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On the Gysin isomorphism of rigid cohomology
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ABSTRACT. We prove a comparison theorem of logarithmic Monsky-Washnitzer
cohomology and rigid cohomology with overconvergent coefficients. Using this
comparison theorem, we construct the Gysin isomorphism in rigid cohomology with
overconvergent coefficients on small pairs of affine smooth varieties of positive char-
acteristic. The Gysin isomorphism under the assumption "small" is sufficient to apply
it to the fmiteness problem of rigid cohomology with coefficients. We prove the
finiteness theorem, Poincare duality and Kunneth formula of rigid cohomology for unit-
root overconvergent F-isocrystals by our previous result of finite local monodromy
theorem for them.

1. Introduction

The rigid cohomology with coefficient of overconvergent isocrystals, which
was introduced by P. Berthelot, is a good candidate of the />-adic cohomology
theory of varieties of positive characteristic p. If the rigid cohomology is a
good cohomology, then it must have several expected properties, the finiteness,
Poincare duality, Kunneth formula and so on. In [6] and [7] Berthelot proved
the finiteness, Poincare duality and Kunneth formula of the rigid cohomology
with the constant coefficient. In his proof the Gysin isomorphism played an
important role.

In this article we construct the Gysin isomorphism of the rigid cohomology
of overconvergent isocrystals on sufficiently small affine smooth varieties. For
overconvergent F-isocrystals, this Gysin isomorphism commutes with Frobenius
structures. We apply it to the finiteness, Poincare duality and Kunneth formula
of the rigid cohomology of overconvergent unit-root F-isocrystals.

Let us explain the method of the construction of the Gysin isomorphism.
First we introduce a logarithmic Monsky-Washnitzer cohomology and prove
the comparison theorem with overconvergent coefficients between the log-
arithmic Monsky-Washnitzer cohomology and the rigid cohomology for an
affine smooth variety with normal crossing divisor over a spectrum of field
of positive characteristic. This comparison theorem is a /7-adic analogue of
A. Grothendieck and P. Deligne's comparison theorem of the logarithmic
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de Rham cohomology of complex analytic varieties. (See [11] and [12].)
Applying the comparison theorem, we construct the Gysin isomorphism as in
[12]. For the constant coefficient, our Gysin isomorphism coincides with the
one in [6] and the commutativity of the Gysin isomorphism and Frobenius
structures was proved in [8]. In the case of varieties over a finite field, the
Gysin isomorphism was studied in [14] using /?-adic functional analysis.

The key assertion of the comparison theorem is Lemma 3.7.5. The idea is
essentially similar to that of P. Monsky, who studied the Gysin isomorphism of
Monsky-Washnitzer cohomology for the pair of an affine smooth variety and
its nonsingular hypersurface in [16].

We explain the contents of this paper. In § 2 we review the theory of rigid

cohomology. In §3 we define a logarithmic Monsky-Washnitzer cohomology
with coefficients and prove the comparison theorem with overconvergent co-
efficients. In §4 we construct the Gysin morphism of rigid cohomology over a
sufficiently small affine smooth variety. In §5 we give a comparison theorem
between the crystalline cohomology and the rigid cohomology with coefficients.
This comparison theorem is used in § 6. In § 6 we prove the finiteness theorem,
Poincare duality and Kunneth formula of rigid cohomology for unit-root over-
convergent .F-isocrystals on a variety over a perfect field of characteristic p.

Throughout this paper, we fix the notation as follows;
p: a prime number;
k: a field of characteristic /?;

V\ a complete discrete valuation ring of mixed characteristics with
residue field k\

m: the maximal ideal of V\
K: the field of fraction of V\

: an absolute value of K;
σ: the Frobenius map on k.

We also denote by σ a lift of Frobenius endomorphism on V (resp. K) if it
exists. If we mention F-isocrystals or Frobenius structures, we suppose the
existence of a lift of Frobenius on K and we fix a Frobenius σ on K.

For a F-module M, we put Mκ = M ®v K.

Let (ay) be a matrix with entries in R. For a function/ (resp. a norm | |)

on Λ, we put /((%)) = (/(%)) (resp. \(atj)\ = max{|0ιy|}).
The author would like to thank F. Baldassarri, P. Berthelot, B. Chiarellotto,

B. Le Stum and F. Trihan for useful conversations.

2. Several properties of rigid cohomology

In this section we review several properties of rigid cohomology which are
needed later. (See [4], [5], [6] and [9].) Throughout this section, we denote
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by X, X, and & a separated scheme of finite type over Spec k, a proper scheme
of finite type over Spec k with a fc-open immersion j : X —> X, and a formal
scheme of finite type over Spf V with a closed immersion X -+ & such that & is
smooth over SpfF around X, respectively. We denote by Isoc^(X/K) the
category of overconvergent isocrystals on X/K and, for a positive integer a, by
F-Isoc^(X/K,σa) the category of overconvergent F-isocrystals on X/K with
respect to the Frobenius σa on K.

(2.1) For an object (Jf,V) in Isoc*(X/K), we denote by DR'(Jΐ) the de Rham
complex

. o -+ M _ M ®,to β|_u/A. _ ̂  0yt0|ίι β2_[#/λ.

of AΓ-sheaves on ]JΓ[^ associated to Ji, where we put Jt at the degree 0.
Let Z be a closed subscheme of X over Spec k, and put U = X — Z with

the open immersion jυ : U — > A\ For a sheaf <f of abelian groups on ]̂ [̂ ,
we put

to be the sheaf of overconvergent sections of $ with supports in ]Z[^ and the
group of global sections of <? with supports in ]Z[^, respectively. For an
object (Λf,F) in Isoc*(X/K), the complex RΓZ(Z)JR (^)) is independent of the
choices of X and 9 in the derived category of complexes of A'-vector spaces
bounded below. We put

ί) =RΓz(DR (Jί))

and the rigid cohomology Hl

z ^ r i g ( X / K , J ί ] = RlΓz(DR*(Jί)) with supports
in Z. When Z = X, we simply denote RΓng(X/K,Jf) = RΓχ(DRm(Jf))
and Hl

rig(X/K,Jί)=Hl

Xrig(X/K,Jί). We define a distinguished triangle
Δrig(X,Z,Jt} by

By the similar proof of [3, Proposition 2.4, 2.5] we have

PROPOSITION 2.1.1. With the notation as above, let (Jί,V) be an object in

(1) If U is an open subscheme of X over Specfc such that Z c= L7, then
there is a canonical isomorphism

RΓz,rig(X/K,J?)
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(2) If Z is a disjoint union of closed subschemes Z\ and Z^ of X over
Spec/:, then there is a canonical isomorphism

RΓZl,rig(X/K, Jf) 0 KΓZ2ιrig(X/K, Jt) -> RΓZtrtg(X/K, Jί\

(3) If T is a closed subscheme of Z over Spec k and if we put Y = X — T
and ZY = Z — T, then there exists a distinguished triangle

KΓTtrig(X/K, ^} — + RΓZ,rig(X/K, Jί} — > RΓZγ,rig( Y/K, j\Jf) -±1

Here we denote by jγ : Y — > X the open immersion.
Moreover, the induced K-homomorphisms on the rigid cohomology in (1), (2)

and (3) commute with Frobenius structures for an object in F-lsoc^(X/K, σa\

Let K' be an extension of K which is complete under the extension of

valuation of K and denote by k' the residue field of K' '. We put X' = X xspec£

Spec/:7 (resp. Z' = Z xSpecfc Spec/:', resp. x' = X xSpec£ Spec/:', resp. &' =
9 xspf v Spf V) and denote by / : X1 -> X1 (resp. τκ,,κ : }X\& -> }X[£ the
open immersion (resp. the natural morphism). Then τκι/κ induces the inverse
image functor

τ : Isoc^JT/Jf)κ,/κ

If σ' K' —> K' is an extension of the Frobenius σ on K, then !#//# induces the
inverse image functor

for a positive integer α.

For an object (J(,V) in Isoc\X/K), if we put (^r',57') = τ^t/κ(J(,V),
then the natural homomorphism τ~lΓlz<(JK) — > T]zl<(Jί') induces a canonical
morphism

τ£//λ: : KΓZίrig(X/K,je) ®KK' -* RΓz/,^^7/^,^)

in the derived category of complexes of ^'-vector spaces. As a generalization
of [6, Proposition 1.8] with coefficients we have

PROPOSITION 2.1.2. With the notation as above, if K1 is a finite extension of
K, then the morphism

τ*κ,jκ : RΓz,rig(X/K,Jt) ®KK' -* RΓz,,rig(Xf /Kf,Jt')

is an isomorphism. Moreover, if the Frobenius σ extends to the Frobenius on
K1, then the induced K' -homomorphism τ*κ,,κ on the rigid cohomology commutes
with Frobenius structures for any object in F-Isoc^(X/K, σa).
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PROOF. By Proposition 2.1.1, one may assume that Z = X. Consider-
ing the Cech cohomology, the assertion follows easily from the fact
that T(τ-\W),(j'}]O]^ = Y(WJ^O]^®κK

f and that Hl(W,Jl) =
Hl(τ~l(W),J^f) = Q for / ̂  0 for any sufficiently small open affinoid W

in ]X[. Π

(2.2) We explain the relation between the rigid cohomology and the Monsky-
Washnitzer cohomology. (See [5, 2.5].) We assume that there exists an affine
smooth scheme ^^Spec^l of finite type over Spec V with X =
Speck. We fix a presentation

over V. Put 9C to be the Zariski closure of 3C in P^ (Spec V[x] is the open

subscheme defined by XQ φ 0), % to be the ^-adic completion of 9C and X to be

the closure of X in 3£. For λ > 1, we put a F-algebra

Aλ =

where

/ is a multi index and | / | = i\ -\

V[*]A by

o(|/|

iN. We define a Banach norm on

and define a Banach norm || ||^; on ^4^ by the quotient norm of || \\λ on V[x\λ.
We define a F-algebra ^4^ and its norm || ||^t by

^4^ = lim Aχ

* t = m ^.
Λ — > 1

v4^ is the weak completion of A over F, independent of the choices of the
presentation up to canonical isomorphism, and noetherian [17, Theorem 1.5,

2.1].
An algebra homomorphism φ : A^ — » A^ is called Frobenius if and only if

it is σ-linear and the induced map on T(X, Oχ) = A ^ jmA^ is the p-th power
map.

Let dt\,..., dtn be a local basis of the sheaf β /Spec v
of the differential

module of 3C over Spec V and let d\ , . . . , dn be a dual basis of dt\ , . . . , dtn in the
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sheaf Der(2£/$ρoc V) of derivation. Then δ/ can extend on A^ and we use the
same symbol <3/ for this extension.

Let V \ M—> M®AΩ\IV be a connection of a finitely generated A\ -
module. Since M is finitely generated, there is a finitely generated A^κ~

module MA with a connection Vχ : MA -> MA <8Ufii/κ for any A > 1
sufficiently close to 1 such that (MA, FA) ®AλκAλ^κ ^ (Mλ ,Vλ>) for 1 < λ' < λ

and lim (MA, Vχ) = (M, V). We say that the connection V : M —» M ®A Ω\IV

is overconvergent if it is integrable and, for any η < 1, there exists λ > 1 such

that

1
,1/1 _> o (l/l - oo)

/ι

for any m e MA. Here, | |A is a quotient norm of MA which is determined
by the fixed presentation of MA over A^κ, /! = i\\ - ίn\ and dl = d[l - dl£.
The condition of overconvergence is independent of the choices of the
presentation of M over A^κ and the basis of the derivation Der(SF/Spec V). A
morphism of ^-modules with overconvergent connection is a horizontal A^κ-
homomorphism. We denote by Coτm^(3P/K) the category of finitely generated
^-modules with overconvergent connection. The category of Corm^(&/K) is
independent of the choices of the affine smooth lift 3C of X and the presentation
of A over Fup to canonical isomorphisms [5, Proposition 2.5.2]. If (M, V) is
an object in Conn^(«^/^Γ), M is projective over A^κ.

Let φ be a Frobenius on A^ and let a be a positive integer. For an object
(M, V) in Conn^(^/jfiΓ), a horizontal isomorphism Φ: (φa)*M — > M is called

a Frobenius structure on (M, V7) with respect to ζ?Λ A morphism of Aχ~
modules with overconvergent connection and Frobenius structure is a hori-
zontal yl^-homomorphism which commutes with Frobenius structures. We
denote by F-Corm\9£/K, φa) the category of finitely generated yl^-modules
with overconvergent connection and Frobenius structure. The category of
F-Corm^ffi/K, φa] is independent of the choices of the affine smooth lift % of
X, the presentation of A and the Frobenius φ on A t up to canonical iso-
morphisms [5, Theoreme 2.5.7].

