Stably extendible vector bundles over the quaternionic projective spaces

Mitsunori Imaoka and Kouji Kuwana
(Received July 10, 1998)
(Revised August 6, 1998)
Dedicated to Professor Fuichi Uchida on his 60th birthday

Abstract

We show that, if a quaternionic k-dimensional vector bundle γ over the quaternionic projective space $H P^{n}$ is stably extendible and its non-zero top Pontrjagin class is not zero $\bmod 2$, then γ is stably equivalent to the Whitney sum of k quaternionic line bundles provided $k \leq n$.

1. Introduction and results

Let F denote the field of the complex numbers \mathbf{C}, that of the real numbers \mathbf{R} or the skew field of the quaternionic numbers \mathbf{H}, and $F P^{n}$ the n-dimensional F-projective space. Two F-vector bundles V and W over a finite complex B are said to be stably equivalent if the Whitney sums $V \oplus I_{a}$ and $W \oplus I_{b}$ for some trivial F-vector bundles I_{a} and I_{b} are isomorphic as F-vector bundles.

The purpose of this paper is to study Schwarzenberger's property for vector bundles over the quaternionic projective space $H P^{n}$. Schwarzenberger ([Sc], [Hi]) has shown the fact that a k-dimensional F-vector bundle V over $F P^{n}$ for $F=\mathbf{R}$ or \mathbf{C} is stably equivalent to a Whitney sum of $k F$-line bundles if V is extendible, that is, if V is the restriction of a F-vector bundle over $F P^{m}$ for any $m \geq n$. For the \mathbf{C}-vector bundles over $C P^{n}$, proofs have been given by $[\mathrm{Re}]$ and $[\mathrm{AM}]$. As for the \mathbf{R}-vector bundles over $R P^{n}$, the stable splitting is also true under the assumption that V is the restriction of a vector bundle over $R P^{m}$ for sufficiently large m ([Sc]). Some related results concerning vector bundles over the lens spaces are found in [KMY], [KM]. Our results mean that some additional conditions seem necessary for the quaternionic vector bundles over $H P^{n}$.

We remark that the extendible condition can be slightly weakened. A k-dimensional F-vector bundle γ over $F P^{n}$ is called stably extendible if for

[^0]each $m \geq n$ there exists a k-dimensional F-vector bundle $\tilde{\gamma}_{m}$ over $F P^{m}$ whose restriction to $F P^{n}$ is stably equivalent to γ as F-vector bundles. Then, the original result due to Schwarzenberger is also valid if we only assume that the vector bundle is stably extendible instead of extendible.

Let ξ be the canonical quaternionic line bundle over $H P^{n}$, and $X=P_{1}(\xi)$ the first symplectic Pontrjagin class of ξ. Here, the symplectic Pontrjagin class $P_{i}(\zeta) \in H^{4 i}(B ; \mathbf{Z})$ for a quaternionic k-dimensional vector bundle ζ over a space B is given by $P_{i}(\zeta)=(-1)^{i} C_{2 i}\left(c^{\prime}(\zeta)\right)$, the Chern class of the underlying complex vector bundle $c^{\prime}(\zeta)$ of ζ up to sign. Also we denote the total symplectic Pontrjagin class of ζ by $P(\zeta)=1+P_{1}(\zeta)+\cdots+P_{k}(\zeta)$. Then, the cohomology ring $H^{*}\left(H P^{n} ; \mathbf{Z}\right)$ is isomorphic to a truncated polynomial ring $\mathbf{Z}[X] /\left(X^{n+1}\right)$. Our results are stated as follows:

Theorem A. Let $k \leq n$. If a quaternionic k-dimensional vector bundle γ over $H P^{n}$ is stably extendible, then $P(\gamma)=\prod_{i=1}^{k}\left(1+m_{i}^{2} X\right)$ for some $m_{i} \in \mathbf{Z}$.

