On the action of β_{1} in the stable homotopy of spheres at the prime 3

Katsumi Shimomura

(Received May 12, 1999)
(Revised September 20, 1999)

Abstract

Let S^{0} denote the sphere spectrum localized away from 3. The element β_{1} is the generator of the homotopy group $\pi_{10}\left(S^{0}\right)$. Toda showed that $\beta_{1}^{5} \neq 0$ and $\beta_{1}^{6}=0$. In this paper, we generalize his result and show that $\beta_{1}^{4} \beta_{9 t+1} \neq 0$ and $\beta_{1}^{5} \beta_{9 t+1}=0$ for $\beta_{9 t+1} \in \pi_{144 t+10}\left(S^{0}\right)$ with $t \geq 0$. In particular, $\beta_{1}^{4} \beta_{10} \neq 0$ and $\beta_{1}^{5} \beta_{10}=0$, where the existence of β_{10} was shown by Oka. This is proved by determining subgroups of $\pi_{*}\left(L_{2} S^{0}\right)$. Here L_{2} denotes the Bousfield localization functor with respect to $v_{2}^{-1} B P$.

1. Introduction

Let p be a prime number and S^{0} the sphere spectrum localized away from p. Let $E_{r}^{*}(X)$ denote the E_{r}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}(X)$ for a spectrum X localized away from p. Miller, Ravenel and Wilson [1] introduced β-elements $\beta_{s / j, i+1}$ in $E_{2}^{2}\left(S^{0}\right)$ for $(s, j, i+1) \in \boldsymbol{B}^{+}$, where

$$
\begin{aligned}
& \boldsymbol{B}^{+}=\left\{(s, j, i+1) \in \boldsymbol{Z}^{3} \mid s=m p^{n}, n \geq 0, p \nmid m \geq 1, j \geq 1, i \geq 0,\right. \text { subject to } \\
&\text { i) } \left.j \leq p^{n} \text { if } m=1 \text {, ii) } p^{i} \mid j \leq a_{n-i}, \text { and iii) } a_{n-i-1}<j \text { if } p^{i+1} \mid j\right\}
\end{aligned}
$$

for integers a_{k} defined by $a_{0}=1$ and $a_{k}=p^{k}+p^{k-1}-1$. Here we use the abbreviation $\beta_{s / j, 1}=\beta_{s / j}$ and $\beta_{s / 1,1}=\beta_{s}$.

Let $V(1)$ denote the Toda-Smith spectrum, which is a cofiber of the Adams map $\alpha: \Sigma^{2 p-2} V(0) \rightarrow V(0)$, where $V(0)$ is the $\bmod p$ Moore spectrum. Since there exists a map $\beta: \Sigma^{2 p^{2}-2} V(1) \rightarrow V(1)$ which induces v_{2} on $B P$-homology at a prime $p>3$ by [9], we have homotopy elements $\beta_{t} \in$ $\pi_{2 t\left(p^{2}-1\right)-2 p}\left(S^{0}\right)$ with $t>0$. On the other hand, there is no such self map at the prime 3. However there are homotopy elements β_{i} for $i=1,2,3,5,6,10$ in this case due to Toda and Oka (cf. [2]). Besides, assuming the existence of the self map $B: \Sigma^{144} V(1) \rightarrow V(1)$ that induces v_{2}^{9} on $B P$-homology, we see

[^0]that there exists a family $\left\{\beta_{9 t+i} \mid i=0,1,2,5,6, t \geq 0\right\}$ in $\pi_{*}\left(S^{0}\right)$. The existence of B seems to be shown by Pemmaraju in his thesis. Furthermore, the existence of $\beta_{6 / 3} \in \pi_{82}\left(S^{0}\right)$ is shown by Ravenel [4].

In this paper, we obtain the following relations among $\beta_{9 t+1}, \beta_{2}$ and $\beta_{6 / 3}$:
Theorem A. Let t, i, j and k be non-negative integers. Then in the homotopy groups $\pi_{*}\left(S^{0}\right)$ of sphere spectrum localized away from 3,

$$
\begin{gathered}
\beta_{9 t+1} \beta_{1}^{i} \neq 0 \in \pi_{*}\left(S^{0}\right) \quad \text { if and only if } i<5, \\
\beta_{9 t+1} \beta_{2} \beta_{1}^{j} \neq 0 \in \pi_{*}\left(S^{0}\right) \quad \text { if } \text { and only if } j<2, \quad \text { and } \\
\beta_{9 t+1} \beta_{6 / 3} \beta_{1}^{k} \neq 0 \in \pi_{*}\left(S^{0}\right) \quad \text { if and only if } k<4 .
\end{gathered}
$$

As is seen in [3, p. 624], we have a relation

$$
u v \beta_{s} \beta_{t}=s t \beta_{u} \beta_{v} \quad \text { for } s+t=u+v
$$

in the E_{2}-term $E_{2}^{4}\left(S^{0}\right)$. This implies the following:
Corollary B. In the homotopy groups $\pi_{*}\left(S^{0}\right)$ localized away from 3,

$$
\begin{aligned}
& \prod_{i=1}^{k} \beta_{9_{i}+1} \neq 0 \quad \text { if and only if } k<6, \quad \text { and } \\
& \left(\prod_{i=1}^{k} \beta_{9_{i}+1}\right) \beta_{9 t+2} \neq 0 \quad \text { if and only if } k<2
\end{aligned}
$$

for integers $t, t_{i} \geq 0$. In particular, $\beta_{9 t+1}^{k} \neq 0$ if and only if $k<6$.
Remark. If the self-map B does not exist, the above theorems are valid only for the homotopy elements such as β_{1} and β_{10}.

We prove Theorem A by determining subgroups of $\pi_{*}\left(L_{2} S^{0}\right)$, where L_{2} : $\mathscr{S}_{(3)} \rightarrow \mathscr{S}_{(3)}$ denotes the Bousfield localization functor on the category $\mathscr{S}_{(3)}$ of spectra localized away from 3 with respect to the Johnson-Wilson spectrum $E(2)$. In $\pi_{*}\left(L_{2} S^{0}\right)$, we have generalized β-elements $\beta_{s / j, i+1} \in E_{2}^{2}\left(L_{2} S^{0}\right)$ for $(s, j, i+1) \in \boldsymbol{B}$, where

$$
\begin{aligned}
\boldsymbol{B}=\{ & (s, j, i+1) \in \boldsymbol{Z}^{3} \mid s=m p^{n}, n \geq 0,3 \nmid m \in \boldsymbol{Z}, j \geq 1, i \geq 0, \\
& \text { such that } \left.3^{i} \mid j \leq a_{n-i} \text { and either } 3^{i+1} \nmid j \text { or } a_{n-i-1}<j\right\} .
\end{aligned}
$$

Consider the $\boldsymbol{Z} / 3\left[\beta_{1}\right]$-modules

$$
\begin{aligned}
\hat{G}= & \sum_{t \in \boldsymbol{Z}}\left(B_{5}\left\{\beta_{9 t+1}\right\} \oplus B_{4}\left\{\beta_{9 t+1} \beta_{6 / 3}\right\}\right. \\
& \oplus B_{3}\left\{\overline{\beta_{9 t+7} \alpha_{1}}\right\} \\
& \left.\oplus B_{2}\left\{\beta_{9 t+1} \alpha_{1},\left[\beta_{9 t+2} \beta_{1}^{\prime}\right],\left[\beta_{9 t+5} \beta_{1}^{\prime}\right]\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{G}^{*}= & \sum_{t \in \boldsymbol{Z}}\left(B_{5}\left\{g_{16(9 t+7)+15}\right\} \oplus B_{4}\left\{g_{16(9 t+3)+7}\right\}\right. \\
& \oplus B_{2}\left\{g_{144 t}, g_{16(9 t+5)+2}, g_{16(9 t+8)+2}\right\} \\
& \oplus \sum_{n \geq 1}\left(B_{3}\left\{g_{16\left(3^{n+2} t+9 u+3\right)} \mid u \in \boldsymbol{Z}-I(n)\right\}\right. \\
& \left.\left.\oplus B_{2}\left\{g_{16\left(3^{n+2} t+9 u+3\right)} \mid u \in I(n)\right\}\right)\right) .
\end{aligned}
$$

Here $B_{k}=\boldsymbol{Z} / 3\left[\beta_{1}\right] /\left(\beta_{1}^{k}\right)$,

$$
I(n)=\left\{x \in \boldsymbol{Z} \mid x=\left(3^{n-1}-1\right) / 2 \text { or } x=5 \cdot 3^{n-2}+\left(3^{n-2}-1\right) / 2\right\}
$$

\bar{x} denotes a homotopy element detected by x in the E_{2}-term, $[x]$ is an element of $\pi_{*}\left(L_{2} S^{0}\right)$ such that $i_{*}([x])=x \in \pi_{*}\left(L_{2} V(0)\right)$ for the inclusion $i: S^{0} \rightarrow V(0)=$ $S^{0} \cup_{3} e^{1}$, and $g_{i} \in \pi_{i}\left(L_{2} S^{0}\right)$ is the generator. Then the direct sum $\hat{G} \oplus \hat{G}^{*}$ is generated by

$$
\begin{aligned}
S= & \left\{\beta_{9 t+1}, \beta_{9 t+1} \beta_{6 / 3}, \overline{\beta_{9 t+7} \alpha_{1}}, \beta_{9 t+1} \alpha_{1},\left[\beta_{9 t+2} \beta_{1}^{\prime}\right],\left[\beta_{9 t+5} \beta_{1}^{\prime}\right],\right. \\
& \left.g_{16(9 t+7)+15}, g_{16(9 t+3)+7}, g_{144 t}, g_{16(9 t+5)+2}, g_{16(9 t+8)+2}, g_{16(9 t+3)} \mid t \in \boldsymbol{Z}\right\}
\end{aligned}
$$

as a $\boldsymbol{Z} / 3\left[\beta_{1}\right]$-module. Our key lemma is the following:
Theorem C. The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ contain the subgroups $\hat{G} \oplus \hat{G}^{*}$.

