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Abstract. In this paper a billiard problem in nonlinear and nonequilibrium systems is

investigated. This is an interesting problem where a traveling pulse solution behaves as

if it is a billiard ball at a glance in some kind of reaction-di¤usion system in a

rectangular domain. We would like to elucidate the characteristic properties of the

solution of this system. For the purpose, as the first step, we try to make a reduced

model of discrete dynamical system having the important properties which the original

system must have. In this paper we present a discrete toy model, which is reduced

intuitively as one of the candidates by use of numerical experiments and careful

observation of the solutions. Moreover, we discuss about the similar and important

points between the solution in the original ordinary di¤erential equation (which

describes the pulse behavior) and the one in the toy model by computing numerically

the characteristic quantities in view of the dynamical system, for example, global and

local Lyapunov exponents and Lyapunov dimensions. As a result, we elucidate that

the system possesses an intermittent-type chaotic attractor.

1. Introduction

In a certain class of reaction-di¤usion system in which its stationary pulse

solution loses its stability and a traveling pulse solution arises, as a parameter

changes, if this solution is confined in a rectangular domain, then this solution

moves as if it is a billiard ball at a glance. The self-motion of the camphor

disk is an example of such systems. Let us make the following experiment:

The camphor disk is made of the condensation of camphor and impurities-

(cornstarch). Pour water into the water tank and then float the camphor disk

on the surface of the water. Then the di¤erence of the surface tension arises

from the dissolution of camphor to water. If the purity of camphor is higher

than the critical value, then the camphor disk is pulled to the surface tension

low and moves like a billiard ball repeating the uniform motion and the
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reflection. But this system is quite di¤erent from the usual billiard problem in

the point of view of revenue and expenditure of kinetic energy. Unlike the

usual billiard problem with the energy conservation law, there is expenditure of

kinetic energy by friction and is revenue by its solving. In a word, it can be

said that this is a good example of non-equilibrium and nonlinear phenomena.

We can reduce the reaction-di¤usion system with such a pulse solution to

the particle model, which is regarded as a singular limit equation as the pulse

size tends to zero. Derivation of the particle model is described in detail in

[1]. As we make a numerical simulation of the particle model, at a glance, the

solution seems also to behave similarly to the usual billiard problem. But if

we investigate the behavior of the solution in details, then we notice that the

solution behaves with more complex motion than in the usual billiard problem

even in a rectangular domain. In fact, we can see a various of behavior of the

solution as the aspect ratio of the rectangular domain changes. Especially in

some parameter intervals, the solution behaves even chaotically, which can not

be seen in the usual problem in rectangular domain. We would like to know

what makes such a kind of di¤erences between them.

In this paper, we study this interesting problem by mainly use of numerical

simulations. In § 2, we make a research of the solution of the particle model in

details. We first investigate the relationship of the angle of incidence and of

reflection, in which we can find the primitive di¤erence of the usual billiard

problem. Next, we draw a kind of bifurcation diagram of orbits of the

problem, in which we can see chaotic parameter regions exist intermittently.

These results have been already reported in [4], [5], and [6]. But, as those are

written in Japanese, we report again them here to make sure of them, too.

Moreover, we compute Lyapunov exponents and Lyapunov dimensions for

some interesting parameters and verify that the strange solutions have chaotic

property by numerical simulations.

In § 3, we investigate what is the mechanism of the strange behavior of

the system under consideration. For the purpose, we reduce the system of

equations to a discrete-time dynamical system model. As it is very hard to

reduce the system theoretically to the discrete one, we do it with intuitive way

by use of numerical simulation to get a kind of toy model. We first make

observations of the solutions of the particle model, and get a characteristic

property of the solution of the system. Especially, we pay attention to a

strange behavior of the solution near the corners of the rectangle. Next, we

present a toy model of the modified discrete-time model as a candidate which

has the desirable properties of strange behavior of the solution especially near

corners.