Theorem B. Let γ be a stably extendible quaternionic k-dimensional vector bundle over $H P^{n}$ for $k \leq n$. If $P_{m}(\gamma) \equiv X^{m}(\bmod 2)$ for some $0 \leq m \leq k$ and $P_{i}(\gamma)=0$ for any $i>m$, then γ is stably equivalent to a Whitney sum $\gamma(1) \oplus \cdots$ $\oplus \gamma(m)$ of some quaternionic line bundles $\gamma(1), \ldots, \gamma(m)$ over $H P^{n}$.

We remark that some counter example arises if the condition $P_{m}(\gamma) \equiv$ $X^{m}(\bmod 2)$ is removed in Theorem B, as follows:

Proposition C. Let γ be a quaternionic vector bundle stably equivalent to $\left(\xi \otimes_{\mathbf{H}} \xi^{*}\right) \otimes_{\mathbf{R}} \mathbf{H}$, the quaternification of $\xi \otimes_{\mathbf{H}} \xi^{*}$, over HP for $n \geq 2$, where ξ^{*} is the quaternionic conjugate bundle of ξ. Then, γ is stably extendible and its total Pontrjagin class is $P(\gamma)=(1+4 X)^{2}$, but γ is not stably equivalent to any Whitney sum of less than or equal to n numbers of quaternionic line bundles.

As for a stably extendible complex vector bundle ρ over $H P^{n}$, similar results with Theorems A and B hold if the Pontrjagin classes are replaced by the Chern classes $C_{i}(\rho)$ and quaternionic line bundles $\gamma(i)$ by some complex 2-dimensional vector bundles.

The authors would like to thank Prof. Matumoto for his valuable comments on the first version of their manuscript.

2. Proofs

Let $F(t)=t^{r}-m_{1} t^{r-1}+\cdots+(-1)^{r-1} m_{r-1} t+(-1)^{r} m_{r} \in \mathbf{Z}[t]$ be a polynomial, and $F(t)=\prod_{i=1}^{r}\left(t-z_{i}\right)$ its factorization by complex numbers $z_{i} \in \mathbf{C}$. We set $s_{j}(F)=\sum_{i=1}^{r} z_{i}^{j}$ for $j \geq 1$. Then, $\left\{s_{j}(F)\right\}$ satisfies Newton's relations

$$
\begin{equation*}
\sum_{i=0}^{j-1}(-1)^{i} m_{i} s_{j-i}(F)=(-1)^{j+1} j m_{j} \tag{2.1}
\end{equation*}
$$

for any $j \geq 1$, where $m_{0}=1$ and $m_{i}=0$ if $i>r$. Thus, all $s_{j}(F)$ are integers. Concerning the linear factorization of a polynomial, Feit-Rees has shown the following fact.

Theorem 1 [FR]. If $s_{j}(F) \equiv s_{j+p-1}(F)(\bmod p)$ for $1 \leq j \leq r$ and for all but a finite number of primes p, then $F(t)$ is a product of linear factors in $\mathbf{Z}[t]$, that is, $z_{i} \in \mathbf{Z}$ for $1 \leq i \leq r$.

Rees [Re] and Adams-Mahmud [AM] have shown that this property is effective to prove Schwarzenberger's property for complex vector bundles over $C P^{n}$. Their methods are also valid if the assumption of the extendibility is weakened to stably extendibility, and we have the following, where $x=C_{1}\left(\xi_{\mathbf{c}}\right)$ $\in H^{2}\left(C P^{n} ; \mathbf{Z}\right)$ is the first Chern class of the canonical complex line bundle $\xi_{\mathbf{C}}$ over $C P^{n}$:

Proposition 2. Let $k \leq n$. Then, we have the following:
(1) If ρ is a stably extendible complex k-dimensional vector bundle over $C P^{n}$, then the total Chern class $C(\rho)$ of ρ factorizes as $C(\rho)=\prod_{i=1}^{k}\left(1+a_{i} x\right)$ for some integers a_{i}.
(2) If γ is a stably extendible quaternionic k-dimensional vector bundle over $H P^{n}$, then the total symplectic Pontrjagin class $\boldsymbol{P}(\gamma)$ of γ factorizes as $\boldsymbol{P}(\gamma)=$ $\prod_{i=1}^{k}\left(1+b_{i} X\right)$ for some integers b_{i}.