Consider the localization map $t: S^{0} \rightarrow L_{2} S^{0}$. Then we immediately see the following:

Corollary D. For any element $x \in \pi_{*}\left(S^{0}\right)$ such that $l_{*}(x) \in S$, we have $x \beta_{1} \neq 0 \in \pi_{*}\left(S^{0}\right)$.

In [7], we showed that the β-elements $\beta_{s / j, i+1}$ for $(s, j, i+1) \in \boldsymbol{B}^{c}$ do not exist in $\pi_{*}\left(L_{2} S^{0}\right)$, where

$$
\begin{aligned}
\boldsymbol{B}^{c}=\{ & (9 t+4,1,1),(9 t+7,1,1),(9 t+8,1,1),(9 t+3,3,1),(9 s, 3,2),\left(3^{i} s, 3^{i}, 1\right) \\
& \mid t \in \boldsymbol{Z}, s \in \boldsymbol{Z}-3 \boldsymbol{Z}, i>1\} .
\end{aligned}
$$

Moreover β-elements $\beta_{s / j, i+1}$ for $(s, j, i+1) \in \boldsymbol{B}^{c}$ do not exist in $\pi_{*}\left(S^{0}\right)$ if $t \geq 1$, $3 \nmid s \geq 1$ and $i>1$. We further showed in [7] the existence of β-elements $\beta_{9 t}$, $\beta_{9 t+1}$ and $\beta_{9 t+5}$ in $\pi_{*}\left(L_{2} S^{0}\right)$ for $t \in \boldsymbol{Z}$. Here we extend the existence theorem of β-elements in $\pi_{*}\left(L_{2} S^{0}\right)$:

Theorem E. $\quad \beta_{s / j, i+1}$ for $(s, j, i+1) \in \boldsymbol{B}-\boldsymbol{B}^{c}$ survives to a homotopy element of $\pi_{*}\left(L_{2} S^{0}\right)$.

Note that $\beta_{s / j, i+1}$ are homotopy elements for all $(s, j, i+1) \in \boldsymbol{B}$ at a prime >5 ([8]).

The following sections 2 to 6 are devoted to proving Theorem C and to giving subgroups of $\pi_{*}\left(M^{2}\right)$ for an L_{2}-local spectrum M^{2} with $E(2)_{*}\left(M^{2}\right)=$ $E(2)_{*} /\left(3^{\infty}, v_{1}^{\infty}\right)$. Theorems A and E are actually corollaries of Theorem C, and proved in $\S 7$.

2. Basic properties of $H^{*} M_{0}^{2}$

Let $E(2)$ be the Johnson-Wilson spectrum with coefficient ring $E(2)_{*}=\boldsymbol{Z}_{(3)}\left[v_{1}, v_{2}^{ \pm 1}\right]$. Then $E(2)_{*} E(2)$ is a Hopf algebroid over $E(2)_{*}$ with $E(2)_{*} E(2)=E(2)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(\eta_{R}\left(v_{i}\right): i>2\right)$. For an $E(2)_{*} E(2)$-comodule M, $\operatorname{Ext}_{E(2)_{*} E(2)}^{*}\left(E(2)_{*}, M\right)$ is the cohomology of the cobar complex $\Omega^{*} M=$ $\Omega_{E(2), E(2)}^{*} M$, and we will denote it by $H^{*} M$.

The chromatic comodules N_{j}^{i} and M_{j}^{i} are defined inductively by $N_{0}^{0}=$ $E(2)_{*}, N_{1}^{0}=E(2)_{*} /(3), N_{2}^{0}=E(2)_{*} /\left(3, v_{1}\right), M_{j}^{i}=v_{i+j}^{-1} N_{j}^{i}$ and the short exact sequence $0 \rightarrow N_{j}^{i} \rightarrow M_{j}^{i} \rightarrow N_{j}^{i+1} \rightarrow 0$ for $i+j+1 \leq 2[1]$. Note that $N_{j}^{i}=M_{j}^{i}$ if $i+j=2$. These have $E(2)_{*} E(2)$-comodule structure induced from the right unit $\eta_{R}: E(2)_{*} \rightarrow E(2)_{*} E(2)$. Consider the long exact sequences associated to these short ones $0 \rightarrow N_{0}^{0} \rightarrow M_{0}^{0} \rightarrow N_{0}^{1} \rightarrow 0$ and $0 \rightarrow N_{0}^{1} \rightarrow M_{0}^{1} \xrightarrow{f} M_{0}^{2} \rightarrow 0$, whose connecting homomorphisms are $\delta^{\prime}: H^{s} N_{0}^{1} \rightarrow H^{s+1} E(2)_{*}$ and $\delta: H^{s} M_{0}^{2} \rightarrow$ $H^{s} N_{0}^{1}$. Then we see that $\delta^{\prime} \delta: H^{s} M_{0}^{2} \rightarrow H^{s+2} E(2)_{*}$ is an epimorphism if $s \geq 1$, and an isomorphism if $s>1$, since $H^{s} M_{0}^{0}=0$ for $s \geq 1$ and $H^{s} M_{0}^{1}=0$ for $s>1$ by [1]. In particular,

Lemma 2.1. $H^{s} E(2)_{*}$ for $s \geq 3$ consists of torsion elements.
We have a short exact sequence $0 \rightarrow M_{1}^{1} \xrightarrow{i} M_{0}^{2} \xrightarrow{3} M_{0}^{2} \rightarrow 0(i(x)=x / 3)$ which induces a long exact sequence

$$
\cdots \rightarrow H^{s-1} M_{0}^{2} \xrightarrow{\delta} H^{s} M_{1}^{1} \xrightarrow{i_{*}} H^{s} M_{0}^{2} \xrightarrow{3} H^{s} M_{0}^{2} \xrightarrow{\delta} \cdots
$$

An easy diagram chasing shows the following:
Lemma 2.2. ([1, Remark 3.11]) Consider the following commutative diagram of modules with horizontal exact sequences and a 3 torsion module B^{s} :

If g^{s} and g^{s+1} are isomorphisms, then f^{s} is an epimorphism. Moreover, if f^{s-1} is an epimorphism, then f^{s} is an isomorphism.

Let b_{10} denote the element of $H^{2} E(2)_{*}$ represented by the cocycle $-t_{1} \otimes$ $t_{1}^{2}-t_{1}^{2} \otimes t_{1}$. Then b_{10} acts on $H^{*} M$ for any comodule M. In [7], we show the following:

Proposition 2.3. The multiplication by b_{10} yields an isomorphism $H^{s} M_{1}^{1} \rightarrow$ $H^{s+2} M_{1}^{1}$ if $s>3$ and an epimorphism if $s=3$.

This together with Lemma 2.2 implies
Corollary 2.4. The multiplication by b_{10} yields an isomorphism $H^{s} M_{0}^{2} \rightarrow$ $H^{s+2} M_{0}^{2}$ if $s>3$ and an epimorphism if $s=3$.

Corollary 2.5. $H^{*} M_{0}^{2} \cong\left(H^{4} M_{0}^{2} \oplus H^{5} M_{0}^{2}\right) \otimes \boldsymbol{Z} / 3\left[b_{10}\right]$ for $*>3$.

3. Some formulae in $\Omega^{*} E(2)_{*}$

The Adams-Novikov E_{2}-term for computing $\pi_{*}\left(L_{2} X\right)$ is the cohomology $H^{*} E(2)_{*}(X)$ of the cobar complex $\Omega^{*} E(2)_{*}(X)$, and in particular, $H^{*} E(2)_{*}=$ $H^{*} N_{0}^{0}$ is the E_{2}-term for $\pi_{*}\left(L_{2} S^{0}\right)$.

Take X to be the Toda-Smith spectrum $V(1)$. Then $E(2)_{*}(V(1))=$ $K(2)_{*}=\boldsymbol{Z} / 3\left[v_{2}^{ \pm 1}\right]$ and $H^{*} K(2)_{*}=K(2)_{*}\left[b_{10}\right] \otimes F \otimes \Lambda\left(\zeta_{2}\right)$. Here F denotes the module $\boldsymbol{Z} / 3\left\{1, h_{10}, h_{11}, b_{11}, \xi, \psi_{0}, \psi_{1}, b_{11} \xi\right\}$ satisfying the following relations (cf. [6, Prop. 5.9]):

$$
\begin{gather*}
v_{2}^{2} h_{10} b_{10}=h_{11} b_{11}, \quad v_{2} h_{11} b_{10}=-h_{10} b_{11} \\
b_{11} \xi=v_{2} h_{10} \psi_{1}=v_{2} h_{11} \psi_{0}, \quad b_{10} \xi=-h_{10} \psi_{0}=v_{2}^{-1} h_{11} \psi_{1}, \tag{3.1}\\
v_{2}^{3} b_{10}^{2}=-b_{11}^{2}, \quad b_{10} \psi_{1}=-v_{2}^{-1} b_{11} \psi_{0}, \quad b_{10} \psi_{0}=v_{2}^{-2} b_{11} \psi_{1}
\end{gather*}
$$

If X is the $\bmod 3$ Moore spectrum $V(0)$, then the E_{2}-term for $V(0)$ is $H^{*} E(2)_{*} /(3)$, which is determined in [7]. In particular, we see the following:

Lemma 3.2.

$$
\begin{aligned}
& H^{2,0} E(2)_{*} /(3)=0 \\
& H^{3,0} E(2)_{*} /(3)=\left\{v_{2}^{-1} \psi_{0}, v_{2}^{-1} h_{10} b_{10}\right\} \\
& H^{4,0} E(2)_{*} /(3)=\left\{v_{2}^{-3} b_{10} b_{11}, v_{2}^{-1} \psi_{0} \zeta_{2}, v_{2}^{-1} h_{10} b_{10} \zeta_{2}\right\} \\
& H^{5,0} E(2)_{*} /(3)=\left\{v_{2}^{-3} b_{10} b_{11} \zeta_{2}\right\}
\end{aligned}
$$

Consider the long exact sequence

$$
\cdots \rightarrow H^{*-1} E(2)_{*} /(3) \xrightarrow{\delta} H^{*} E(2)_{*} \xrightarrow{3} H^{*} E(2)_{*} \xrightarrow{j_{*}} H^{*} E(2)_{*} /(3) \xrightarrow{\delta} \cdots
$$

associated to the short exact sequence $0 \rightarrow E(2)_{*} \xrightarrow{3} E(2)_{*} \xrightarrow{j} E(2)_{*} /(3) \rightarrow 0$.

