On the action of β_1 in the stable homotopy of spheres at the prime 3

Katsumi SHIMOMURA (Received May 12, 1999) (Revised September 20, 1999)

ABSTRACT. Let S^0 denote the sphere spectrum localized away from 3. The element β_1 is the generator of the homotopy group $\pi_{10}(S^0)$. Toda showed that $\beta_1^5 \neq 0$ and $\beta_1^6 = 0$. In this paper, we generalize his result and show that $\beta_1^4\beta_{9_{l+1}} \neq 0$ and $\beta_1^5\beta_{9_{l+1}} = 0$ for $\beta_{9_{l+1}} \in \pi_{144_{l+10}}(S^0)$ with $t \ge 0$. In particular, $\beta_1^4\beta_{10} \neq 0$ and $\beta_1^5\beta_{10} = 0$, where the existence of β_{10} was shown by Oka. This is proved by determining subgroups of $\pi_*(L_2S^0)$. Here L_2 denotes the Bousfield localization functor with respect to $v_2^{-1}BP$.

1. Introduction

Let p be a prime number and S^0 the sphere spectrum localized away from p. p. Let $E_r^*(X)$ denote the E_r -term of the Adams-Novikov spectral sequence converging to $\pi_*(X)$ for a spectrum X localized away from p. Miller, Ravenel and Wilson [1] introduced β -elements $\beta_{s/j,i+1}$ in $E_2^2(S^0)$ for $(s, j, i+1) \in \mathbf{B}^+$, where

$$B^{+} = \{(s, j, i+1) \in \mathbb{Z}^{3} | s = mp^{n}, n \ge 0, p \not \mid m \ge 1, j \ge 1, i \ge 0, \text{ subject to}$$

i) $j \le p^{n}$ if $m = 1$, ii) $p^{i} | j \le a_{n-i}$, and iii) $a_{n-i-1} < j$ if $p^{i+1} | j \}$

for integers a_k defined by $a_0 = 1$ and $a_k = p^k + p^{k-1} - 1$. Here we use the abbreviation $\beta_{s/j,1} = \beta_{s/j}$ and $\beta_{s/1,1} = \beta_s$.

Let V(1) denote the Toda-Smith spectrum, which is a cofiber of the Adams map $\alpha: \Sigma^{2p-2}V(0) \to V(0)$, where V(0) is the mod p Moore spectrum. Since there exists a map $\beta: \Sigma^{2p^2-2}V(1) \to V(1)$ which induces v_2 on *BP*-homology at a prime p > 3 by [9], we have homotopy elements $\beta_i \in \pi_{2t(p^2-1)-2p}(S^0)$ with t > 0. On the other hand, there is no such self map at the prime 3. However there are homotopy elements β_i for i = 1, 2, 3, 5, 6, 10 in this case due to Toda and Oka (*cf.* [2]). Besides, assuming the existence of the self map $B: \Sigma^{144}V(1) \to V(1)$ that induces v_2^9 on *BP*-homology, we see

²⁰⁰⁰ Mathematics Subject Classification. 55Q45, 55Q51.

Key words and phrases. Homotopy groups of spheres, L_2 -localization, β -elements, Adams-Novikov spectral sequence.

that there exists a family $\{\beta_{9t+i} | i = 0, 1, 2, 5, 6, t \ge 0\}$ in $\pi_*(S^0)$. The existence of *B* seems to be shown by Permaraju in his thesis. Furthermore, the existence of $\beta_{6/3} \in \pi_{82}(S^0)$ is shown by Ravenel [4].

In this paper, we obtain the following relations among β_{9t+1} , β_2 and $\beta_{6/3}$:

THEOREM A. Let t, i, j and k be non-negative integers. Then in the homotopy groups $\pi_*(S^0)$ of sphere spectrum localized away from 3,

$$\begin{split} \beta_{9t+1}\beta_1^i \neq 0 \in \pi_*(S^0) & \text{if and only if } i < 5, \\ \beta_{9t+1}\beta_2\beta_1^j \neq 0 \in \pi_*(S^0) & \text{if and only if } j < 2, \\ \beta_{9t+1}\beta_{6/3}\beta_1^k \neq 0 \in \pi_*(S^0) & \text{if and only if } k < 4. \end{split}$$

As is seen in [3, p. 624], we have a relation

 $uv\beta_s\beta_t = st\beta_u\beta_v$ for s+t = u+v

in the E_2 -term $E_2^4(S^0)$. This implies the following:

COROLLARY B. In the homotopy groups $\pi_*(S^0)$ localized away from 3,

$$\prod_{i=1}^{k} \beta_{9t_{i}+1} \neq 0 \quad if \text{ and only if } k < 6, \quad and$$
$$\left(\prod_{i=1}^{k} \beta_{9t_{i}+1}\right) \beta_{9t+2} \neq 0 \quad if \text{ and only if } k < 2,$$

for integers $t, t_i \ge 0$. In particular, $\beta_{9t+1}^k \ne 0$ if and only if k < 6.

REMARK. If the self-map *B* does not exist, the above theorems are valid only for the homotopy elements such as β_1 and β_{10} .

We prove Theorem A by determining subgroups of $\pi_*(L_2S^0)$, where L_2 : $\mathscr{S}_{(3)} \to \mathscr{S}_{(3)}$ denotes the Bousfield localization functor on the category $\mathscr{S}_{(3)}$ of spectra localized away from 3 with respect to the Johnson-Wilson spectrum E(2). In $\pi_*(L_2S^0)$, we have generalized β -elements $\beta_{s/j,i+1} \in E_2^2(L_2S^0)$ for $(s, j, i+1) \in \mathbf{B}$, where

$$\boldsymbol{B} = \{(s, j, i+1) \in \boldsymbol{Z}^3 \mid s = mp^n, n \ge 0, 3 \not \mid m \in \boldsymbol{Z}, j \ge 1, i \ge 0,$$

such that $3^{i} | j \le a_{n-i}$ and either $3^{i+1} \not > j$ or $a_{n-i-1} < j$.

Consider the $Z/3[\beta_1]$ -modules

$$\hat{G} = \sum_{t \in \mathbb{Z}} (B_5\{\beta_{9t+1}\} \oplus B_4\{\beta_{9t+1}\beta_{6/3}\} \\ \oplus B_3\{\overline{\beta_{9t+7}\alpha_1}\} \\ \oplus B_2\{\beta_{9t+1}\alpha_1, [\beta_{9t+2}\beta_1'], [\beta_{9t+5}\beta_1']\}).$$

On the action of β_1 at the prime 3

$$\hat{G}^* = \sum_{t \in \mathbb{Z}} (B_5\{g_{16(9t+7)+15}\} \oplus B_4\{g_{16(9t+3)+7}\} \\ \oplus B_2\{g_{144t}, g_{16(9t+5)+2}, g_{16(9t+8)+2}\} \\ \oplus \sum_{n \ge 1} (B_3\{g_{16(3^{n+2}t+9u+3)} \mid u \in \mathbb{Z} - I(n)\} \\ \oplus B_2\{g_{16(3^{n+2}t+9u+3)} \mid u \in I(n)\})).$$

Here $B_k = Z/3[\beta_1]/(\beta_1^k)$,

$$I(n) = \{ x \in \mathbb{Z} \mid x = (3^{n-1} - 1)/2 \text{ or } x = 5 \cdot 3^{n-2} + (3^{n-2} - 1)/2 \},\$$

 \overline{x} denotes a homotopy element detected by x in the E_2 -term, [x] is an element of $\pi_*(L_2S^0)$ such that $i_*([x]) = x \in \pi_*(L_2V(0))$ for the inclusion $i: S^0 \to V(0) = S^0 \cup_3 e^1$, and $g_i \in \pi_i(L_2S^0)$ is the generator. Then the direct sum $\hat{G} \oplus \hat{G}^*$ is generated by

$$S = \{\beta_{9t+1}, \beta_{9t+1}\beta_{6/3}, \beta_{9t+7}\alpha_1, \beta_{9t+1}\alpha_1, [\beta_{9t+2}\beta_1'], [\beta_{9t+5}\beta_1'], \\g_{16(9t+7)+15}, g_{16(9t+3)+7}, g_{144t}, g_{16(9t+5)+2}, g_{16(9t+8)+2}, g_{16(9t+3)} \mid t \in \mathbb{Z}\}$$

as a $\mathbb{Z}/3[\beta_1]$ -module. Our key lemma is the following:

THEOREM C. The homotopy groups $\pi_*(L_2S^0)$ contain the subgroups $\hat{G} \oplus \hat{G}^*$.