Proof. We shall prove (2) since the proof of (1) is similar and simpler. Thus, assume that γ is a stably extendible quaternionic k-dimensional vector bundle over $H P^{n}$ for $k \leq n$. The i-th symplectic Pontrjagin class of γ is denoted by $P_{i}(\gamma)=u_{i} X^{i}$ for some $u_{i} \in \mathbf{Z}$, where $u_{0}=1$ and $u_{i}=0$ for $i>k$. Then, for the polynomial $Q(t)=\sum_{i=0}^{k}(-1)^{i} u_{i} t^{k-i} \in \mathbf{Z}[t]$, we define integers s_{j} as $s_{j}(Q)$ of (2.1) for $m_{i}=u_{i}$. That is, $s_{0}=1$ and s_{j} for $j \geq 1$ is defined recursively by

$$
\begin{equation*}
\sum_{i=0}^{j-1}(-1)^{i} u_{i} s_{j-i}=(-1)^{j+1} j u_{j} . \tag{2.2}
\end{equation*}
$$

When we need to distinguish $\left\{s_{j}\right\}$ for different γ 's, we denote s_{j} by $s_{j}(\gamma)$.
Remark that the total Pontrjagin class $P(\gamma)$ is equal to $(-1)^{k} X^{k} Q(-1 / X)$. Hence, if $Q(t)$ is shown to be a product of linear factors in $\mathbf{Z}[t]$, then $P(\gamma)$ turns out to be a product of linear factors in $\mathbf{Z}[X]$ as required. Thus, by Theorem 1, it suffices to show that for all but a finite number of primes p it holds

$$
\begin{equation*}
s_{j} \equiv s_{j+p-1}(\bmod p) \quad \text { for } 1 \leq j \leq k \tag{2.3}
\end{equation*}
$$

Let p be any prime with $p>k(2 k-1)$, and m an integer satisfying $m \geq$ $\max (k+p, n)$. By the assumption, there exists a quaternionic k-dimensional vector bundle γ_{m} over $H P^{m}$ whose restriction to $H P^{n}$ is stably equivalent to γ. Let $f_{m}: H P^{m} \rightarrow B S p$ be the classifying map of the virtual bundle $\gamma_{m}-I_{k}$, and $i: H P^{n} \rightarrow H P^{m}$ the inclusion. Thus, $f=f_{m} i: H P^{n} \rightarrow B S p$ is the classifying map for $\gamma-I_{k}$. For the universal symplectic Pontrjagin classes $P_{i} \in$ $H^{4 i}(B S p ; \mathbf{Z})$, we define a class $\tilde{s}_{j} \in H^{4 j}(B S p ; \mathbf{Z})$ for $j \geq 1$ recursively as in (2.1) by the relations

$$
\begin{equation*}
\sum_{i=0}^{j-1}(-1)^{i} P_{i} \tilde{S}_{j-i}=(-1)^{j+1} j P_{j} \tag{2.4}
\end{equation*}
$$

Since $s_{j}\left(\gamma_{m}\right)=s_{j}(\gamma), f_{m}^{*}\left(\tilde{s}_{j}\right)=s_{j} X^{j}$ by (2.2) and (2.4).
By the naturality of the cohomology operation $\mathscr{P}^{2}: H^{*}(Y ; \mathbf{Z} / p) \rightarrow$ $H^{*+4(p-1)}(Y ; \mathbf{Z} / p)$, we have $\mathscr{P}^{2} f_{m}^{*}\left(\tilde{s}_{j}\right)=f_{m}^{*}\left(\mathscr{P}^{2} \tilde{s}_{j}\right)$. Moreover, for $1 \leq j \leq k$,