For an object (M,F) in Conn^(&/K), we define a de Rham complex
DR'(M) of AT- vector spaces by

where we put M at the degree 0. We denote by H1

MW(X/K,M) the
Monsky-Washnitzer cohomology Hl(DR*(M)). For an object (M, F,Φ) in
F-Conn\&/K,φa], the Frobenius structure Φ on M induces the Frobenius
structure on H1

MW(X/K,M) and we also denote this Frobenius structure by Φ.
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PROPOSITION 2.2.1. (1) [5, Proposition 2.5.2, Theoreme 2.5.7] The
functor Γ(]Ar[-,?) gives canonical equivalences

of categories.

(2) [6, Proposition 1.10] For an object (Jί,V) in Isoc*(X/K), if we put
M = r ( ] X [ ± , J t ) , then the functor Γ(]JfU,?) induces the canonical isomorphism

DR (M) -> RΓrig(X/K,Jΐ}

in the derived category of complexes of K-vector spaces.

For an object in F-Isorf(X/K, σa), the isomorphism H1

MW(X/K,M}^>
Hl

rig (X / K, Jί) commutes with Frobenίus structures.

(2.3) Keep the notation in 2.2. Let / : ty — > 9C be an etale morphism of
affine smooth F-schemes of finite type such that / is surjective on the special
fiber, and put A = Γ(#", Or) and B = Γ(<3f,O<y). For an object (M,F) in
Conn^/Jr), we define a double complex DR*(W/K,M) of ^-vector spaces
by the Cech complex

DR*(f]M] -

for the hypercovering induced by /, where (fv)*M = M (x^t (B®A -®A E)^K

(v times) and f^M is of bidegree (0,0). For an object (M,7, Φ) in F-
Conn^(^/K,φa), the Frobenius structure Φ induces the Frobenius structure on
the double complex DR*(W/K,M).

PROPOSITION 2.3.1. With the notation as above, if (M,V) is an object in
Corm^W/K), then the natural homomorphίsm

DR (M) -> Tot(DR (W/K,M})

of complexes of K-vector spaces is a quasί-ίsomorphίsm. Here
Tot(DR (<2/'/K,M)) is the total complex of the double complex
DR (<&9/K,M). For an object in F-Conn\&/K,(pa), the induced homo-
morphism of cohomologίes commutes with Frobenius structures.

Note that f^-.A^^B^is faithfully flat. Indeed, the /7-adic completion A
(resp. B) of A (resp. B) is faithfully flat over the weak completion A^ (resp. B^)
(See the proof of [6, Proposition 3.6].) and B is faithfully flat over A since
B/mlB is faithfully flat over A/mlA for any /.

Since M is projective over A\ , Proposition 2.3.1 easily follows from
Lemma 2.3.2 below.
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LEMMA 2.3.2. With the notation as above, the Cech complex

0 - + Λ t ^ £ t -> (B®AB}] -> (B®AB®AB)] -> •••

of A^-modules is exact.

PROOF. By [5, Proposition 2.1.8] the assertion is local, hence we
may assume that 3C is a standard etale extension over affine space on Spec V
and that 9H is a finite disjoint sum of standard etale extensions over #",

that is, A=V\^\y,z\l(s(y\t(y)z-\} (resp. 9 = U/Specl?/,^ = A[uhvi}/
(Pi(ui),qi(ui)υi - 1)), where s(y) (resp. pf(ui)) is a monic irreducible polynomial
over V[x] (resp. A) which is separable over the field of fraction of V[x] (resp.
A), t(y) (resp. qi(ui)} is a non-zero polynomial over V[x\ (resp. ^4) such that

s'(y) (resp. /?,-(«/•)) *s invertible in ^4 (resp. I?/). Denote by d/ (resp. eΐ) the
degree of /?/(w/) (resp. #/(w/)). Fix a lift /^(w,) (resp. <7/(w/)) °f polynomial in
V[x,y,z,uι] of degree dz (resp. e/) on w/ such that ^(M, ) is monic. Then we
have a compatible system of presentations

V[x,y,z] > A

HiV[x,y,z,uhVi] - > B

of A and B as F-algebras and also a compatible presentation

(Π/H*,J^^D®r^0r for any r, where (Π ? K[JC, j,z, «I ,ι;I ])®r is the

tensor product of r copies of Π/ ^fe J^jWόty] over Pfe.^2]- F°r >^ —
(^1,^2,^3) (Ay > 1), define a F-subalgebra if (resp. /[ ( reZ^i) ) of Aλ (resp.
(5®r)A) which consists of elements a with ||α||λ ^ 1. Here the norm || \\λ is

defined as in 2.2 using the triple λ for the coordinate (x, (j>,z), (w,ϋ)),
respectively. Let ^*, ^* and «/* be the complex in the assertion,

0 -> ΛA -> #ι -> (£ ®Λ S)λ ^ (B®AB®AB)λ^ •- ,

0-» 7? -,/,'-, //-»//-, . . . ,

respectively, which is induced by the Cech complex

0 -

Here we put V[x,y,z] at degree 0.
Choose rational numbers λj ( y = l , 2 , 3) which are greater than

1 such that, if we fix elements π/ (j — 1,2,3) in the algebraic closure
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of K with \πj\=λγ and Vλ = K[πι,π2,π3], πf^^^π^π^V) (resp.
πfpi(π\lXιπ2l(yιz)ιπϊluN is a nionic polynomial in Vχ(x, y] (resp.
Vλ[x,y,z,Ui}) of degree deg(s(y)} (resp. rf/) on j; (resp. M/) whose reduction
modulo the maximal ideal mχ of Vχ is a monomial, and α^πj"1*, πj1^) (resp.

< x , i q i ( π ϊ l x , π ΐ l ( y , z ) , π ϊ l u ϊ ) ) is a polynomial in Vλ[x,y] (resp. F^*, >>,z, «/])
whose reduction modulo mχ is a non-zero monomial of degree deg(t(y)) on jμ
(resp. e/ on Uj) for some element α (resp. α/) in F^ which is contained in mχ.
Such λ exists if we take λ\ « λi « λ$ for any λ^. We define FA -algebras

Aλ = F,[x, j,z]/(πf*(^^

Bi,λ = ̂ [w/^/^'^πf1^ - π3α/),

and put Bχ — Π/^,A We denote by Aχ (resp. B]J\ the /?-adic completion of
Aχ (resp. ^®r) modulo /w^-power torsions and by ^* the Cech complex

0 -* Λλ -> ̂  -> (5A ®^ ̂ ί -> (Λ ®^ ̂  ®Aλ Brf -> - - - ,

where we put ̂  atΛ degree 0. Since there is^a section BχjmχBχ — > Aλ/mχAχ,

one gets Hl(^\/m^\] = 0 for any /. Since ̂  (resp. 5A

xr) is free over Vχ, we

have Hl(^l/m"^l) = 0 for any w and /. Hence, we have

Hl(V*λ) £ timHl(V9

λ/m$9

λ) = 0.
«

Since ^(ίf ) ̂  limJf7^), it is sufficient to prove Hl(^l) - 0 for any /.
Here we take the direct limit above by max/jΛ/} — > 1. Since Vχ over V is a
finite extension of complete discrete valuation rings, Hl(^\ ®v Vχ) = 0 implies
Hl($l) — 0. So we may assume that V = Vχ. Then, there is an isomorphism

Aλ -> 7λ° (resp. B®r -> //) defined by x ̂  TTIJC, (>^,z) ̂  π2(j/,z), (u,v) ι~> π3(w, ϋ)
by the universality of tensor products and inverse limits. This map induces an
isomorphism ^* — > ,/* of complexes. Hence we have Hl(S*λ) = 0.

Now we consider the exact sequence 0 — > ̂  * Λ ^ * — > ^l/p^l — ̂  0 of
complexes of ^-modules. Since Aχ/ pAχ = A/pA (resp. (B®r)λ/p(B®r)λ =
(B®r) / p(B®r}) and /is surjective on the special fiber (hence, B/pB is faithfully
flat over A/pA), we have H^Ή'/pΉ') = 0. In other words, the multiplication
p map on Hl(y>l) is bijective. Since any element of (Br}λ/Γλ is ^-power
torsion, any element is so in T/7^*/,/*). From the exact sequence 0 — > J> * — >

^ 0, we have an isomorphism

Hence, we have Hl(^l] = 0. This completes the proof.
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By Proposition 2.2.1, 2.3.1 we have

COROLLARY 2.3.3. With the notation as above, if (Jί,V) is an object in
lsoc^(X/K) and if we put M = T ( ] X [ - , J ί ] , then there is an isomorphism

RΓrig(X/K,Jΐ) ^ Tot(DR (W/K,M))

in the derived categories of complexes of K-vector spaces. Moreover, for an
object in F-Isoc^(X/K,φa), the induced homomorphίsm of cohomologies com-
mutes with Frobenius structures.

(2.4) Let Z (resp. Z) be a closed subscheme of X over Spec/: (resp. the closure
of Z in X] and put / : Z —> X (resp. jz : Z —> Z) to be the correspondent closed
(resp. open) immersion. We define functors

> Isocf(Z/^)

of the inverse image as follows. For an object (M,V), we put \i\fM —

]ί\~lJί ®rr\ \n /7>O*Lγι. Put ]X\£2 to be the tubular neighbourhood of the
J L J ϊ [ y'G^ 'Z; JZ[ ^ _ _

diagonal embedding of X in ^2 and denote by pri : ]X[#2 —> ]X[# the natural
projection of tubes for / = 1,2. Since V is overconvergent, the stratification
ε : pr\Jt = pr^Λt which is induced from the connection V extends on a strict
neighbourhood of ]X[#2. Hence, the extension of ε determines a stratification
on the strict neighbourhood of ]Z[^2 since the strict neighbourhood of ]X[
includes the strict neighbourhood of ]Z[. The functor ]/[* is independent of the
choice of the formal scheme & and commutes with tensor products and duals.

Now we assume that both X and Z are affine smooth and there exist an

affine smooth scheme 9C — Spec A of finite type over Spec V and an affine
smooth closed subscheme ^ — Spec C of 9C over Spec V such that X =

% χspecκ Spec/: and Z = 2£ xspecF Spec/:. We fix SC and X (resp. ̂  and Z)
as in 2.2. Let (M, V) be an object in Corm.^ (S£/K). If u e A vanishes in C,
then the image of du under the projection Ω^v —» Ως/v vanishes and V

induces a connection fiV on fiM = M ®^t C^κ. If we fix a presentation of ̂
over F, then this presentation determines a presentation of C and | |/^(M)| |^ ^
||M||^ for any λ > 1. Hence, the connection /"Ύ is overconvergent. We define
a functor

by

If φ is a Frobenius on A^ such that ζϋ? induces a Frobenius on C^, then one
can easily see that the functor fi induces the functor

./t : Connt(ίT/A',^β)
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By definition, we have

PROPOSITION 2.4.1. Under the assumption as above, the diagram

-̂  Isocf(Z/Λ:)

of categories is commutative. The same holds for over convergent F-iso crystals.

(2.5) We recall the definition of rigid cohomology with compact supports in
[4, Sect. 3, 4.2]. Let i :}X — X[^ — > ]X[# be the corresponding immersion.

For a sheaf $ of abelian groups on ]X[p, we define a sheaf on ]X[& by

Let (Jt,V] be an object in lsoc^(X/K) and let W be a strict neigh-

bourhood of \X\φ in ]X[p such that there exists a coherent O^-module Jίw

and a connection Vw on ,/^V with j]y(Jίw,Vw) = (Jt,V). Here we denote by
jw : W -*}X[0> the open immersion. We define a complex

in the derived category of complexes of ^-vector spaces bounded below. The
complex above is independent of the choices of W, X and & up to the
canonical isomorphism. The rigid cohomology with compact supports for
(Jί,V) is defined by

Hl

c,rig(X/K, Jί] = RlΓc,rig(X/K, M\

If $ is a sheaf of coherent Oi^r -module, then Rlι*ι*$ = ΰ for / Φ 0.\Λ [#
Hence, for a short exact sequence

0 -> (^ι,Fι) -, (^2,^2) -> (^3,^3) -̂  0

in Isoc^A^/AΓ), there exists a distinguished triangle

RΓCtrig(X/K,Jfι) -^ RTc,

The natural homomorphism Γ]^[ (^) — > ^ of complexes of sheaves on
induces a homomorphism

of complexes of A^-vector spaces for an object (Jt,V] in Isoc^JSΓ/AΓ). In the
case where X = X the homomorphism above is an isomorphism by definition.

Let Z (resp. Z, resp. U) be a closed subscheme of X over Spec/: (resp. the
closure of Z in X, resp. U = X — Z) and put / : Z — » X (resp. /z : Z — » Z,
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resp. jυ : U — > X] to be the corresponding closed immersion (resp. open

immersions).