Consider the localization map $\iota: S^0 \to L_2 S^0$. Then we immediately see the following:

COROLLARY D. For any element $x \in \pi_*(S^0)$ such that $\iota_*(x) \in S$, we have $x\beta_1 \neq 0 \in \pi_*(S^0)$.

In [7], we showed that the β -elements $\beta_{s/j,i+1}$ for $(s, j, i+1) \in \mathbf{B}^c$ do not exist in $\pi_*(L_2S^0)$, where

$$\boldsymbol{B}^{c} = \{(9t+4,1,1), (9t+7,1,1), (9t+8,1,1), (9t+3,3,1), (9s,3,2), (3^{i}s,3^{i},1) | t \in \boldsymbol{Z}, s \in \boldsymbol{Z} - 3\boldsymbol{Z}, i > 1\}.$$

Moreover β -elements $\beta_{s/j,i+1}$ for $(s, j, i+1) \in \mathbf{B}^c$ do not exist in $\pi_*(S^0)$ if $t \ge 1$, $3 \not\downarrow s \ge 1$ and i > 1. We further showed in [7] the existence of β -elements β_{g_l} , $\beta_{g_{l+1}}$ and $\beta_{g_{l+5}}$ in $\pi_*(L_2S^0)$ for $t \in \mathbf{Z}$. Here we extend the existence theorem of β -elements in $\pi_*(L_2S^0)$:

THEOREM E. $\beta_{s/j,i+1}$ for $(s, j, i+1) \in \mathbf{B} - \mathbf{B}^c$ survives to a homotopy element of $\pi_*(L_2S^0)$.

Note that $\beta_{s/j,i+1}$ are homotopy elements for all $(s, j, i+1) \in B$ at a prime >5 ([8]).

The following sections 2 to 6 are devoted to proving Theorem C and to giving subgroups of $\pi_*(M^2)$ for an L_2 -local spectrum M^2 with $E(2)_*(M^2) = E(2)_*/(3^\infty, v_1^\infty)$. Theorems A and E are actually corollaries of Theorem C, and proved in §7.

2. Basic properties of $H^*M_0^2$

Let E(2) be the Johnson-Wilson spectrum with coefficient ring $E(2)_* = \mathbf{Z}_{(3)}[v_1, v_2^{\pm 1}]$. Then $E(2)_*E(2)$ is a Hopf algebroid over $E(2)_*$ with $E(2)_*E(2) = E(2)_*[t_1, t_2, \ldots]/(\eta_R(v_i) : i > 2)$. For an $E(2)_*E(2)$ -comodule M, $\operatorname{Ext}_{E(2)_*E(2)}^*(E(2)_*, M)$ is the cohomology of the cobar complex $\Omega^*M = \Omega_{E(2)_*E(2)}^*M$, and we will denote it by H^*M .

The chromatic comodules N_j^i and M_j^i are defined inductively by $N_0^0 = E(2)_*$, $N_1^0 = E(2)_*/(3)$, $N_2^0 = E(2)_*/(3, v_1)$, $M_j^i = v_{i+j}^{-1}N_j^i$ and the short exact sequence $0 \to N_j^i \to M_j^i \to N_j^{i+1} \to 0$ for $i+j+1 \leq 2$ [1]. Note that $N_j^i = M_j^i$ if i+j=2. These have $E(2)_*E(2)$ -comodule structure induced from the right unit $\eta_R: E(2)_* \to E(2)_*E(2)$. Consider the long exact sequences associated to these short ones $0 \to N_0^0 \to M_0^0 \to N_0^1 \to 0$ and $0 \to N_0^1 \to M_0^1 \xrightarrow{f} M_0^2 \to 0$, whose connecting homomorphisms are $\delta': H^s N_0^1 \to H^{s+1}E(2)_*$ and $\delta: H^s M_0^2 \to H^{s+2}E(2)_*$ is an epimorphism if $s \geq 1$, and an isomorphism if s > 1, since $H^s M_0^0 = 0$ for $s \geq 1$ and $H^s M_0^1 = 0$ for s > 1 by [1]. In particular,

LEMMA 2.1. $H^{s}E(2)_{*}$ for $s \geq 3$ consists of torsion elements.

We have a short exact sequence $0 \to M_1^1 \xrightarrow{i} M_0^2 \xrightarrow{3} M_0^2 \to 0$ (i(x) = x/3) which induces a long exact sequence

$$\cdots \to H^{s-1}M_0^2 \xrightarrow{\delta} H^s M_1^1 \xrightarrow{i_*} H^s M_0^2 \xrightarrow{3} H^s M_0^2 \xrightarrow{\delta} \cdots$$

An easy diagram chasing shows the following:

LEMMA 2.2. ([1, Remark 3.11]) Consider the following commutative diagram of modules with horizontal exact sequences and a 3 torsion module B^s :

If g^s and g^{s+1} are isomorphisms, then f^s is an epimorphism. Moreover, if f^{s-1} is an epimorphism, then f^s is an isomorphism.

Let b_{10} denote the element of $H^2 E(2)_*$ represented by the cocycle $-t_1 \otimes t_1^2 - t_1^2 \otimes t_1$. Then b_{10} acts on H^*M for any comodule M. In [7], we show the following:

PROPOSITION 2.3. The multiplication by b_{10} yields an isomorphism $H^s M_1^1 \rightarrow H^{s+2} M_1^1$ if s > 3 and an epimorphism if s = 3.

This together with Lemma 2.2 implies

COROLLARY 2.4. The multiplication by b_{10} yields an isomorphism $H^s M_0^2 \rightarrow H^{s+2} M_0^2$ if s > 3 and an epimorphism if s = 3.

COROLLARY 2.5. $H^*M_0^2 \cong (H^4M_0^2 \oplus H^5M_0^2) \otimes \mathbb{Z}/3[b_{10}]$ for * > 3.

3. Some formulae in $\Omega^* E(2)_*$

The Adams-Novikov E_2 -term for computing $\pi_*(L_2X)$ is the cohomology $H^*E(2)_*(X)$ of the cobar complex $\Omega^*E(2)_*(X)$, and in particular, $H^*E(2)_* = H^*N_0^0$ is the E_2 -term for $\pi_*(L_2S^0)$.

Take X to be the Toda-Smith spectrum V(1). Then $E(2)_*(V(1)) = K(2)_* = \mathbb{Z}/3[v_2^{\pm 1}]$ and $H^*K(2)_* = K(2)_*[b_{10}] \otimes F \otimes A(\zeta_2)$. Here F denotes the module $\mathbb{Z}/3\{1, h_{10}, h_{11}, b_{11}, \xi, \psi_0, \psi_1, b_{11}\xi\}$ satisfying the following relations (cf. [6, Prop. 5.9]):

$$v_{2}^{2}h_{10}b_{10} = h_{11}b_{11}, \qquad v_{2}h_{11}b_{10} = -h_{10}b_{11}$$
(3.1) $b_{11}\xi = v_{2}h_{10}\psi_{1} = v_{2}h_{11}\psi_{0}, \qquad b_{10}\xi = -h_{10}\psi_{0} = v_{2}^{-1}h_{11}\psi_{1},$
 $v_{2}^{3}b_{10}^{2} = -b_{11}^{2}, \qquad b_{10}\psi_{1} = -v_{2}^{-1}b_{11}\psi_{0}, \qquad b_{10}\psi_{0} = v_{2}^{-2}b_{11}\psi_{1}$