Finally we make investigations about this toy model to see this model

possess the very similar properties to the particle model in view of dynamical

344 Masayasu Mimura, Tomoyuki Miyaji and Isamu Ohnishi



system. Especially this model has the intermittent chaotic behavior of the

solution. Therefore we expect that the strange behavior of the solution which

we found near corners is essential to the interesting behavior of the system

under consideration. We make a conclusion that this strange behavior of the

solution is due to existence of the intermittent-type chaotic attractor in the

system.

2. Particle model

2.1. Mathematical models which describe the motion of camphor disks. To

understand the self-motion of camphor disks theoretically, some mathematical

models have been introduced. The main models are as follows:

(1) Point mass approximation model [3]

(2) Moving-boundary model

(3) Particle model.

Here we treat the particle model which is derived as a reduction system of the

moving-boundary model under the assumption that the speed where the

camphor disk moves is very slow. First of all, we introduce it.

The moving-boundary model is described as follows: Let uðt; xÞ be the

concentration of dissolved camphor. And d is di¤usion rate of dissolved

camphor, m is a viscosity, k is the sum of sublimation rate and dissolution

rate, and a is a dissolution rate of solid camphor. The surface tension is

represented by

gðuÞ ¼ g0
cuþ 1

;

where g0 is the surface tension of water and c is a positive constant. The

model equation is described as

ut ¼ dDu� kuþ a t > 0; x A WðtÞ;
0 t > 0; x A SnWðtÞ;

�

mV ¼ c
Ð
qWðtÞ gðuÞd~ss t > 0; x A qWðtÞ;

8><
>:

where WðtÞ is the disk domain of radius r corresponding to a camphor disk, S

is the domain corresponding to a water tank, and V is the velocity of the center

of a camphor disk. This can be reduced to an ordinary di¤erential equations

under the assumption that the speed where the camphor disk moves is very

slow. See [1] about details. The motion of camphor disk in two dimensional

plane R2 is described by its center coordinate and velocity. Let PðtÞ ¼
ðxðtÞ; yðtÞÞ and VðtÞ ¼ ðvðtÞ;wðtÞÞ be its center coordinate and velocity respec-

tively, then we can consider a camphor disk as one point particle. Now
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particle model is described by the following four dimensional ordinary di¤er-

ential equations:

_xx ¼ v;

_yy ¼ w;

_vv ¼ �ðm1jV j2vþm2evÞ;
_ww ¼ �ðm1jV j2wþm2ewÞ;

8>>><
>>>:

ð1Þ

where jV j2 ¼ v2 þ w2 and m1, m2 are positive constants and e is a parameter

corresponding to the purity of camphor.

The system (1) is analyzed in [5]. The motion of a particle described by

(1) has following properties: In the case e > 0, the moving particle will stop

before long for any initial velocity. On the other hand, in the case e < 0,

if jVð0Þj ¼ 0, then any t > 0 the particle won’t leave an initial position. If

jVð0Þj0 0, then the motion of a particle will converge asymptotically to

uniform motion.

Secondly, we consider the motion of two particles which have the inter-

action. Let PI ðtÞ ¼ ðxI ðtÞ; yI ðtÞÞ and VI ðtÞ ¼ ðvI ðtÞ;wI ðtÞÞ ðI ¼ 1; 2Þ be their

coordinate and velocity. Then the motion of these two particles is described

by following eight dimensional ordinary di¤erential equations:

_xxI ¼ vI �m0h
�3=2 expð�ahÞðxIþ1 � xI Þ;

_yyI ¼ wI �m0h
�3=2 expð�ahÞðyIþ1 � yI Þ;

_vvI ¼ �ðm1jVI j2vI þm2evI Þ �m3h
�3=2 expð�ahÞðxIþ1 � xI Þ;

_wwI ¼ �ðm1jVI j2wI þm2ewI Þ �m3h
�3=2 expð�ahÞðyIþ1 � yI Þ;

8>>><
>>>:

ð2Þ

where we agree to interpret I modulo 2, h ¼ jP1 � P2j is the distance between

two particles and mj ð j ¼ 0; 1; 2; 3Þ and a are positive constants. If hX 1, that

is, the distance between two particles is su‰ciently large, then the inter-

action term h�3=2 expð�ahÞ becomes very small. Hence we can consider that

ðP1ðtÞ;V1ðtÞÞ and ðP2ðtÞ;V2ðtÞÞ are independent with each other in that

case.