$$
\begin{aligned}
& \mathscr{P}^{2} f_{m}^{*}\left(\tilde{s}_{j}\right)=s_{j} \mathscr{P}^{2}\left(X^{j}\right)=\binom{2 j}{2} s_{j} X^{j+p-1} ; \\
& f_{m}^{*}\left(\mathscr{P}^{2} \tilde{s}_{j}\right)=f_{m}^{*}\left(\binom{2 j}{2} \tilde{s}_{j+p-1}\right)=\binom{2 j}{2} s_{j+p-1} X^{j+p-1} .
\end{aligned}
$$

Since $1 \leq\binom{ 2 j}{2}<p$ and $j+p-1 \leq m$ for $1 \leq j \leq k$ by the assumption, we obtain (2.3), which completes the proof.

Proof of Theorem A. Let γ be a stably extendible quaternionic k dimensional vector bundle over $H P^{n}$ for $k \leq n$. Then, by Proposition 2(2), we have $P(\gamma)=\prod_{i=1}^{k}\left(1+b_{i} X\right)$ for some $b_{i} \in \mathbf{Z}$. Thus, in order to complete the proof, it is sufficient to show that each integer b_{i} is a square.

Let $q: C P^{2 n+1} \rightarrow H P^{n}$ be the canonical projection, and $c^{\prime}(\gamma)$ denote underlying complex vector bundle of γ, that is, the complexification of γ. Then, $q^{*} c^{\prime}(\gamma)$ is a stably extendible complex $2 k$-dimensional vector bundle over $C P^{2 n+1}$. Hence, by Proposition 2(1), the total Chern class of $q^{*} c^{\prime}(\gamma)$ is written as $C\left(q^{*} c^{\prime}(\gamma)\right)=\prod_{i=1}^{2 k}\left(1+a_{i} x\right)$ for some integers a_{i}. On the other hand, we have

$$
C\left(q^{*} c^{\prime}(\gamma)\right)=q^{*}\left(C\left(c^{\prime}(\gamma)\right)\right)=q^{*}\left(\prod_{i=1}^{k}\left(1-b_{i} X\right)\right)=\prod_{i=1}^{k}\left(1-b_{i} x^{2}\right)
$$

since $C_{2 j}\left(c^{\prime}(\gamma)\right)=(-1)^{j} P_{j}(\gamma), C_{2 j+1}\left(c^{\prime}(\gamma)\right)=0$ and $q^{*}(X)=x^{2}$ by definitions. Thus, comparing these two expressions of $C\left(q^{*} c^{\prime}(\gamma)\right)$, we conclude that $b_{i}=$ $m_{i}^{2}, 1 \leq i \leq k$, for some integers m_{i}.

In order to establish Theorem B, we need the following result.

Theorem 3 ([Su], [FG]). The degree of non-zero self map $f: H P^{\infty} \rightarrow$ $H P^{\infty}$ is an odd square, that is, $f^{*}(X)=(2 h+1)^{2} X$ for some integer h, and conversely, for any integer h, there exists a self map f of $H P^{\infty}$ whose degree is $(2 h+1)^{2}$.

The symplectic Pontrjagin classes determine the stably equivalent classes of quaternionic vector bundles over $H P^{n}$ as follows:

Lemma 4. Quaternionic vector bundles V and W over $H P^{n}$ are stably equivalent as quaternionic vector bundles if and only if they have the same symplectic Pontrjagin classes $P(V)=P(W)$.