If X is the mod 3 Moore spectrum V(0), then the E_2 -term for V(0) is $H^*E(2)_*/(3)$, which is determined in [7]. In particular, we see the following:

Lemma 3.2.

$$\begin{aligned} H^{2,0}E(2)_*/(3) &= 0 \\ H^{3,0}E(2)_*/(3) &= \{v_2^{-1}\psi_0, v_2^{-1}h_{10}b_{10}\} \\ H^{4,0}E(2)_*/(3) &= \{v_2^{-3}b_{10}b_{11}, v_2^{-1}\psi_0\zeta_2, v_2^{-1}h_{10}b_{10}\zeta_2\} \\ H^{5,0}E(2)_*/(3) &= \{v_2^{-3}b_{10}b_{11}\zeta_2\}. \end{aligned}$$

Consider the long exact sequence

$$\cdots \to H^{*-1}E(2)_*/(3) \xrightarrow{\delta} H^*E(2)_* \xrightarrow{3} H^*E(2)_* \xrightarrow{j_*} H^*E(2)_*/(3) \xrightarrow{\delta} \cdots$$

associated to the short exact sequence $0 \to E(2)_* \xrightarrow{3} E(2)_* \xrightarrow{j} E(2)_*/(3) \to 0$.

Katsumi Shimomura

LEMMA 3.3. The map $d_1 = j_*\delta : H^*E(2)_*/(3) \to H^{*+1}E(2)_*/(3)$ sends $v_2^{-1}h_{10}b_{10}$ (resp. $v_2^{-1}h_{10}b_{10}\zeta_2$) to $v_2^{-3}b_{10}b_{11}$ (resp. $v_2^{-3}b_{10}b_{11}\zeta_2$).

PROOF. Note that $v_2^{-1}h_{10}b_{10}$ is represented by a cochain whose leading term is $v_2^{-3}t_1^3 \otimes b_{11}$. Since $d(t_1^{3^{i+1}}) = 3b_{1i}$ by definition, we compute

(3.4)
$$d(v_2^{-3}t_1^3 \otimes b_{11}) = 3(v_2^{-3}b_{10} \otimes b_{11} + \cdots),$$

which shows $\delta(v_2^{-1}h_{10}b_{10}) = v_2^{-3}b_{10}b_{11} + \cdots$. For $v_2^{-1}h_{10}b_{10}\zeta_2$, the result follows immediately from (3.4) and Proposition 4.2 in the next section. q.e.d.

Let x denote a cochain that represents ξ . Then it is shown in [7, Lemma 4.4] that $d(x) \equiv v_1^2 f_0 \mod (3)$ for f_0 that represents $-v_2^{-1}\psi_0 \mod (3, v_1)$ (In [7], x is denoted by X(0)). So we have a cochain A such that

(3.5)
$$d(x) \equiv v_1^2 f_0 \mod (3)$$
 and $d(f_0) = 3A$

in the cobar complex $\Omega^* E(2)_*$. Then A is a cocycle of $H^{4,0} E(2)_*$. Furthermore, we have

LEMMA 3.6. $d(f_0) = \pm 3f_0 \otimes z \mod (9)$ in the cobar complex $\Omega^4 E(2)_*$. Here z denotes a cocycle that represents the generator ζ_2 .

PROOF. The projection $E(2)_* \to E(2)_*/(3)$ sends A in (3.5) to a cocycle, which is also denoted by A. By virtue of Lemmas 3.2 and 3.3, we put

$$[A] = k_1 v_2^{-1} h_{10} b_{10} \zeta_2 + k_2 v_2^{-1} \psi_0 \zeta_2,$$

where [A] denotes a cohomology class represented by $A \in \Omega^* E(2)_*/(3)$. In fact, f_0 may be replaced by $f_0 + kv_2^{-3}t_1^3 \otimes b_{11}$ for some $k \in \mathbb{Z}/3$ if necessary. Since $d_1([A]) = 0$ and $d_1(v_2^{-1}\psi_0) = 3[A]$ by definition,

$$0 = k_1 v_2^{-3} b_{10} b_{11} \zeta_2 + k_2 (k_1 v_2^{-1} h_{10} b_{10} \zeta_2 + k_2 v_2^{-1} \psi_0 \zeta_2) \zeta_2,$$

by Lemma 3.3. Noticing that $\zeta_2^2 = 0$ and $v_2^{-3}b_{10}b_{11}\zeta_2 \neq 0$, we see that $k_1 = 0$. On the other hand, if A represents 0, then we have an element $v_2^{-1}\psi_0$ in $H^{3,0}E(2)_*$. Since $H^{2,0}E(2)_*/(3) = 0$ by Lemma 3.2, $v_2^{-1}\psi_0$ generates a $Z_{(3)}$ -free submodule in $H^{3,0}E(2)_*$, which contradicts Lemma 2.1. Therefore A represents a non-zero element. This means that $k_2 = \pm 1$. q.e.d.

LEMMA 3.7. Put $\widetilde{v_2t_1} = v_2t_1 + v_1\tau$ and $\widetilde{v_2t_1^3} = v_2^2t_1^3 + v_1v_2t_1^6$. Then $d(\widetilde{v_2t_1}) = v_1^2b_{10}$ and $d(v_2^2t_1^3) = -v_1^2b_{11}$. Furthermore, there exists a cochain $u \in \Omega^2 E(2)_*$ such that

$$d(u) \equiv \widetilde{v_2 t_1} \otimes b_{11} + \widetilde{v_2^2 t_1^3} \otimes b_{10} \mod (3, v_1^2)$$

PROOF. The first statement is checked by a routine computation.

Turn to the second. We obtain an element $u' \in \Omega^2 E(2)_*$ such that $d(u') \equiv v_2 t_1 \otimes b_{11} + b_{10} \otimes v_2^2 t_1^3 \mod (3, v_1)$ from the relation $v_2 h_{11} b_{10} = -h_{10} b_{11}$ in $H^3 E(2)_*/(3, v_1)$ of (3.1). Put $d(u') \equiv \widetilde{v_2 t_1} \otimes b_{11} + b_{10} \otimes \widetilde{v_2^2 t_1^3} + v_1 w \mod (3, v_1^3)$ for some cochain w. Sending this by d, we have $0 \equiv v_1^2 b_{10} \otimes b_{11} - b_{10} \otimes v_1^2 b_{11} + v_1 d(w) \mod (3, v_1^3)$. Then $w \in H^{3,52} E(2)_*/(3, v_1^2)$, which is 0 since $H^{3,52} E(2)_*/(3, v_1) = \{v_2 b_{11} \zeta_2\}$ by [6, Th. 5.8] and $d(v_2 b_{11} \zeta_2) \neq 0 \mod (3, v_1^2)$ by [7, Lemma 3.3]. Therefore, we see that there is a cochain \overline{w} such that $d(\overline{w}) \equiv w$, and put $u'' = u' - v_1 \overline{w}$ to obtain $d(u'') \equiv \widetilde{v_2 t_1} \otimes b_{11} + b_{10} \otimes \widetilde{v_2^2 t_1^3} \mod (3, v_1^3)$. There is also a cochain a such that $d(a) \equiv \widetilde{v_2^2 t_1^3} \otimes b_{10} - b_{10} \otimes \widetilde{v_2^2 t_1^3} \mod (3, v_1^2)$, and so we have the lemma by putting u = u'' + a.

LEMMA 3.8. There exists a cochain w such that

 $d(w) \equiv \widetilde{v_2 t_1} \otimes f_0 - x' \otimes b_{10} \mod (3, v_1^3).$

Here x' denotes a cocycle that represents $\xi \mod (3, v_1)$ and $t_1 \otimes x'$ is homologous to $t_1 \otimes x \mod (3, v_1^3)$.

