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ABSTRACT. In this paper we consider a multivariate growth curve model with covariates

and random effects. The model is a mixed MANOVA-GMANOVA model which has

multivariate random-effects covariance structures. Test statistics for a general hy-

pothesis concerning the adequacy of a family of the covariance structures are proposed.

A modified LR statistic for the hypothesis and its asymptotic expansion are obtained.

The MLE's of unknown mean parameters are obtained under the covariance structures.

The efficiency of the MLE is discussed. A numerical example is also given.

1. Introduction

Suppose that we obtain repeated measurements of m response variables on

each of p occasions (or treatments) for each of N individuals and that we can

use observations of r covariates for each individual. Let jt be an m/?-vector

of measurements on the y'-th individual in the #-th group arranged as

Λβ) _ (ΛQ) γ(g) γ(g) ΛΘ) \f

j ~ vΛll/? •> Λ\mji ' Λ/?l/> * * ' Λpmj) '

\and assume that Xj's are independently distributed as Nmp(μj\Ω), where Ω

is an unknown mp x mp positive definite matrix, j — 1,.. ., Ng, g = 1,. . ., k.

Further, we assume that mean profiles of Xj are m-variate growth curves with

r covariates, i.e.,

where B is a q x p within-individual design matrix of rank q {<p), B' ® Im is

the Kronecker product of B' and the mxm identity matrix, cj s are r-vectors

of observations of covariates, ξ^'s are m^-vectors of unknown parameters, Θ is

an unknown r x mp parameter matrix. Let

Y — \ ^ ^ ^ (kh* Af — N -\- 4- N
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Then the model of X can be written as

(1.1) X~NNxnφ{A

where

o iNk

is an N x k between-individual design matrix, \n is an w-vector of ones,

C= [ c ^ , . . . , ^ , , c f ) , . . . , c ^ ) ] ' is a fixed N x r matrix of covariates,

rank [Λ, C] = k + r (<N -p), Ξ= [£(1), . . . , £ w ] ' is an unknown & x ra#

parameter matrix. Without loss of generality, we may assume that BB' = Iq.

The mean structure of (1.1) is a mixed MANOVA-GMANOVA model, and the

GMANOVA portion is an extension of Potthoff and Roy [5] to the multiple-

response case. For the model (1.1) in the single-response case (m = 1), see

Yokoyama and Fujikoshi [10] and Yokoyama [12]. This type of models has

been discussed by Chinchilli and Elswick [2], Verbyla and Venables [9], etc.

For a comprehensive review of the literature on such models, see, e.g., von

Rosen [7] and Kshirsagar and Smith [3, p. 85].

In this paper we consider a family of covariance structures

(1.2) Ωs = (B's ® Im)As(Bs ®Im)+Ip®Σs, 0 < s < q,

which is based on random-coefficients models with differing numbers of random

effects (see Lange and Laird [4]), where Δs and Σs are arbitrary ms x ms

positive semi-definite and m x m positive definite matrices respectively, Bs is the

matrix which is composed of the first s rows of B. This family is a gen-

eralization of a multivariate random-effects covariance structure proposed by

Reinsel [6]. In fact, the covariance structures (1.2) can be introduced by

assuming the following model:

where ηj9' is an ms-vector of random effects distributed as Nms(0,As), εy' is an

m/7-vector of random errors distributed as Nmp(0,Ip ®ΣS), η^'s and ej^'s are

mutually independent. This implies that F(jcj^) = Ωs. In §2 we derive a

canonical form of the model (1.1). A test statistic for testing HQS : Ω = Ωs vs.

