the Beltrami equation enables us to analyze the differential of a

coordinate map.
In § 1 using the inverse function theorem of Nash and Moser, we consider

a smooth structure of the homogeneous space. In §2 as preliminaries,
we review basic methods to solve the Beltrami equation and derive some
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formulas. In §3 we shall prove that Tl\Diff+ Sl is diffeomorphic to an open

submanifold of the Frechet space {/ e C">(Sl,C)] f(ew) = ̂ n<()fne
ine} and

that the action of Diff+Sl is holomorphic with respect to the natural complex
structure. Via the projection: Tl\Diff+ Sl -» PSU(l, l)\Diff+ Sl we also

show that PSU(l, \)\Diff+ Sl is a homogeneous complex Frechet manifold.
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1. The smooth structure

Let G be a Lie group and H its closed Lie subgroup. Let U be a
neighborhood of the unit element in G and set UH = U Π H. We assume that
there exists a regular submanifold B a G such that B B~l c U and a mapping
UH x B — > G induced by the multiplication (h, b) ι-> h b is an open embedding.
Let hi G H and ft, e B (i = 1,2). If hi b\ = h2 - b2, then

h^hλ = MΓ1 e UH Π (B - B~l) = {!}.

Hence the canonical projection: B — > H\G is open and injective. Then we
can define a smooth structure on the quotient space H\G with the action of G.

Elements of PSU(\,\) act on Sl as linear fractional transformations.
Thus PSU(l, 1) can be regarded as a closed Lie subgroup of D ί f f + S l . For

V = {v e C^(S\R) v(θ) = v(eiθ) = £M>1 vne

we define a smooth map φ : V -> C00^1,^1) by

and we consider a neighborhood B of 0 e F such that (̂1?) c Diff+Sλ.

LEMMA 1.1. L^ί Ψ(h,b) = hoψ(b) for hePSU(l,l) and beB. Then
Ψ : PSU(l, I) x B -* Dίff+ Sl gives a diffeomorphism of a neighborhood of
(1,0) in PS £7(1,1) x B onto a neighborhood of 1 in Dijf+S1.

PROOF. The Frechet manifold Diff+ Sl is modeled on C*>(Sl,R) by
definition. Since the tangent bundle of S1 is trivial, we can identify the

tangent bundle of Dijf+ Sl with Dίff+ Sl x Ccc(Sl,R). Let Ψ*(h,b) denote the
differential of Ψ at (A, 6) e PS t/(l, 1) x B. Then for i; e K, a tangent vector

+ ̂ )|i=0

 is computed by
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For JΓ(α,fl

where g= Ψ(h,b) and Rh is the right translation on PSU(l,l). By associ-
ating (^(α, /?),t>) e su(l, 1) x V with a function:

S1 3 e® ^2Im (oί+βe~iθ) + ι?(έ?ίfl) e R,

we identify su(l, 1) x F with the tangent space C°°(51,R) hereafter. For A e
PSU(l,l), beB, α e / R , / ? e C , we define smooth functions on Sl as follows:

^

We set for feC°(Sl,R)

with

α = / f π f(θ)dθ/4π, β = i\ " f(θ)eiθdθ/2π.
Jo Jo

Then Fh,b(f) e C°°(5fl,R) implies that /e C"(Sl,R). Under the identifica-
tion above of tangent vectors, we have

Ψt(h,b)(f)=r}(h,b)Fh,b(f)

for /€C°°(S'1,R). Moreover if a neighborhood U x 5 of (1,0) ePSU(\, 1) x
F is sufficiently small, we may assume that

FA,6:C00(51,R)-»C00(S1,R)

is bijective for all (h,b)eUxB. Let ||̂ ||B = sup
C'°(Sl,R). Then

with constants cn independent of / (n = 0, 1,2, . . .). That is to say, Fh,b is a
tame linear map [9]. Because a composition of tame maps is also tame [9,
Theorem 2.1.6], we see that Ψ*(h,b)(f] — η(h,b)Fh,b(f) is a smooth tame map:
UxBxC"(Sl,R)-+ C«>(Sl,R). We have also

\\f\\n * \\PkML+\\*(h,b,*,ft\\n * \\fkML + Cn\\f\\Q,
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where c'n is a constant dependent on 17, B and n. If U x B is so small that
c£ < 1/2, then ||/||0 < 2||F(/)||0. Therefore

\\f\\n < ( \ + 2 c ' n } \ \ F ( f } \ \ n .