Next, we consider the motion of a particle that approaches the wall. In

this case, let y-axis be the reflecting wall. We assume that there is another

virtual particle at a symmetrical position for the wall and consider the inter-

action between these particles by using 2. Let P1ðt0Þ ¼ ðx0; y0Þ and V1ðt0Þ ¼
ðv0;w0Þ be the initial position and velocity of a particle. Then according to

symmetry, the initial condition of virtual particle is P2ðt0Þ ¼ ð�x0; y0Þ and

V2ðt0Þ ¼ ð�v0;w0Þ. Following [5], ðP1ðtÞ;V1ðtÞÞ and ðP2ðtÞ;V2ðtÞÞ are always

located at a symmetrical position for any t > 0. Therefore we can rewrite 2 by

introducing new variables ðx; y; v;wÞ ¼ ðx1; y1; v1;w1Þ as follows:
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_xx ¼ vþm0ð2xÞ�1=2 expð�2axÞ;
_yy ¼ w;

_vv ¼ �ðm1jV j2vþm2evÞ þm3ð2xÞ�1=2 expð�2axÞ;
_ww ¼ �ðm1jV j2wþm2ewÞ:

8>>><
>>>:

ð3Þ

Notice that (3) is essentially a three dimensional system since x, v and w are

independent of y.

Finally, as an extension of (3), we introduce the model which describes the

motion in a rectangular domain R ¼ ½0; cL� � ½0;L�. In this case, we assume

that there are four virtual particles at a symmetrical position for each edge of R

and consider the interaction between five particles. As well as the previous

case, by using symmetry, we get the particle model in a rectangular domain as

follows:

_xx ¼ vþm0
expð�2axÞffiffiffiffiffiffi

2x
p �m0

expð�2aðcL� xÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcL� xÞ

p ;

_yy ¼ wþm0
expð�2ayÞffiffiffiffiffi

2y
p �m0

expð�2aðL� yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL� yÞ

p ;

_vv ¼ �ðm1jV j2vþm2evÞ þm3
expð�2axÞffiffiffiffiffiffi

2x
p �m3

expð�2aðcL� xÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcL� xÞ

p ;

_ww ¼ �ðm1jV j2wþm2ewÞ þm3
expð�2ayÞffiffiffiffiffi

2y
p �m3

expð�2aðL� yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðL� yÞ

p :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ

2.2. Numerical simulations. When the camphor disk floats on water, it moves

almost in uniform motion if away from the wall. And if it approaches the

wall, it reflects without collision with a wall. Furthermore, this reflection

has the property that the angle of reflection is smaller than that of incidence.

We confirm that the solutions of (3) show such a reflection by numerical

simulation.

We set parameters mi ¼ 1:0 ði ¼ 0; 1; 2; 3Þ, a ¼ 1:0, e ¼ �0:06. Then

we can see that the particle reflects without collision with a wall (See

Figure 1).

Next, we observe the relation between angles of incidence and reflection.

But we can’t define angle near the wall since the particle reflects while drawing

a curve without collision with a wall as shown in Figure 1. So we use the

property that particles move almost in uniform motion if it su‰ciently away

from the wall. Let ðv0;w0Þ be the initial velocity which is given at the initial

position where su‰ciently away from wall and ðvy;wyÞ be the velocity in state
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of uniform motion after reflection. Then we define the angle of incidence yin
and the angle of reflection yout by

yin ¼ arctan
v0

w0

� �
; yout ¼ arctan

vy

wy

� �
:

Figure 2 is the relation between yin and yout, yout ¼ F ðyinÞ, obtained by

numerical experiments. As shown in figure, this reflection is not perfect elastic

reflection but non-perfect elastic reflection and yin > yout for yout A ð0; p=2Þ.
Then, we simulate the system (4), the particle in a rectangular domain

R ¼ ½0; cL� � ½0;L�. First, let the aspect ratio of the domain c be c ¼ 1:0,

that is, we consider the case where R is a square. We set parameters

mi ¼ 1:0 ði ¼ 0; 1; 2; 3Þ, a ¼ 1:0, e ¼ �0:06 and L ¼ 20:0. Assume that the

initial condition is ðx0; y0Þ ¼ ð10:0; 10:0Þ, ðv0;w0Þ ¼ ð
ffiffiffiffiffiffi
�e

p
sin y;�

ffiffiffiffiffiffi
�e

p
cos yÞ,

then the asymptotic orbit can be qualitatively classified into three kinds for the

value of y. See Figure 3.