PROOF. This is shown in the same way as the above lemma. By the equation $h_{10}\psi_0 = -\xi b_{10}$ in (3.1), we have a cochain w' such that $d(w') \equiv v_2 t_1 \otimes f_0 - b_{10} \otimes x \mod (3, v_1)$. Put $d(w') \equiv \widetilde{v_2 t_1} \otimes f_0 - b_{10} \otimes x + v_1 a$ for a cochain a, and send this by d. Then we see that a is a cocycle of $\Omega^{4,16}E(2)_*/(3, v_1^2)$. Since we see that $H^{4,16}E(2)_*/(3, v_1^2) = \{h_{10}b_{10}\zeta_2\}$ by [7], $a = kt_1 \otimes z \otimes b_{10}$ for some $k \in \mathbb{Z}/3$. Furthermore, $b_{10} \otimes x$ is homologous to $x \otimes b_{10}$, which yields a cochain w such that $d(w) \equiv \widetilde{v_2 t_1} \otimes f_0 - (x - kv_1t_1 \otimes z) \otimes b_{10}$. Now put $x' = x - kv_1t_1 \otimes z$, and we have the lemma.

LEMMA 3.9. In the cobar complex $\Omega^* E(2)_*$, there exists a cochain y such that

$$d(y) \equiv t_1 \otimes x - v_1 v_2^{-1} f_1 - v_1 z \otimes x - k v_1 v_2^{-2} t_1 \otimes b_{11} \mod (3, v_1^2)$$

for some $k \in \mathbb{Z}/3$. Here f_1 denotes a cocycle that represents ψ_1 .

PROOF. It is shown in [7, Lemma 6.4] that there exists a cochain Y_0 such that $d(Y_0) \equiv t_1 \otimes X + v_1 v_2^{-3} \tau^3 \otimes X + v_1^2 v_2^{-1} t_1^3 \otimes X \mod (3, v_1^3)$. It is also shown that $x \equiv X + v_1 v_2^{-1} Y_1 + k v_1 v_2^{-2} b_{11}$ for some $k \in \mathbb{Z}/3$ in [7, Proof of Lemma 4.4.]. Take now y to be Y_0 , and we obtain

$$d(y) \equiv t_1 \otimes (x - v_1 v_2^{-1} Y_1 - k v_1 v_2^{-2} b_{11}) - v_1 z \otimes X + v_1 v_2^{-1} t_2 \otimes X$$

mod $(3, v_1^2)$. Since $f_1 = t_1 \otimes Y_1 - t_2 \otimes X$ by the proof of [7, Lemma 4.4], we have the result. q.e.d.

4. The E_2 -terms $H^s M_0^2$ for s > 3.

Let $E(2,1)_*$ denote $\mathbb{Z}/3[v_1, v_2^{\pm 3}]$. In [7], $H^*M_1^1$ is given as the direct sum of three $E(2,1)_*$ -modules A_i :

$$H^*M_1^1 = A_0 \oplus A_1 \oplus A_2.$$

In order to describe the modules A_i , we use the following notation:

$$k(1)_{*} = \mathbb{Z}/3[v_{1}]$$

$$K(1)_{*} = \mathbb{Z}/3[v_{1}^{\pm 1}]$$

$$PE = \mathbb{Z}/3[b_{10}] \otimes \Lambda(\zeta_{2})$$

$$E(2, n)_{*} = \mathbb{Z}/3[v_{1}, v_{2}^{\pm 3^{n}}]$$

$$F_{(h)} = \mathbb{Z}/3[v_{2}^{\pm 3}]\{v_{2}/v_{1}, v_{2}h_{10}/v_{1}, v_{2}^{2}h_{11}/v_{1}, v_{2}b_{11}/v_{1}\}$$

$$F_{(t)} = \mathbb{Z}/3[v_{2}^{\pm 3}]\{v_{2}^{-1}/v_{1}, v_{2}h_{10}/v_{1}^{2}, v_{2}^{2}h_{11}/v_{1}^{2}, v_{2}^{-1}b_{11}/v_{1}\}$$

$$F_{(h)}^{*} = \mathbb{Z}/3[v_{2}^{\pm 3}]\{\xi/v_{1}, \psi_{0}/v_{1}, v_{2}\psi_{1}/v_{1}, b_{11}\xi/v_{1}\}$$

$$F_{(t)}^{*} = \mathbb{Z}/3[v_{2}^{\pm 3}]\{\xi/v_{1}^{2}, v_{2}^{-2}\psi_{0}/v_{1}, v_{2}^{-1}\psi_{1}/v_{1}, b_{11}\xi/v_{1}^{2}\}$$

$$F_{n} = E(2, n + 2)_{*}\{v_{2}^{\pm 3^{n+1}}/v_{1}^{4\cdot 3^{n}-1}, v_{2}^{3^{n+1}}h_{10}/v_{1}^{6\cdot 3^{n}+1}, v_{2}^{8\cdot 3^{n}}h_{10}/v_{1}^{10\cdot 3^{n}+1}, v_{2}^{3^{n}(5\pm 3)+(3^{n}-1)/2}\xi/v_{1}^{4\cdot 3^{n}}\}.$$

Then the modules A_i are given as follows:

$$A_0 = (K(1)_*/k(1)_*) \oplus \Lambda(h_{10}, \zeta_2)$$
$$A_1 = \sum_{n \ge 0} F_n \oplus \Lambda(\zeta_2)$$
$$A_2 = (F_{(h)} \oplus F_{(t)} \oplus F^*_{(h)} \oplus F^*_{(t)}) \oplus PE$$

Consider the exact sequence $H^{1,0}M_1^1 \xrightarrow{\delta} H^{2,0}E(2)_*/(3,v_1^{3^i}) \to H^{2,-4\cdot3^i}M_1^1$ associated to the short exact sequence $0 \to E(2)_*/(3,v_1^{3^i}) \xrightarrow{1/v_1^{3^i}} M_1^1 \xrightarrow{w_1^{3^i}} M_1^1$ $\to 0$. Then the structure of $H^*M_1^1$ shows immediately the following:

LEMMA 4.1. For each i > 0, each element of $H^{2,0}E(2)_*/(3, v_1^{3^i})$ is divisible by $v_1^{3^i-3^{i-1}}$.

Now we obtain the next proposition corresponding to [5, Lemma 2.6]. In fact, the proof of [5, Lemma 2.6] also works at the prime 3 by the above lemma.

PROPOSITION 4.2. For each integer i > 0, there exists a cocycle z_i of $\Omega^{1,0}E(2)_*/(3^{i+1}, v_1^{3^i})$ such that $z_i = z \in \Omega^1 K(2)_*$.

By virtue of this proposition, we abuse the notation z for a cocycle that represents ζ_2 as we did in the previous papers for a prime >3.

Consider the connecting homomorphism $\delta: H^s M_0^2 \to H^{s+1} M_1^1$ associated to the short exact sequence $0 \to M_1^1 \stackrel{i}{\to} M_0^2 \stackrel{3}{\to} M_0^2 \to 0$.

Lemma 4.3. $\delta(v_2^2\xi/3v_1^3) = v_2\psi_0/v_1.$

PROOF. In [7, Lemma 4.4], it is shown that there exists a cochain X(2)such that $d(X(2)) \equiv v_1^4 z^3 \otimes X^3 - v_1^4 v_2^{-3} f_1^3 \mod (3, v_1^5)$. Since $H^{3,20} M_2^0 = 0$, the congruence holds mod $(3, v_1^6)$ if we replace X(2) by a suitable cochain x''. Put now $d(x'') \equiv v_1^4 z^3 \otimes X^3 - v_1^4 v_2^{-3} f_1^3 + 3A \mod (9, v_1^6)$. Then $0 \equiv 3v_1^3 t_1 \otimes z^3 \otimes X^3 - 3v_1^3 t_1 \otimes v_2^{-3} f_1^3 + 3d(A) \mod (9, v_1^4)$. This implies that $A \in H^{3,40}E(2)_*/(3, v_1^3)$, which is $\mathbb{Z}/3\{v_1^2 v_2 \psi_0\}$ by [7]. Note that $3v_1^3 t_1 \otimes z^3 \otimes X^3$ and $v_1^3 t_1 \otimes v_2^{-3} f_1^3$ are homologous to zero and $v_1^3 b_{11} \otimes X \mod (9, v_1^4)$, respectively, by Lemma 3.9 and (3.1), and that $d(-v_1^2 v_2 (v_2 f_0)) \equiv v_1^3 v_2 t_1^3 \otimes f_0 + v_1^3 b_{11} \otimes X \mod (3, v_1^4)$ by [7, Lemma 4.3] whose right hand side is homologous to $-v_1^3 b_{11} \otimes X$ by (3.1). Thus $d(A) = d(-v_1^2 v_2^2 f_0 + \cdots)$, and we see that A is homologous to $-v_1^2 v_2^2 f_0$, and that $d(x'') \equiv -3v_1^2 v_2^2 f_0 \mod (9, v_1^3)$. Since x'' and f_0 represent $v_2^2 \xi$ and $-v_2^{-1} \psi_0$, respectively, we have the lemma. q.e.d.