PROPOSITION 2.5.1. For an object (J(,V) in Isoc*(X/K), there is a ca-
nonical distinguished triangle

t) — > RΓCίrig(Z/K,]ϊ[*Jl) .

We denote the triangle above by Ac,rig(X,Z,Jt}.

PROOF. Let W be a strict neighbourhood of ]X[# in ]X[# such that

Jw(Λtw,V) = (Jt,V] with a coherent O^-module MW Since \i\^\i
and }ϊl ίs exact>

o -> r c / ( y -» Γ ^ r -+ / Γ / * ^ - o

is an exact sequence of sheaves of O,χr -modules. This completes the

proof. Π

PROPOSITION 2.5.2. With the notation as in Proposition 2.1.2, if K' is a
finite extension of K, then the morphism

ί) ®κ K' -, RΓCίrig(X'/K', Jtf)

induced by ^/κll}χ[^(^} -^ ΐ } x > [ ~ , ( ^ f } w ^^ isomorphism in the derived
category of complexes of K' -vector spaces.

PROOF. Considering the Cech cohomology, the assertion follows easily
from the fact that, if we choose a strict neighbourhood W of ]X[ where M

is defined, then Γ(τ^}>κ(U),Γ^χf^(O^n)) = Γ(ί/, ΐ]χ[(O^)) ®κK' and that

Hl(U,Γ]x[(Jtw)) = Hl(τ-}/κ(U),Γ]x^ for / ^ O and any ad-

missible affinoid subspace U of ]X[. * /κ Π

Let φ be a lift of Frobenius on & with respect to σ. For a strict
neighbourhood W of ] X [ ^ , if we choose a sufficiently small strict neigh-
bourhood W of ]JT[^, then φ induces a map φ : W -> PT [5, 2.4.1.3]. There
is a Frobenius structure on Γj^[(^) for an overconvergent F-isocrystal
(M, V, Φ) and all induced homomorphisms of cohomologies with compact
supports above commute with Frobenius structures.

(2.6) We discuss on the relative cases of rigid cohomologies. Let

(2.6.1) 7| f

X > X
jx
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be a commutative diagram which satisfies the following conditions: X and Y

are separated schemes of finite type over Spec A:, X (resp. Y) is a compac-

tification of X (resp. Y) over Spec/: with an open immersion jχ (resp. jγ), &

(resp. J) is a formal scheme of finite type over Spf F, z> (resp. z» is a closed

immersion, Φ (resp. J) is smooth around X (resp 7), / is smooth and w is

smooth around Y.

Denote by WK : ] 7[j —> }X[^> the induced moφhism of analytic spaces by

w. Since w is smooth around 7, there is a strict neighbourhood U (resp. fF) of

\X\p in ]Jf[^ (resp. ]7[j in ]F[j) such that WΛ:(^F) c C7 and WA: is smooth on
W by [5, Proposition 1.2.7]. Then the sequence

0 -+ (WK\W)*ΩUIK -> Ωw/κ -> QW/U -> 0

of sheaves of (9^-modules is exact. Let (M,V) be an object in Isoc^(Y/K)

such that there exists a sheaf Jίw of coherent Oψ -module with an integrable

connection Vψ ' Λtw —> ^w ®ow

 Ω\v/κ an^ that jψ(^w^w] = (^,V},
where jw : ] Y(&-^ W is the corresponding open immersion. Then the con-

nection Vw on Jίw induces a relative integrable connection

Vw/u

We denote by Jtw ®ow ΏW/U ^Q induced relative de Rham complex of
sheaves of WK\~^OU -modules

Λ M Vw/u M π n\ Vw/u M ^ ^
• - — > 0 — > Jίw — > Jίw ®ow ΩWU — ' ̂ w ®ow Ω

w W/U — * ' ' ' »

where we put Jiw at the degree 0. By the similar proof as in Theorem 1 and

Theorem 2 in [4, Sect. 2] we have

PROPOSITION 2.6.2. Under the assumption as above, let

fee fl commutative diagram such that jγ, is an open immersion, g is proper, Y is

a closed subscheme of the formal scheme &' of finite type over Spf F and v is

smooth around Y. If we put vκ : } Y [j, —> ] 7[j to be the induced morphίsm of

analytic spaces, W = v~χ(W) and MW> = v^Jtw ®v~^ow Ow1, then the natural

morphism jw^ —>• (yκ\w'}Jw'*(Pκ\wΎ induces an isomorphism

in the derived category of complexes of sheaves of WK^OU-modules bounded

below.
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If U\ is a strict neighbourhood of ]X[# in U and if we put W\ =
Wχl(U\)Γ\ W, then W\ is a strict neighbourhood of ]Y[^ and there is a ca-
nonical morphism

Here y^ : C/i — » ]̂ [̂  Now we define a complex

of 7^ O^r -modules. Here U\ runs over all strict neighbourhood of ]X[# in
]JF[^ and Vi = H^(£/I) Π PF. The complex (Rfrig#Jf)^ is independent of the
choice of Y and J by Proposition 2.6.2.

We define a decreasing filtration

FiΓ w

_

- Image ^ Jίw ®Ow Ω9^s

/κ ®^κΓ^Ou wκ\ψΩs

u/κ -> Jίw ®Ow Ω*w/κ

of ^^ ®owΩ
9

WfK. Since both W/Z/ and ί//ΛΓ are smooth, we have

grr

Fil(Jίw ®0w Ω*w/κ) = Jίw ®0w Q*wr/v ®^κ\-^Ou ™K\WΩU/K

The edge morphism induces an integrable connection

7^:R^jd?Λ*(^<8W^

Since wχ\Wl — Ju^ °wκ\w ^or a strict neighbourhood U\ of ]X[& in (7 and
!̂ — Wχl ( U \ ) Γ \ W , we have a Gauss-Manin connection

We fix a Frobenius φ^ (resp. φ^) on & (resp. J) with w o φ^ = φ^o w.
We may assume that such Frobenius always exists since w is smooth around Y.
Let (Jΐ,V,Φ) be an object in F-Isoc*(Y/K,σa). If we choose a sufficiently
small strict neighbourhood U\ of ]X[^ in C7 and put W\ = w~£(U\) Π FT, then

ψy induces a σ-linear homomorphism φ^: j^(Ω^s/χ ®wκr
lou WK\~WΩU/K) ~^

^w Γ1 o WK^wfiui/K Tne Frobenius structure

induces a σα-linear homomorphism ΦGM on
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THEOREM 2.6.3. With the notation as above, assume furthermore that X is
smooth over Spec k and that f is finite etale. Then we have

(1) (R%,*^0^ = 0 for l^Q and (frig^}^ is a sheaf of coherent

Jχ°]x(imodule

(2) If we denote by VGM the Gauss-Manίn connection on (frig*^)0>, then
VGM is overconυergent. We denote by frig*(^,V} or frig*Jt the corresponding

object ((frig^}^VGM} in the category Isoc\X/K).
(3) If (J(,V,Φ) is an object in F-Isoc^(Y/K,σa), then the induced σa-

linear map ΦGM on (frig*^}0> is a Frobenius structure. Moreover, if Φ is unit-
root, then the induced Frobenius structure ΦGM is also unit-root. We denote by

fή^(Jt,V,Φ] or frig,Jί the corresponding object ((frίg^}^VGM ,ΦGM) in the
category F-Isoc](X/K,σa).

PROOF. Since the assertion is local on X and / is finite etale, we may
assume that both X and Y are affine integral. By Proposition 2.6.1 we
may choose ̂  and J as follows. We choose a smooth integral affine lift 9C of
X of finite type over Spec V by [13, Theoreme 6], embed 3C into a projective
space over Spec V and denote by & (resp. X, resp. )̂ the Zariski closure of 9C
in the projective space (resp. the Zariski closure of X in ,̂ resp. the /?-adic
completion of )̂. By our assumption there is a finite integral closed affine

scheme 9 over X such that Y = 9 xSpecκ Spec A:. We denote by Ά (resp. F,
resp. J) the normalization of 0> in 9 (resp. the Zariski closure of Y in J, resp.
the ;?-adic completion of Ά}. Since Y is etale over X, Ά is finite over 3P.
Hence, J is finite over Φ.

For an object (J(,V} in Isoc\Y/K), we can choose a strict neigh-
bourhood U in ]X[p such that, if we put W — w^l(U}, there are a

coherent O ̂ -module Jίw and an integrable connection Vw on Jiw with

Jw(Jtw,Vw} = (^,V}. Since (wκ\w)^Ow is finite over Oυ, (wκ\w}^Jtw is
a coherent <9t/-module. If we choose a sufficiently small U, then Ωs

w/v = 0
for any s > 0 since the etaleness is an open condition. Hence, we have the
assertion (1).

Put ]X[p2 (resp. ]Γ[jz) to be the tubular neighbourhood of the di-
agonal embedding of X (resp. Y) in ^2 (resp. ^2) and denote by prl

x :

]X[p2 —> ]X[p (resp. pr\ : ] Γ[j2 —* ] Γ[j) the natural projection of tubes for
/ = 1 , 2 . Since the connection Vw of Jtw is overconvergent and w2

K :
((pr\Y\W)n(Pr\Yl(W)) - ((prl

xΓ\U) Π (Pr
2

xγ
l(U)} is finite etale [5,

Proposition 1.2.10], there is a strict neighbourhood U\ of ]X[^2 such that (i)
the strict neighborhood W\ = (w2

K)~~lU\ of ]7[J2 is included in ( p r l

γ ) ~ l ( W ) Γ \

(pr γ ) ~ l ( W ) , (ii) there exists an isomorphism e : (pr\\Wλ)*Jίw = (p^WiY^w
which satisfies the usual cocycle condition and (iii) ε induces the connection Vw

of Jίw by [5, Proposition 2.2.6]. Since Jfw is coherent, \VK\W ιs finite and
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PΓX\UI C = 1>2) is flat, ε induces the isomorphism

by Lemma 2.6.4 below. One can check that the isomorphism above satisfies

the cocycle condition by the same method and this isomorphism induces the

overconvergent connection VGM on (frig*Jt)0>. Hence, we have the assertion

(2).
The assertion (3) is easy. Π

LEMMA 2.6.4. With the notation as in the proof of Theorem 2.6.3,, the

commutative diagram

prLw\ — -̂  w

P'x
U

is cartesian for / = 1,2.

PROOF. The proof is similar as in [10, 1.7]. Consider the commutative

diagram

r~r, ^ viw

κ ' P r γ )

Here ί/i x^r/ ίF means the fiber product for the map prl

x : U\ —> U. Since

wκ\w is finite etale, (w^id) induces an isomorphism between W\ and U\ xprι

W by [5, Theoreme 1.3.5]. Π

COROLLARY 2.6.5. Under the same assumption as in Theorem 2.6.3, let Zx
be a closed subscheme in X and put Zy — f~lZx. Then, for an object (Jί, V)

in Isoc^(Y/K), we have a natural isomorphism

of K-vector spaces for any I For an overconvergent F-isocrystal, the isomor-

phism above commutes with Frobenίus structures.
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COROLLARY 2.6.6. Under the same assumption as in Theorem 2.6.3, we
have a natural isomorphism

of K-vector spaces for any object (Jί,V] in Isoc^(YfK) and any I For an
overconvergent F-isocrystal, the isomorphisms above commutes with Frobenius
structures.

(2.7) Assume that X is smooth over Spec/: and that / is finite etale in
the diagram 2.6.1. Denote by f^ : Iso^(X/K) -> Isoc*(Y/K) (resp. /^ :

F-Isoc](X/K,σa) -> F-Isoc*(Y/K,σa)) the inverse image functor as over-
convergent isocrystals (resp. as overconvergent F-isocrystals).

Let (M,V} be an object in IsoJ(X/K) (resp. F-lsoc](X/K)). We define
an adjoint map

ad : Jt -> f^J^Jί

by m i— > 1 (x) m for m e M. Then, one can easily check that the adjoint map
ad is a morphism in lsoc^(X/K) (resp, F-Isoc\X/K,σa)) and that f*g and frig#

are adjoint each other by the adjoint map ad.
We define a trace map

tr : frigJrig^ -> ̂

which is a moφhism in lsoc\X/K] (resp. F-Isoc^(X/K,σa)) as follows. In
general, the construction of the trace map is a local problem. Hence, we may

assume the local situation as in the proof of Theorem 2.6.3. Since W is finite
etale over £7, we can define a trace map

and define a trace map trv : (WK W)*(WK ψY^u —* ^u by

tru (x) id

One can easily check that the trace map tr commutes with connections. If we
denote by r the degree of Y over X, then the composition

•* ̂  frigJrig^ ^ ̂

of the adjoint map and the trace map is rid^, where id^ is the identity map
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on J(. One can easily see that the trace map tr commutes with Frobenius
structures for .F-isocrystals.