Hence the family of inverses (Fhίb)~l : U x B x C00^1,!*) -» C^S^R) is
tame. From this and [9, Theorem 3.1.1] it follows that the family of inverses
ψ*(h,b) - U xBx CCO(S\R) -^ CCC(S\R) is a smooth tame map. Thus the
inverse function theorem [9, Theorem III. 1.1.1] implies that Ψ is locally
invertible and each local inverse Ψ~l is a smooth tame map.

We now see that PS£7(1, \}\Dίff+ Sl is a smooth Frechet manifold. Also
the same argument shows that Tl\Diff+ Sl is a smooth Frechet manifold,
where Γ1 denotes the subgroup of Diff+ Sl consisting of rotations.

2. The quasiconformal mappings

To begin with, we review the formulas by L. V. Ahlfors and L. Bers [4]
(cf. [3]). Let Ω denote the whole plane. We consider the operators:

(Tg)(z) = — ——^p-dζdζ (the Cauchy principal value).
2πιjβ (C-z)2

Then P and T are well-defined on LP(Ω) and that the relations:

S f (Pg) = g and dz(P<?) - Tg

hold in the distributional sense, where dz and dz denote the usual differential
operators \ (dx — idy) and \ (dx + idy) with the standard coordinate z = x + iy
of Ω, respectively [4, Lemma 3] (cf. [3, Chapter V]). Let Cp denote the
operator norm of T on LP(Ω). Then

lim CD = 1

[4, Lemma 4] (cf. [3, Chapter V, Section D]). Following [4], we introduce the
Banach space Bp of functions ω, defined on the whole plane, which satisfy a
global Holder condition of order 1 — 2//7, which vanish at the origin, and
whose generalized derivatives dzω and 8zω exist and belong to LP(Ω). The
norm is defined by

\\CD\\R = SUp
II II ΛJn -Γ
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If σeLp(Ω) and μeL00(Ω) with IM^C^ < 1, then the inhomogeneous Bel-
trami equation

(2.1) dzω = μdzω-{-σ

has a unique solution ω(μ,σ) e Bp [4, Theorem 1]. Using Tμ(g) = T(μg) for
geLp(Ω), we set q = Σn>oT£Tσ. Then the solution above is given by

ω(μ,σ) = P(μq + σ)

[4, Theorem 4, Proof]. Furthermore the following lemma is an immediate
consequence of the variational formula [4, Theorem 2].

LEMMA 2.2. If μt ε Lao(Ω) and σt e LP(Ω) are smooth functions of a real
parameter t and if \\μt\\^Cp < 1, then ωt = ω(μt,σt) e Bp is also a smooth
function of t. Moreover its derivative is given by

dtωt = ω(μt, dtμt qt + dtσt).

Let μeLao(Ω) with HμH^ < 1. A continuous solution of the Beltrami
equation

is said to be μ-conformal if dzf is locally of class LI. Assume that μ e
has compact support and IΠI^C^ < 1. Then we define fμ by

which is a unique solution of dzf — μdzf with /(O) = 0 and dzf — 1 e Lq(Ω)
for some q > 2 [4, Theorem 4]. In particular, fμ is a μ-conformal mapping.
Moreover fμ is a homeomorphism of the whole plane onto itself [4, Lemma 8].