Put

$$G^{s} = (i_{*}(F_{(h)} \oplus F_{(h)}^{*}) \otimes E(2,1)_{*}[b_{10}] \otimes \Lambda(\zeta_{2}))^{s} \subset H^{s}M_{0}^{2}$$

for $i_*: H^*M_1^1 \to H^*M_0^2$ given by $i_*(x) = x/3$.

LEMMA 4.4. For the connecting homomorphism $\delta : H^s M_0^2 \to H^{s+1} M_1^1$, $\delta(x)$ for a generator x of G^s is obtained by the following equations:

$$\begin{split} \delta(v_2/3v_1) &= -v_2h_{10}/v_1^2, \\ \delta(v_2h_{10}/3v_1) &= v_2^{-1}b_{11}/v_1 + v_2h_{10}\zeta_2/v_1, \\ \delta(v_2^2h_{11}/3v_1) &= v_2^2b_{10}/v_1 + v_2^2h_{11}\zeta_2/v_1, \\ \delta(v_2b_{11}/3v_1) &= v_2^2h_{11}b_{10}/v_1^2; \\ \delta(v_2(v_2^{-1}\psi_0)/3v_1) &= \xi b_{10}/v_1^2 \pm v_2(v_2^{-1}\psi_0)\zeta_2/v_1, \\ \delta(\xi/3v_1) &= v_2^{-1}\psi_1/v_1 + (1 \pm 1)\xi\zeta_2/v_1 + kv_2^{-1}h_{11}b_{10}/v_1 \\ \delta(b_{11}\xi/3v_1) &= v_2^2(v_2^{-1}\psi_0)b_{10}/v_1 + (1 \pm 1)b_{11}\xi\zeta_2/v_1 + kv_2h_{10}b_{10}^2/v_1, \\ \delta(v_2\psi_1/3v_1) &= b_{11}\xi/v_1^2 \pm v_2\psi_1\zeta_2/v_1. \end{split}$$

PROOF. Note that v_2h_{10} is represented by a cochain $\widetilde{v_2t_1} = \eta_R(v_2)t_1 - v_1t_2$ of Lemma 3.7. In the cobar complex $\Omega^* E(2)_* / (9, v_1^3)$, we compute

$$d(v_{1}^{2}v_{2}) = 6v_{1}t_{1}\eta_{R}(v_{2}) + 3v_{1}^{2}t_{2} = 6v_{1}\widetilde{v_{2}t_{1}};$$

$$d(v_{1}^{2}v_{2}t_{1}) = 6v_{1}t_{1} \otimes v_{2}t_{1} + 3v_{1}^{2}t_{2} \otimes t_{1}$$

$$= \underline{6v_{1}v_{2}t_{1} \otimes t_{1}} + \underline{6v_{1}^{2}\tau \otimes t_{1}}_{2}$$

$$d(3v_{1}v_{2}t_{1}^{2}) = \underline{3v_{1}^{2}t_{1}^{3} \otimes t_{1}^{2}}_{13} - \underline{6v_{1}v_{2}t_{1} \otimes t_{1}}_{11}$$

$$d(3v_{1}^{2}t_{1}\tau) = -3v_{1}^{2}(\underline{t_{1}^{4} \otimes t_{1}}_{2} + \underline{t_{1}^{3} \otimes t_{1}^{2}}_{3} + t_{1} \otimes \tau + \underline{\tau \otimes t_{1}}_{2})$$

$$d(-3v_{1}^{2}v_{2}^{-2}t_{3}) = 3v_{1}^{2}v_{2}^{-2}(t_{1} \otimes t_{2}^{3} + \underline{t_{2} \otimes t_{1}^{9}}_{2} + v_{2}b_{11});$$

$$d(v_{1}^{2}v_{2}^{2}t_{1}^{3}) = 6v_{1}t_{1} \otimes v_{2}^{2}t_{1}^{3} + 6v_{1}^{2}v_{2}t_{2} \otimes t_{1}^{3} + 3v_{1}^{2}v_{2}^{2}b_{10}$$

$$= \underline{6v_{1}v_{2}^{2}t_{1} \otimes t_{1}^{3}}_{4} + \underline{12v_{1}^{2}v_{2}t_{1}^{4} \otimes t_{1}^{3}}_{7} + \underline{6v_{1}^{2}v_{2}t_{2} \otimes t_{1}^{3}}_{7} + \underline{3v_{1}^{2}v_{2}^{2}b_{10}}_{6}$$

$$d(6v_{1}v_{2}^{2}t_{2}) = \underline{12v_{1}^{2}v_{2}t_{1}^{3} \otimes t_{2}}_{5} - \underline{6v_{1}v_{2}^{2}t_{1} \otimes t_{1}^{3}}_{4} - \underline{6v_{1}^{2}v_{2}^{2}b_{10}}_{6}$$

$$d(3v_{1}^{2}v_{2}^{-7}t_{3}^{3}) = -3v_{1}^{2}v_{2}^{-7}(t_{1}^{3} \otimes t_{2}^{9} + t_{2}^{3} \otimes t_{1}^{27} + v_{2}^{3}b_{11}^{3})$$

$$= -3v_{1}^{2}v_{2}^{-7}(\underline{v_{2}^{8}t_{1}^{3} \otimes t_{2}}_{5} + \underline{v_{2}^{-6}t_{2}^{3} \otimes t_{1}^{3}}_{7} + \underline{v_{2}^{9}b_{10}}_{6}.$$

The underlined terms with the same number sum up to zero except for the terms numbered 6 and 7. The terms numbered 6 and 7 sum up to $3v_1^2v_2^2b_{10}$ and $6v_1^2v_2^2\zeta_2 \otimes t_1^3$, respectively. These imply the first three equations. In fact, $\delta([a/3v_1]) = [(i_*)^{-1}d(v_1^2a)/9v_1^3]$, where [a] denotes a homology class represented by a. Since $\delta(b_{11}a) = b_{11}\delta(a)$, the first equation gives $\delta(v_2b_{11}/3v_1) = -v_2h_{10}b_{11}/v_1^2$, which equals $v_2^2h_{11}b_{10}/v_1^2$ by Lemma 3.7. Thus we have the fourth equation.

By Lemma 3.6 and the first equation in (4.5), we compute

(4.6)
$$d(v_1^2 v_2 f_0) \equiv 6v_1 \widetilde{v_2 t_1} \otimes f_0 \pm 3v_1^2 v_2 f_0 \otimes z \mod (9, v_1^3).$$

Now by Lemma 3.8, we have the fifth equation. Multiplying h_{10} to the fifth equation yields $\delta(h_{10}\psi_0/3v_1) = h_{10}\xi b_{10}/v_1^2 + h_{10}\psi_0\xi_2/v_1$. Lemma 3.9 says that $h_{10}\xi = v_1v_2^{-1}\psi_1 + v_1\xi\xi_2 + kv_1v_2^{-2}h_{10}b_{11}$ for some $k \in \mathbb{Z}/3$. Since $h_{10}\psi_0 = -\xi b_{10}$, we have the sixth equation. The seventh follows immediately from the product of b_{11} and the sixth equation. The multiplication of b_{10} and the fifth equation gives the last one by the relations (3.1). Here note that $b_{10}^2 = -v_2^{-3}b_{11}^2$ holds in $H^4E(2)_*/(3,v_1^2)$.