3. Local comparison theorem

(3.1) First we fix our situation. Let X = Spec A be an affine smooth scheme of
finite type over Spec V . We suppose that

(3.1.1) there exists a system t\,tι, . . . , tn e A

of coordinates of X over Spec V.

In other words, the K-morphism

which is defined by the system {ίι,...,ίn} is etale. Let d be a nonnegative
integer ^ n. We denote by ®J (resp. <&μ) the open subscheme Spec B =

Spec ,4 - (resp. the open subscheme Spec Bμ = Spec A \— ) of X and put
\t\ ' ' td\ \tμ\

JY : <& -> X (resp. jμ : <&μ -* X, resp. j'μ : ®J -> ̂ ) to be the corresponding
open immersion (resp. for 1 ̂  μ ^ d). We also denote by Q) (resp. ^) the
divisor of % which is defined by the equation t\ - - td — 0 (resp. by the equation
tμ = 0). We put X, 7, D, Yμ and Dμ to be the special fiber of X, <&, Q), %
and ,̂ respectively.

Keep the notation as in 2.2. Now we fix a presentation

of the F-algebra A with xμ \- > ^ (1 ̂  // ^ w). For A > 1, we define F-algebras
by

Aλ = V(x}λ/IV(x]λ

We denote by || ||^A (resp. || ||^λ, resp. || ||^ λ) the quotient norm as in 2.2.
If we define a homomorphism jγ λ \ Aχ-* Bχ (resp. jμλ : Aχ — > 5 ,̂ resp. 7^ :

^//,/ι — > ^/ί) of F-algebras by the natural injection (resp. by the natural injection,

resp. by j'μ(xoμ) = XQX\x2 -Xd/xμ and j ' μ ( x v ) = xv (1 ̂  v ̂  TV)). Then, jγ λ

(resp. y^^, resp. j' λ) commutes with the Banach norms, that is, | |7V,/ι(β)ll^ χ ̂
||β||^ Λ for aeAχ. We also denote by || \\^ (resp. || ||^, resp. || ||^) the norm

on A^ (resp. B^, resp. B^) as in 2.2. Then, j\j (resp. 7^, resp. (7^)^) commutes
with the norms.
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Define a sheaf of differential module Ω^/SpecF(^) on 9C over Spec V with

logarithmic poles along 2 by an 0<r -submodule of Ώ^/spec v which is generated
by

dtj. dti
- Λ - ^ Λ Λ y ^ Λ - . . ΛΛ;,

Vi Vί

for 5- ̂  min{/, d}9 I ^ j\ < - < js <^d and rf + 1 ̂  y'J+1 < - < jl ^ n. By

the assumption 3.1.1, ΩS

A/V(9) = Γ(#,β£./specκ(®)) is a free ^-module of

finite rank. We put Ω1^ (^) = A^K®AΩ
1

A/V(^) and denote by d : A]

κ ->

the natural ^-derivation.
t / Λ

We denote by 5̂  = — the dual differential operator of dtμ of ^4 and put

J

-Sμδ^μ~^ μ> d + \

for any nonnegative integer /. By the condition 3.1.1, we have

LEMMA 3.1.2. Let &(l} = Specy4(1) (resp. %(2] = Spec^(2)J te a smooth

affine scheme of finite type over Spec V which satisfies the condition 3.1.1 tfftd let

t\ , . . . , ft Γre5/7. q , . . . , ft J Z?^ ί/z^ yΪΛ ̂ ί/ system of parameter of SC^ (resp.

3C^ ). If there is an isomorphism i : 2£^ XspecF Spec/: — > ̂ ^ XspecF Spec/: o/
k-algebra with ι(t(μ] (moάmA^)) = t(μ] (modmA^) (l^μ^d), then there

exists a unique V-algebra isomorphism

such that ι(tμ ) = tμ for any μ and that the diagram

κ 42V

is commutative.

We define a Frobenius on A^ as in 2.2. Later we use a Frobenius φ on

A^ which satisfies the condition

(3.1.3) φ(tμ) = tpuμ for some uμ e 1 + mA^ (1 g // <*
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(Note that uμ is a unit in A^.} Then φ induces a σ-linear homomorphism

φ : Ωl

}lκ(β} —> Ωλ\,(3i] with φl—-} = p —-H (1 ̂  μ ^ d) and the

diagram ,

4 — 01

AL/J9)

commutes. By [8, Lemma 3.1.1] there always exists a unique Frobenius on A^
with φ(ti) = if (1 ̂  / ^ «) under our condition 3.1.1.

(3.2) We define a logarithmic overconvergent connection on A%. In the case
where d — 0, a logarithmic overconvergent connection is a usual over-
convergent connection in [5, 2.5] (See 2.2.).

DEFINITION 3.2.1. (1) Let M be an ^-module. A ΛMiomomorphism
V : M —» M ®A\ ΩI

AΪ ,κ(β} is a connection with logarithmic poles along 9) if
K K/

and only if V is additive and satisfies the relation V(αm) = αV(m) + m ® dα for
me M and 0 e A^κ. A connection F is integrable if and only if V2 = 0, where

we define V : M ® A\ QSΛ ,J@) -* M ®.t Ωs+λ (@) by F(m ® ω) = V(m) Λ
^A: ^A:/^ . K AK/K

ω + m® dω. A morphism of ^-modules with a logarithmic connection
along 2 is a horizontal ^^-homomorphism.

(2) Let M be a finitely generated yl^-module with a logarithmic con-
nection V along ^ and choose a real number λι > 1 such that there exists a
pair (M^,V) of an Aχ^/^-module of finite presentation and a logarithmic
connection with (M, V7) ^ (M^,F) ®Aλ KA^K. We fix a presentation of Mχ{

over ^4^ and denote by | \λ the quotient norm on Mχ ^ Mχ{ ®Aλ κ A^κ which
is determined by the fixed presentation for 1 < λ ^ λ\. The connection V is
overconvergent if and only if it is integrable and, for any η < 1, there exists
λ > 1 such that

\V(δ^)(m)\λη\ί\^0 ( | / | -> oo)

for any m e Mλ. Here δ[i] = <5[/l] -^]. We denote by Connf((^, ̂ J/Jf) the
full subcategory of y4^-modules with a logarithmic connection along Q) which
consists of overconvergent objects.

(3) Let φ be a Frobenius on ̂  which satisfies the condition 3.1.3 and let
α be a positive integer. For an Aκ -module M with an integrable logarithmic
connection V along ,̂ we say that an ^-homomorphism
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is a Frobenius structure with respect to φa if and only if Φ is a horizontal
isomorphism. Here (φa}*(M, V) is the induced logarithmic connection by the
scalar extension φa : A\, — >> Aχ . A morphism of ^-modules with a log-

arithmic connection along 3) and a Frobenius structure is a horizontal A^κ-
homomorphism which commutes with Frobenius structures. We denote by
F-Conn\(^^)/K, φa) the category of ^-modules with an overconvergent
logarithmic connection along 2 and a Frobenius structure with respect to φa.

In our definition the finitely generated ^-module with integrable log-
arithmic connection is not always projective. For example, if d ^ 1, then M =
Aκ/t\Aχ with a connection t\d\ is an object in Conn^((^", 2)/K).

It is clear that the category Conn] ((& , @) / K) (resp.
F-Connt(($", 2)/K, φ a ) ) is abelian and it has tensor products. We define the
dual (M,F,(Φ))V = (M V ,F V ,(Φ V )) of (M,7,(Φ)) by

M.v =

= WM) - /(F(<y H) for 1 £ μ £ nj e M\m e M

φv (/) = (id^t (x) σa) o (id^t ® /) o Φ-1 for / e Mv .

It is clear that, if M is projective over ,4 ,̂ we have (Mv )v ^ M.
By Lemma 3.1.2 we have

PROPOSITION 3.2.2. (1) The category Connf((^,^)/A:) depends only on X
and D.

(2) The category F-Connf((,r, 2)/K, φa) depends only on X and D and it
is independent of the choice of Frobenius φ which satisfies the condition 3.1.3.

PROOF. The assertion (1) follows from Lemma 3.1.2. (2) It is sufficient
to see the independence on the choice of Frobenius by Lemma 3.1.2. Let φλ

and φ2 be Frobenius on A^κ which satisfy the condition 3.1.3 and put

Vμ = <PΪ(tμ)

We define a functor

«(φf,φζΓ F

as follows. Let (M, F, Φ) be an object in F-Connf((^, 2>)/K, φ^). We define
an Λ^--linear homomorphism
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by Taylor's series

/eN"

α(^p^|) is well-defined since V is overconvergent. One can check that
α(^f,^2) commutes with connections, vί(φa,φa) = \ and a(φ",φ") =
a(φ%,φ%)a(φ^φ%) by explicit calculations. Moreover, Φoa(φ°,φ%) is a Fro-
benius structure on (M, V) with respect to the Frobenius φ%. Now we define
the functor by α«,^)*(M,F,Φ) = (M,F,Φo α(pf,pf)). Then α(pf,pf)* is
an equivalence of categories. Π

(3.3) For an object (Af,F) in Connt((^,^)/A:), we denote by
DR*((%,@)/K,M) the complex

of K- vector spaces, where we put M at the degree 0. We define the log-
arithmic Monsky-Washnitzer cohomology H1

MW((X,D)/K,M] by the coho-
mology of the complex DR*((&,@)/K,M). The logarithmic Monsky-
Washnitzer cohomology is functorial for (M,F) and H1

MW((X,D)/K,M) = 0
for / < 0 and / > n by definition. For any short exact sequence in
Connt((^, @)/K), we have a long exact sequence of A^-vector spaces as
usual. In general, the ^Γ-vector space H1

MW((X,D)/K,M] is not of finite
dimension over K.

By Lemma 3.1.2 and Proposition 3.2.2 we have

PROPOSITION 3.3.1. The logarithmic Monsky- Washnitzer cohomology
H1

MW((X,D}/K,M] depends only on X and D.

Now we fix a Frobenius φ on A^ which satisfies the condition 3.1.3. For
an object (Af,F,Φ) in F-Conn^((^,^)/K,φa), we define a σfl-linear endo-
morphism

Φ : H^W((X,D)/K,M) -> H'MW((X,D}/K,M)

by m ® co h-> Φ(m) ® φa(ω) for me M and ω e ί27.t ._,.
AK/K

PROPOSITION 3.3.2. With the notation as above, the σa-lίnear endomorphίsm
Φ on H1

M]V((X,D}/ K,M) is independent of the choice of the Frobenius on A^
which satisfies the condition 3.1.3 under the canonical equivalence of categories in
Proposition 3.2.2.

PROOF. The proof is the same as in the case without logarithmic
structures. [17, Sect. 5] Let φλ and φ2 be Frobenius on A\ which satisfy the
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condition 3.1.3. We keep the notation as in the proof of Proposition 3.2.2.
Define a ΛMiomomorphism hμ : M —> (φ\}*M by

M

VM

/=0 l ~^~

Since the connection V is overconvergent, the infinite sums are convergent in
M. We define a ^-homomorphism

H : DR'((&,@}/K,M} —> DR'((&,@}/K, (^f)*M)
7 i .

of degree — 1 by Him ® (Λ t ω/,)) = y\_ι(—\Y~ hu (m} (x) (Λ. , ω / / ) , where
*-' ^ v \ / Xί^ 1 r*s ' ' < *J— 1 \ ' r*s ^ ' ^/ \l 'f S t*i '

ωμ = —- for μ ^ d and ωμ = dxμ for μ^d+\. One can see α^p^f)*0

(φ^Y — (φ^Y — H oV-\-(φ^YV o H. Hence, H gives a homotopy. This
completes the proof. Π

(3.4) We define a functor

as follows. For an object (M,V] in Connt(#'/A')5 we put jγgM = M and
V(tμdμ)(m) = tμV(dμ}(m) (1 ̂  μ^ d). For ?/ < 1, if we choose λ > 1 with

η\ι\/2 _>. o ( I / I —> oo) for any m e Mχ, then we have

since δ^ — TT^^ (1 ̂  μ^ d). Hence, the connection jγ9V is overconvergent.