Fig. 1. Reflection near the wall (Projection onto ðx; yÞ-plane).
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About quadrangle orbit shown in Figure 3, as shown in Figure 4, there

is a reverse-rotation orbit in the domain. Though two orbits in Figure 4 are

di¤erent the direction of the rotation, these are corresponding by reversing. It

is suggested by numerical simulation that the orbit of (4) in a square domain

converges to a certain periodic orbit for any initial condition and orbits shown

in Figure 4 are asymptotically stable periodic orbit.

Next, we consider how the orbit changes when the domain is changed

from the square into the rectangle. Change the aspect ratio c in (4) and solve

the system numerically.

If the parameter c is near 1.0, for almost every initial value the orbit

converges to a certain periodic orbit as shown in Figure 5. As c grows, the

round-cornered rectangle drawn by the stable periodic orbit becomes thin.

However, c grows greater than a certain value, solutions of (4) draw complex

orbits shown in Figure 6.

To know the relation between c and the asymptotic orbit at this parameter

value better, we introduce the following diagrams: Assign the parameter c to

the horizontal axis and the reflection position at the wall y ¼ 0 to the vertical

axis. However, since it is di‰cult to specify coordinates that the velocity in

the vertical direction becomes zero, x-coordinates where the absolute value of

the velocity in the vertical direction becomes su‰ciently small are recorded.

And the x-coordinates are divided by c so that the value is between zero and

L. The resulting picture is Figure 7. It was confirmed that depending on the

Fig. 2. Relation between yin and yout ðe ¼ �0:06Þ.

349A billiard problem



value of the parameter c the motion of the particle alternately repeated the

periodic orbit and non-periodic orbit. It seems that typical intermittent chaos

appears. Figure 8 is a set of some periodic orbits in Figure 7. For large c,

such complex periodic orbits appear.

2.3. Calculation of Lyapunov exponents. We consider whether non-periodic

orbits in the particle model (4) are chaos. So we calculate Lyapunov exponents

and quantify the stability of the orbit on the attractor. The numerical calcu-

lation method of Lyapunov exponents is detailed in the references [8], [7], and

Fig. 3. Three kinds of orbits in square.
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[2]. We calculated exponents for several c from 1:0 to 5:0. The calculation

result is as follows: For simple periodic orbits that appear near c ¼ 1:0, the

sign of Lyapunov exponents is ð0;�;�;�Þ and Lyapunov dimension dL is

equal to 1:0. And for periodic orbits at large c, the result is the same. For

Fig. 4. Quadrangle periodic orbit in square.
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Fig. 5. Stable periodic orbits at c ¼ 1:1 (left) and c ¼ 1:2 (right).
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Fig. 6. Complex orbits at c ¼ 1:25 (left) and c ¼ 1:3 (right).
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Fig. 7. Relation between the parameter c and reflection positions (left: 1:0 < c < 5:0, right:

1:2 < c < 1:6).
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the orbit seen to be non-periodic at c ¼ 1:3, the sigh of exponents is ð0; 0;�;�Þ
and dL ¼ 2:0. Thus though this orbit fills the domain, this might not be

chaotic. However, for other parameters, a positive exponent might be ob-

tained. In this case, the sign of exponents is ðþ; 0;�;�Þ and 2 < dL < 3.

Hence it can be expected that these orbits are chaotic.

Fig. 8. Periodic orbits for several parameters ðc ¼ 1:46; 1:6; 2:0; 2:9; 4:4Þ.
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Fig. 8. Continued

Table 1. Lyapunov exponents and dimension for several c.

