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Lp boundedness of rough Marcinkiewicz integral

on product torus
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ABSTRACT. This paper is a continuation of our study [D] [CDF] on rough Marcin-

kiewicz integral operator on product space. Suppose that Ω(xr, y') e Lq(Sn~] x Sm~l)

(n > 2,m > 2, q > 1) is homogeneous of degree zero satisfying the mean zero properties

(1.!)-(!.3). For C°° functions / on the product torus T" x Tm, the Marcinkiewicz

integral operator on T" x Tm is defined by

R R ΦM */(*,

where ΦM has the Fourier series

In this paper we show that if q > 1 then the operator μΩ can be extended to a

bounded operator on Lp(Ύn x Tm) for 1 < p < oo.

§1. Introduction and results

Let Rw be ^-dimensional Euclidean space and S""1 be the unit sphere in

R" (n > 2) equipped with normalized Lebesgue measure dσ = dσ(x'\ where

x' = χ/\χ\ for x Φ 0. In [S], Stein introducted the Marcinkiewicz integral

operator μΩ of higher dimension as follows.

where

*"*»-([
r,W = [ .

J|jc-vl</

1^"1) is homogeneous of degree zero satisfying J^ Ω(x')dσ(x') = 0.
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In [S], Stein proved that if Ω is continuous and satisfies a Lz/?α (0 < α < 1)
condition on S"1"1, then μΩ is of type ( p , p ) for 1 < p < 2 and of weak type
(1,1). It was pointed out in our previous paper [CDF] that to assert the Lp

boundedness of μΩ for 1 <p < oo, the smoothness condition assumed on Ω can
be replaced by a weaker size condition Ω e Lq (Sn~l) (q > 1). In [CDF], we
considered the Marcinkiewicz integral operator on product space R" x Rm by

G°° f00 9 dtds χ l/2

I^(*,JOI22525— oo J — oo ^ ^ ,
where

y-v\<2s ι~

ΩeLq (Sn~λ x Sm~l) (n>2,m>2,q>l) satisfying the following conditions:

(1.1) Ω(tx,sy) = Ω(x,y) for any t,s>0,

(1.2) f Ω(x',yf)dσ(x')=Q for any y'eS1"-1,
J sn~l

(1.3) f Ω(x',y')dσ(y')=Q for
Jsm~}

any

The following theorem can be found in [CDF].

THEOREM A. Suppose that Ω e Lq (Sn~l x S""-1) (q > 1) satisfying (1.1)-
(1.3). Then for 1 < p < ao, there is an Ap > 0., independent of f, such that

Ap

Let Φ / ι J ( x , ^ ) = 2 - Λ ί 2 - m ϊ φ , with

where χB(z) is the characteristic function of the set {z : z| < 1}. It is easy to
see that

\Φt,,*f(χ,y)\2Λds} .
R J R /

This suggests that we can define the Marcinkiewicz integral operator on
product torus T" x Tm by

/2/ f f ~ - ,
, j )= |ΦM*/(x,j;)|2Λώ

\ J R J R /
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initially for / e C°° (Ύn x Tm), where Φt,s has the Fourier series

ΦtιS(x,y) =
kι,k2

Let us describe our definition more precisely in the following. For N = n or
m, the TV-torus ΎN can be identified with RN /A^, where AN is the unit lattice
which is an additive group of points in R^ having integer coordinates. Let
A = An x Λm. Any / e C°° (Ύn x Tm) has the Fourier series

where

<3t,,fe = [ f /(*. yϊe~2πίk< χe-2πik2 ydxdy
. JJQnXQm

and QN (N = n, m) is the fundamental cube of T^ which is the set

QN = {x = (*!,jc2,... ,XN) e RN : -1/2 < Xj < 1/2, 7 = 1,2,.. .,7V}.