It is clear that the functor jy9 is fully faithful.
We define a functor

4 : Connt((ar,®)/Λ:)

by the extension 7], : A^κ -+ B^κ (resp. j^μ : A% -^ Bμ κ) of the scalar. Let M be
an object in Connf((^, 3>)/K). For η < 1, if we choose /I > 1 with

)M|;i^l/2 -̂  0 ( l / l -̂  oo) for any m e Mλ, then we have

1-1 ̂  0 ( I / I ̂  oc)
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for any m e M^^η-ww+m} since XQXI .. χd = l and δ® = xfy (l^μ^d).
Hence, the connection j\V is overconvergent. Similarly, one can see that the
connection jjy is overconvergent. The functor j\ (resp. fy is neither faithful
nor full. By definition we have j]

γ = (j'μ)
] j\, where (j'μ) : W -> <3fμ.

Let φ be a Frobenius on A\ which satisfies the condition 3.1.3. One can
easily see that the functors jγg, j\ and j^μ induce the functors

a) -> F-Connf((^, &)/K, φa)

It is clear the functor jγg is fully faithful.

(3.5) Let (Af ,F) be an object in Connf((^,^)/A:). The natural homo-
morphism

DR ((SC,®)/K,M) -

of complexes of A^-vector spaces induces a AΓ-linear homomorphism

UrΓ ' H1

MW((X,D)/K,M]

UlY : H1

MW((X,D}/K,M] -, Hl

M

By the construction we have (7^)* = ((ypVO'/D*- If (M,F,Φ) is an object
in F-Corm\(&,@)/K,(pa), the transformation (j*γ)* (resp. (yt)*) above
commutes with σα-linear endomorphisms Φ of both sides.

THEOREM 3.5.1. Let (M,V) be an object in Coni^ (#/£). Then the
natural transformation

0|)* : H>MW((X,D)/KJ<?M) - H1

MW(YIK,J\M\

is bijectiυe.

When M is algebraic, the assertion has been proved in more general
situations in [1].

In the case where d = 0, there is nothing to prove since 9C — <&. Since
j\jγgM arises from an object in Conn^(^ι/AΓ) canonically, Theorem 3.5.1
follows from Theorem 3.5.2 below by the induction on d.

THEOREM 3.5.2. Let (M,V) be an object in Connf(#7#). Then the
natural homomorphism
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of complexes of K-vector spaces is a quasi-ίsomorphism.

COROLLARY 3.5.3. For an object (M,F,Φ) in F-Conn^(^/K,φa), the
induced K-homomorphίsm

(J\Y - Hl

MW((X,D)/KJl?M] -> H1

MW(Y/KJ\M}.

is bijective and commutes with Frobenius structures.

We prove Theorem 3.5.2 in the rest of this section.

(3.6) To prove Theorem 3.5.2, one may assume the following conditions (1) (2)

simultaneously. (1) @>\ is connected and there is a smooth morphism g : 3C — >
3)\ such that the diagram

is commutative. Here the morphism Q)\ — > A^Γ1 (resp. A£ — > AjΓ 1) is de-
termined by the system t-i, . . . , tn of coordinates. (2) M is a free ^-module.

Indeed, one may choose a union ϋ^ of open affine smooth F-subschemes

of X xA»-ι ®ι U(#" - ^1) sucn that

5 if we denote by / : W -> #" the etale
structure morphism, then (i) /-1^ι = ̂ i and /is surjective on the special fiber,

(ii) if the intersection between a connected component of Hf and f~l@\ is
not empty, the restriction of the divisor in the connected component is a
section as in the assumption (1) and (iii) the inverse image f^M is free over
Γ(iΓ,Oιr γκ. Note that M is free over A^κ if and only if M ®A\ AK is free
over AK since A is faithfully flat over A^ (see 2.3), where A is the /?-adic
completion of A. Since M is projective, we can choose such W as in the
condition (iii).

We put τTι =τr-/" l^ι and Wr = W χ% . . . χ% W (r times). One

can easily see that the triple (Wr , (fr)~l®, (frΫJγg(M,V)) satisfies the
assumptions (I) (2) simultaneously for any r. We define a double complex
DR ((W ,f-l2)/K,jy9M) of ^-vector spaces by

/2)f/f M)

where we put f^jγ9M at the bidegree (0, 0) and we define the derivation of the
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double complex as usual. Then the natural injection induces a commutative
diagram

of complexes of Λ^-vector spaces. Both horizontal arrows are quasi-
isomorphisms by Lemma 3. 6. 1 below and the right vertical arrow is
a quasi-isomorphism by the assumption. Hence, the left vertical arrow is a
quasi-isomorphism. Therefore, we may assume the situations (I) (2) above
simultaneously.

By Lemma 2.3.2 we have

LEMMA 3.6.1. Let f : iff — > X be an etale morphism of affine V-schemes of

finite type such that f XspecF Spec/: : if xspecF Spec/: — > ^(χ)SpecFSpec/: is

surjective. For an object (Λf, V) in Conn^((^, @)/K), the natural homo-
morphίsm

of complexes of K-υector spaces is a quasi-isomorphism. Here
Tot(DR ((W,f~l@}/K,M}) is the total complex of the double complex

(3.7) We continue the proof of Theorem 3.5.2. Put i\ : A\ — > A/t\A = C\ to
be the natural projection. By our assumptions (1) in 3.6 there is a smooth
homomorphism g : C\ — > A of smooth F-domains such that the diagram

/-< ίl AC\ < - A

is commutative. We fix a presentation of F-algebra A as follows; first we fix a
presentation

with Xj i— > tj (2^7^ n) and then we fix a presentation

V[x\ , X I , . . . , X N > , xN>+\ , . . . , XN] -> A
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such that x\ κ-> t\, the value of Xj (2^j^Nf) is determined by the pre-
sentation of C\ above and that Xj (j ^ N' + 1) goes to 0 in Ci. Then one can

easily see that, for any λ > 1, C\^ and the Banach norm of C\^κ is inde-
pendent of the choice of two presentations above. We denote by || ||^ι λ (resp.

|| H^) this Banach norm on C\^,κ (resp. the limit norm on C\κ}. We put

9*'• c\,κ-> A\c (resP l\ : Aκ -» c[κ> resP 'M : Aλ,κ -» CM,*) to be the
induced AΓ-algebra homomorphism from g (resp. i\).

LEMMA 3.7.1. (1) There exists a positive integer α which is independent of
the choice of λ such that

1

for a E A^χ and for any nonnegative integer ί.

(2) Let β be a positive integer. For a e A*κ, a e q Aκ if and only if

i\(d[a) = 0 for 0 ^ / < β. Moreover, a = 0 if and only if i\(d\ά) = 0 for all

PROOF. (1) By Leipnitz's rule it is sufficient to see that there exists a

positive integer α which does not depend on λ such that < Γ for

n+\ ^ μ g TV, where xμ is the image of xμ in A. Let Fv(x) = 0
(n + 1 ̂  v ̂  TV) be a system of equation of A in V[x\. Since ^ is etale over

(
Λ T-f \
—- 1 in M]y-n(A) is invertible. We

denote by γ the maximum of the total degree of the presentations of the entries
of c~l in V[x] and the total degree of Fv (n + 1 ̂  v ̂  TV). By careful cal-
culations of d\Fv the sum

£Π£ c.ωίlBT'ft)-
with /i + (mf+1 + + m^1) + - + (mf -f - -+
is 0 in A for any positive integer /. We have

= i and wf ^

inductively. Hence, it is sufficient to take α = 4γ.
The assertion (2) follows from the fact t\ is a prime divisor of and

D
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We define C/ ^-algebras

there exists λ > 1 such that α/ e C\^κ for all

and that, for any η < 1, there exists 1 < λ' ^ λ

with H Λ / H ^ J χ>ηl —> 0 (/ —» oo)

there exists A > 1 such that α/ e C\^,κ for all /,

^*n#/^ e tf and that there exists η < 1

with \\ai\\g λη
l —> 0 (z —> — oo).

Since Ci^,^ is complete under the norm || \\S>1 λ and since \\a\\@ι λ> ^ \\a\\^ *λ

for α e CI^A: if ^' ^ Λ the multiplication of ^ (resp. &~) is well-defined.
Define a map

I Σ/S-oo fl^1,r = SUP/ llβdU, Then, | |̂  is a norm on «^". We also define

ai**) = Σ^*'1- τhen st is a C/ ^-derivation on y (resp. ,̂ resp. y\
We define a map

i :

by '̂ βy Lemma 3.7.1 ι is well-defined and we have

LEMMA 3.7.2. / is an infective homomorphίsm of C\ \ κ-algebras such that

ι(d)\g- ^ \\a\\% and ι(d\ά) = dtι(a) for a e A],.

Now we will extend the map / above to the map

n

For a e B\,κ, there exists a non-negative integer β with t\a e Aκ and we define

the extension of i by a ι-> Γ^ι(tfa). This definition does not depend on

the choice of /?. Let aeB\,^κ for A > 1 sufficiently close to 1. Fix a lift

Σ/oi^O'ί^ό0-" °f α under the presentation of B\^χ^κ in V[xo,x]λκ and, for a

non-negative integer β, put α^^ to be the image of Σi(/0 01 <βa^ίxS^L ^n

5ι A:- Here |(/o,l)| means the sum of /o and all indices of /. Then, tζa(® e Aκ

and l l / f f l^ l l^^kl lEfc ./^^oVl lA '^/ for any A^ λ, where || ||^ is the
Banach norm on V[xo,x]λ.jK. Define a^ (i^β) by z(α^)) = Σ^.βd^f.

Since - — - = a β] -h (higher terms on ί), we have

^ sup
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for any λ' ^ λ by Lemma 3.7.1 and 3.7.2. Here α is as in Lemma 7.3.1. We

choose a real number λ\ > 1 with λ*+2 ^ λ. Then, if we fix /, the sequence

of {a\ }β>i is convergent in C\^^κ for β —> oo since |αz θ 5 / |A'^ 0 '-^ —»0

( l ( * o > i ) l —*• °°)> and we denote the limit in C\^^κ by <z/ Then one gets

(3.7.3)
10,1

λ\
λ

where we put of = 0. Hence, Σiaΐtl *s an element in «^". We define the
extension i : B^κ ^ ̂  by ι(a) = X^ α/ί'.

We check the well-definedness of the extension i. If Σi a^x1- is contained

in the kernel of the surjection V[xQ,x]λκ ^> B\t^K, then \ι(t^a^)\^ — > 0 for

/? — > oo since IM^H^ ^ || Σ|/|>^flί^!IL Hence, all coefficients 0/ of /(α) are 0
and our definition is independent of the choice of the lifting in V[xQ,x]λκ.

The independence of the choices of λ and λ' is trivial.
By the relation 3.7.3 and Lemma 3.7.2, 3.7.1 we have

LEMMA 3.7.4. The extension i : B\ κ — » 3~ is an injective homomorphίsm of

C\ κ-algebras such that \ι(ά)\$- ^ \\a\\^ and ι(d\ά) = dtι(a) for a e B\ κ.

Note that ι ( A ]

κ ) is contained in ZΓΪλtf.

LEMMA 3.7.5. The natural A^-homomorphism

which is induced by i is an isomorphism.

PROOF. Let Σϊ=-π aΐtl E ̂  Then there is a λ > 1 sufficiently close to 1
such that at e C\^^κ and that \\ai\\@i λλ~l ^0 (/ -^ — oo). Then one can easily

see that a = Σ7=-<x>9λ(adt( is convergent in B\^κ and ι(ά) = Σ7=-«> aitl

Hence, ϊ is surjective. To prove the injectivity of 7, it is sufficient to see that,

if aeB\-(mBl\JAi), ι(a)φ#T\5e. Let a E B\ - (mB\ U^ f). Then a =

ίfflo + ^i for some #0 e A^ ,a\ e mB\ and some negative integer β with #o φ 0
(mod((ίι) +m)A^). By definition and the relation 3.7.3 the coefficient of t& is

«o modulo ((t\)+m)A^. Hence, i is injective. Π

Since &/^ = ̂ KF ΐ\y] by definition, we have

COROLLARY 3.7.6. With the notation as above, i induces the commutative

diagram

o —> 4 —> B\K —> *jιJC/4 —»o

^ > ι% > mjy
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of Aχ-modules such that two horizontal rows are exact, the first and the second
vertical arrows are ίnjectiυe and the third vertical arrow is bijective. Moreover,
all arrows commute with derivations.

(3.8) We continue to assume the situation in 3.7. Let (M, V) be an object in
Conn1 (ft/K) such that M is free over A^K. We put Ω' (resp. β") to be a sub-

A t-module of β1

1 which is generated by — f resp. —,..., —, dtd+\,...,
v Aκ/κ t\ V '2 id

dtn \. Define a connection

V':M-

(resp. V" :M^M®AτΩ")

by V'(m) = V(t\d\}(m) ®— (resp. V"(m) =

Σμ=d+\v(dμϊ(mϊ®dtμ)' τhen the complex DR*((%,9}/KJy9M) is natu-
rally quasi-isomorphic to the total complex of the double complex

M <g> , Ω' - > M <χ),t Ω' ® , Ω" - > ---- » M ® , Ω' ® , (/V|, ")
Λκ Λκ Λκ Λκ ^K Λκ

as complexes of J^-vector spaces. The same holds for
K,j\jlγgM). To see that the natural morphism

is a quasi-isomorphism, it is sufficient to prove that the natural inclusion

(M^M ®^t Ω'} -> [M ®^t 5^ -> (M ®^ 5j^) ®^ fl']

is a quasi-isomorphism of complexes of AΓ-vector spaces by the argument of
spectral sequences.