Parameter values Lyapunov spectrum Lyapunov dimension

c ¼ 1:00 l1 ¼ 0:0000, l2 ¼ �0:0057 1.0000

l3 ¼ �0:0093, l4 ¼ �0:1600

c ¼ 1:30 l1 ¼ 0:0000, l2 ¼ 0:0000 2.0000

l3 ¼ �0:0102, l4 ¼ �0:1587

c ¼ 1:40 l1 ¼ 0:0000, l2 ¼ �0:0006 1.0000

l3 ¼ �0:0095, l4 ¼ �0:1593

c ¼ 1:85 l1 ¼ 0:0007, l2 ¼ 0:0000 2.0680

l3 ¼ �0:0099, l4 ¼ �0:1617

c ¼ 2:24 l1 ¼ 0:0015, l2 ¼ 0:0000 2.1687

l3 ¼ �0:0090, l4 ¼ �0:1633

c ¼ 2:82 l1 ¼ 0:0003, l2 ¼ 0:0000 2.0364

l3 ¼ �0:0076, l4 ¼ �0:1649

c ¼ 3:00 l1 ¼ 0:0000, l2 ¼ �0:0029 1.0000

l3 ¼ �0:0042, l4 ¼ �0:1652

c ¼ 3:99 l1 ¼ 0:0021, l2 ¼ 0:0000 2.3703

l3 ¼ �0:0057, l4 ¼ �0:1675

c ¼ 4:88 l1 ¼ 0:0013, l2 ¼ 0:0000 2.2510

l3 ¼ �0:0052, l4 ¼ �0:1682
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3. Discrete-time model

3.1. Derivation of discrete-time model. The particle model is derived as a

reduction system of a certain reaction-di¤usion system near the bifurcation

point at which a stationary pulse solution of the system loses stability and a

traveling pulse solution arises. However, this model is still too complex to

analyze it. We are interested in the global bifurcation structure of the solution

of this system that intermittent chaos seems to appear. So we describe orbits

of the particle model as a discrete-time dynamical system with lower dimension

Fig. 9. Non-periodic orbits for c ¼ 1:40; 1:85; 2:24; 2:82; 3:99; 4:88.
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by using a limit operation proposed in [4] and [6]. We execute the following

limit operation: Assume that L ¼ y and consider reflection of the orbit of

the particle model. Shorten the length of a edge of the square domain L

again.

By such an operation, we can consider that the particle is in a state of

uniform motion in the square domain and hits the wall and reflects. And yin
and yout are given by the relation yout ¼ FðyinÞ shown in Figure 2.

It is easy to prove the existence and uniqueness of a stable periodic orbit in

the square for this discrete-time model. It is discussed in detail in [4] and [6].

Then, we consider the case in a rectangular domain. Indeed, it is possible

to prove the unique existence of a stable periodic orbit in a rectangular domain

Fig. 9. Continued
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by using of this discrete-time model. It is discussed in detail in [4], [6]. See

Figures 11 and 12. This discrete-time model reproduces the stable periodic

orbit well in particle model.

However, this attempt fails in the approximation of non-periodic orbit.

Figure 13 is a comparison of the particle model and the discrete-time model for

c ¼ 1:3. The particle model shows non-periodic orbit for c ¼ 1:3. On the

other hand, an asymptotic orbit in the discrete-time model for c ¼ 1:3 is not

non-periodic though it is complex. We compare the dependency of asymptotic

orbits on c for the particle model with that for the discrete model. See Figure

14. It shows the relation between c and reflection positions at the wall y ¼ 0.

Fig. 10. Stable periodic orbit in the square domain (left: particle model, right: discrete-time

model).

Fig. 11. Stable periodic orbit for c ¼ 1:2 (left: the particle model, right: the discrete model).
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For the discrete-time model, there seems to be no non-periodic structure. This

discrete-time model cannot be applied to the analysis of non-periodic orbit.

3.2. Observe the particle model. Why does such a di¤erence appear between

the discrete-time model and the particle model? We compare a greatly

di¤erent point in two models and enable the application to non-periodic orbit

by adding a proper correction to the discrete model.