Therefore noting Φ(Q,η) = Φ(ί,0) = 0 for any η,ζ, we have

The main purpose of this paper is to establish the following

THEOREM 1. Suppose that Ω e L« (S"~l x Sm~l) (q > 1) satisfying (1.1)-
(1.3). Then for I < p < co, there is a Bp > 0, independent of f , such that
Bp < Ap and

where Ap is the constant in Theorem A.

§2. Proof of Theorem 1

The proof of Theorem 1 will use some ideas in [F]. Let δε be the dilation
operator such that δεf(x) = f(εx). For any fixed integer L > 0, we choose a
function ψ e ^(Rn) that satisfies ψ(x) = 1 on Qn and

suppiA c {x e R" : -1/2 - 1/L < jcy < 1/2 + 1/L, 7 - 1,2, ...,«}.

We also choose a function Γ e ^(R™) that satisfies Γ(y) = 1 on Qm and

suppΓ c= {j; e Rm : -1/2 - l/L < yj < 1/2 + 1/L, 7 = 1 , 2 , . . . ,m}.
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In addition, we require 0 < φ < 1, 0 < Γ < 1. For any fe C°° (Ύn x Tm),
without loss of generality, we may assume that / has the Fourier series

f(x,y)=

So we can view / as a periodic function on R" x Rm. Let M be an integer
larger than L. We consider the difference

EM(x, y, M) = ̂ Γ * M */(*, y) - Φtt
(δι/MΓ))(x, y).

We need the following lemma.

LEMMA 1. Under the conditions of Theorem 1, with the choices of ψ and
Γ, we have

\ l / 2f t f .
lim \EM(x>yΛs)\2dtds} -0

M->°° V J R J R /

uniformly for (x, y) e R" x Rm.

Using Lemma 1, we may prove Theorem 1. In fact, since μΩf is a
periodic function, for any integer M > 0,

(2.1) κ T - = ( f ί
VJα, J(QnJQm

Γ Γ

JMQn JMQn JMQm

Noting φ = 1 on MQn and r
M M

\\βΩf\\Lp(Ύ"xΎm)

Γ Γ / v \ / v
("^\ ψ( \ΓU

JMQn JMQm \MJ \M

/

f (f f
jMQm J κ j R

= 1 on MQm, by (2.1) we have

λ
dxdy)

J

1///?
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From this and Lemma 1, we get

(2.2) H/io/llL'CΓ xT-)

/ e t f c c V/2 \l/p

< lim hlf-ί"*") \EM(x,y,t,ή\2dtds) dxdy)
M^°° \ JMQ»JMQm \ J R U R J J

lim
R . R

/2 \ ι / / »

< lim M-(«+

Λ/^co \^ R » R " y R j

/2

Let G(x,y) =f(x,y)ψ( -77J/Ί -j-J. Then the last integral in (2.2) is

(π+m)ί [ \μΩG(x,y}\pdxdy
JR"JRm )

By Theorem A, we have

Λ/p
\ \μΩG(x,y)\pdxdy^

" JRm )

<ApM-("P+m^(\ \ \G(x,y)\"dxdy}
\JR M JRm J

Q Γ

R n j R

dxdy

By the choices of ψ and Γ we have

/ r f V/^
(2.3) M-("+-) \μΩG(x,y}\pdxdy}

V JR" JR W /

Γ λ1^
\/(x,y)\pdXdy) ,

Λn SΔm /
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where

ί x nn

 M M MM Λ ^ Ί
Λ = < * = (xι,X2, ,*/ι) eR : -y- γ<*y < y + y, j = 1, 2, . . . , n > ,

M M MM Λ ^ \
— - — < yj < y + γ, = 1,2, . . . ,m j.