COROLLARY 2.3. Let K c: Ω be a closure of a bounded domain with the
smooth boundary. Let μ e L(X)(Ω) with support μ c K and \\μ\\^Cp < 1. Let
U be an open subset of Ω\{0}. If the restriction μ\UΓiK is smooth, then fμ\K
is also smooth on U Π K.

PROOF. Take a smooth one-parameter family φt of diffeomorphisms of Ω
such that φt(K) = K and support φt c U. We set

μt = (dzΨt +V°<Pt' dzφt)/(8zφt +μoφ dzφt).

Then

Sf(fμoφt)=μt'8z(fμoφt).

Also we have fμ o ̂ (0) = 0 and dz(fμ oφt)-\e Lq(Ω). Therefore fμoφt =
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fμ'. Hence fμoφteBp is a smooth function of t by Lemma 2.2. In par-
ticular, for zeΩ, fμ(φt(z)} depends smoothly on t.

LEMMA 2.4. Let v and μ e L^ (Ω) with a compact support. Let 0 < K < I

satisfy κCp < 1 for some p > 3. Assume that \\v\\ ^^ IΠI^, ||v + μ|loo < K and set

If\\λ\\^<κ, then

fv+f =fλofμ.

PROOF. Let φ = fλ o /^. Then dzφ/dzφ = v + μ. From [4, Lemma 10],
it follows that dzφ is locally of class Lr with r = p2/(2p — 2) > 2. Since
dzω(μ,μ) = 0 near oo and dzω(μ,μ) e LP(Ω) with p > 2, we see that ω(μ,μ)z =
6>(1/N2) as z -> oo. Therefore dzp = (dzf

λofμ) . δz/" = l+O(l/|z|2) as z ->
oo. Hence dzφ—leLr(Ω). The lemma now follows from the uniqueness
theorem for the solutions of the Beltrami equation.

LEMMA 2.5. Let K a Ω be a closure of a bounded domain with the C1-
boundary. Let v e L00(Ω) with support v c K satisfy \\v\\ ̂  < 1 and \\v\\^Cp < 1
for some p > 3. Assume that the restriction v\K is of class C1 around a point
me K. Then the Jacobίan Jfv does not vanish at m.

PROOF. Set φ=(fvyl and λ = (-v - Szf
v/dzf) o φ. Then φ = fλe

LP(Ω) by Lemma 2.4. Since φ(fv(z)) = z, we have

Therefore Jf(z) dzφ(f(z)) = dzf(z). Also Jf - \dzf
v\2 - \dzf

v\* =
(1 — |v|2)|dz/"|2. Hence, for an open subset U <= Ω,

f \dzφ\pdxdy = \ \dzφ(Γ(z))\PJΓ(z)dxdy
J f v ( U ) J U

= ί \dzf\
p(Jfvγ-pdxdy

JU

= f (l-\v\2γ-P\d2Γ\2-pdxdy.
Ju

Thus we see that
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(2.6) f \dzf
v\2-pdxdy<oo.

Ju

We now take a coordinate system (U,x\,X2) around me K such that Xi(m) = 0
(/ =1,2). Assume that Jfv(m) = 0, then dzf

v(m) = d^f(m) = 0. In view of
Corollary 2.3, we have an expansion dzf

v = a\x\ +(12X2 + o(\x\\ + \X2\) with
complex constants «/ (/ = 1,2). But this contradicts (2.6) for 2 — p < — 1.

LEMMA 2.7. Let K c Ω be a closure of a bounded domain with the smooth
boundary. Let μeL^(Ω) with support μc: K and \\μ\\^ < 1. If μ\K is
smooth, then fμ\dK is a smooth embedding.

PROOF. Fix p > 3 and 0 < K < 1 satisfying κCp < 1. Taking an integer

N > Ma, Ml - W«)» we set v = V/N τhen fv\8κ is a smooth embedding
by Corollary 2.3 and Lemma 2.5. For an integer n < N, we assume that
fnv\dK is a smooth embedding, and we set

λ=
l-nv(n+l)v

Then we see that fλ\fnv(dK) is smooth because λ is smooth and H/IH^ < K.
Thus /("+1)v = fλ o /"v is also a smooth embedding of 3AΓ.