H\s\ not Hos in the model (1.1) has been proposed by Yokoyama [13]. In §3

we propose test statistics for the hypothesis

(1.3) HOs:Ω = Ωs vs. Hlt : Ω = Ωt

in the model (1.1), where 1 < s < t < q. Since the exact likelihood ratio
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(= LR) statistic for the hypothesis is complicated, it is suggested to use a

modified LR statistic, which is the LR statistic for a modified hypothesis. An

asymptotic expansion of the null distribution of the statistic is obtained. By

making this strong assumption that Ω = Ωs, we can expect to have efficient

estimators. In §4 we obtain the maximum likelihood estimators (= MLE's) of

unknown mean parameters under the covariance structures (1.2). In com-

parison with the MLE of Ξ when no special assumptions about Ω are made,

we show how much gains can be obtained for the maximum likelihood es-

timation of Ξ by assuming that Ω has the structures (1.2). In §5 we give a

numerical example of the results of §4.

2. Canonical form of the model

In order to transform (1.1) to a model which is easier to analyze, we use

a canonical reduction. We define the submatrices B~ and B~Πί of B by B =

[Bf

nBjr}\ Bt = [B's, B~Πί

f]f. Let B be a (p - q) x p matrix such that BBr = Ip_q

and BBf = 0. Then G = [B's,B;n/,B-',Bf]f = [G[, G'2, G^ G'A}' is an orthogo-[
n a l m a t r i x o f o r d e r p , w h e r e G[ = [g[l\ .. .,g®]' : p x s, G'2 = \g%\... ,

T h e r e f o r e , Q = G®Im = [Q' Q' Q'3, Q'4]' = [Q^ ,...,Q\

Qί} , • • •, Q(Γ'] ' Q{4] , - ,Q4 }' is an orthogonal matrix of order

mp. Further, let H = [Hi, H2] be an orthogonal matrix of order Λf such that

Hi is an orthonormal basis matrix on the space spanned by the column vectors

of C. Then, letting Y = H'2XQ! = \YU Y2, Y3, Y4] = [Y?\ ..., Y{s\ } f\ . . . ,

f~'\ Y?\..., Y(/~q)], [Y\,Yi, Yι) = Y[U3) and [Y2,Y3] =

, Y(23) ], the model (1.1) can be reduced to a canonical form

(t-s)

- ί^(23)'

(2.1) H'XQ'=\
]_ (123)

Ψ®IN

where

μ = H{A[Ξ,O]+H{CΘQ',

Ψ = QΩQ' =
Ψ22 Ψ23

Ψ43

A =

Here we note that (θ, Ξ) is an invertible function of (μ, Ξ). In fact, θ can be

expressed in terms of μ and Ξ as

(2.2) θ = {H[CyιμQ - (H[C)-χH[AΞ{B ® Im).
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3. Tests for a family of covariance structures

We consider the LR test for the hypothesis (1.3) in the multivariate growth

curve model (1.1). This is equivalent to considering the LR test for the

hypothesis

( 3 1 } H»-ψ

ψ

in the model (2.1). Since the elements of μ in (2.1) are free parameters, for

testing the hypothesis (3.1) we may consider the LR test formed by only the

density of Y. The model for Y is

(3.2) Y~Nnxmp([AΞ,0},Ψ®In),

where n = N — r. Let L(Ξ, Ψ) be the likelihood function of Y. It is easy to

see that the MLE of Ξ under HQS or H\, is given by Ξ = (A'A)~ιA'Y^2i)

Then we have

= -2logL(Ξ,Ψ)

= n\og\Ψ\ + tr ̂ '[7(123) - AΞ Y*]'[Y(m) ~ AΞ F4]

As is seen later on, the minimum of g(Ψ) under HQS or H\, is compli-

cated. For simplicity, we consider the LR test for a modified hypothesis

0
(3.3) HOs' Ψ= n τ _ _ vs. Hu: Ψ= . n ,

V 0 IP-S®ΣS) \ 0 Ip-t®Σt

where ^ π and ϊ/(i2)(i2) are assumed to be arbitrary ms x ras and mi x mt

positive definite matrices respectively, and

We note that the difference between H$s and //fo is whether or not ίPπ satisfies

a restriction that Ψ\\ >IS®ΣS, and so is the difference between H\t and

H\t. It is easily seen that

(3.4) min 0(^1,2;,) = /!logι°»
+ n(p

-\-nmp

s) log
1 |

n(p — s) '