Therefore if M > L, since /(x, 7) is a periodic function satisfying

/(* +l, j) =/(*, 7+1) = /(*, 7) for any (x, y) e R" x R™,

by (2.3) we have

1/P/ r r \1

(2.4) M-(«+m) I^Gίx,^)!^^
V JR M JR W /

( Γ 9 Λ/fΊ w+w Γ f \
M-(«+-) M + — \f(x,y)\pdxdy)

I L\ JQnJQm /

α 2l w + m Γ Γ ~ \1//7

1+7 \f(x,y)\pdxdy) .
LJ Jβ Jβn /

Thus by (2.2)-(2.4) we obtain

Since L > 0 is arbitrary, we have

ll/WΊIz/CTxT"1) ^ AP\\J \\Lp(Ύ"xΎm)'

The proof of Theorem 1 is complete.
Thus the proof of Theorem 1 is reduced to proving Lemma 1. However,

the proof of Lemma 1 will depend strongly on the folowing Lemma 2.

LEMMA 2. Suppose that Ω e LI (Sn~l x Sm~l) (q> 1) satisfying (1.1)-
(1.3), then there are J,α,/?,α',/?' > 0 and constants C\,Cι > 0, independent of
\ξ\, \η\ and y, such that

(i) \Φ(ξ,η)\2<
(ii) \Φ(y + ξ,η) -

PROOF. The conclusion (i) is just Lemma 2.2 in [CDF]. Below we only
give the proof of (ii). Denote / = \Φ(y + ξ,η) — Φ(y,η}\. Recalling that

Φ(x,y) = \xΓ+l\y\-m+lΩ(X',y')χB(\X\)χB(\y\),
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we have

I =
J|χl<l Jι^ιi*rVr'

{* - \\dxdy

By (1.2) we have

(2.5) 7 = | f f Ω(x',y')\l\\e-2πil"' y'-l}
I JjS'-'xS*-1 Jo Jo

Let S(r,x^y) = e-
other hand, we have

<irf χ' _ \\drdhdσ(x'}dσ(y']

-2πirζ x' _ j]^ tllen |5(r>x'

= 0(\ξ\\η\).

< C|rί|. On the

< f f ff Ω(x'1y
l)e-2^ y'S(r,X',ξ,γ)dσ(x')dσ(y'}

Jo Jo JJs"-^^-1
drdh

= f f ff Ω(x',y')Ω(u',Ό')e-2πau''(y'-ΌΓ>
Jo Jo J J(Sn-lxSm-1)2

x S(r, x', ξ, γ)Sl (r, u1, ξ, γ)dσ(x')dσ(y')dσ(u'}dσ(υ'}drdh

= \\ Ω(x',y')Ω(u',v')\ f ,
JJ(S"-lxSm-1)2 Jθ Jo

-2πihη (y'-v'}

x S(r, y , ί, y)S! (r, «', ξ, y)drdhdσ(x')dσ(y')dσ(u'}dσ(υr},

where ^(r,^,^^) = e-^y (-u')^e2πirξ u' _ ̂  Clearly we have

<C\ζ\2.(2.6) I f f e~:^<y
Uo Jo

On the other hand,

f e-
Jo

(2.7) f f
Jo Jo

sίίJo Jo
\S(r,x',ξ,γ)Sι(r,u',ζ,γ)\<ir

<C\ζ\2\η (y'-v')\-l

By (2.6) and (2.7), we may take an ε > 0 satisfying ε < \/q' such that

(2.8) I f f e-2πif"' ^-^S(r,x',ζ,γ)Sl(r,u',ξ,γ)drdh
Uo Jo

< C \ ξ \ \ r j (y'-v' ../M-£
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By [DR] and using (2.8), we have

J(S»-iχS'»-i)2

x \η (y1 - v')Γdσ(x')dσ(y')dσ(u')dσ(v')

\y'-v' -«'εdσ(y')dσ(υ')
J(S»'-|x5''»-1)2

Thus we get

(2.9)

Finally by (2.5) and (2.9) we complete indeed the proof of Lemma 2 (ii) if
taking α' = 1 and βf = e/2.