Put Mse = M ®A\ ̂  (resp. M& = M ®A\ $} and define a connection on
Λκ Aκ

(resp. M#) by tdt(m® a] =V(t\d\)(m) ® a + m® tdt(a) for meM and
(resp. α e ̂ ). Since M is free over ,̂ the diagram

0 - > M - > M®B - , M® BA^ - , 0
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is commutative such that two horizontal rows are exact, the first and the second
vertical arrows are injective, the third vertical arrow is bijective by Corollary

3.7.6 and each arrow commutes with connections. Hence, we obtain

LEMMA 3.8.1. The following two conditions are equivalent:
(i) the natural morphism

[M^M ®At Ω'} -+ [M <g> t B\ K^(M (x)^ B\ κ) ® t O']
K K ' K ' K

is a quasi-isomorphism of complexes of K-υector spaces',
(ii) the natural morphism

{My -> My (8)̂  Ω'} -> (MΛ -> M® ®^t Ω'\
K K

is a quasi-isomorphism of complexes of K-vector spaces.

Therefore, Theorem 3.5.2 follows from Lemma 3.8.2 below.

LEMMA 3.8.2. (1) There is a basis e\,...,er of My such that

(2) The natural morphism

[My -> My ®A t Ω'] -> \MΛ -> Mm ®^t Ω']

of complexes of K-υector spaces is a quasi-isomorphism.

PROOF. (1) Let e\,. . . ,er be a basis of M over A^κ and let G be a matrix
in Mr(A^κ) such that V(d\)(e\, . . . ,er) = (e\, . . . ,er)G. Then the entries of G

are contained in A^κ for some λ > 1. Define matrices G, e Mr(A^κ) by GO =

\r and G/ = -(d\(Gi) — G/G) for / ^ 1, where \r is a unit matrix. Then the

matrix Q = ΣSo'ί^X satisfies the relation dt(Q) + Gβ = 0 in Mr(C^κ[[t}}}.
Let Mv (resp. e?,...,e?) be the dual of M in Connf(^/A:) (resp. the

dual basis of e\, . . . ,er). Then, -F(3j)(eι, . . . ,er) = (e\, . . . .e^Gi for any i.

Hence, for any η < 1, there exists some A' > 1 such that ||G/||^ ̂ ηl — > 0
(/ — > oo ) and the entries of Q are contained in £f. By the existence of the

solution of the dual M£, Q is invertible in Mr(y).
(2) By (1) My is isomorphic to ̂  r as £f[dt]. So we have only to show

that the C\ ^-homomorphism

which is defined by α ̂  tdt(a)(a E (&/&Ύ) is bijective. The injectivity is

trivial. Since i~l\η~l — > 0 (/ -̂  -oo) for any ?/ < 1, h is surjective. Π



510 Nobuo TSUZUKI

(3.9) We globalize our local result. Let 3C be a quasi-projective smooth scheme
of finite type over Spec V and let 2) be a relative normal crossing divisor
over Spec F, that is, any intersection of irreducible components is smooth over
Spec V after taking an etale covering of %. We fix a completion 9C of 9E over

Spec V and put 3C to be the /?-adic completion of SC. Let X and D (resp. A") be
the special fiber of 3C and 2 (resp. the Zariski closure of X in 5Γ) and put U =

X — D with the open immersion jυ : U — > .̂ Denote by β#yspecκ(®) ^e "̂̂
differential module of 9C over Spec V with logarithmic poles along 2) as in 2.1.

For an object (^,F) in Isoc^Jf/Jf), we define a complex
DR ((X,D)-/K,Jt} of A:-sheaves on ]J[| by

0 -> ΛT -̂  ΛT ®0 ί (3i)^Jί ®03C ί2|/Spec

Here we put ̂  at the degree 0. We define

( , D R ((X,

for any /. In the case that SC is affine, the cohomology above coincides with
the logarithmic Monsky-Washnitzer cohomology.

THEOREM 3.9.1. With the notation as above, the natural morphism

DR ((X,D)έ/K,Jt) -> DR (j\jJί)

of complexes of K-sheaves on }X[f induces a K-isomorphism

for any I.

PROOF. Take a hyper etale covering / : ̂ * — > 3C such that each piece of
the pair (^*,/*^) satisfies the assumption of Theorem 3.5.1. By the similar
argument of the proof of Proposition 2.3.1 and Lemma 3.6.1, the assertion
follows from Proposition 3.2.2 and Theorem 3.5.1. Π

REMARK 3.9.2. It is expected to define the logarithmic rigid cohomology.

If one uses such cohomology theory, the statement of Theorem 3.9.1 will
become more functorial.

4. The Gysin isomorphism

(4.1) We keep the situation as in 3.1. For a subset μ = {μ1? . . . ,μs} of Zs with
1 <Ξ μl < - - < μs ^ rf, we put 2μ = ]Γ/=1 2μι (resp. <%μ = % - &μ) to be a

divisor (resp. an open subscheme) of 9C and denote by jμ : tfίμ -^ 2£ the
corresponding open immersion. We put 2£ = Spec C = Spec~A/(t\, ...,tj)A,
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fy = % - 2£, the closed immersion i : % -> 3f, C1" = A ^ / ( t \ , . . . , td)A^ to be the
weak completion of C over F and the natural surjection ΰ : A^ — > C^. We
denote the special fiber of #", <%μ, 3T and ^ by X, Uμ, Z and 17, respectively.

Let ^ -̂  P^ be the immersion which is determined by the fixed pre-
sentation of 3C over Spec V as in 2.2. We denote by 3C (resp. jj?) the Zariski
closure of 9C (resp. 2f) in P^ and put 9C (resp. ^Γ) to be the /7-adic completion

of #" (resp. S\ We put ̂  = SC xspecF Spec/: and Z = S xspecκ Spec/: and
use the notation jv : U —> X (resp. j : ί/μ — > X , resp. / : Z — > JJQ for the
corresponding structure map.

In this section we define, for an object (Jί,V) in Isoc^^/A^), a Gysin
morphism

in the derived category of complexes of K- vector spaces and prove the Theorem
4.1.1 below. Here ]/ \^ M is the inverse image of Jt in Isoc^ (Z/K) defined in 2.4.

THEOREM 4.1.1. With the notation as above, the Gysin morphism Gz/χ is
an isomorphism. In other words, the induced K-homomorphism

GZ/X : H^Z/K^Jt) - Hg%(XlK,Jί).

is an isomorphism. Moreover, if (Jί,V,Φ) is an object in F-Isoc\X/K, σ a ) ,
the Gysin morphism induces the isomorphism

GZ/X : H

with Frobenius structure for any I. Here (d) means the d-th twist of the
Frobenius structure, that is, the multiplication of the Frobenius structure with p~ad .

Theorem 4.1.1 follows from Corollary 4.2.3 and Proposition 4.3.1 below.
We will construct the Gysin isomorphism for unit-root objects in general cases
using Poincare duality in 6.2. We also prove that our Gysin morphism
coincides with the one in [4, Sect. 5] in 6.2.

COROLLARY 4.1.2. Let X be a smooth scheme of finite type and pure of
dimension n over Spec k and let Z be a closed k-subscheme of codίmension ^ d in
X. If (Jf, V) is an object in lsoc\X/K), then H^rig(X/K, Jt} = 0 for I < 2d
and for I > 2n.

PROOF. We prove the assertion by induction on n - d. Since the rigid
cohomology with supports in Z does not change if we replace Z into the
reduced subscheme Zred of Z, we may assume that Z is smooth and connected
over Spec/: by Proposition 2.1.1, 2.1.2 and the hypothesis of induction. If one
takes an affine open subscheme Z' of Z over Spec/:, then the codimension of
Z — Z' in X - Z1 is greater than d. So we can assume the situation as in
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Theorem 4.1.1. Therefore, the assertion follows from the Gysin isomorphism

GZ/X - H

and the fact Hl

rig(Z/K,Jί] = 0 for / < 0 and for / > n since Z is affine. Π

(4.2) We define a double complex DR*(jlJί] of sheaves of AΓ-spaces on ] X [ -
by the Cech complex

JΪιμ2 *)-*- -+DR (jl2...dJί)

for the covering {£/.} of U, where we put Πμ j^Jί at the bidegree (0,0). By
[5, Proposition 2.1.8] we have

PROPOSITION 4.2.1. The natural morphism DR*(j\jJί) —> DR*(jlJί) of
complexes of sheaves on ] X [ - induces an isomorphism

^) - RΓ(]X[έ,

in the derived category of complexes of K-vector spaces.

Let (Jf,V) be an object in Isoc^/Λ:) and put (M,F)
We define a double complex DR*(jlfgM) of ^-vector spaces which corresponds
to the Cech complex for the covering .̂ of :̂

where we put HμιJ
l°λ

gM at the bidegree (0,0). We denote by
H1

MW((U.,D*)/K,M) the /-th cohomology of the total complex of
DR*(jl°gM). If φ is a Frobenius on A^ which satisfies the condition 3.1.3,
the Frobenius structure Φ on (M, V) induces the Frobenius structure on
H1

MW((U.,D.}/K,M] for any object (Jί,V,Φ) in F-lsoc\X/K,σa).

THEOREM 4.2.2. With the notation as above, there is a natural isomorphism

ljJt) -+ Tot(DR*(j[ogM}}

in the derived category of complexes of K-vector spaces such that the induced
diagram

Hl

rig(X/K,Jί) - > H

I
H1

MW(X/K,M] - , H'MW((U.,D.)/K,M)
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is commutative. Here the top horizontal arrow is the restriction, the bottom
horizontal arrow is defined by the natural inclusion DR'(M) — > DR'(jl°9M) of
complexes and the left vertical arrow is the comparison isomorphism between the
rigid cohomology and the Monsky-Washnίtzer cohomology in [5, Proposition

2.5.27. For an object in F-Isoc\X/K,σa)} the commutative square above
commutes with Frobenίus structures.

PROOF. By Proposition 2.2.1 there exists a canonical isomorphism

for any multi index μ. The existence of the canonical isomorphism follows
from Theorem 3.5.1 and Proposition 4.2.1. The commutativity of the Fro-

benius structures follows from the fact that the Frobenius structure on the rigid
cohomology is independent of the choice of the embedding into formal schemes
and the lift of Frobenius. Π

COROLLARY 4.2.3. The isomorphism in Theorem 4.2.2 induces an iso-
morphism

KΓz,rig(X/K,Jί) -> Cone(DR'(M) -> Tot(DR ( j l M ) ) ) [ - l ]

in the derived category of complexes of K-vector spaces. For an object in
F-Isoc(X/K,σa), the induced isomorphism of cohomologies commutes with the
Frobenίus structures of both sides.

(4.3) Let (M,V) be an object in Conn ̂ (#7 AT). We define a morphism

Res y /x : DR (j^M) -» DR9(i^M)[-d]

of complexes of AT-vector spaces by 0 at degree / < d and by

μ\< <μι

at degree / ̂  d. Here ΰ : M — > ύM is the projection, ωμ = — for μ^
tμ

ωμ = dtμ for μ > d and (oμr..μι = ωβl Λ Λωμr Note that Res^/%- = 0 at
degree / < d and at degree / > n. One can easily check that Res&/% is a
morphism of complexes of AT- vector spaces. If φ is a Frobenius on A^ which
satisfies the condition 3.1.3, then Res&/& induces a morphism

of complexes which commutes with Frobenius structure Φ, where (—d) means
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/ #\ *

the twist of Frobenius structure ι'tφ by ̂  ^ ωu-d

 E ^t Note that, if φ(tμ) =
ω\2...d

t' for 1 <μ< d, then fr')'"*"' = ,*
" " ωι2...</

PROPOSITION 4.3.1. JΓzY/z fΛe notation as above, if (M,V) is an object in
), then Res&/% induces a quasi-ίsomorphίsm

Cone(DR*(M) - > Tot(DR* (j(°° M)))(-\] DR* (i^ M)[-2d]

of complexes of K-vector spaces. If φ is a Frobenius on A^ which satisfies the
condition 3.1.3, then the quasί-ίsomorphism above commutes with Frobenius
structures for any object in F-Conn\&/K,(pa).