/ a

2 ^ 5(23)(23) H

p-q
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and

(3.5) min g(Ψ[n){n),Σt) =n\og

-f n(p - t) log

nmp,

i ί q-t p-q ,
1 { V e(») . V YU) YU)

h s + 4 4

where

s = γ'[in - A(AΆγλA'\ Y =
Si\ S22 S22 S24

'31 ^32 S33

\S4\ S42 S43 S44J

, S21 SΊI )

and S$ = Y^'[In - A{Af A)~x A']Y^\ The minimum (3.4) is achieved at

Therefore, we can obtain the LR test statistic

(3.6)

for testing H$s vs. H\u which may be also used for testing HQS VS. H\t. The

statistic ASiί can be expressed in terms of the original observations, using

\smm\

l * M l
1

/>- •Ur

'q-t

Σ ^

^ ) ( 2 3 ,

p-q

7=1
p-q

(Λ'yθΛ

(3.7)
•(y ) ' v ( Λ α α — ΰcι

C(H) _

where F X Λ . C = K ^ - F ^ F " 1 ^ , , F X J C . c a = F x x . c - Vxa.c v£e Vax.c and

V V V '
v xx v xc v xa

ex R\ v — \γ c AV\Y C Λλ — I v v v 1
\J'°) v — I/1 ' ^1 ̂ J [Λ ' ^1 Ά\ — I v ex v cc y ca \ •

V V V
v ax v ac y 1
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We can decompose the statistic ΛSJ as

(3.9) A S t t -

where

(3.10)

and

(3.11)

Λχ =

\Sn\

\Sn.i \S\\.i

Ί 11 l SΊl-2 +

p-t

Σ c(«)

p-s\i=

q-t p-q

Σ sxv + V
i=\ j=\

γUYγU)
p-s-

The statistics yίi and Λι are the LR statistics for

respectively.
= 0 and ^22 = Λ-.s

LEMMA 3.1. PF/zê  the hypothesis H$s is true, it holds that

i) Λ\ and Λ2 are independent,

{\ {n-k-m(t-s)} + h)Γms{\ (n - k))
( i i ) E{Λh

x) =

(iii) i*

Γms{\ {n-k-m{t- s)})Γms{\ (n-k)+hY

{p-s)m{p-s)hΓm(t_s){\{n-k)+h)

Γm(t.s){\{n-k))

t)} + (p- t)h)Γm{\{n{p - s) - k{q - s)})

Γm{\{n(p - ή - k(q - t)})Γm{\{n{p - s) - k(q - s)} + (p - s)h)'

where Γm(n/2) = π " ^ - ' ) / 4 Π ^ i Γ((« -j+ l)/2).

PROOF. Under HQS, it is easy to verify that S\ 12 ~ Wms(n — k — m{t-s), Ψ\\),

S2l ~ Wms(m(t -s),Ψn), S22 7 Wm(t_s)(n - k,/,_, ® Σs), Σf=7S33? ~

^((w-ArKi-O.ir,) and Σ/=7 ̂  ^ - W - ί U J Father, these
statistics are independent. Therefore, λ\ and Λ2 are independent. The A-th

moment of yίi follows from that Λ\ is distributed as a lambda distribution

Λms(m(t — s),n — k — m(t — s)). The Λ-th moment of Λ2 can be written as

E{Λh

2) = 2m{t-s)h

{p _ Γm(ι_s){\{n-k))

\W1\
(p-ήh

where W\ and W2 are independently distributed, W\ ~ Wm(n\,Im), W2 ~

Wm{n2,Im), nλ = {2h + n- k)(t - s), n2 = n(p - t) - k{q - t). Here, letting

U = I W\ + W2\ and V =\ W2\ \ W\ + W2\~ι, it is easy to verify that U and V
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are independent, V ~ Λm(n\,ri2), U has the same distribution as Πι™i Ui where

the Ui are independent and U\ ~ χ 2

1 + Λ 2 _ j + 1 . The h-th moment of Λ2 can be

obtained from the above fact.