Lemma 3.3. The map $d_{1}=j_{*} \delta: H^{*} E(2)_{*} /(3) \rightarrow H^{*+1} E(2)_{*} /(3)$ sends $v_{2}^{-1} h_{10} b_{10}$ (resp. $v_{2}^{-1} h_{10} b_{10} \zeta_{2}$) to $v_{2}^{-3} b_{10} b_{11}$ (resp. $v_{2}^{-3} b_{10} b_{11} \zeta_{2}$).

Proof. Note that $v_{2}^{-1} h_{10} b_{10}$ is represented by a cochain whose leading term is $v_{2}^{-3} t_{1}^{3} \otimes b_{11}$. Since $d\left(t_{1}^{3 i+1}\right)=3 b_{1 i}$ by definition, we compute

$$
\begin{equation*}
d\left(v_{2}^{-3} t_{1}^{3} \otimes b_{11}\right)=3\left(v_{2}^{-3} b_{10} \otimes b_{11}+\cdots\right) \tag{3.4}
\end{equation*}
$$

which shows $\delta\left(v_{2}^{-1} h_{10} b_{10}\right)=v_{2}^{-3} b_{10} b_{11}+\cdots$. For $v_{2}^{-1} h_{10} b_{10} \zeta_{2}$, the result follows immediately from (3.4) and Proposition 4.2 in the next section. q.e.d.

Let x denote a cochain that represents ξ. Then it is shown in [7, Lemma 4.4] that $d(x) \equiv v_{1}^{2} f_{0} \bmod (3)$ for f_{0} that represents $-v_{2}^{-1} \psi_{0} \bmod \left(3, v_{1}\right)$ (In [7], x is denoted by $X(0)$). So we have a cochain A such that

$$
\begin{equation*}
d(x) \equiv v_{1}^{2} f_{0} \quad \bmod (3) \quad \text { and } \quad d\left(f_{0}\right)=3 A \tag{3.5}
\end{equation*}
$$

in the cobar complex $\Omega^{*} E(2)_{*}$. Then A is a cocycle of $H^{4,0} E(2)_{*}$. Furthermore, we have

Lemma 3.6. $d\left(f_{0}\right)= \pm 3 f_{0} \otimes z \bmod (9)$ in the cobar complex $\Omega^{4} E(2)_{*}$. Here z denotes a cocycle that represents the generator ζ_{2}.

Proof. The projection $E(2)_{*} \rightarrow E(2)_{*} /(3)$ sends A in (3.5) to a cocycle, which is also denoted by A. By virtue of Lemmas 3.2 and 3.3, we put

$$
[A]=k_{1} v_{2}^{-1} h_{10} b_{10} \zeta_{2}+k_{2} v_{2}^{-1} \psi_{0} \zeta_{2}
$$

where $[A]$ denotes a cohomology class represented by $A \in \Omega^{*} E(2)_{*} /(3)$. In fact, f_{0} may be replaced by $f_{0}+k v_{2}^{-3} t_{1}^{3} \otimes b_{11}$ for some $k \in Z / 3$ if necessary. Since $d_{1}([A])=0$ and $d_{1}\left(v_{2}^{-1} \psi_{0}\right)=3[A]$ by definition,

$$
0=k_{1} v_{2}^{-3} b_{10} b_{11} \zeta_{2}+k_{2}\left(k_{1} v_{2}^{-1} h_{10} b_{10} \zeta_{2}+k_{2} v_{2}^{-1} \psi_{0} \zeta_{2}\right) \zeta_{2}
$$

by Lemma 3.3. Noticing that $\zeta_{2}^{2}=0$ and $v_{2}^{-3} b_{10} b_{11} \zeta_{2} \neq 0$, we see that $k_{1}=$ 0 . On the other hand, if A represents 0 , then we have an element $v_{2}^{-1} \psi_{0}$ in $H^{3,0} E(2)_{*}$. Since $H^{2,0} E(2)_{*} /(3)=0$ by Lemma 3.2, $v_{2}^{-1} \psi_{0}$ generates a $\boldsymbol{Z}_{(3)^{-}}$ free submodule in $H^{3,0} E(2)_{*}$, which contradicts Lemma 2.1. Therefore A represents a non-zero element. This means that $k_{2}= \pm 1$.
q.e.d.

Lemma 3.7. Put $\widetilde{v_{2} t_{1}}=v_{2} t_{1}+v_{1} \tau$ and $\widetilde{v_{2}^{2} t_{1}^{3}}=v_{2}^{2} t_{1}^{3}+v_{1} v_{2} t_{1}^{6}$. Then $d\left(\widetilde{v_{2} t_{1}}\right)=$ $v_{1}^{2} b_{10}$ and $d\left(\widetilde{v_{2}^{2} t_{1}^{3}}\right)=-v_{1}^{2} b_{11}$. Furthermore, there exists a cochain $u \in \Omega^{2} E(2)_{*}$ such that

$$
d(u) \equiv \widetilde{v_{2} t_{1}} \otimes b_{11}+\widetilde{v_{2}^{2} t_{1}^{3}} \otimes b_{10} \quad \bmod \left(3, v_{1}^{2}\right)
$$

Proof. The first statement is checked by a routine computation.

Turn to the second. We obtain an element $u^{\prime} \in \Omega^{2} E(2)_{*}$ such that $d\left(u^{\prime}\right) \equiv v_{2} t_{1} \otimes b_{11}+b_{10} \otimes v_{2}^{2} t_{1}^{3} \bmod \left(3, v_{1}\right)$ from the relation $v_{2} h_{11} b_{10}=-h_{10} b_{11}$ in $H^{3} E(2)_{*} /\left(3, v_{1}\right)$ of (3.1). Put $d\left(u^{\prime}\right) \equiv \widetilde{v_{2} t_{1}} \otimes b_{11}+b_{10} \otimes \widetilde{v_{2}^{2} t_{1}^{3}}+v_{1} w \bmod$ $\left(3, v_{1}^{3}\right)$ for some cochain w. Sending this by d, we have $0 \equiv v_{1}^{2} b_{10} \otimes b_{11}-b_{10} \otimes$ $v_{1}^{2} b_{11}+v_{1} d(w) \bmod \left(3, v_{1}^{3}\right)$. Then $w \in H^{3,52} E(2)_{*} /\left(3, v_{1}^{2}\right)$, which is 0 since $H^{3,52} E(2)_{*} /\left(3, v_{1}\right)=\left\{v_{2} b_{11} \zeta_{2}\right\}$ by [6, Th. 5.8] and $d\left(v_{2} b_{11} \zeta_{2}\right) \not \equiv 0 \bmod \left(3, v_{1}^{2}\right)$ by [7, Lemma 3.3]. Therefore, we see that there is a cochain \bar{w} such that $d(\bar{w}) \equiv w$, and put $u^{\prime \prime}=u^{\prime}-v_{1} \bar{w}$ to obtain $d\left(u^{\prime \prime}\right) \equiv \widetilde{v_{2} t_{1}} \otimes b_{11}+b_{10} \otimes \widetilde{v_{2}^{2} t_{1}^{3}} \bmod$ $\left(3, v_{1}^{3}\right)$. There is also a cochain a such that $d(a) \equiv \widetilde{v_{2}^{2} t_{1}^{3}} \otimes b_{10}-b_{10} \otimes \widetilde{v_{2}^{2} t_{1}^{3}}$ $\bmod \left(3, v_{1}^{2}\right)$, and so we have the lemma by putting $u=u^{\prime \prime}+a$. q.e.d.

Lemma 3.8. There exists a cochain w such that

$$
d(w) \equiv \widetilde{v_{2} t_{1}} \otimes f_{0}-x^{\prime} \otimes b_{10} \quad \bmod \left(3, v_{1}^{3}\right)
$$

Here x^{\prime} denotes a cocycle that represents $\xi \bmod \left(3, v_{1}\right)$ and $t_{1} \otimes x^{\prime}$ is homologous to $t_{1} \otimes x \bmod \left(3, v_{1}^{3}\right)$.

Proof. This is shown in the same way as the above lemma. By the equation $h_{10} \psi_{0}=-\xi b_{10}$ in (3.1), we have a cochain w^{\prime} such that $d\left(w^{\prime}\right) \equiv v_{2} t_{1} \otimes$ $f_{0}-b_{10} \otimes x \bmod \left(3, v_{1}\right)$. Put $d\left(w^{\prime}\right) \equiv \widetilde{v_{2} t_{1}} \otimes f_{0}-b_{10} \otimes x+v_{1} a$ for a cochain a, and send this by d. Then we see that a is a cocycle of $\Omega^{4,{ }^{16}} E(2)_{*} /\left(3, v_{1}^{2}\right)$. Since we see that $H^{4,16} E(2)_{*} /\left(3, v_{1}^{2}\right)=\left\{h_{10} b_{10} \zeta_{2}\right\}$ by [7], $a=k t_{1} \otimes z \otimes b_{10}$ for some $k \in \boldsymbol{Z} / 3$. Furthermore, $b_{10} \otimes x$ is homologous to $x \otimes b_{10}$, which yields a cochain w such that $d(w) \equiv \widetilde{v_{2} t_{1}} \otimes f_{0}-\left(x-k v_{1} t_{1} \otimes z\right) \otimes b_{10}$. Now put $x^{\prime}=$ $x-k v_{1} t_{1} \otimes z$, and we have the lemma. q.e.d.