The most remarkable di¤erence is pointed out by [6]. When the particle

reflects near the center of the wall, the orbit of the discrete-time model

coincides with that of the particle model. However, when the particle reflects

near the corner of the domain, these orbits do not coincide. In this case, the

particle starts the next reflection before it turn into a state of uniform motion

after the reflection first. Thus the angle of incidence of the second reflection is

di¤erent in both models. Two orbits of the particle model toward the same

direction starting from di¤erent initial positions is shown in Figure 15.

Though it is incidence at the same angle, the angle of reflection is di¤erent.

Fig. 12. Stable periodic orbit for c ¼ 3:0 (upper: the particle model, lower: the discrete model).
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It is thought that this is because the interaction with the wall changes by the

reflection position. When non-periodic orbit appears, the particle fills the area

by repeating the reflection near the corner. To observe the influence of the

reflection in the corner, we calculate local Lyapunov exponents.

Fig. 13. Asymptotic orbit for c ¼ 1:3 (upper: the particle model, lower: the discrete model).
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Fig. 14. The relation between c and reflection positions (upper: the particle model, lower: the

discrete model).
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Before calculating local Lyapunov exponents along the orbit in a rectan-

gular domain, we observe the behavior of exponents when the reflection doesn’t

happen at all. First of all, we calculate along the solution of the model

(1). We set the initial condition x0 ¼ y0 ¼ 10:0, v0 ¼ �
ffiffiffiffiffiffiffiffiffi
0:06

p
sinðp=6Þ, w0 ¼ffiffiffiffiffiffiffiffiffi

0:06
p

cosðp=6Þ. Let ðx; yÞ be coordinate of the particle and z-axis corre-

sponds to the value of local Lyapunov exponent. The first and second

Lyapunov exponents l1, l2 are shown in Figure 16 and the third and forth

l3, l4 are in 17. Figure at the right of each figure shows projection to the

ðx; zÞ plane. In the case of (1), if e < 0, then the particle converges to

asymptotically uniform motion. Thus we can consider that the first and

second exponents are always zero corresponding to x, y and the third and

forth exponents are always negative corresponding to the velocity ðv;wÞ which

converges to a certain constant.

Next, we calculate exponents along the solution of (3) to observe the

behavior in the reflection. We set the initial condition x0 ¼ y0 ¼ 10:0,

v0 ¼ �
ffiffiffiffiffiffiffiffiffi
0:06

p
sin y, w0 ¼

ffiffiffiffiffiffiffiffiffi
0:06

p
cos y so that the particle approaches the

wall x ¼ 0. Figures 18, 19 and 20 show the exponents corresponding to

y ¼ p=6; p=4; p=3 respectively. Figures upper in each figure shows the first and

second exponents and lower shows the third and forth.

In this case, if the particle is away from the wall x ¼ 0, then l1 ¼ l2 ¼ 0

and l3; l4 < 0 as well as the case of 1. However, when the particle reflects, l1

Fig. 15. Motion of the particle near corner.
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Fig. 16. The first and second local Lyapunov exponents along the solution of (1).

364 Masayasu Mimura, Tomoyuki Miyaji and Isamu Ohnishi



Fig. 17. The third and forth local Lyapunov exponents along the solution of (1).
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Fig. 21. Local Lyapunov exponents along the stable periodic orbit of 4 with c ¼ 1:0 (upper: l1,

l2, lower: l1, l2).
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becomes negative while l2 does not change. On the other hand, when the

particle approaches the wall, l3 and l4 increase temporarily, and l3 becomes

positive at this time. And when the particle goes away from the wall, l3 and

l4 become negative again.

Then, we observe the behavior along the solution of (4) with c ¼ 1:0 in a

square domain. Figure 21 shows local Lyapunov exponents along the stable

periodic orbit in a square domain. When the particle reflects at x ¼ 0 or

x ¼ L, l1 becomes negative and l3 becomes positive. Similarly, when the

particle reflects at y ¼ 0 or y ¼ L, l2 becomes negative and l4 becomes

positive. If the particle is away from the wall, exponents behave as well as the

case of (1).