LEMMA 2.8. Let K c.Ω be a closure of a bounded domain with the smooth
boundary. Then

is a smooth mapping: {μ e C°°(A:,C); sup|μ| < 1} -> C°°(#,C).

PROOF. Let ^rt'α - {μ e Cw'α(Λ:,C); sup|/ι| < 1} with 0 < α < 1, where
Cn'*(K, C) is the Banach space of functions of class Cn in K whose partial
derivatives of order n satisfy a Holder condition with an exponent α (cf. [17]).
We set

V= //eCΛ + 1 'α(A:,C); ί ̂  ι/C = 0 for Vze lntJ f l .
I JθΛΓί-^ J

In this setting, C. J. Earle shows that there exist neighborhoods of zero VQ c V

and t/o c ̂ w'α such that a mapping FO — »• t/o:

is diffeomorphic [6, Theorem 1, Proof]. Because ω(μ,μ) = P(μq + μ) with
q = Σw^0 T^Γ/i and V = P(Cn'*(K, C)), we see that if μ 6 Jίn^ is sufficiently
small, then co(μ,μ) e VQ. Therefore in view of Lemma 2.4, we see that the
mapping Jtn^ -» Cπ+1'β(A',C) is smooth.



288 Hideo Doi

3. The invariant holomorphic structures

Let F denote a closed subspace:

φneC

of the Frechet space C°°(5'1,C). We also regard φ(eiθ) = Σn<vφne
inθ εF as

a holomoφhic function φ(z) = Σn<oφnz
n on D^ = {z ε Ω; \z\ > 1}. We in-

troduce here a smooth submanifold of C°°(iS'1,C), which plays an important
role in our construction of a holomoφhic coordinate system of Diff+ Sl. Let
&* denote the set consisting of injective holomorphic functions / on D^ which
satisfy the following conditions;
( i ) / has a form z + φ(z) with φ ε F,
( i i) f \SDao is an embedding,
(iii) Qφf(D00).

Then 2F can be identified with an open submanifold of F.
Let DQ — {z e ί2; |z| < 1}. For g e Diff+ Sl, we take a homeomorphism g

of DO satisfying g = g on δ/>o and ^(0) = 0. Moreover we assume that g is
differentiable almost everywhere and smooth on some collar neighborhood of
<3Z>o. Let measurable functions λ and μ satisfy

(3.1) g*\dz\2 = λ\dz + μdz\2.

Putting μ = 0 on ί2\Z)0, we obtain μ e L^(Ω) with HμH^ < 1. Let fμ be the
//-conformal mapping such that fμ(Q)=Q and dzf

μ — leLp(Ω) for some
? > 2. We set

go = fμ°g~l and tfoo^lAx).

Then Lemma 2.7 with (3.1) implies that

(3.2) gi e C°°(Z>/) (i = 0, oo) is injective and holomorphic on IntD/,

= 0, goo ̂ ^ and go°g = g<x> on

Assume that g( ε C°°(A, C), i = 0, oo satisfy (3.2) for g ε Diff+ Sl. From

9o~l ° dm ~ Q — UQl ° #°o on Sl> it follows that g^ o g"1 = gf

Q o g^1 on go(Sl).
Because g og'r1 is holomorphic on 0/(A) 0'= 0, oo), we have a holomoφhic
automoφhism z of Ω such that

/|0.(A) = g o gτl (i = 0, oo).

Since g$ o g^1 (0) = 0 and g^ o g^ (z) = z + #o + a\ /z + «2/^2 H , we see
that ι(z) = z. Thus gf

i=gi(i = Q, oo). In particular, g^ is independent of
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the choice of g. For these reasons, we call the pair (#o,#oo) in (3.2) LU-
decomposίtion of g E Diff+ Sl.