Lemma 3.9. In the cobar complex $\Omega^{*} E(2)_{*}$, there exists a cochain y such that

$$
d(y) \equiv t_{1} \otimes x-v_{1} v_{2}^{-1} f_{1}-v_{1} z \otimes x-k v_{1} v_{2}^{-2} t_{1} \otimes b_{11} \quad \bmod \left(3, v_{1}^{2}\right)
$$

for some $k \in \boldsymbol{Z} / 3$. Here f_{1} denotes a cocycle that represents ψ_{1}.
Proof. It is shown in [7, Lemma 6.4] that there exists a cochain Y_{0} such that $d\left(Y_{0}\right) \equiv t_{1} \otimes X+v_{1} v_{2}^{-3} \tau^{3} \otimes X+v_{1}^{2} v_{2}^{-1} t_{1}^{3} \otimes X \bmod \left(3, v_{1}^{3}\right) . \quad$ It is also shown that $x \equiv X+v_{1} v_{2}^{-1} Y_{1}+k v_{1} v_{2}^{-2} b_{11}$ for some $k \in \boldsymbol{Z} / 3$ in [7, Proof of Lemma 4.4.]. Take now y to be Y_{0}, and we obtain

$$
d(y) \equiv t_{1} \otimes\left(x-v_{1} v_{2}^{-1} Y_{1}-k v_{1} v_{2}^{-2} b_{11}\right)-v_{1} z \otimes X+v_{1} v_{2}^{-1} t_{2} \otimes X
$$

$\bmod \left(3, v_{1}^{2}\right)$. Since $f_{1}=t_{1} \otimes Y_{1}-t_{2} \otimes X$ by the proof of [7, Lemma 4.4], we have the result.
q.e.d.
4. The E_{2}-terms $H^{s} M_{0}^{2}$ for $s>3$.

Let $E(2,1)_{*}$ denote $\boldsymbol{Z} / 3\left[v_{1}, v_{2}^{ \pm 3}\right]$. In [7], $\boldsymbol{H}^{*} \boldsymbol{M}_{1}^{1}$ is given as the direct sum of three $E(2,1)_{*}$-modules A_{i} :

$$
H^{*} M_{1}^{1}=A_{0} \oplus A_{1} \oplus A_{2} .
$$

In order to describe the modules A_{i}, we use the following notation:

$$
\begin{aligned}
k(1)_{*} & =\boldsymbol{Z} / 3\left[v_{1}\right] \\
K(1)_{*} & =\boldsymbol{Z} / 3\left[v_{1}^{ \pm 1}\right] \\
P E & =\boldsymbol{Z} / 3\left[b_{10}\right] \otimes \Lambda\left(\zeta_{2}\right) \\
E(2, n)_{*} & =\boldsymbol{Z} / 3\left[v_{1}, v_{2}^{ \pm 3^{n}}\right] \\
F_{(h)} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{v_{2} / v_{1}, v_{2} h_{10} / v_{1}, v_{2}^{2} h_{11} / v_{1}, v_{2} b_{11} / v_{1}\right\} \\
F_{(t)} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{v_{2}^{-1} / v_{1}, v_{2} h_{10} / v_{1}^{2}, v_{2}^{2} h_{11} / v_{1}^{2}, v_{2}^{-1} b_{11} / v_{1}\right\} \\
F_{(h)}^{*} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{\xi / v_{1}, \psi_{0} / v_{1}, v_{2} \psi_{1} / v_{1}, b_{11} \xi / v_{1}\right\} \\
F_{(t)}^{*} & =\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]\left\{\xi / v_{1}^{2}, v_{2}^{-2} \psi_{0} / v_{1}, v_{2}^{-1} \psi_{1} / v_{1}, b_{11} \xi / v_{1}^{2}\right\} \\
F_{n} & =E(2, n+2)_{*}\left\{v_{2}^{ \pm 3^{n+1}} / v_{1}^{4 \cdot 3^{n}-1}, v_{2}^{3^{n+1}} h_{10} / v_{1}^{6 \cdot 3^{n}+1},\right. \\
& \left.v_{2}^{8 \cdot 3^{n}} h_{10} / v_{1}^{10 \cdot 3^{n}+1}, v_{2}^{3^{n}(5 \pm 3)+\left(3^{n}-1\right) / 2} \xi / v_{1}^{4 \cdot 3 n}\right\} .
\end{aligned}
$$

Then the modules A_{i} are given as follows:

$$
\begin{aligned}
& A_{0}=\left(K(1)_{*} / k(1)_{*}\right) \oplus \Lambda\left(h_{10}, \zeta_{2}\right) \\
& A_{1}=\sum_{n \geq 0} F_{n} \oplus \Lambda\left(\zeta_{2}\right) \\
& A_{2}=\left(F_{(h)} \oplus F_{(t)} \oplus F_{(h)}^{*} \oplus F_{(t)}^{*}\right) \oplus P E,
\end{aligned}
$$

Consider the exact sequence $H^{1,0} M_{1}^{1} \xrightarrow{\delta} H^{2,0} E(2)_{*} /\left(3, v_{1}^{3^{i}}\right) \rightarrow H^{2,-4 \cdot 3^{i}} M_{1}^{1}$ associated to the short exact sequence $0 \rightarrow E(2)_{*} /\left(3, v_{1}^{3^{i}}\right) \xrightarrow{1 / v_{1}^{3 i}} M_{1}^{1} \xrightarrow{v_{1}^{3^{i}}} M_{1}^{1}$ $\rightarrow 0$. Then the structure of $H^{*} M_{1}^{1}$ shows immediately the following:

Lemma 4.1. For each $i>0$, each element of $H^{2,0} E(2)_{*} /\left(3, v_{1}^{3 i}\right)$ is divisible by $v_{1}^{3 i-3^{i-1}}$.

Now we obtain the next proposition corresponding to [5, Lemma 2.6]. In fact, the proof of [5, Lemma 2.6] also works at the prime 3 by the above lemma.

Proposition 4.2. For each integer $i>0$, there exists a cocycle z_{i} of $\Omega^{1,0} E(2)_{*} /\left(3^{i+1}, v_{1}^{3^{i}}\right)$ such that $z_{i}=z \in \Omega^{1} K(2)_{*}$.

By virtue of this proposition, we abuse the notation z for a cocycle that represents ζ_{2} as we did in the previous papers for a prime >3.

Consider the connecting homomorphism $\delta: H^{s} M_{0}^{2} \rightarrow H^{s+1} M_{1}^{1}$ associated to the short exact sequence $0 \rightarrow M_{1}^{1} \xrightarrow{i} M_{0}^{2} \xrightarrow{3} M_{0}^{2} \rightarrow 0$.

Lemma 4.3. $\delta\left(v_{2}^{2} \xi / 3 v_{1}^{3}\right)=v_{2} \psi_{0} / v_{1}$.
Proof. In [7, Lemma 4.4], it is shown that there exists a cochain $X(2)$ such that $d(X(2)) \equiv v_{1}^{4} z^{3} \otimes X^{3}-v_{1}^{4} v_{2}^{-3} f_{1}^{3} \bmod \left(3, v_{1}^{5}\right)$. Since $H^{3,20} M_{2}^{0}=0$, the congruence holds $\bmod \left(3, v_{1}^{6}\right)$ if we replace $X(2)$ by a suitable cochain $x^{\prime \prime}$. Put now $d\left(x^{\prime \prime}\right) \equiv v_{1}^{4} z^{3} \otimes X^{3}-v_{1}^{4} v_{2}^{-3} f_{1}^{3}+3 A \bmod \left(9, v_{1}^{6}\right)$. Then $0 \equiv 3 v_{1}^{3} t_{1}$ $\otimes z^{3} \otimes X^{3}-3 v_{1}^{3} t_{1} \otimes v_{2}^{-3} f_{1}^{3}+3 d(A) \bmod \left(9, v_{1}^{4}\right)$. This implies that $A \in$ $H^{3,40} E(2)_{*} /\left(3, v_{1}^{3}\right)$, which is $\boldsymbol{Z} / 3\left\{v_{1}^{2} v_{2} \psi_{0}\right\}$ by [7]. Note that $3 v_{1}^{3} t_{1} \otimes z^{3} \otimes X^{3}$ and $v_{1}^{3} t_{1} \otimes v_{2}^{-3} f_{1}^{3}$ are homologous to zero and $v_{1}^{3} b_{11} \otimes X \bmod \left(9, v_{1}^{4}\right)$, respectively, by Lemma 3.9 and (3.1), and that $d\left(-v_{1}^{2} v_{2}\left(v_{2} f_{0}\right)\right) \equiv v_{1}^{3} v_{2} t_{1}^{3} \otimes$ $f_{0}+v_{1}^{3} b_{11} \otimes X \bmod \left(3, v_{1}^{4}\right)$ by [7, Lemma 4.3] whose right hand side is homologous to $-v_{1}^{3} b_{11} \otimes X$ by (3.1). Thus $d(A)=d\left(-v_{1}^{2} v_{2}^{2} f_{0}+\cdots\right)$, and we see that A is homologous to $-v_{1}^{2} v_{2}^{2} f_{0}$, and that $d\left(x^{\prime \prime}\right) \equiv-3 v_{1}^{2} v_{2}^{2} f_{0} \bmod \left(9, v_{1}^{3}\right)$. Since $x^{\prime \prime}$ and f_{0} represent $v_{2}^{2} \xi$ and $-v_{2}^{-1} \psi_{0}$, respectively, we have the lemma.
q.e.d.