Proof. The only if part is clear by the stable property $P\left(V \oplus I_{a}\right)=P(V)$ of the symplectic Pontrjagin class. We assume that $P(V)=P(W)$ for quaternionic vector bundles V, W over $H P^{n}$. Let $\widetilde{K S p}\left(H P^{n}\right)$ be the reduced symplectic K-group of $H P^{n}$, which is isomorphic to the based homotopy group $\left[H P^{n}, B S p\right]$. Then, by the definition of the symplectic K-group, it suffices to show that the virtual bundles $\alpha=V-\operatorname{dim} V$ and $\beta=W-\operatorname{dim} W$ represent the same class of $\widetilde{K S p}\left(H P^{n}\right)$. The Pontrjagin character ph: $\widetilde{K S p}\left(H P^{n}\right) \rightarrow$ $H^{*}\left(H P^{n} ; \boldsymbol{Q}\right)$ has the form of $p h(\alpha)=2 \sum_{k=1}^{n} \alpha^{*}\left(\tilde{s}_{k}\right) /(2 k)!$. Here, we regard α as an element of $\left[H P^{n}, B S p\right]$, and $\tilde{s}_{k} \in H^{4 k}(B S p ; \mathbf{Z})$ are the classes of (2.4). Since $\alpha^{*}\left(\tilde{s}_{k}\right)=s_{k}(V)$ is determined by $P(V)$, the equality $p h(\alpha)=p h(\beta)$ follows from the assumption that $P(V)=P(W)$.

By definition, the Pontrjagin character $p h$ is the composition of the complexification $c: \widetilde{K S p}\left(H P^{n}\right) \rightarrow \tilde{K}\left(H P^{n}\right)$ and the Chern character $c h: \tilde{K}\left(H P^{n}\right) \rightarrow H^{*}\left(H P^{n} ; \mathbf{Q}\right)$. The Chern character ch is injective since $H^{*}\left(H P^{n} ; \mathbf{Z}\right)$ has no torsion ([AH; 2.5 Corollary]). Also, the complexfication c is injective as is well known. Hence $p h$ is injective, and thus $\alpha=\beta$, which completes the proof.

Remark 5. The above argument in the proof of Lemma 4 simply says that the map $g: \widetilde{K S p}\left(H P^{n}\right) \rightarrow \operatorname{Hom}\left(H_{*}\left(H P^{n} ; \mathbf{Z}\right), H_{*}(B S p ; \mathbf{Z})\right)$ defined by $g(\alpha)=\alpha_{*}$ is injective. In fact, $P(\alpha)=P(V)$ determines α as is shown, and $P_{j}(\alpha)=\left\langle P_{j}, \alpha_{*}\left(b_{j}\right)\right\rangle X^{j}$ is determined by α_{*}, where $b_{i} \in H_{4 i}\left(H P^{n} ; \mathbf{Z}\right)$ is the dual homology class of X^{i}.

Proof of Theorem B. Let γ be a stably extendible quaternionic k dimensional vector bundle over $H P^{n}$ for $k \leq n$. By Theorem A we have $P(\gamma)$ $=\prod_{i=1}^{k}\left(1+m_{i}^{2} X\right)$ for some integers m_{i}. But, each m_{i} must be either odd or zero by the assumption $P_{m}(\gamma) \equiv X^{m}(\bmod 2)$. By Theorem 3, there exists a quaternionic line bundle $\tilde{\gamma}(i)$ over $H P^{\infty}$ with $P(\tilde{\gamma}(i))=1+m_{i}^{2} X$ for each $1 \leq$ $i \leq k$. Let $\gamma(i)$ be the restriction of $\tilde{\gamma}(i)$ over $H P^{n}$. Then, we have $P(\gamma)=$ $P(\gamma(1) \oplus \cdots \oplus \gamma(k))$, and thus the required result by Lemma 4 .