Let (Λo,λoo) and (#o?0oo) be the LU-decomposition for h and g e Diff+ S1,
respectively. We now assume that ΛOQ = g^. Then AQ ! o g$ is a holomorphic
automorphism of DO and Ajj" l o #o(0) = 0. Hence ho g~l = h$ l o g0 e Γ1 =
{zeC; |z =1} (the group of rotations). By virture of this, we can define an
injection Φ : Tl\Diff+ Sl -> & by

with the LU-decomposition (0o50oo) of g e Dίff+ Sl.

LEMMA 3.2. Φ w α smooth mapping between the Frechet manifolds.

PROOF. Let us fix δ e C°°(R, [0, 1]) such that δ = 0 on (-00, 1/3] and δ =
1 on [2/3,oo). Let geDiff+Sl. Since R is the universal covering space
of Sl =R/2πZ, we can take γeDiff+R satisfying eiγ^ = g(eiθ). For εe

C°°(R,R) satisfying ε(θ + 2π)=ε(θ) and <?0(y + ε)>0, we define φ(ε) e

)o by

Then we can regard φ( ) as a smooth mapping from a neighborhood (7 of 1 6
Diff+ Sl into Diff+ DQ.

Let (ώ1)2 = a(dx}2 + 2bdxdy + c(dy)2 be a smooth Riemannian metric
on A) with a standard real coordinate system z = x+ ίy. If we set (ds)2 =
λ\dz + μdz\2, then we have the following formulas;

Hence, setting

φ(εΓ\dz\2 = λ(ε)\dz + μ(ε)dz\2,

we obtain a smooth mapping //(•) from the neighborhood U to Jt =
{μe C°°(Z)o,C); sup|μ| < 1}. Therefore in view of Lemma 2.8, we see that
the mapping: U —> 3F defined by

is smooth. Since φ(ε)(eiθ) = eie^g(eiθ), the mapping Φ(eiεg) = fμ(ε}\D^ is
also smooth.
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Let / e J^ and let K be a compact subset of Ω with a smooth boundary
dK = f(Sl). Taking a diffeomorphism

f-.D^-^K with f\dD0 = f and /(O) = 0,

we define μtJt by /*|dz|2 = Λ,|dz + μdz|2. Then we have a unique μ-
conformal diffeomorphism Wμ : A) -> DQ such that Wμ(Q) = 0 and Wμ(l) = 1
[4, Theorem 4] (cf. [6, Theorem 2]). We now set

By definition, we see that #o is holomoφhic and that geDiff+Sl. Also
(0o, /) is the LU-composition for g and so that we have Φ(g) = f. Therefore
the mapping: / ι-» g from ^ to Tl\Diff+ Sl is the inverse of Φ.

LEMMA 3.4. Φ"1 is smooth.

PROOF. As in the proof of Lemma 3.3, we may assume that the extension
/•-»/ from & to C°°(A), C) is locally smooth. Then the mapping: & -» ΛT
defined by

/κ+μ with /*|</z|2 = ;i|<fe + //</z|2

is also locally smooth. Hence [6, Theorem 2] implies that the mapping μ ι— »
W^ from ^ to C°°(A),C) is smooth, with the composition method as in our
proof of Lemma 2.8.

THEOREM 3.5. Tl\Diff+ Sl is a homogeneous complex Frechet manifold

PROOF. We identify C°°(Sl,R) with the Lie algebra of Diff+Sl. Let
m = {ι;eC00(S1,C); v(eiθ) = ̂ n^Qvne

inθ^ = v.n} ^ C^(S\R). Then m is
identified with the tangent space at the origin of Tl\Diff+ Sl. Let / be an
invariant almost complex structure on Tl\Diff+ Sl whose (1,0) -tangent vectors
are involutive. We set

m+ = iυeCco(Sl,C)'J v(eiθ) = ̂ υne
inθ\ c = m ® R C

I «>o J

and m~ = m+. Then /|m~ = ± /. We now choose J\m~ = i. Lemmas 3.3-
4 imply that Φ : Tl\Diff+ Sl —> 2F is a diίfeomorphism. Hence, if we prove
that