PROPOSITION 4.7. $H^s M_0^2 = G^s$ for s = 4, 5. In other words, $H^4 M_0^2$ and $H^5 M_0^2$ are $\mathbb{Z}/3[v_2^{\pm 3}]$ -modules generated by

$$G^{4}: \frac{v_{2}b_{10}^{2}/3v_{1}, v_{2}h_{10}b_{10}\zeta_{2}/3v_{1}, v_{2}^{2}h_{11}b_{10}\zeta_{2}/3v_{1}, v_{2}b_{11}b_{10}/3v_{1};}{\psi_{0}\zeta_{2}/3v_{1}, \xi b_{10}/3v_{1}, b_{11}\xi/3v_{1}, v_{2}\psi_{1}\zeta_{2}/3v_{1},}$$

and

$$G^{5}: \frac{v_{2}b_{10}^{2}\zeta_{1}/3v_{1}, v_{2}h_{10}b_{10}^{2}/3v_{1}, v_{2}^{2}h_{11}b_{10}^{2}/3v_{1}, v_{2}b_{11}b_{10}\zeta_{2}/3v_{1};}{\psi_{0}b_{10}/3v_{1}, \xi b_{10}\zeta_{2}/3v_{1}, b_{11}\xi\zeta_{2}/3v_{1}, v_{2}\psi_{1}b_{10}/3v_{1},}$$

respectively.

PROOF. Put $B^s = G^s$. Then there is a canonical map $f^s : B^s \to H^s M_0^2$ sitting in the commutative diagram

Lemma 4.4 implies that the δ -images of the generators of B^s are linearly independent. Therefore we see that the above sequence is exact, and Lemma 2.2 shows that f^s is an isomorphism. q.e.d.

5. On the E_2 -terms $H^s M_0^2$ for $s \le 3$

We write down the submodules
$$A_2^s \subset H^s M_1^{1}$$
:
 $A_2^0 = \mathbb{Z}/3\{v_2/v_1, v_2^{-1}/v_1\}$
 $A_2^1 = \mathbb{Z}/3\{v_2h_{10}/v_1^2, v_2h_{10}/v_1, v_2^2h_{11}/v_1^2, v_2^2h_{11}/v_1, v_2\zeta_2/v_1, v_2^{-1}\zeta_2/v_1\}$
 $A_2^2 = \mathbb{Z}/3\{v_2b_{11}/v_1, v_2^{-1}b_{11}/v_1, v_2h_{10}\zeta_2/v_1^2, v_2h_{10}\zeta_2/v_1, v_2^2h_{11}\zeta_2/v_1^2, v_2^2h_{11}\zeta_2/v_1, v_2b_{10}/v_1, v_2^{-1}b_{10}/v_1, \xi/v_1^2, \xi/v_1\}$
 $A_2^3 = \mathbb{Z}/3\{v_2b_{11}\zeta_2/v_1, v_2^{-1}b_{11}\zeta_2/v_1, v_2h_{10}b_{10}/v_1^2, v_2h_{10}b_{10}/v_1, v_2^2h_{11}b_{10}/v_1^2, v_2^2h_{11}b_{10}/v_1, v_2b_{10}\zeta_2/v_1, v_2^{-1}b_{10}\zeta_2/v_1, v_2h_{10}b_{10}/v_1, v_2^2h_{10}v_2/v_1, v_2\psi_0/v_1, v_2\psi_1/v_1, v_2^{-1}\psi_1/v_1, \xi\zeta_2/v_1^2, \xi\zeta_2/v_1\}.$

Now consider the map $d_1 = \delta i_* : H^s M_1^1 \to H^{s+1} M_1^1$. Then [1, Prop. 6.9] shows (5.1) $d_1(v_2^3/v_1^3) = v_2^2 h_{11}/v_1^2$.

Here we compute:

LEMMA 5.2. The Bockstein differential $d_1 = \delta i_*$ acts up to sign as follows:

$$\begin{aligned} d_1(v_2/v_1) &= v_2h_{10}/v_1^2, \\ d_1(v_2^{-1}/v_1) &= v_2^{-1}\zeta_2/v_1; \\ d_1(v_2h_{10}/v_1) &= v_2^{-1}b_{11}/v_1 + v_2h_{10}\zeta_2/v_1, \\ d_1(v_2^2h_{11}/v_1) &= v_2^{-1}b_{10}/v_1 + v_2^{-1}h_{11}\zeta_2/v_1, \\ d_1(v_2\zeta_2/v_1) &= v_2h_{10}\zeta_2/v_1^2; \\ d_1(v_2b_{11}/v_1) &= v_2^{2}h_{11}b_{10}/v_1^2, \\ d_1(v_2h_{10}\zeta_2/v_1) &= v_2^{-1}b_{11}\zeta_2/v_1^2, \\ d_1(v_2h_{10}\zeta_2/v_1) &= v_2b_{10}\zeta_2/v_1, \\ d_1(v_2b_{10}/v_1) &= v_2h_{10}b_{10}/v_1^2, \\ d_1(\zeta/v_1^2) &= \zeta\zeta_2/v_1^2, \\ d_1(\zeta/v_1) &= v_2^{-1}\psi_1/v_1 + \zeta\zeta_2/v_1; \\ d_1(v_2h_{10}b_{10}/v_1) &= v_2^{-1}b_{11}b_{10}\zeta_2/v_1^2, \\ d_1(v_2h_{10}b_{10}/v_1) &= v_2^{-1}b_{10}h_{10}v_1^2 + v_2h_{10}b_{10}\zeta_2/v_1, \\ d_1(v_2h_{10}b_{10}/v_1) &= v_2^{-1}b_{10}^2/v_1 + v_2^{-1}h_{11}b_{10}\zeta_2/v_1, \\ d_1(v_2b_{10}\zeta_2/v_1) &= v_2h_{10}b_{10}\zeta_2/v_1^2; \\ d_1(\zeta\zeta_2/v_1) &= v_2^{-1}\psi_1\zeta_2/v_1, \\ d_1(\psi_0/v_1) &= \zeta b_{10}/v_1^2 + \psi_0\zeta_2/v_1, \\ d_1(\psi_2\psi_1/v_1) &= b_{11}\zeta/v_1^2. \end{aligned}$$

The other elements of A_2 missing in the left hand sides are in the image of d_1 .

PROOF. Lemma 4.3 and (5.1) show that $v_2^2 \psi_0 / v_1$ and $v_2^2 h_{11} / v_1^2$ are in the image of d_1 . The other parts follow from Lemma 4.4, except for d_1 on v_2^{-1} / v_1 and ξ / v_1^2 .

For the exceptional cases, consider the diagram

If we have a relation $\delta(\alpha/3) = \beta b_{10} + \alpha \zeta_2$ in Lemma 4.4, then we see that $\beta b_{10}/3 = -\alpha \zeta_2/3$ in $H^* M_0^2$, since $i_*(x) = x/3$. Therefore, we compute

$$b_{10}\delta(\beta/3) = \delta(\beta b_{10}/3) = -\delta(\alpha\zeta_2/3) = -\delta(\alpha/3)\zeta_2 = -\beta b_{10}\zeta_2,$$

and so we obtain

$$\delta(\beta/3) = -\beta\zeta_2$$

up to Ker b_{10} . Note that b_{10} acts monomorphically on A_2 . Now take β to be the exceptional cases, and we have all d_1 . q.e.d.