Proof of Proposition C. Let γ be stably equivalent to $\left(\xi \otimes_{\mathbf{H}} \xi^{*}\right) \otimes_{\mathbf{R}} \mathbf{H}$, the quaternionification of the bundle $\xi \otimes_{\mathbf{H}} \xi^{*}$, over $H P^{n}$ for $n \geq 2$. Clearly, γ is stably extendible. The complexification $c^{\prime}(\gamma)$ of γ is stably equivalent to $2 c\left(\xi \otimes_{\mathbf{H}} \xi^{*}\right) \cong 2 c^{\prime}(\xi) \otimes_{\mathbf{C}} c^{\prime}(\xi)$, where $c\left(\xi \otimes_{\mathbf{H}} \xi^{*}\right)$ denotes $\left(\xi \otimes_{\mathbf{H}} \xi^{*}\right) \otimes_{\mathbf{R}} \mathbf{C}$. Since the total Chern class $C\left(c^{\prime}(\xi) \otimes_{\mathbf{C}} c^{\prime}(\xi)\right)$ is equal to $1-4 X$, the total Pontrjagin class $P(\gamma)$ is equal to $(1+4 X)^{2}$.

Suppose that γ is stably equivalent to $\bigoplus_{i=1}^{k} l_{i}$ for some quaternionic line bundles l_{i} and some $k \leq n$. If $P\left(l_{i}\right)=1+t_{i} X$ for $1 \leq i \leq k$, where $t_{i} \in \mathbf{Z}$, then we have the equality $(1+4 X)^{2}=\prod_{i=1}^{k}\left(1+t_{i} X\right)$ in $H^{*}\left(H P^{n}\right)=\mathbf{Z}[X] /\left(X^{n+1}\right)$. Since $k \leq n$, we may assume that $t_{1}=t_{2}=4$ and $t_{i}=0$ for $i \geq 3$. Then, we have a classifying map $f: H P^{n} \rightarrow H P^{n}$ of l_{1}, and thus $f^{*}(X)=4 X$. However, by Feder-Gitler ([FG]), if $g^{*}(X)=\lambda X$ holds for some map $g: H P^{n} \rightarrow H P^{n}$ for $n \geq 2$, then the integer λ satisfies $\lambda(\lambda-1) \equiv 0(\bmod 24)$. Hence, $\lambda \neq 4$, which contradicts the existence of f. Therefore, γ cannot be stably decomposed into a sum of k numbers of quaternionic line bundles for $k \leq n$, which completes the proof.

Remark 6. We defined a k-dimensional F-vector bundle γ over $F P^{n}$ to be stably extendible if it extends stably to some k-dimensional F-vector bundle $\tilde{\gamma}_{m}$ over $F P^{m}$ for any $m \geq n$. The restriction of $\operatorname{dim}_{F} \tilde{\gamma}_{m}=k$ was needed in the proof of Theorem A. It is still open whether this restriction of dimension is actually necessary or not.

Remark 7. In Theorem B and Proposition C, we discuss when a quaternionic vector bundle over $H P^{n}$ is stably equivalent to the Whitney sum of less than or equal to n numbers of quaternionic line bundles. It is still open how it becomes if we are allowed to take the Whitney sum of more than n numbers of line bundles.

References

[AM]. J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41.
[AH] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Differential Geometry, Proc. of Symp. in Pure Math. 3 (1961), 7-38.
[FG] S. Feder and S. Gitler, Mappings of quaternionic projective spaces, Bol. Soc. Mat. Mexicana 18 (1973), 33-37.
[FR] W. Feit and E. Rees, A criterion for a polynomial to factor completely over the integers, Bull. London Math. Soc. 10 (1978), 191-192.
[Hi] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, 1978.
[KMY] T. Kobayashi, H. Maki and T. Yoshida, Remarks on extendible vector bundles over lens spaces and real projective spaces, Hiroshima Math. J. 5 (1975), 487-497.
[KM] T. Kobayashi and H. Maki, On the extendibility of real vector bundles over the lens spaces mod 4, Mem. Fac. Sci. Kochi Univ. (Math.) 6 (1985), 65-73.
[Re] E. Rees, On submanifolds of projective space, J. London Math. Soc. 19 (1979), 159162.
[Sc] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19-21.
[Su] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. 100 (1974), 1-79.

Faculty of Education
Hiroshima University
Higashi-Hiroshima 739-8523, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 55R50, secondary 55R40.
 Key words and phrases. Schwarzenberger's property, extendible, the quaternionic projective space.