Using Lemma 3.1, we can obtain an asymptotic expansion of the null

distribution of statistic —np\ogλst by expanding its characteristic function.

THEOREM 3.1. When the hypothesis HQS is true, an asymptotic expansion of

the distribution function of statistic —np log ΛSj t is

(3.12) P(-np\ogΛs,t <x) = P{χj < x) + O(M~2)

for large M = np, where f = \m{t — s){mt + ms + 1) and p is defined by

fn(\ - p) = jztn(t - s){β(mt + ms + \)k 4- 6(mt + l)m^

x {6(/7 - ^) 2 k 2 - 6(m + l)(/7 - tf)/c + 2m2 + 3m - 1}}.

In the single-response case (m — 1), the asymptotic expansion (3.12) agrees

with the results in Yokoyama [12].

We now consider the exact LR criterion AnJJ for H$s vs. H\t. Let

-Λ(12)(12), 2 / ~ w f n _ Λ 2 ^
^ ^ \ϊ=:l 7=1 /

If it holds that

(3.13) Ψu-Is®Σs>0 and Ψ(n)(i2) - Λ ® ̂  > 0,

it is easy to show that Λ M = ΛSit. Unless (3.13) holds, we need to solve the

problem of minimizing

l-g{As, Σs) = \og\As + Is ® Σs\ + iτ(As + Is ® Σsy
x Ψn

+ (p-s)(log\Σs\+trΣ;ιΣs)

or

-g{A,,Σ,) = \og\J, + 1
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under Hos or H\t, respectively. However, since the problem is not easy, we

consider a lower bound denoted in terms of characteristic roots (Anderson [1])

for the minimum of g(As,Σs)/n or g(At,Σt)/n. Let l\ > ••• > lms and

/* > •• >/^ be the characteristic roots of Ψ\\ and Σs respectively, and let

d\ > > dmt and d[ > •• > d^ be ones of Ψ(n)(\2) and Σu respectively.

Then, as test statistics for HQS VS. H\h we obtain

(3.14) Ast = {yxsh i f ^ n - ^ ® ^ 0 ,
elsewhere,

and

(3 15) < , =

where

Kt —
\p-s

The statistics yl̂ ί and Λ*t are approximate LR statistics for H$s vs. ^ h

and HQS VS. i/^, respectively. In the single-response case (m = 1), we have

Λ,/ < ΛSit <Λ*r

4. The MLE's of unknown mean parameters

In this section we obtain the MLE's of unknown mean parameters in the

multivariate growth curve model (1.1) with Ω = {B's ® Im)As(Bs ® Im) -f Ip ® Σs

(= Ωs) and consider the efficiency of the MLE of Ξ. This model is reduced to

the same canonical form as in (2.1), but the covariance matrix Ψ is given by

0

0 IPs®Σs

It is easily seen that the MLE's of μ and Ξ are given by

(4.1) μ = Z and Ξ= (A'A)-ιA'Y(l23),

respectively. Therefore, from (2.2) the MLE of Θ is given by
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(4.2) Θ = (H{CΓιZQ-(H{C)-ιH[A(AfAyιAfY{l23)(B®Im).

We now express the MLE's Ξ and Θ in terms of the original observations or

the matrix V in (3.8). Noting that

(A'A)-ιA'Y{l23) = (AfH2HΪA)-ιA'H2HίX(Bf®Im),

{H[cyλH[ = (c'cyλc\

we have the following theorem.