Put

$$
G^{s}=\left(i_{*}\left(F_{(h)} \oplus F_{(h)}^{*}\right) \otimes E(2,1)_{*}\left[b_{10}\right] \otimes \Lambda\left(\zeta_{2}\right)\right)^{s} \subset H^{s} M_{0}^{2}
$$

for $i_{*}: H^{*} M_{1}^{1} \rightarrow H^{*} M_{0}^{2}$ given by $i_{*}(x)=x / 3$.
Lemma 4.4. For the connecting homomorphism $\delta: H^{s} M_{0}^{2} \rightarrow H^{s+1} M_{1}^{1}, \delta(x)$ for a generator x of G^{s} is obtained by the following equations:

$$
\begin{aligned}
\delta\left(v_{2} / 3 v_{1}\right) & =-v_{2} h_{10} / v_{1}^{2}, \\
\delta\left(v_{2} h_{10} / 3 v_{1}\right) & =v_{2}^{-1} b_{11} / v_{1}+v_{2} h_{10} \zeta_{2} / v_{1}, \\
\delta\left(v_{2}^{2} h_{11} / 3 v_{1}\right) & =v_{2}^{2} b_{10} / v_{1}+v_{2}^{2} h_{11} \zeta_{2} / v_{1}, \\
\delta\left(v_{2} b_{11} / 3 v_{1}\right) & =v_{2}^{2} h_{11} b_{10} / v_{1}^{2} ; \\
\delta\left(v_{2}\left(v_{2}^{-1} \psi_{0}\right) / 3 v_{1}\right) & =\xi b_{10} / v_{1}^{2} \pm v_{2}\left(v_{2}^{-1} \psi_{0}\right) \zeta_{2} / v_{1}, \\
\delta\left(\xi / 3 v_{1}\right) & =v_{2}^{-1} \psi_{1} / v_{1}+(1 \pm 1) \xi \zeta_{2} / v_{1}+k v_{2}^{-1} h_{11} b_{10} / v_{1} \\
\delta\left(b_{11} \xi / 3 v_{1}\right) & =v_{2}^{2}\left(v_{2}^{-1} \psi_{0}\right) b_{10} / v_{1}+(1 \pm 1) b_{11} \xi \zeta_{2} / v_{1}+k v_{2} h_{10} b_{10}^{2} / v_{1} \\
\delta\left(v_{2} \psi_{1} / 3 v_{1}\right) & =b_{11} \xi / v_{1}^{2} \pm v_{2} \psi_{1} \zeta_{2} / v_{1} .
\end{aligned}
$$

Proof. Note that $v_{2} h_{10}$ is represented by a cochain $\widetilde{v_{2} t_{1}}=\eta_{R}\left(v_{2}\right) t_{1}-v_{1} t_{2}$ of Lemma 3.7. In the cobar complex $\Omega^{*} E(2)_{*} /\left(9, v_{1}^{3}\right)$, we compute

$$
\begin{align*}
d\left(v_{1}^{2} v_{2}\right)= & 6 v_{1} t_{1} \eta_{R}\left(v_{2}\right)+3 v_{1}^{2} t_{2}=6 v_{1} \widetilde{v_{2} t_{1}} ; \\
d\left(v_{1}^{2} v_{2} t_{1}\right)= & 6 v_{1} t_{1} \otimes v_{2} t_{1}+3 v_{1}^{2} t_{2} \otimes t_{1} \\
= & \underline{6 v_{1} v_{2} t_{1} \otimes t_{1}}+\underline{6 v_{1}^{2} \tau \otimes t_{1}} \\
d\left(3 v_{1} v_{2} t_{1}^{2}\right)= & \underline{3 v_{1}^{2} t_{1}^{3} \otimes t_{1}^{2}}-\underline{6 v_{1} v_{2} t_{1} \otimes t_{1}} \\
d\left(3 v_{1}^{2} t_{1} \tau\right)= & -3 v_{1}^{2}\left(\underline{t_{1}^{4} \otimes t_{1}}+\underline{t_{1}^{3} \otimes t_{1}^{2}}+t_{1} \otimes \tau+\underline{\tau \otimes t_{1}}\right) \\
d\left(-3 v_{1}^{2} v_{2}^{-2} t_{3}\right)= & 3 v_{1}^{2} v_{2}^{-2}\left(t_{1} \otimes t_{2}^{3}+\underline{t_{2} \otimes t_{1}^{9}}+v_{2} b_{11}\right) ; \tag{4.5}\\
d\left(v_{1}^{2} v_{2}^{2} t_{1}^{3}\right)= & 6 v_{1} t_{1} \otimes v_{2}^{2} t_{1}^{3}+6 v_{1}^{2} v_{2} t_{2} \otimes t_{1}^{3}+3 v_{1}^{2} v_{2}^{2} b_{10} \\
= & \underline{6 v_{1} v_{2}^{2} t_{1} \otimes t_{1}^{3}}+\underline{12 v_{1}^{2} v_{2} t_{1}^{4} \otimes t_{1}^{3}} \\
& +\underline{6 v_{1}^{2} v_{2} t_{2} \otimes t_{1}^{3}}+\underline{3 v_{1}^{2} v_{2}^{2} b_{10}} \\
d\left(6 v_{1} v_{2}^{2} t_{2}\right)= & \underline{12 v_{1}^{2} v_{2} t_{1}^{3} \otimes t_{2}}-\underline{6 v_{1} v_{2}^{2} t_{1} \otimes t_{1}^{3}}-\underline{6 v_{1}^{2} v_{2}^{2} b_{10}} 6 \\
d\left(3 v_{1}^{2} v_{2}^{-7} t_{3}^{3}\right)= & -3 v_{1}^{2} v_{2}^{-7}\left(t_{1}^{3} \otimes t_{2}^{9}+t_{2}^{3} \otimes t_{1}^{27}+v_{2}^{3} b_{11}^{3}\right) \\
= & -3 v_{1}^{2} v_{2}^{-7}\left(\underline{v_{2}^{8} t_{1}^{3} \otimes t_{2}}+\underline{v_{2}^{-6} t_{2}^{3} \otimes t_{1}^{3}}+\underline{\left.v_{2}^{9} b_{10}\right)} .\right.
\end{align*}
$$

The underlined terms with the same number sum up to zero except for the terms numbered 6 and 7 . The terms numbered 6 and 7 sum up to $3 v_{1}^{2} v_{2}^{2} b_{10}$ and $6 v_{1}^{2} v_{2}^{2} \zeta_{2} \otimes t_{1}^{3}$, respectively. These imply the first three equations. In fact, $\delta\left(\left[a / 3 v_{1}\right]\right)=\left[\left(i_{*}\right)^{-1} d\left(v_{1}^{2} a\right) / 9 v_{1}^{3}\right]$, where $[a]$ denotes a homology class represented by a. Since $\delta\left(b_{11} a\right)=b_{11} \delta(a)$, the first equation gives $\delta\left(v_{2} b_{11} / 3 v_{1}\right)=-v_{2} h_{10} b_{11} /$ v_{1}^{2}, which equals $v_{2}^{2} h_{11} b_{10} / v_{1}^{2}$ by Lemma 3.7. Thus we have the fourth equation.

By Lemma 3.6 and the first equation in (4.5), we compute

$$
\begin{equation*}
d\left(v_{1}^{2} v_{2} f_{0}\right) \equiv 6 v_{1} \widetilde{v_{2} t_{1}} \otimes f_{0} \pm 3 v_{1}^{2} v_{2} f_{0} \otimes z \quad \bmod \left(9, v_{1}^{3}\right) \tag{4.6}
\end{equation*}
$$

Now by Lemma 3.8, we have the fifth equation. Multiplying h_{10} to the fifth equation yields $\delta\left(h_{10} \psi_{0} / 3 v_{1}\right)=h_{10} \xi b_{10} / v_{1}^{2}+h_{10} \psi_{0} \zeta_{2} / v_{1}$. Lemma 3.9 says that $h_{10} \xi=v_{1} v_{2}^{-1} \psi_{1}+v_{1} \xi \zeta_{2}+k v_{1} v_{2}^{-2} h_{10} b_{11}$ for some $k \in \boldsymbol{Z} / 3$. Since $h_{10} \psi_{0}=-\xi b_{10}$, we have the sixth equation. The seventh follows immediately from the product of b_{11} and the sixth equation. The multiplication of b_{10} and the fifth equation gives the last one by the relations (3.1). Here note that $b_{10}^{2}=-v_{2}^{-3} b_{11}^{2}$ holds in $H^{4} E(2)_{*} /\left(3, v_{1}^{2}\right)$.
q.e.d.

Proposition 4.7. $H^{s} M_{0}^{2}=G^{s}$ for $s=4,5$. In other words, $H^{4} M_{0}^{2}$ and $H^{5} M_{0}^{2}$ are $\boldsymbol{Z} / 3\left[v_{2}^{ \pm 3}\right]$-modules generated by

$$
G^{4}: \begin{gathered}
v_{2} b_{10}^{2} / 3 v_{1}, v_{2} h_{10} b_{10} \zeta_{2} / 3 v_{1}, v_{2}^{2} h_{11} b_{10} \zeta_{2} / 3 v_{1}, v_{2} b_{11} b_{10} / 3 v_{1} ; \\
\psi_{0} \zeta_{2} / 3 v_{1}, \xi b_{10} / 3 v_{1}, b_{11} \xi / 3 v_{1}, v_{2} \psi_{1} \zeta_{2} / 3 v_{1},
\end{gathered}
$$

and

$$
G^{5}: \begin{gathered}
v_{2} b_{10}^{2} \zeta_{1} / 3 v_{1}, v_{2} h_{10} b_{10}^{2} / 3 v_{1}, v_{2}^{2} h_{11} b_{10}^{2} / 3 v_{1}, v_{2} b_{11} b_{10} \zeta_{2} / 3 v_{1} ; \\
\psi_{0} b_{10} / 3 v_{1}, \xi b_{10} \zeta_{2} / 3 v_{1}, b_{11} \xi \zeta_{2} / 3 v_{1}, v_{2} \psi_{1} b_{10} / 3 v_{1}
\end{gathered}
$$

respectively.
Proof. Put $B^{s}=G^{s}$. Then there is a canonical map $f^{s}: B^{s} \rightarrow H^{s} M_{0}^{2}$ sitting in the commutative diagram