Hence, we have

PROPOSITION 5.3. $H^s M_0^2$ contains $E(2,1)_*/(3,v_1)$ -module as follows:

6. The Adams-Novikov differentials

Now consider spectra defined by cofiber sequences:

(6.1) $S^0 \to p^{-1}S^0 \to N^1$, $N^1 \to L_1N^1 \to N^2$, $V(0) \to v_1^{-1}V(0) \to W$, and $M^2 = L_2N^2$. The Adams-Novikov differentials on $\pi_*(L_2W)$ is determined in [7]. Let $i: L_2W \to M^2$ denote the canonical map that induces $i: M_1^1 \to M_0^2$. Suppose that $d_r(x) = y$ in the E_r -term for L_2W . Then $d_r(x/3) = d_r(i_*x) = i_*y = y/3$. In this way, we determine the differentials except for $d_9(v_2^{-1}/3v_1)$ and $d_5(v_2^{3t}\xi/3v_1^2)$.

LEMMA 6.2. The Adams-Novikov differential d_r is given (up to sign) by $d_r(v_2/3v_1) = 0,$ $d_5(v_2^4/3v_1) = v_2^2h_{11}b_{10}^2/3v_1,$ $d_5(v_2^7/3v_1) = v_2^5h_{11}b_{10}^2/3v_1,$ $d_r(v_2^2/3v_1) = 0,$ $d_r(v_2^5/3v_1) = 0,$ $d_9(v_2^{-1}/3v_1) = v_2^{-5}b_{11}b_{10}^3\zeta_2/3v_1,$ $d_r(v_2h_{10}/3v_1) = 0,$ $d_9(v_2^4h_{10}/3v_1) = v_2b_{10}^5/3v_1,$ $d_r(v_2^7h_{10}/3v_1) = 0,$ $d_r(v_2^2h_{11}/3v_1) = 0,$ $d_r(v_2^5h_{11}/3v_1) = 0,$ $d_9(v_2^8h_{11}/3v_1) = v_2^4b_{11}b_{10}^4/3v_1,$ $d_5(v_2b_{11}/3v_1) = v_2h_{10}b_{10}^3/3v_1,$ $d_r(v_2^4b_{11}/3v_1) = 0,$ Katsumi SHIMOMURA

$$\begin{aligned} d_5(v_2^7b_{11}/3v_1) &= v_2^7h_{10}b_{10}^3/3v_1, \qquad d_5(\xi/3v_1^2) = v_2^{-3}b_{11}\xi b_{10}\zeta_2/3v_1, \\ d_r(v_2^3\xi/3v_1^2) &= 0, \qquad d_5(v_2^6\xi/3v_1^2) = v_2^3b_{11}\xi b_{10}\zeta_2/3v_1, \\ d_r(\xi/3v_1) &= 0, \qquad d_r(v_2^3\xi/3v_1) = 0, \qquad d_9(v_2^6\xi/3v_1) = v_2^3\psi_0b_{10}^4/3v_1, \\ d_5(\psi_0/3v_1) &= v_2^{-3}b_{11}\xi b_{10}^2/3v_1, \qquad d_r(v_2^3\psi_0) = 0, \qquad d_5(v_2^6\psi_0/3v_1) = v_2^3b_{11}\xi b_{10}^2/3v_1, \\ d_5(v_2\psi_1/3v_1) &= \xi b_{10}^3/3v_1, \qquad d_5(v_2^4\psi_1/3v_1) = v_2^3\xi b_{10}^3/3v_1, \qquad d_r(v_2^2\psi_1/3v_1) = 0. \\ d_9(b_{11}\xi/3v_1) &= v_2^{-2}\psi_1b_{10}^5/3v_1, \qquad d_r(v_2^3b_{11}\xi/3v_1) = 0, \qquad d_r(v_2^6b_{11}\xi/3v_1) = 0. \end{aligned}$$

PROOF. Here we show the exceptional cases. Lemma 4.4 shows

$$v_2^{-1}b_{10}/3v_1 = -v_2^{-1}h_{11}\zeta_2/3v_1$$
 and $v_2^{3t}\xi b_{10}/3v_1^2 = \pm v_2^{3t}\psi_0\zeta_2/3v_1$

Now we compute

$$b_{10}d_9(v_2^{-1}/3v_1) = d_9(v_2^{-1}b_{10}/3v_1) = -d_9(v_2^{-1}h_{11}\zeta_2/3v_1) = v_2^{-5}b_{11}b_{10}^4\zeta_2/3v_1,$$

and we have $d_9(v_2^{-1}/3v_1) = v_2^{-5}b_{11}b_{10}^3/3v_1$ as desired. In the same way, we have the other case. q.e.d.

Now we display the chart of the Adams-Novikov spectral sequence:

Some of survivors are killed by other differentials derived from [7]:

$$d_5(v_2^{9t+3}/3v_1^3) = v_2^{9t+1}h_{10}b_{10}^2/3v_1,$$

$$d_5(v_2^{9t-1}h_{11}/9v_1^2) = v_2^{9t-2}h_{10}b_{10}^2\zeta_2/3v_1,$$

```
Katsumi Shimomura
```

(6.3)
$$d_5(v_2^{3^{n+2}t+3^{n+1}}h_{10}/3v_1^{2\cdot 3^{n+1}+1}) = \pm v_2^{3^{n+2}t+3(3^n-1)/2}\xi b_{10}^2/3v_1 \quad (n \ge 0),$$
$$d_5(v_2^{3^{n+2}t+8\cdot 3^n}h_{10}/3v_1^{10\cdot 3^n+1}) = -v_2^{3^{n+2}t+5\cdot 3^n+3(3^{n-1}-1)/2}\xi b_{10}^2/3v_1 \quad (n > 1).$$

This shows that,

THEOREM 6.4. The E_{∞} -term of $\pi_*(M^2)$ contains the module $\tilde{G} \oplus \tilde{G}^* \oplus \widetilde{GZ} \oplus \widetilde{GZ}^*$. Here $E(2,1)_*$ -modules are given as follows:

$$\begin{split} \tilde{G} &= B_5(2,2)_* \{ v_2/3v_1 \} \oplus B_4(2,2)_* \{ v_2^4 b_{11}/3v_1 \} \\ &\oplus B_3(2,2)_* \{ v_2^7 h_{10}/3v_1 \} \\ &\oplus B_2(2,2)_* \{ v_2 h_{10}/3v_1, v_2^2 h_{11}/3v_1, v_2^5 h_{11}/3v_1 \}, \\ \tilde{G}^* &= B_5(2,2)_* \{ v_2^7 \psi_1/3v_1 \} \oplus B_4(2,2)_* \{ v_2^3 \psi_0/3v_1 \} \\ &\oplus B_2(2,2)_* \{ \xi/3v_1, v_2^3 b_{11}\xi/3v_1, v_2^6 b_{11}\xi/3v_1 \} \\ &\oplus \sum_{n \ge 1} (B_3(2,n+2)_* \{ v_2^{9u+3}\xi/3v_1 \mid u \in \mathbb{Z} - I(n) \} \\ &\oplus B_2(2,n+2)_* \{ v_2^{9u+3}\xi/3v_1 \mid u \in I(n) \}), \end{split}$$

$$GZ = B_{5}(2,2)_{*} \{v_{2}\zeta_{2}/3v_{1}\}$$

$$\oplus B_{3}(2,2)_{*} \{v_{2}^{4}b_{11}\zeta_{2}/3v_{1}\}$$

$$\oplus B_{2}(2,2)_{*} \{v_{2}h_{10}\zeta_{2}/3v_{1}, v_{2}^{2}h_{11}\zeta_{2}/3v_{1}, v_{2}^{5}h_{11}\zeta_{2}/3v_{1}, v_{2}^{7}h_{10}\zeta_{2}/3v_{1}\},$$

$$\widetilde{GZ}^{*} = B_{5}(2,2)_{*} \{v_{2}^{7}\psi_{1}\zeta_{2}/3v_{1}\} \oplus B_{4}(2,2)_{*} \{v_{2}^{3}\psi_{0}\zeta_{2}/3v_{1}\}$$

$$\oplus B_{2}(2,2)_{*} \{\zeta_{2}/3v_{1}\}$$

$$\oplus B_{1}(2,2)_{*} \{v_{2}^{3}b_{11}\zeta_{2}/3v_{1}, v_{2}^{6}b_{11}\zeta_{2}/3v_{1}\}$$

$$\oplus \sum_{n\geq 1} (B_{3}(2,n+2)_{*} \{v_{2}^{9u+3}\zeta_{2}/3v_{1} \mid u \in \mathbb{Z} - I(n)\}$$

where $B_k(2,n)_* = (\mathbb{Z}/3)[v_2^{\pm 3^n}, b_{10}]/(b_{10}^k)$ and I(n) are given in the introduction.