Proposition 4.3.1 follows easily from Lemma 4.3.2 below.

LEMMA 4.3.2. The sequence

0 -̂  ΩΆyκ -

/.

PROOF. Denote by E(d, /) (rf ^ 0) the complex

0 - βV - Πι*Λ*, fl^(^}

- Oit^ί^i^) - 0,

where β 7 * / ϊr(0i2...</) is at the degree 0. We prove that H*(E(dJ)) = Ωl~}

d^
Kl KI

and Hm(E(d, /)) = 0 for any m Φ 0 by induction on d. One can easily see that
there is a natural exact sequence

0 ->£(</- I ,/) ->E(dJ) ->E(d- !,/)[!] -* 0

of complexes of ^4^-modules, where the first map is defined by did ι-> — and
^j

the second map is defined by the projection. If we denote by C" = A/

(t\ , . . . , ί^_ι )^4, then the connecting homomorphism H~l (E(d — !,/)[!]) ̂
H°(E(d—l,l)) is a homomorphism

given by did >— > ^Λj and rf^ \-^ dtμ (μ Φ d) from the hypothesis of induction.
This completes the proof. Π



Gysin isomorphism of rigid cohomology 515

5. Comparison theorem between the crystalline cohomology and the rigid

cohomology

(5.1) Let j : X — > X be an open immersion of separated /r-scheme of finite type
and let X — » & be a closed immersion with a formal F-scheme & of finite
type such that & is smooth over Spf V around X.

Let K' be a finite extension of K and keep the notation as in Proposition

2.1.2. Since τK'/κ '• }X [&> -* }X[& is finite etale as rigid spaces, the Proposition
below can be proved using the similar methods as in Theorem 2.6.3 and 2.7.

PROPOSITION 5.1.1. (1) Rlτκ</κ*J? = 0 for any I φ 0.

(2) IK' IK induces the direct image functor

τκ,,κ, : ίsoc*(X'/K') -> ίsoc*(X/K)

and it is a right adjoint of τ^ f,κ.

(3) If σ'\ K' — >• K1 is the extension of the Frobenius σ, then TK'/K induces
the direct image functor

and it is a right adjoint of τ*κ,,κ.

COROLLARY 5.1.2. Let (Jί,V) be an object in I s o c ] ( X f / K ' ) .
(1) If X is smooth over Spec/: and Z is a closed subscheme of X over

Speck, we have a canonical isomorphism

RΓz,rig(X/K,τκ,/KtJί) -> RΓZtfίg(X'/K',Jt)

of K-complexes.
(2) We have a canonical isomorphism

of K-complexes.

Moreover, for any object (J(,V,Φ) in F-Isoc\X/K, ( σ ' ) a ) , the iso-
morphisms in (1) and (2) induce isomorphisms of K-vector spaces with Frobenius
structures with respect to σa on each cohomology group.

(5.2) We denote by ^o (resp. F0, resp. e) an absolutely unramified subfield of K
with the residue field k, i.e., K$ is the maximal subfield such that p is a
uniformizer (resp. the integer ring of KQ, resp. the ramification index e —

[K : KQ] < oo ). We assume that the Frobenius σ on K is an extension of a
Frobenius σo on KQ.

THEOREM 5.2.1. With the notation as above, assume furthermore that X is
proper smooth over Spec/:. For an object (Jί,V, Φ) in F-Isoc(X/K, (σ)a), there
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exists a non-degenerated F-crystal (<^f, Φ) on X JV§ with respect to σξ and a non-

negative integer s such that τκ/κ0*(^,V, Φ} = («^> Φ'}an(s). Here (s) is the s-th
Tate twist, that is, the Frobenίus acts by p~sΦf. If we choose such (j£f, Φ') and
s, then we have a K^-isomorphism

rfO^RΓ^Jf/Ko,.

Moreover, the induced morphism

Hrig(X /&$-> τK/K0*^) -^ HCrys(XI ^0, ̂

is a Ko-isomorphism with Frobenius structures with respect to σ£ for any /.

PROOF. By Proposition 5.1.1 and Corollary 5.1.2 we may assume that
K = KQ. The existence of (jδf, Φ'} and 5- follows from [5, Theoreme 2.4.2]. If
we denote by Φκ (resp. sp : Φκ —> ^) the rigid analytic space over K associated
to & in the sense of Raynaud (resp. the specialization morphism), then there is
a natural isomorphism

RΓrig(X/K,Jt)^

Let &PD be the p-adic completion of the divided power envelope of Φ by the
ideal of definition of X. If we denote by ux/v : (X /V)~rys — > X£ar the ca-
nonical morphism from the crystalline topos to the Zariski topos, then there is
a natural isomorphism

by [2, Chapitre V, Theoreme 2.3.2]. The comparison morphism is induced by
the canonical morphism sp^^ — > ux/y*^ ®VK of sheaves on X which
commutes with connections and Frobenius structures in [5, 2.4]. It is iso-
morphic by the argument of the spectral sequence for Cech covering of
X. (See [6, Theorem 1.9].) Π

6. The finiteness theorem for overconvergent unit-root F-isocrystals

(6.1) We prove the finiteness theorem of rigid cohomologies for overconvergent
unit-root F-isocrystals. In the case of the constant coefficient it was proved in
[6] and in the case of curves it was proved in [10].

Let j : X —> X be an open immersion of separated fc-scheme of finite type

of dimension n. Let Z (resp. Z) be a closed subscheme of X over Spec/: (resp.
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the closure of Z in X) and denote by / : Z — » X and i : Z ^ X the closed
immersion, respectively.

Let a be a positive integer. We say that an object (Jί,V,Φ) in
F-Isoc^X/K, σa) is unit-root if and only if, for any geometrically closed point

is : s — > Z, there is a basis {e\,e^ . . . ,er} of i*sJt such that /|Φ(1 ® £v) = £y
We denote the category of overconvergent unit-root F-isocrystals on X/K with

respect to σa by F-Isoct(jr/A',σfl)0.

THEOREM 6.1.1. With the notation as above, assume furthermore that k
is perfect, X is smooth over Spec/: and (Jί,V,Φ) is an object in

(1) The rigid cohomology Hl

z rig(X '/K,Jί) with supports in Z is of finite
dimension over K for any /.

(2) With the notation as in 2.1.2, if K'/K is an extension of complete
discrete valuation fields (possibly infinite) and the Frobenius σ extends on K' , the
induced homomorphίsm

τ*κ>/κ •• H^rig(X/K,J^) ®KK> -+ Hl

zl^(X'/K'^'}

is an isomorphism of K' -vector spaces with Frobenius structures.

PROOF. (1) The argument of the proof is the same as in [6, Theoreme

3.1]. We prove two assertions;
(ά)d: Hl

rig(X /K, Jί) is of finite dimension over K for the dimension X ^ d\

(b)d: Hl

Zrig(X/K,Jί) is of finite dimension over K for the dimension

Z^d,
by induction on d simultaneously. The assertion (ά)Q is trivial.

We prove (ά)d => (b)d. Since the rigid cohomology with supports in Z
does not change if we replace Z into the reduced subscheme Zred of Z, we
may assume that Z is smooth over Spec/: by Proposition 2.1.1, 2.1.2 and
the hypothesis of induction. We can also assume the situation of the pair
( X , Z ) as in Theorem 4.1.1. Therefore, the assertion follows from the Gysin
isomorphism.

We prove (b)d => (a)d+\. By [20, Theorem 1.3.1] one can find a smooth
scheme X' over Spec/: with a smooth compactification j' : X' — > X and a
generically etale proper surjective morphism / : X' — > X and find a convergent

unit-root F-isocrystal Jf on X / K with respect to σa such that f*igJt = (j'y^V.
Since the crystalline cohomology is of finite dimension [2, Chapitre VII,

Corollaire 1.1.2], the assertion (b)d => (a)d+\ follows from Proposition 2.1.1,
2.1.2, 2.6.5, Corollary 5.1.2, Theorem 5.2.1 and the hypothesis of induction.

(2) The assertion follows from the same argument as in the proof of (1)
and the fact that the crystalline cohomology commutes with the arbitrary
extension of the base field [2, Chapitre VII, Proposition 1.1.8]. Π
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THEOREM 6.1.2. With the notation as above, assume furthermore that k is
perfect and let (Jί,V,Φ) be an object in F-lsoc^(X/K,σa)Q.

(1) The rigid cohomology Hl

c ̂ rig ( X/K, Jt) with compact supports is of
finite dimension over K for any I.

(2) With the notation as in 2.5.2, if K' /K is an extension of complete
discrete valuation fields (possibly infinite), the induced homomorphism

H(rig(X/K, Jf) ®κ K' -+ Hl^X'lK', Jί1}

is an isomorphism of K' -vector spaces with Frobenius structures.

PROOF. We prove the finiteness H^rig(X/K, Jί} by induction of the di-
mension of X. The rigid cohomology with compact supports is the same if we
replace X into the reduced subscheme Xred in X. By Proposition 2.5.1 and
2.5.2. we may assume that A" is smooth. By [20, Theorem 1.3.1], Proposition
2.5.1 and 2.6.6 we may assume that X is proper. The assertion follows from
Corollary 5.1.2, Theorem 5.2.1 and the finiteness of the crystalline cohomology.

The rest is the same as in Theorem 6.1.1. Π

(6.2) We study Poincare duality of the rigid cohomology. In the case of the
constant coefficient it was proved in [7] and in the case of curves it was proved
in [10]. First we recall the definition of the pairing in [7, Sect. 3]. Keep the
notation in 6.1 and assume that X is pure of dimension n over Spec/:. We
have Hl

c^rig(X/K,j^O^ = 0 for / > 2n and there is a canonical trace map

by [7, Proposition 2.1, 2.6]. If we also consider Frobenius structures, the trace
map

Trx :

commutes with the Frobenius structures with respect to σa by the theorem of
alteration [15, Theorem 3.1], Proposition 2.5.1, Corollary 2.6.6 and Theorem
5.2.1. Here K(—n) is the one dimensional ^-vector space with the Frobenius

structure Φκ(-n] = panσa

Let (Jf,V) be an object in lsoc^(X/K) and let (Jΐy,Vy) be the dual of

(J(, V). The morphism

of sheaves on ]X[p which is defined by the multiplication induces a pairing

in the derived category of complexes of ΛΓ-vector spaces. The induced
morphisms of rigid cohomology groups commute with Frobenius structures.
Composing with the trace map Trx and by Corollary 4.1.2, we can define a
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morphism

ηZίX : RΓZtrig(X/K,J

in the derived category of complexes of K- vector spaces bounded above.

If we put U — X - Z (resp. jv : U — > X), then the trace maps Trx and

ig(U /KJ^O^ -> H*n

rig(Trv commute with the natural map H%ig(U /KJ^O^ -> H*n

Hence, we have

LEMMA 6.2.1. With the notation as above, there is a morphism

of distinguished triangles.

LEMMA 6.2.2. With the notation as above, assume that X is smooth over
Spec k. Let f : Y — > X be a finite etale morphism of degree r and put Y (resp.
JY : Y — > Y) to be the normalization of X in Y (resp. the open immersion) .

(1) For any object Jf in Isoc\Y/K), the natural morphism

induces a duality (frίg^Y = frig*^v in Isoc^(7/A^) and a commutative
diagram

where the vertical arrows are the isomorphisms in Theorem 2.6.3.
(2) For any object J^ in Isoc\Y/K), the adjoint map ad : id — > f

and the trace map tr : frig*f*ig —> id in 2.7 induce commutative diagrams

RΓrίg(X/K,

ad

RΓrig(X/K, frίgj:igJί] -̂  R Homκ(RΓc,rig(X/K, frlgj;igJl v ) , K)[-2n]

RΓrig(X/K,frigJ*gJί) ^

ί] ^ RHomκ(RΓc,rig(X/K, ^v), K).

Here ltr (resp. lad) is the transpose of tr (resp. adj.
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(3) Let K' be a finite extension over K. For an object (Jt,V] in
Ίsoc](X/K) (resp. (Jί1 ,V] in \^(X'/K')), the diagram

RTrig(X/K,Jt}®KK' -̂ i

"DT (V I Ίff <r**^ήg\Λ /Λ ,T>κιiκ«

(resp.

rκ'/κ

is commutative. Here the vertical arrows are defined by the morphism in 5.1
(resp. by the morphism in 5.1 and the trace map trκ>/κ : K' —> K).