Lemma 4.4 implies that the δ-images of the generators of B^{s} are linearly independent. Therefore we see that the above sequence is exact, and Lemma 2.2 shows that f^{s} is an isomorphism.
q.e.d.
5. On the E_{2}-terms $H^{s} M_{0}^{2}$ for $s \leq 3$

We write down the submodules $A_{2}^{s} \subset H^{s} M_{1}^{1}$:

$$
\begin{gathered}
A_{2}^{0}=\boldsymbol{Z} / 3\left\{v_{2} / v_{1}, v_{2}^{-1} / v_{1}\right\} \\
A_{2}^{1}=\boldsymbol{Z} / 3\left\{v_{2} h_{10} / v_{1}^{2}, v_{2} h_{10} / v_{1}, v_{2}^{2} h_{11} / v_{1}^{2}, v_{2}^{2} h_{11} / v_{1}, v_{2} \zeta_{2} / v_{1}, v_{2}^{-1} \zeta_{2} / v_{1}\right\} \\
A_{2}^{2}=\boldsymbol{Z} / 3\left\{v_{2} b_{11} / v_{1}, v_{2}^{-1} b_{11} / v_{1}, v_{2} h_{10} \zeta_{2} / v_{1}^{2}, v_{2} h_{10} \zeta_{2} / v_{1},\right. \\
\\
\left.v_{2}^{2} h_{11} \zeta_{2} / v_{1}^{2}, v_{2}^{2} h_{11} \zeta_{2} / v_{1}, v_{2} b_{10} / v_{1}, v_{2}^{-1} b_{10} / v_{1}, \xi / v_{1}^{2}, \xi / v_{1}\right\} \\
A_{2}^{3}=\boldsymbol{Z} / 3\left\{v_{2} b_{11} \zeta_{2} / v_{1}, v_{2}^{-1} b_{11} \zeta_{2} / v_{1}, v_{2} h_{10} b_{10} / v_{1}^{2}, v_{2} h_{10} b_{10} / v_{1},\right. \\
v_{2}^{2} h_{11} b_{10} / v_{1}^{2}, v_{2}^{2} h_{11} b_{10} / v_{1}, v_{2} b_{10} \zeta_{2} / v_{1}, v_{2}^{-1} b_{10} \zeta_{2} / v_{1}, \\
\\
\left.\psi_{0} / v_{1}, v_{2} \psi_{0} / v_{1}, v_{2} \psi_{1} / v_{1}, v_{2}^{-1} \psi_{1} / v_{1}, \xi \zeta_{2} / v_{1}^{2}, \xi \zeta_{2} / v_{1}\right\} .
\end{gathered}
$$

Now consider the map $d_{1}=\delta i_{*}: H^{s} M_{1}^{1} \rightarrow H^{s+1} M_{1}^{1}$. Then [1, Prop. 6.9] shows

$$
\begin{equation*}
d_{1}\left(v_{2}^{3} / v_{1}^{3}\right)=v_{2}^{2} h_{11} / v_{1}^{2} . \tag{5.1}
\end{equation*}
$$

Here we compute:

Lemma 5.2. The Bockstein differential $d_{1}=\delta i_{*}$ acts up to sign as follows:

$$
\begin{aligned}
d_{1}\left(v_{2} / v_{1}\right) & =v_{2} h_{10} / v_{1}^{2} \\
d_{1}\left(v_{2}^{-1} / v_{1}\right) & =v_{2}^{-1} \zeta_{2} / v_{1} ; \\
d_{1}\left(v_{2} h_{10} / v_{1}\right) & =v_{2}^{-1} b_{11} / v_{1}+v_{2} h_{10} \zeta_{2} / v_{1}, \\
d_{1}\left(v_{2}^{2} h_{11} / v_{1}\right) & =v_{2}^{-1} b_{10} / v_{1}+v_{2}^{-1} h_{11} \zeta_{2} / v_{1}, \\
d_{1}\left(v_{2} \zeta_{2} / v_{1}\right) & =v_{2} h_{10} \zeta_{2} / v_{1}^{2} ; \\
d_{1}\left(v_{2} b_{11} / v_{1}\right) & =v_{2}^{2} h_{11} b_{10} / v_{1}^{2}, \\
d_{1}\left(v_{2} h_{10} \zeta_{2} / v_{1}\right) & =v_{2}^{-1} b_{11} \zeta_{2} / v_{1}^{2} \\
d_{1}\left(v_{2}^{2} h_{11} \zeta_{2} / v_{1}\right) & =v_{2}^{2} b_{10} \zeta_{2} / v_{1}, \\
d_{1}\left(v_{2} b_{10} / v_{1}\right) & =v_{2} h_{10} b_{10} / v_{1}^{2} \\
d_{1}\left(\xi / v_{1}^{2}\right) & =\xi \zeta_{2} / v_{1}^{2}, \\
d_{1}\left(\xi / v_{1}\right) & =v_{2}^{-1} \psi_{1} / v_{1}+\xi \zeta_{2} / v_{1} ; \\
d_{1}\left(v_{2} b_{11} \zeta_{2} / v_{1}\right) & =v_{2}^{2} h_{11} b_{10} \zeta_{2} / v_{1}^{2}, \\
d_{1}\left(v_{2} h_{10} b_{10} / v_{1}\right) & =v_{2}^{-1} b_{11} b_{10} / v_{1}^{2}+v_{2} h_{10} b_{10} \zeta_{2} / v_{1} \\
d_{1}\left(v_{2}^{2} h_{11} b_{10} / v_{1}\right) & =v_{2}^{-1} b_{10}^{2} / v_{1}+v_{2}^{-1} h_{11} b_{10} \zeta_{2} / v_{1}, \\
d_{1}\left(v_{2} b_{10} \zeta_{2} / v_{1}\right) & =v_{2} h_{10} b_{10} \zeta_{2} / v_{1}^{2} ; \\
d_{1}\left(\xi \zeta_{2} / v_{1}\right) & =v_{2}^{-1} \psi_{1} \zeta_{2} / v_{1}, \\
d_{1}\left(\psi_{0} / v_{1}\right) & =\xi b_{10} / v_{1}^{2}+\psi_{0} \zeta_{2} / v_{1}, \\
d_{1}\left(v_{2} \psi_{1} / v_{1}\right) & =b_{11} \xi / v_{1}^{2} .
\end{aligned}
$$

The other elements of A_{2} missing in the left hand sides are in the image of d_{1}.
Proof. Lemma 4.3 and (5.1) show that $v_{2}^{-2} \psi_{0} / v_{1}$ and $v_{2}^{2} h_{11} / v_{1}^{2}$ are in the image of d_{1}. The other parts follow from Lemma 4.4, except for d_{1} on v_{2}^{-1} / v_{1} and ξ / v_{1}^{2}.

For the exceptional cases, consider the diagram

If we have a relation $\delta(\alpha / 3)=\beta b_{10}+\alpha \zeta_{2}$ in Lemma 4.4, then we see that $\beta b_{10} / 3=-\alpha \zeta_{2} / 3$ in $H^{*} M_{0}^{2}$, since $i_{*}(x)=x / 3$. Therefore, we compute

$$
b_{10} \delta(\beta / 3)=\delta\left(\beta b_{10} / 3\right)=-\delta\left(\alpha \zeta_{2} / 3\right)=-\delta(\alpha / 3) \zeta_{2}=-\beta b_{10} \zeta_{2}
$$

and so we obtain

$$
\delta(\beta / 3)=-\beta \zeta_{2}
$$

up to Ker b_{10}. Note that b_{10} acts monomorphically on A_{2}. Now take β to be the exceptional cases, and we have all d_{1}.

Hence, we have

Proposition 5.3. $H^{s} M_{0}^{2}$ contains $E(2,1)_{*} /\left(3, v_{1}\right)$-module as follows:

$$
\begin{aligned}
& H^{0} M_{0}^{2} \supset E(2,1)_{*}\left\{v_{2}^{ \pm 1} / 3 v_{1}\right\} \\
& H^{1} M_{0}^{2} \supset E(2,1)_{*}\left\{v_{2} h_{10} / 3 v_{1}, v_{2}^{2} h_{11} / 3 v_{1}, v_{2} \zeta_{2} / 3 v_{1}\right\} \\
& H^{2} M_{0}^{2} \supset E(2,1)_{*}\left\{v_{2} b_{11} / 3 v_{1}, v_{2} h_{10} \zeta_{2} / 3 v_{1}, v_{2}^{2} h_{11} \zeta_{2} / 3 v_{1}, v_{2} b_{10} / 3 v_{1}, \xi / 3 v_{1}^{2}, \xi / 3 v_{1}\right\} \\
& H^{3} M_{0}^{2} \supset E(2,1)_{*}\left\{v_{2} b_{11} \zeta_{2} / 3 v_{1}, v_{2} h_{10} b_{10} / 3 v_{1}, v_{2}^{2} h_{11} b_{10} / 3 v_{1}, v_{2} b_{10} \zeta_{2} / 3 v_{1}\right. \\
&\left.\xi \zeta_{2} / 3 v_{1}, \psi_{0} / 3 v_{1}, v_{2} \psi_{1} / 3 v_{1}\right\} .
\end{aligned}
$$

6. The Adams-Novikov differentials

Now consider spectra defined by cofiber sequences:

$$
\begin{equation*}
S^{0} \rightarrow p^{-1} S^{0} \rightarrow N^{1}, \quad N^{1} \rightarrow L_{1} N^{1} \rightarrow N^{2}, \quad V(0) \rightarrow v_{1}^{-1} V(0) \rightarrow W \tag{6.1}
\end{equation*}
$$ and $M^{2}=L_{2} N^{2}$. The Adams-Novikov differentials on $\pi_{*}\left(L_{2} W\right)$ is determined in [7]. Let $l: L_{2} W \rightarrow M^{2}$ denote the canonical map that induces $i: M_{1}^{1} \rightarrow M_{0}^{2}$. Suppose that $d_{r}(x)=y$ in the E_{r}-term for $L_{2} W$. Then $d_{r}(x / 3)=d_{r}\left(i_{*} x\right)=$ $i_{*} y=y / 3$. In this way, we determine the differentials except for $d_{9}\left(v_{2}^{-1} / 3 v_{1}\right)$ and $d_{5}\left(v_{2}^{3 t} \xi / 3 v_{1}^{2}\right)$.