 $\oplus B_2(2, n+2)_* \{ v_2^{9u+3} \xi \zeta_2/3v_1 \mid u \in I(n) \}),$

PROOF. Suppose that $d_r(x) = y \neq 0$ in the Adams-Novikov spectral sequence for $\pi_*(M^2)$. Then y is in the image of $i_*: H^*M_1^1 \to H^*M_0^2$, since y has filtration ≥ 5 . Lemma 5.2 shows that $\delta(y) \neq 0$ for the connecting homomorphism $\delta: H^*M_0^2 \to H^*M_1^1$, and so we have $\delta(x) \neq 0$ and $d_r(\delta(x)) = \delta(y)$ in the Adams-Novikov spectral sequence for $\pi_*(L_2W)$. Observing the differentials given in [7] with Lemma 4.4, we see that there is no more new differentials, and obtain the theorem.

7. Application to β -elements

In [1], $H^0 M_0^2$ is determined and we see that

$$v_2^s/3^{i+1}v_1^j \in H^0M_0^2$$
 if and only if $(s, j, i+1) \in B$.

Consider the universal Greek letter map $\eta = \delta' \delta : H^0 M_0^2 \to H^2 E(2)_*$, where $\delta : H^0 M_0^2 \to H^1 N_0^1$ and $\delta' : H^1 N_0^1 \to H^2 E(2)_*$ are the connecting homomorphisms associated to the short exact sequences $0 \to N_0^1 \to M_0^1 \to M_0^2 \to 0$ and $0 \to E(2)_* \to M_0^0 \to N_0^1 \to 0$, respectively. Then the β -elements are defined by

$$\beta_{s/j,i+1} = \eta(v_2^s/3^{i+1}v_1^j).$$

We obtain the following immediately.

LEMMA 7.1. Mod $(3, v_1)$, $\beta_1 \equiv b_{10}$, $\beta_2 \equiv v_2 h_{11} \zeta_2$ and $\beta_{6/3} \equiv v_2^3 b_{11}$ in the E_2 -term $E_2(S^0)$.

Furthermore, note that $\beta'_1 = h_{11} \in E_2(V(0))$ and $\alpha_1 = h_{10} \in E_2(S^0)$. The generators of \tilde{G} then yields the following elements:

$$\begin{aligned} \eta(v_2^{9t+1}/3v_1) &= \beta_{9t+1}, \qquad \eta(v_2^{9t+4}b_{11}/3v_1) = \beta_{9t+1}\beta_{6/3}, \\ \eta(v_2^{9t+7}h_{10}/3v_1) &= \beta_{9t+7}\alpha_1, \qquad \eta(v_2^{9t+1}h_{10}/3v_1) = \beta_{9t+1}\alpha_1, \\ \eta(v_2^{9t+2}h_{11}/3v_1) &= [\beta_{9t+2}\beta_1'], \qquad \eta(v_2^{9t+5}h_{11}/3v_1) = [\beta_{9t+5}\beta_1']. \end{aligned}$$

Now we prove the theorems in the introduction.

PROOF OF THEOREM C. Consider the long exact sequences

$$\cdots \to \pi_*(L_0S^0) \to \pi_*(L_2N^1) \to \pi_{*+1}(L_2S^0) \to \cdots$$

and

$$\cdots \rightarrow \pi_*(L_1N^1) \rightarrow \pi_*(M^2) \rightarrow \pi_{*+1}(L_2N^1) \rightarrow \cdots$$

associated to the cofiber sequences of (6.1). Note that $\pi_*(L_0S^0) = Q$ and

$$\pi_*(L_1N^1) = \mathbf{Q}/\mathbf{Z}_{(3)} \otimes \Lambda(y) \oplus A$$

shown in [1], where A is the $Z_{(3)}$ -module generated by $v_1^{sp^i}/3^{i+1}$ for $i \ge 0$ and $3 \not\mid s \in \mathbb{Z}$. Therefore, the module $\tilde{G} \oplus \tilde{G}^* \oplus \widetilde{GZ} \oplus \widetilde{GZ}^*$ given in Theorem 6.4 is isomorphically sent to $\pi_*(L_2S^0)$. Theorem C now follows. q.e.d.

PROOF OF THEOREM A. Consider the localization map $\iota: S^0 \to L_2 S^0$. Since the induced map $\iota_*: \pi_*(S^0) \to \pi_*(L_2 S^0)$ sends a β -element to the corresponding β -element, the non-triviality of products of β -elements in $\pi_*(S^0)$ is deduced from the one in $\pi_*(L_2 S^0)$. The necessity follows immediately from Theorem C except for β_2 . For β_2 , note that $\beta_{9t+1}\beta_2 = [\beta_{9t+2}\beta'_1]\zeta_2 \in \eta(\overline{GZ})$ for the universal Greek letter map η . Thus the necessity for β_2 is shown.

In Lemma 6.2, we have $d_9(v_2^{9t+4}h_{10}/3v_1) = v_2^{9t+1}b_{10}^5/3v_1$ and $d_9(v_2^{9t+8}h_{11}/3v_1) = v_2^{9t+4}b_{11}b_{10}^4/3v_1$, which yield

(7.2)
$$d_9(\beta_{9t+4}\alpha_1) = \beta_1^5 \beta_{9t+1}$$
 and $d_9(\beta_{9t+8}h_{11}) = \beta_{9t+1}\beta_{6/3}\beta_1^4$

in the E_9 -term $E_9^*(L_2S^0)$ as the image of the universal Greek letter map. In the same manner, the equation $d_5(v_2^{9t+4}\zeta_2/3v_1) = v_2^{9t+2}h_{11}\zeta_2b_{10}^2/3v_1$ in Lemma 6.2 yields

(7.3)
$$d_5(\beta_{9t+4}\zeta_2) = \beta_{9t+1}\beta_2\beta_1^2$$

in the E_9 -term $E_5^*(L_2S^0)$. If $t \ge 0$, then the equations (7.2) and (7.3) also hold in the Adams-Novikov spectral sequence for $\pi_*(S^0)$, since the elements appeared in (7.2) and (7.3) are also defined in $E_2(S^0)$. q.e.d.

PROOF OF THEOREM E. In the proof of Theorem 6.4, we read off that the elements on the 0-th line hit nothing except for the β -elements given by B^c . Therefore, we obtain Theorem E. q.e.d.

References

- H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [2] S. Oka, Note on the β -family in stable homotopy of spheres at the prime 3, Mem. Fac. Sci. Kyushu Univ. 35 (1981), 367–373.
- [3] S. Oka and K. Shimomura, On products of the β -elements in the stable homotopy groups of spheres, Hiroshima Math. J. 12 (1982), 611–626.
- [4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [5] K. Shimomura, Non-triviality of some products of β -elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349–353.
- [6] K. Shimomura, The homotopy groups of the L_2 -localized Toda-Smith spectrum at the prime 3, Trans. Amer. Math. Soc., **349** (1997), 1821–1850.
- [7] K. Shimomura, The homotopy groups of the L_2 -localized mod 3 Moore spectrum, J. Math. Soc. Japan 51 (2000), 65–90.
- [8] K. Shimomura and A. Yabe, The homotopy groups $\pi_*(L_2S^0)$, Topology 34 (1995), 261–289.
- [9] L. Smith, On realizing complex cobordism modules, Amer. J. Math. 92 (1970), 793-856.
- [10] H. Toda, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101-130.

Department of Mathematics, Faculty of Science, Kochi University, Kochi, 780-8520, Japan