Now let us turn to the proof of Lemma 1. Denote the Fourier transform
of EM on (x, jμ)-variable by EM, then

EM(x, J>, M) = [ ί EM(ξ, η, t, s)e2πίχ ξe2πiy»dξdη.
J JR"xRm

Recall

f(χ,y) =

with rapidly decay cofficients Q^^- If we denote

J JR"xRm

Mn+m\jt(Mξ)f(Mη)
)R"xRm

x e2πiχ ζe2πiy "Φ(2tkι + 2'ξ,2sk2 + 2sη)dξdη

and

JR"xRm

x Φ (ϊki + ̂ , 2'k2 + - Φ(2'kι, 2'k2) dξdη,

then we have
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, y, , y, t,s)]
(kι,k2)eΛ

(kι,k2)eΛ

Thus

(U
1/2

Since/e C°° (Tw x Tw), so for any ε > 0 there is a finite set Λ 1 c A such that

Write

(2.10)

Below we will estimate 5^;(Λf) and
Σ"(M). By Holder's inequality,

Σ

%,£,.|c'ι *'l(JJ"> '
,Aι(||

\«7 JRxR

1/2

1/2

, respectively. Let us first consider

ίίJ j R M

φ 2'*ι +17'M

1/2

1?J *M*J

Σ

V J j R x R J j R " x R "

v J / 2
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Note that there exists an A > 0 such that

(2.12) ff \Φ(2'ξ,2sη)\2dtds^A
J j R x R

uniformly for (ξ,η) e Rw x Rm. In fact, by Lemma 2 (i), it is easy to see that

ff , 2
\Φ(2 ξ,2sη)\ dtds

J j R x R

< f f \ϊξ\*\lsη\βdtds+\ \ l^ξ^η^dtds
J \2'ξ\ < 1 J \2sη\ < 1 J \2'ξ\ < 1 J \2*η\ > 1

+ f f WξΓ^ηfdtds + f f PΈΓp'i/Γ'ώώ < ̂ .
J \2'ξ\ > 1 J |2J^| < 1 J \2<ξ\ > 1 J \2*η\ > 1

Clearly A > 0 is independent of (ξ,η) e R" x Rm. With the choices of ψ and
Γ, by (2.11), (2.12) and the Plancherel theorem we have

(2.13)

where A(L) is independent of ε.
Finally, let us handle the term Σ'(M). Since A1 is finite, we need only to

check

limim f f
^°°JjR

for any fixed (fcι,fc2) e A1 with k\ Φ 0,k2 Φ 0. Since ψ e ^(Rn),fe
by (2.12) if we denote

)= ff
J JBnxBm

-Φ(2'kl,2
sk2) dξdη,

where Bn and

to show

(2.14)

Set

are bounded sets in R" and Rm respectively, then it suffices

limim
=°JjR
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BnxBm
\m\\f (η)\

(
jtt 9

r\ 11 ^ ^ ϊ 1 I \ Jt I r\t Ί » C ί ^ rl
dζdη

and

we have

BnxBm

2V
17

i f @M(t,s}2dtds<C\\ IM(t,s)2dtds+C\\ JM(t,
J j R x R J j R x R J j R x R

sΫdtds

Since the estimates of JM and /M are same, we will only prove that

liniji/-+oo ?M = 0. By Lemma 2 (ii) we have

(2.15)
w

2 < t ' + ' 2 ' f e + -*2<t"2'

<c
M

On the other hand, since ξ e Bn and Bn is bounded, we take M sufficienly large

, ξ
such that

(i), we have

(2.16)

< 2\k\\ for all ξ e Bn. Using the conclusion of Lemma 2

Hence by (2.15) and (2.16) we have

| L min{ (
(l/2)log2M



178 Yong DING and Dashan FAN

+ ci
i;poo

X

J(l/2)log 2 M

as Λf -> oo. Thus (2.14) follows from this. Combining (2.10) with (2.13) and
(2.14), we finish the proof of Lemma 1.
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