Lemma 6.2. The Adams-Novikov differential d_{r} is given (up to sign) by

$$
\begin{gathered}
d_{r}\left(v_{2} / 3 v_{1}\right)=0, \quad d_{5}\left(v_{2}^{4} / 3 v_{1}\right)=v_{2}^{2} h_{11} b_{10}^{2} / 3 v_{1}, \quad d_{5}\left(v_{2}^{7} / 3 v_{1}\right)=v_{2}^{5} h_{11} b_{10}^{2} / 3 v_{1} \\
d_{r}\left(v_{2}^{2} / 3 v_{1}\right)=0, \quad d_{r}\left(v_{2}^{5} / 3 v_{1}\right)=0, \quad d_{9}\left(v_{2}^{-1} / 3 v_{1}\right)=v_{2}^{-5} b_{11} b_{10}^{3} 5_{2} / 3 v_{1}, \\
d_{r}\left(v_{2} h_{10} / 3 v_{1}\right)=0, \quad d_{9}\left(v_{2}^{4} h_{10} / 3 v_{1}\right)=v_{2} b_{10}^{5} / 3 v_{1}, \quad d_{r}\left(v_{2}^{7} h_{10} / 3 v_{1}\right)=0 \\
d_{r}\left(v_{2}^{2} h_{11} / 3 v_{1}\right)=0, \quad d_{r}\left(v_{2}^{5} h_{11} / 3 v_{1}\right)=0, \quad d_{9}\left(v_{2}^{8} h_{11} / 3 v_{1}\right)=v_{2}^{4} b_{11} b_{10}^{4} / 3 v_{1}, \\
d_{5}\left(v_{2} b_{11} / 3 v_{1}\right)=v_{2} h_{10} b_{10}^{3} / 3 v_{1}, \quad d_{r}\left(v_{2}^{4} b_{11} / 3 v_{1}\right)=0,
\end{gathered}
$$

$$
\begin{gathered}
d_{5}\left(v_{2}^{7} b_{11} / 3 v_{1}\right)=v_{2}^{7} h_{10} b_{10}^{3} / 3 v_{1}, \quad d_{5}\left(\xi / 3 v_{1}^{2}\right)=v_{2}^{-3} b_{11} \xi b_{10} \zeta_{2} / 3 v_{1}, \\
d_{r}\left(v_{2}^{3} \xi / 3 v_{1}^{2}\right)=0, \quad d_{5}\left(v_{2}^{6} \xi / 3 v_{1}^{2}\right)=v_{2}^{3} b_{11} \xi b_{10} \zeta_{2} / 3 v_{1}, \\
d_{r}\left(\xi / 3 v_{1}\right)=0, \quad d_{r}\left(v_{2}^{3} \xi / 3 v_{1}\right)=0, \quad d_{9}\left(v_{2}^{6} \xi / 3 v_{1}\right)=v_{2}^{3} \psi_{0} b_{10}^{4} / 3 v_{1}, \\
d_{5}\left(\psi_{0} / 3 v_{1}\right)=v_{2}^{-3} b_{11} \xi b_{10}^{2} / 3 v_{1}, \quad d_{r}\left(v_{2}^{3} \psi_{0}\right)=0, \quad d_{5}\left(v_{2}^{6} \psi_{0} / 3 v_{1}\right)=v_{2}^{3} b_{11} \xi b_{10}^{2} / 3 v_{1}, \\
d_{5}\left(v_{2} \psi_{1} / 3 v_{1}\right)=\xi b_{10}^{3} / 3 v_{1}, \quad d_{5}\left(v_{2}^{4} \psi_{1} / 3 v_{1}\right)=v_{2}^{3} \xi b_{10}^{3} / 3 v_{1}, \quad d_{r}\left(v_{2}^{7} \psi_{1} / 3 v_{1}\right)=0 . \\
d_{9}\left(b_{11} \xi / 3 v_{1}\right)=v_{2}^{-2} \psi_{1} b_{10}^{5} / 3 v_{1}, \quad d_{r}\left(v_{2}^{3} b_{11} \xi / 3 v_{1}\right)=0, \quad d_{r}\left(v_{2}^{6} b_{11} \xi / 3 v_{1}\right)=0 .
\end{gathered}
$$

Proof. Here we show the exceptional cases. Lemma 4.4 shows

$$
v_{2}^{-1} b_{10} / 3 v_{1}=-v_{2}^{-1} h_{11} \zeta_{2} / 3 v_{1} \quad \text { and } \quad v_{2}^{3 t} \xi b_{10} / 3 v_{1}^{2}= \pm v_{2}^{3 t} \psi_{0} \zeta_{2} / 3 v_{1}
$$

Now we compute

$$
b_{10} d_{9}\left(v_{2}^{-1} / 3 v_{1}\right)=d_{9}\left(v_{2}^{-1} b_{10} / 3 v_{1}\right)=-d_{9}\left(v_{2}^{-1} h_{11} \zeta_{2} / 3 v_{1}\right)=v_{2}^{-5} b_{11} b_{10}^{4} \zeta_{2} / 3 v_{1}
$$

and we have $d_{9}\left(v_{2}^{-1} / 3 v_{1}\right)=v_{2}^{-5} b_{11} b_{10}^{3} / 3 v_{1}$ as desired. In the same way, we have the other case. q.e.d.

Now we display the chart of the Adams-Novikov spectral sequence:

Some of survivors are killed by other differentials derived from [7]:

$$
\begin{gathered}
d_{5}\left(v_{2}^{9 t+3} / 3 v_{1}^{3}\right)=v_{2}^{9 t+1} h_{10} b_{10}^{2} / 3 v_{1} \\
d_{5}\left(v_{2}^{9 t-1} h_{11} / 9 v_{1}^{2}\right)=v_{2}^{9 t-2} h_{10} b_{10}^{2} \zeta_{2} / 3 v_{1},
\end{gathered}
$$

$$
\begin{align*}
& d_{5}\left(v_{2}^{3+2} t+3^{n+1} h_{10} / 3 v_{1}^{2 \cdot 3^{n+1}+1}\right)= \pm v_{2}^{3^{n+2} t+3\left(3^{n}-1\right) / 2} \xi b_{10}^{2} / 3 v_{1} \quad(n \geq 0) \tag{6.3}\\
& d_{5}\left(v_{2}^{3 n+2} t+8 \cdot 3^{n} h_{10} / 3 v_{1}^{10 \cdot 3^{n}+1}\right)=-v_{2}^{3^{n+2} t+5 \cdot 3^{n}+3\left(3^{n-1}-1\right) / 2} \xi b_{10}^{2} / 3 v_{1} \quad(n>1)
\end{align*}
$$

This shows that,
Theorem 6.4. The E_{∞}-term of $\pi_{*}\left(M^{2}\right)$ contains the module $\tilde{G} \oplus \tilde{G}^{*} \oplus$ $\widetilde{G Z} \oplus \widetilde{G Z}{ }^{*}$. Here $E(2,1)_{*}$-modules are given as follows:

$$
\begin{aligned}
\tilde{G}= & B_{5}(2,2)_{*}\left\{v_{2} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{4} b_{11} / 3 v_{1}\right\} \\
& \oplus B_{3}(2,2)_{*}\left\{v_{2}^{7} h_{10} / 3 v_{1}\right\} \\
& \oplus B_{2}(2,2)_{*}\left\{v_{2} h_{10} / 3 v_{1}, v_{2}^{2} h_{11} / 3 v_{1}, v_{2}^{5} h_{11} / 3 v_{1}\right\} \\
\tilde{G}^{*}= & B_{5}(2,2)_{*}\left\{v_{2}^{7} \psi_{1} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{3} \psi_{0} / 3 v_{1}\right\} \\
& \oplus B_{2}(2,2)_{*}\left\{\xi / 3 v_{1}, v_{2}^{3} b_{11} \xi / 3 v_{1}, v_{2}^{6} b_{11} \xi / 3 v_{1}\right\} \\
& \oplus \sum_{n \geq 1}\left(B_{3}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi / 3 v_{1} \mid u \in \boldsymbol{Z}-I(n)\right\}\right. \\
& \left.\oplus B_{2}(2, n+2)_{*}\left\{v_{2}^{9+3} \xi / 3 v_{1} \mid u \in I(n)\right\}\right),
\end{aligned}
$$

$$
\widetilde{G Z}=B_{5}(2,2)_{*}\left\{v_{2} \zeta_{2} / 3 v_{1}\right\}
$$

$$
\oplus B_{3}(2,2)_{*}\left\{v_{2}^{4} b_{11} \zeta_{2} / 3 v_{1}\right\}
$$

$$
\oplus B_{2}(2,2)_{*}\left\{v_{2} h_{10} \zeta_{2} / 3 v_{1}, v_{2}^{2} h_{11} \zeta_{2} / 3 v_{1}, v_{2}^{5} h_{11} \zeta_{2} / 3 v_{1}, v_{2}^{7} h_{10} \zeta_{2} / 3 v_{1}\right\}
$$

$$
\widetilde{G Z}^{*}=B_{5}(2,2)_{*}\left\{v_{2}^{7} \psi_{1} \zeta_{2} / 3 v_{1}\right\} \oplus B_{4}(2,2)_{*}\left\{v_{2}^{3} \psi_{0} \zeta_{2} / 3 v_{1}\right\}
$$