THEOREM 4.1. The MLE's of Ξ and Θ in the multivariate growth curve

model (1.1) with Ω = Ωs are given as follows:

Ξ = [A\IN - Pc)A]-χA'{IN - Pc)X(Bf ® Im)

Θ = (C'CyxCfX - (C'CyxCfA[A'(IN - Pc)A]-χA'(IN - PC)X{B'B ® Im)

= V-χ[Vcx-VcaV;x

cVax.c(B'B®Im%

where Pc = C(C'CyxC.

On the other hand, the MLE of Ξ when Ω has no structures, i.e., is

arbitrary positive definite is given by

where S* = XΉ2[In - A(AfAyxAf]H^X. The result (4.3) is an extension of

Chinchilli and Elswick [2] to a multivariate case. It is easily seen that

A'A — V A'H'Y — V SI* — V — V V~ι V — V
**•**• — " aa ci s± 11

2

JX — " axci ^ — v xx c v xa c" aac a x c — xxac

These imply that

The estimators Ξ and Ξ have the following properties.

THEOREM 4.2. In the multivariate growth curve model (1.1) with Ω = Ωs it

holds that both the estimators Ξ and Ξ are unbiased, and

V(vec(Ξ)) = Ψs ® M,

K(vec(.§)) = < 1 + — — m^P—γ- r — - > Ψs ® M,

where M=[Af(IN- PC)A]~X and
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S + IS®ΣS 0

0 Iq-s ® 2

PROOF. Since Ξ — (AfA)~ιAfY^23), we have

E{Ξ) = Ξ and F(vec(S)) = ΨS® (A'A)~\

which imply the result on Ξ. By an argument similar to the one in Yokoyama

[12], it can be shown that for any positive definite covariance matrix Ω,

E(Ξ) = Ξ and

Under the assumption that Ω = Ωs, it holds that [(B® Im)Ω~ι(Bf ® Im)} x =

Ψs, which proves the desired result.

From Theorem 4.2, we obtain

(4.5) VCVQC(Ξ)) — VCVQC(Ξ)) = m ~ Ψs ® M > 0,

^ w N — (k -\-r) — m(p — q) — 1

which implies that Ξ is more efficient than Ξ in the model (1.1) with Ω = Ωs.

This shows that we can get a more efficient estimator for Ξ by assuming

multivariate random-effects covariance structures. Especially, when p is large

relative to N, we can obtain greater gains.

As mentioned in § 3, the MLE's of unknown variance parameters Σs and

Δs in the model (1.1) with Ω — Ωs become very complicated. On the other

hand, the usual unbiased estimators of Σs and Δs may be defined by

Σs =

Δs =

n{p-s)~k{q-s)\^

1

n-k U s s'

respectively. However, there is the possibility that the use of Δs can lead to a

nonpositive semi-definite estimate of Δs. These estimators can be expressed in

terms of the original observations, again using (3.7).

5. An example

In this section we apply the results of §4 to the data (see, e.g., Srivastava

and Carter [8, p. 227]) of the price indices of hand soaps packaged in four

ways, estimated by twelve consumers. Each consumer belongs to one of two

groups. It is known (Yokoyama [11]) that the model (1.1) in the case m = 1,
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p = 4 and N = 12 with

E(X)= ( 1

0

6 ) ί 1 4 + Ii2(0i,02,03,04) and

F(vec(Jf)) = (<52141^ + σ2/4) ® /n

is adequate to the observation matrix X : 12 x 4. Now we estimate how

much gains can be obtained for the maximum likelihood estimation of ξ by

assuming the random-effects covariance structure. Since k = q = r = s=l,

[ l i (^ 2 l 4 l i + σ2I4y
ιUΓl = (4δ2 + <72)/4, M - 1/3, δ2 = .01353 and σ2 -

.00976, it follows from Theorem 4.2 and (4.5) that V(ξ)/V(ξ) = 2/3 and

V(ξ) - V(ξ) = (4δ2 + <τ2)/24 = .00266.
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