PROOF. The assertions (1) and (2) follow from the commutativities Trγ =
Trx o tr and tr o ad = rid. The assertion (3) follows from the commutativity

trκ>/κ ° Trx/κ, = Trx/κ o τκ /κ*. Π

LEMMA 6.2.3. With the notation as above, assume furthermore that there is
an affine smooth lift of the pair (X, Z) over Spec V which satisfies the situation in

4.1. If we denote by d the codimension of Z in X, then the diagram

RΓrig(Z/K, \i['Jί} -̂  RHomκ(RΓc,rig(Z/K, } ί [ \

Gz/x\

RΓz,rig(X/K,Jt)[2d} -̂ -

is commutative, where the left vertical arrow is the Gysin morphism and the right
vertical arrow is the identity.

PROOF. Put M = Γ ( ] X [ ^ J f ) and Mv - Γ(]Γ[^,^V). Then M is
defined on some strict neighbourhood of \X\# such that ]Z[^ is smooth over K
in the neighbourhood. If W is an open affinoid in }X — X[^, then the diagram

Resί/.i (S>Resj/.t \ \ReSf/t

DR (iϊM}[-d]®κ\DR (iΪM^^DR ((iϊMγ\}^w}}\-d] - \DR*(T(j^O]t[}} -, DR (Γ(O]t[nw))][-d]

is commutative, where Res^/^ is defined in 4.3 and the horizontal arrows are
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Π

natural pairings. If W runs through the set of affinoid coverings of ]X -
we get the diagram in the assertion. This completes the proof.

By the construction of the comparison morphism between the rigid

cohomology and the crystalline cohomology in Theorem 5.2.1 and by [2,
Chapitre VII, Theoreme 1.4.6], we have

PROPOSITION 6.2.4. With the notation as above, assume furthermore that X
is proper smooth over Spec/: and that K is absolutely unramίfied. Let (Jt, V, Φ)
be an object in F-Isoc\X/K, σa) and let (£?,Φ) be the corresponding F-crystal
on X/V with respect to σa as in Theorem 5.1.2. Then the diagram

ηγ Y

] — ̂  R Homκ(RΓrig(X/K, Jί v ), K}(-2n]

is commutative in the derived category of upper bounded complexes of K-vector

spaces, where the vertical arrows are the isomorphisms in Theorem 5.2.1 and the
bottom horizontal arrow is induced by the Poίncare duality of the crystalline

cohomology.

Now we prove the Poincare duality.

THEOREM 6.2.5. With the notation as above, assume that k is perfect and
that X is smooth over Spec/:. Let (Jί, V, Φ) be an object in F-Isoc\X/K, σa)°.
Then the morphism ηz x is an isomorphism. Moreover, the induced perfect

K-paίring
i[*J^) -+ K(-n)

commutes with Frobenius structures.

PROOF. The argument of the proof is the same as in [7, Theoreme
3.4]. We prove two assertions;

(a}d : ηx x is an isomorphism for the dimension X ^ d\
(b)d : ηzx is an isomorphism for the dimension Z ^ d\

by induction on d simultaneously. The assertion (ά)Q is trivial.

We prove (ά)d => (b)d. Since the rigid cohomology with supports in Z
does not change if we replace Z into the reduced subscheme Zred of Z, we may
assume that Z is smooth over Spec/: by Proposition 2.1.1, 2.1.2, Lemma 6.2.1,
6.2.2 and the hypothesis of induction. We can also assume the situation of the
pair ( X , Z ) as in Lemma 6.2.3. Therefore, the assertion follows from the
Gysin isomorphism (Theorem 4.1.1) and the hypothesis of induction.

We prove (b}d => (a)d+\ By [20, Theorem 1.3.1] one can find a smooth
scheme X' over Spec/: with a smooth compactification / : X' — > X and a
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generically etale proper surjective morphism / : X1 —> X and find a convergent

unit-root F-isocrystal Ji on X'/K with respect to σa such that fγigM = (/^Λ^
By the Poincare duality of the crystalline cohomology [2, Chapitre VII,
Theoreme 2.1.3] the assertion (b)d => (a)d+\ follows from Lemma 6.2.1, 6.2.2
and Proposition 6.2.4 and the hypothesis of induction. Π

COROLLARY 6.2.6. Under the same assumption as in Theorem 6.2.5, let
IY : Y —> X be a closed immersion of codίmensίon e of smooth schemes over
SpQck such that Y includes Z. We put Y (resp. ϊγ : Y —* X) the closure of Y
in X (resp. the closed immersion). If (M,V,Φ) is an object in
F-Isoc^(X/K,σa) , then there is a canonical isomorphism

GZ/Y.X : RΓz,rig(Y/K,]ϊγ[*Jΐ) -> RΓZlrig(X/K,Λf)[2e]

such that the induced K-homomorphίsms on the cohomology groups commute with
Frobenius structures. This isomorphism is a generalization of the Gysίn mor-

phίsm GZ/X in Section 4. In the case of the constant object j^O^ Gz/γ,χ
coincides with the Gysin isomorphism in [6, Theoreme 3.87- We also call

GZ/Y,X the Gysίn isomorphism.

In the case of the constant coefficient B. Chiarellotto proved the com-

mutativity of the Gysin isomorphism and Frobenius structures on rigid
cohomologies [8, Theorem 2.4].

(6.3) We study Kϋnneth formula of the rigid cohomology. In the case of the
constant coefficient it was proved in [7]. Let Xv (resp. jv : Xv —* Xv, resp.
X —» ^v, resp. Zv, resp. Zv) be a separated scheme of finite type over Spec/:
(resp. an open immersion into a proper scheme of finite type over Spec /:, resp.
a closed immersion into a formal scheme of finite type over Spf V such that &v

is smooth over Spf V around Xv, resp. a closed Λ>subscheme of Xv, resp. the

closure Zv in Xv) for v e {1,2}. We put X = X\ xSpec£ *2, X = X\ xspec£ XΊ,
& = &\ xspfF ^2, Z = Zj xspecA: Z2 and the closed immersion ίv:Zv-+Xv

(resp. / : Z —> X). We also denote by prv : }X[^> -^ ]XV[& the v-th projection.
Let (Jΐv,Vv) be an object in lsoc^(Xv/K) and put (M,V) = pr\(Jί\,V\) ®

pr2(^2^2} to be an object in lsoc^(X/K). Then the natural morphisms

'-_\ (Jt2}-+T\

of sheaves on \X[& induce functorial morphisms

^Xi / K , Jί, ) ®κ RΓc>rlβ(X2/K, Jf2) -H. RΓc,rig(X/K,
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If φv is a Frobenius on ^v, then one can easily see that the induced
homomorphisms of cohomologies from the morphisms 6.3.1 commute with the
Frobenius structures for any overconvergent F-isocrystal.

One can easily prove

LEMMA 6.3.2. With the notation as above, if Z^ — XΊ, then the morphisms
6.3.1 induce the morphisms

^(Xi.Zi.Jd) ®κRΓrig(X2/K,Jt2) -> Arig(X,Z,Jt]

of distinguished triangles.

LEMMA 6.3.3. With the notation as above, assume that both X\ and X2 are
smooth over Spec k. Let f : Yv — » Xv (resp. f : Y — > X) be a finite etale

morphism for v = 1,2 (resp. f = /i xspecfcΛλ
(1) The adjoint map ad : id -> fvrigj*rig and the trace map tr : fwigj*rig ->

id in 2.7 induce commutative diagrams

, Jti) ®κ RΓrig(X2/K,

ad (glad ad

Wrig(X/K,frigtf*g.

ad (x) ad

tr® tr\

where the horizontal arrows are the morphisms 6.3.1.
(2) For any object Jfv in Isoc^(Yv/K), if we put Jf = pr\ Jf\

then the diagrams

RΓrig( Y! /K, Λ\ ) ®κ RΓrig( Y2/K, Λ"2] - » RΓrίg( Y/K,
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are commutative, where the horizontal arrows are defined in 6.3.1 and the vertical
arrows are isomorphisms which are defined in Theorem 2.6.3.

(3) For a finite extension K' over K, the morphisms in 6.3.1 commute with

both τ*κ,ικ and τκ<jK^ in 5.1.

PROOF. We may assume that both X\ and X2 are affine by [5, Proposition
2.1.8]. Then the assertion easily follows from Proposition 2.2.1. Π

LEMMA 6.3.4. With the notation as above, assume furthermore that there is
an affine smooth lift of the pair (XV,ZV) over Spec V which satisfies the situation
in 4.1 for v= 1,2. If we denote by dv (resp. d) the codimension of Zv in Xv

(resp. d = d\ + d2)s then the diagram

®κRΓZ2,rig(X2/K,Jί2)[2d2} > RΓz,rίg(X/K,Jί)[2d}

is commutative in the derived category of complexes of K-vector spaces, where
the horizontal arrows are the morphisms in 6.3.1 and the vertical arrows are the
Gysin morphisms.

PROOF. Let XV9 %v and ^v be as in the section 4. Put (MV,F) =

Γ(]Jv[Λ,(Λrv,7)) and M = Γ(]X[^(J(,V)). Then (M,V) = (Mi,V) ®κ

(M2,V). One can easily see that the following diagram

i]

2M2)[-d2} > DR (ΰM}[-d]

is commutative. (See the definition of Res^/% in 4.3.) This induces the
commutativity of the diagram. Π

By [2, Chapiter V, Corollaire 4.1.2] and the construction of the com-
parison morphism between the rigid cohomology and the crystalline coho-
mology in Theorem 5.2.1, we have

PROPOSITION 6.3.5. With the notation as above, assume furthermore that
both X\ and X2 are proper smooth over Speck and that K is absolutely
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unramified. Let (J(V,V,Φ) (resp. (J(,V,Φ)) be an object in F-Isoc^(X/K,σa)

(resp. (Jί,V,Φ}=prl(J{λ,V,Φ)®pr^(Jί2,V,Φ)) and let (J*?V,Φ) (resp.
(<y,Φ)) be the corresponding F-crystal on XJV with respect to σa as in Theorem

5.1.2 (resp. (&, Φ) = pr\(&\,Φ} ® pr$(<e2,Φ}). Then the diagram

RΓrig(X}/K, Jtl)®κKΓrig(X2/K, JΪ2) > KΓ

is commutative in the derived category of complexes of K-vector spaces, where
the horizontal arrows are the morphίsms in 6.3.1 and the vertical arrows are the
isomorphisms in Theorem 5.2.1.

Now we prove the Kΐinneth formulas.

THEOREM 6.3.6. With the notation as above, assume that k is perfect. Let

(Jtv,Vv,Φv) be an object in F-Isoc\X/K,σa}Q for v= 1,2 and put (J(,V,Φ) =

(1) If both X\ and XΊ are smooth over Spec/:, then the first morphism in
6.3.1 is an isomorphism. Moreover, the induced K-homomorphίsm

commutes with Frobenius structures for any I.
(2) The second morphism in 6.3.1 is an isomorphism. Moreover, the

induced K-homomorphίsm

Θ/1+/2=/ H^Xi/K, Jίλ) ®κ Hl

c]rig(X2/K, Jt2) - H(rig(X/K, Jt)

commutes with Frobenius structures for any I.

PROOF. (1) The argument of the proof is the same as in [7, Theoreme
4.2]. We prove two assertions;

(ά)d: if Zv = Xv (v = 1,2), the first morphism in 6.3.1 is an isomorphism
for the dimension X ^ d\

(b)d: the first morphism in 6.3.1 is an isomorphism for the dimension

Z^d;
by induction on d simultaneously. The assertion (α)0 is trivial.

We prove (ά)d => (b}d. Since the rigid cohomology with supports in Z

(resp. Zi, resp. Z2) does not change if we replace Z (resp. Zi, resp. Z2) into the
reduced subscheme Zred (resp. Z[ed, resp. Z™d) of Z (resp. Zi, resp. Z2), we
may assume that Z (resp. Z\, resp. Z2) is smooth over Spec A: by Proposition
2.1.1, 2.1.2, Lemma 6.3.2, 6.3.3 and the hypothesis of induction. We can also
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assume the situation of the pair (XV,ZV) ( v = l , 2 ) as in Lemma 6.3.4.
Therefore, the assertion follows from the Gysin isomorphism (Theorem 4.1.1)
and the hypothesis of induction.

We prove (b)d => (fl)</+1. By [20, Theorem 1.3.1] one can find a smooth
scheme X'v over Spec/: with a smooth compactification j'v : X'v —> Xv and a
generically etale proper surjective morphism / : X'v —> Xv and find a convergent

unit-root F-isocrystal Jfv on A^/AΓ with respect to σa such that f^rigΛt =
(/)v^v. By Λe Kϋnneth formula of the crystalline cohomology [2, Chapitre
V, Theoreme 4.2.1], the assertion (b)d =Φ (ά)d+l follows from Corollary 5.1.2,
Theorem 5.2.1, Lemma 6.3.2, 6.3.3, Proposition 6.3.5 and the hypothesis of
induction.

(2) The argument of the proof is similar as in Theorem 6.1.2 and

(1). D
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