$$
\oplus B_{2}(2,2)_{*}\left\{\xi \zeta_{2} / 3 v_{1}\right\}
$$

$\oplus B_{1}(2,2)_{*}\left\{v_{2}^{3} b_{11} \xi \zeta_{2} / 3 v_{1}, v_{2}^{6} b_{11} \xi \zeta_{2} / 3 v_{1}\right\}$
$\oplus \sum_{n \geq 1}\left(B_{3}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi \zeta_{2} / 3 v_{1} \mid u \in \boldsymbol{Z}-I(n)\right\}\right.$

$$
\left.\oplus B_{2}(2, n+2)_{*}\left\{v_{2}^{9 u+3} \xi \zeta_{2} / 3 v_{1} \mid u \in I(n)\right\}\right),
$$

where $B_{k}(2, n)_{*}=(\boldsymbol{Z} / 3)\left[v_{2}^{3^{n}}, b_{10}\right] /\left(b_{10}^{k}\right)$ and $I(n)$ are given in the introduction.
Proof. Suppose that $d_{r}(x)=y \neq 0$ in the Adams-Novikov spectral sequence for $\pi_{*}\left(M^{2}\right)$. Then y is in the image of $i_{*}: H^{*} M_{1}^{1} \rightarrow H^{*} M_{0}^{2}$, since y has filtration ≥ 5. Lemma 5.2 shows that $\delta(y) \neq 0$ for the connecting homomorphism $\delta: H^{*} M_{0}^{2} \rightarrow H^{*} M_{1}^{1}$, and so we have $\delta(x) \neq 0$ and $d_{r}(\delta(x))=$ $\delta(y)$ in the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} W\right)$. Observing the differentials given in [7] with Lemma 4.4, we see that there is no more new differentials, and obtain the theorem.
q.e.d.

7. Application to β-elements

In [1], $H^{0} M_{0}^{2}$ is determined and we see that

$$
v_{2}^{s} / 3^{i+1} v_{1}^{j} \in H^{0} M_{0}^{2} \quad \text { if and only if }(s, j, i+1) \in \boldsymbol{B}
$$

Consider the universal Greek letter map $\eta=\delta^{\prime} \delta: H^{0} M_{0}^{2} \rightarrow H^{2} E(2)_{*}$, where $\delta: H^{0} M_{0}^{2} \rightarrow H^{1} N_{0}^{1}$ and $\delta^{\prime}: H^{1} N_{0}^{1} \rightarrow H^{2} E(2)_{*}$ are the connecting homomorphisms associated to the short exact sequences $0 \rightarrow N_{0}^{1} \rightarrow M_{0}^{1} \rightarrow M_{0}^{2} \rightarrow 0$ and $0 \rightarrow E(2)_{*} \rightarrow M_{0}^{0} \rightarrow N_{0}^{1} \rightarrow 0$, respectively. Then the β-elements are defined by

$$
\beta_{s / j, i+1}=\eta\left(v_{2}^{s} / 3^{i+1} v_{1}^{j}\right)
$$

We obtain the following immediately.
Lemma 7.1. $\operatorname{Mod}\left(3, v_{1}\right), \quad \beta_{1} \equiv b_{10}, \beta_{2} \equiv v_{2} h_{11} \zeta_{2}$ and $\beta_{6 / 3} \equiv v_{2}^{3} b_{11}$ in the E_{2}-term $E_{2}\left(S^{0}\right)$.

Furthermore, note that $\beta_{1}^{\prime}=h_{11} \in E_{2}(V(0))$ and $\alpha_{1}=h_{10} \in E_{2}\left(S^{0}\right)$. The generators of \tilde{G} then yields the following elements:

$$
\begin{gathered}
\eta\left(v_{2}^{9 t+1} / 3 v_{1}\right)=\beta_{9 t+1}, \quad \eta\left(v_{2}^{9 t+4} b_{11} / 3 v_{1}\right)=\beta_{9 t+1} \beta_{6 / 3}, \\
\eta\left(v_{2}^{9 t+7} h_{10} / 3 v_{1}\right)=\beta_{9 t+7} \alpha_{1}, \quad \eta\left(v_{2}^{9 t+1} h_{10} / 3 v_{1}\right)=\beta_{9 t+1} \alpha_{1}, \\
\eta\left(v_{2}^{9 t+2} h_{11} / 3 v_{1}\right)=\left[\beta_{9 t+2} \beta_{1}^{\prime}\right], \\
\eta\left(v_{2}^{9 t+5} h_{11} / 3 v_{1}\right)=\left[\beta_{9 t+5} \beta_{1}^{\prime}\right] .
\end{gathered}
$$

Now we prove the theorems in the introduction.
Proof of Theorem C. Consider the long exact sequences

$$
\cdots \rightarrow \pi_{*}\left(L_{0} S^{0}\right) \rightarrow \pi_{*}\left(L_{2} N^{1}\right) \rightarrow \pi_{*+1}\left(L_{2} S^{0}\right) \rightarrow \cdots
$$

and

$$
\cdots \rightarrow \pi_{*}\left(L_{1} N^{1}\right) \rightarrow \pi_{*}\left(M^{2}\right) \rightarrow \pi_{*+1}\left(L_{2} N^{1}\right) \rightarrow \cdots
$$

associated to the cofiber sequences of (6.1). Note that $\pi_{*}\left(L_{0} S^{0}\right)=\boldsymbol{Q}$ and

$$
\pi_{*}\left(L_{1} N^{1}\right)=\boldsymbol{Q} / \boldsymbol{Z}_{(3)} \otimes \Lambda(y) \oplus A
$$

shown in [1], where A is the $\boldsymbol{Z}_{(3)}$-module generated by $v_{1}^{s p^{i}} / 3^{i+1}$ for $i \geq 0$ and $3 \nmid s \in Z$. Therefore, the module $\tilde{G} \oplus \tilde{G}^{*} \oplus \widetilde{G Z} \oplus \widetilde{G Z}^{*}$ given in Theorem 6.4 is isomorphically sent to $\pi_{*}\left(L_{2} S^{0}\right)$. Theorem C now follows. q.e.d.

Proof of Theorem A. Consider the localization map $\imath: S^{0} \rightarrow L_{2} S^{0}$. Since the induced map $t_{*}: \pi_{*}\left(S^{0}\right) \rightarrow \pi_{*}\left(L_{2} S^{0}\right)$ sends a β-element to the corresponding β-element, the non-triviality of products of β-elements in $\pi_{*}\left(S^{0}\right)$ is deduced from the one in $\pi_{*}\left(L_{2} S^{0}\right)$. The necessity follows immediately from

Theorem C except for β_{2}. For β_{2}, note that $\beta_{9 t+1} \beta_{2}=\left[\beta_{9 t+2} \beta_{1}^{\prime}\right] \zeta_{2} \in \eta(\widetilde{G Z})$ for the universal Greek letter map η. Thus the necessity for β_{2} is shown.

In Lemma 6.2, we have $d_{9}\left(v_{2}^{9 t+4} h_{10} / 3 v_{1}\right)=v_{2}^{9 t+1} b_{10}^{5} / 3 v_{1}$ and $d_{9}\left(v_{2}^{9 t+8} h_{11} / 3 v_{1}\right)$ $=v_{2}^{9 t+4} b_{11} b_{10}^{4} / 3 v_{1}$, which yield

$$
\begin{equation*}
d_{9}\left(\beta_{9 t+4} \alpha_{1}\right)=\beta_{1}^{5} \beta_{9 t+1} \quad \text { and } \quad d_{9}\left(\beta_{9 t+8} h_{11}\right)=\beta_{9 t+1} \beta_{6 / 3} \beta_{1}^{4} \tag{7.2}
\end{equation*}
$$

in the E_{9}-term $E_{9}^{*}\left(L_{2} S^{0}\right)$ as the image of the universal Greek letter map. In the same manner, the equation $d_{5}\left(v_{2}^{9 t+4} \zeta_{2} / 3 v_{1}\right)=v_{2}^{9 t+2} h_{11} \zeta_{2} b_{10}^{2} / 3 v_{1}$ in Lemma 6.2 yields

$$
\begin{equation*}
d_{5}\left(\beta_{9 t+4} \zeta_{2}\right)=\beta_{9 t+1} \beta_{2} \beta_{1}^{2} \tag{7.3}
\end{equation*}
$$

in the E_{9}-term $E_{5}^{*}\left(L_{2} S^{0}\right)$. If $t \geq 0$, then the equations (7.2) and (7.3) also hold in the Adams-Novikov spectral sequence for $\pi_{*}\left(S^{0}\right)$, since the elements appeared in (7.2) and (7.3) are also defined in $E_{2}\left(S^{0}\right)$. q.e.d.

Proof of Theorem E. In the proof of Theorem 6.4, we read off that the elements on the 0 -th line hit nothing except for the β-elements given by \boldsymbol{B}^{c}. Therefore, we obtain Theorem E.
q.e.d.

References

[1] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[2] S. Oka, Note on the β-family in stable homotopy of spheres at the prime 3, Mem. Fac. Sci. Kyushu Univ. 35 (1981), 367-373.
[3] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy groups of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
[5] K. Shimomura, Non-triviality of some products of β-elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349-353.
[6] K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum at the prime 3, Trans. Amer. Math. Soc., 349 (1997), 1821-1850.
[7] K. Shimomura, The homotopy groups of the L_{2}-localized mod 3 Moore spectrum, J. Math. Soc. Japan 51 (2000), 65-90.
[8] K. Shimomura and A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261289.
[9] L. Smith, On realizing complex cobordism modules, Amer. J. Math. 92 (1970), 793-856.
[10] H. Toda, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101-130.
Department of Mathematics,
Faculty of Science,
Kochi University,
Kochi, 780-8520, Japan

[^0]: 2000 Mathematics Subject Classification. 55Q45, 55Q51.
 Key words and phrases. Homotopy groups of spheres, L_{2}-localization, β-elements, AdamsNovikov spectral sequence.