Φ*g(Rg*Jv) = iΦ*g(Rg*v) for g 6 Diff+ S{ and v e m~,

where Rg denotes the right translation, then the proof is complete.
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Let z = relθ be the polar coordinates on Ω. For measurable functions λ,
p > 0 and μ, if it holds that (dr)2 + (prdθ)2 = λ\dz + μdz\2, then

(3.6) μ(re^=e2iθ(l_p}/(l+p}

Let g e Z>/#*+ 5l and y e £#f+ R satisfy g(eiθ) = e1^. For υ e
C°°(S'1,R), we set *,(0) = 0 + f t>(0) and y, - χt o γ e C°°(R,R). Thus we
define a smooth 1-parameter family gt e Diff+ Sl by

gt = e

ιγ' = elXt o g.

In addition we extend gt to a homeomorphisms gt of DO as gt(relθ) =
rgt(eiθ). Setting g^\dz\2 = λt\dz + μtdz\2, we have

by (3.6). In view of Lemma 2.4, we write fμ' = fε' o fμ with μ = μt\t=Q. We
also introduce two functions v and δ on Z>o as follows;

Then a direct calculation shows that dtμt\t=Q = v(reiθ) and δ^l^o =δ(relθ) (cf.
[4, Lemma 21]). From [4, Theorem 2] it follows that

\ζ\<ι

Since the Jacobian of //-conformal mapping fμ is (1 — l//!2)!^/^!2, after a
change of variables, we have

Let g = gt\t=Q and ξ = g l ( ζ ) with ζ = reiθ. Setting ψ = fμ o g~l, we see that
the integral above equals

Since dzg(reiθ) = \e~iθeiy(θ\\ + dθγ(θ)) and ^(z) is holomorphic on |z| < 1, we
have
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Since d0v = do(v o γ ) o γ~l doγ~l, we have

Therefore

* '(R' °> - s
Putting i; = e/Λ^ with « > 0, we see that the integral is zero, because

- fμ(z) Φ 0 for \z\ > 1 and ψ(ζ) = faζ + ιA2C
2 + - - with !̂ ^ 0. Hence

Φ*g(Rg*υ) is a linear combination of υne
inθ with n < 0.

We would like to close this paper by discussing a holomorphic structure of

PSU(l,l)\Diff+Sl.

LEMMA 3.7. Let (#o,0oo) be the LU-decomposition for geDiff+S1. Let
σePSU(l,l). Then Φ(σ°g) = Φ(g) - gQ o σ~l(0).

PROOF. Note that g^ = go o g = gQ o σ~l o σ o g. We set

Then hπ e Jΐ, h$oσo g = hao and ΛO is holomorphic. Hence the uniqueness
of the LU-decomposition implies that Φ(σog)=hσo.

We define a smooth mapping π: ^ — » C°°(51,C) by

z + ί̂ o + Λ A + ̂ A2 + ••••-> î A -H ̂ A2 + •

Let (go, 0oo ) be the LU-decomposition for g e Diff+ Sl. Take ε > 0 such that
{z e Ω; \z\ < ε} c= 00(^>o) and set

U = {hεJt; lim \Φ(h) - Φ(g)\ < ε/2}.
z— >oo

Then for 0ι,0ιe (7,

π(0ι) — π(92) -€=> σ°gι=g2 for some σe PSU(l, 1).

Hence

πoΦ:PSU(l,l)\Diff iff+Sl -, L
I «<0

is a local diffeomorphism. Thus we have proved
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THEOREM 3.6. PSU(l, l)\Diff+ S1 is a homogeneous complex manifold

such that the canonical projection:

Tl\Diff+Sl

is holomorphic.
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