Fig. 22. Local Lyapunov exponents with the angle of incidence y ¼ p=6 and the particle

approaching to ðx; yÞ ¼ ð10; 0Þ.
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Following the above observation, we consider the reflection at some

positions. As it is not essentially related at which wall the particle reflects

to the behavior of exponents in a square domain, we think about especially the

case where it reflects at xaL=2, y ¼ 0.

Fig. 23. Local Lyapunov exponents with y ¼ p=6 and the particle approaching to

ðx; yÞ ¼ ð15; 0Þ; ð19; 0Þ (upper: l1, l2, lower: l3, l4).
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We assume that yin ¼ p=6 and the particle approaches the point ðx; yÞ ¼
ð10; 0Þ. In this case, exponents behave as well as the case of (3) and then the

particle approaches x ¼ L. See Figure 22 this might be a natural result,

because the reflection position is su‰ciently away from other walls.

Fig. 24. Local Lyapunov exponents with y ¼ p=4 and the particle approaching to

ðx; yÞ ¼ ð15; 0Þ; ð19; 0Þ (upper: l1, l2, lower: l3, l4).
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Next, we calculate exponents when the particle reflects in the corner of

the domain. We assume that yin ¼ p=6 and the particle approaches the point

ðx; yÞ ¼ ð15; 0Þ; ð19; 0Þ. The result is drawn in ðx; zÞ plane in Figure 23. When

the reflection position is near the corner in the domain, before l2 that be-

came negative by the reflection returns to zero, l1 becomes negative because of

Fig. 25. Local Lyapunov exponents with y ¼ p=3 and the particle approaching to ð15; 0Þ, ð19; 0Þ
(left: l1, l2, right: l3, l4).
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x ¼ L. Especially, when the particle approaches ð19; 0Þ, l1 becomes negative

before l2 takes a minimal value. And l4 increases again without becoming

negative after it becomes positive by the reflection. These results mean that

the particle already starts reflecting at x ¼ L when reflecting at y ¼ 0.

Even if the angle of incidence is changed, similar results are obtained.

The reflections with the angle of incidence y ¼ p=4 and y ¼ p=3 are shown in

Figure 24 and in Figure 25, respectively.

Thus the e¤ect from another wall grows as the reflection position

approaches the corner in the domain. It is thought that the e¤ect from

another wall cannot be disregarded when we reduct it to the discrete-time

system.

3.3. Modified discrete-time model. From the observation above, we modify

the discrete-time model as follows. We suppose that the reflection position

divides reflecting wall into p : 1� p. Because the angle of reflection depends

on the reflection position, we use p as information of the reflection position.

We determine the angle of reflection by

yout ¼ Gðp; yinÞ ¼ FðyinÞgðpÞ: ð5Þ

Function gðpÞ should satisfy the following properties:

(1) The reflection angle is not corrected in the middle point of the wall.

gð1=2Þ ¼ 1.

(2) The angle is greatly corrected near the corner in the domain.

Because it is very di‰cult to derive rigorously the function for the correction,

we use the following function with these properties: Let q and r be positive

constants.

gðpÞ ¼ expðqð0:5� pÞrÞ; if r is odd;

expðq signð0:5� pÞð0:5� pÞrÞ if r is even.

�
ð6Þ

The graph of this function and that of (5) are shown in Figure 26.

We simulate the orbit of the particle by using this corrected discrete-time

model. However, only periodic orbits appeared though q and r were variously

changed. Figure 27 shows the relation between the aspect ratio c of the rect-

angular domain and reflection positions at y ¼ 0.

There seems to be an important property in the motion of the particle that

we have overlooked. Then, we observe the reflection for various angle of

incidence and modify the discrete-time model more appropriately.

Figure 28 shows the incidence of the particle to a left wall for some angles

and initial positions. In the correction above, we assumed that the angle of

reflection grew more than usually near the corner in the domain. However, it

is not necessarily so. The angle of incidence also e¤ects the correction. That
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is, the angle of reflection becomes smaller for the small angle of incidence and

it becomes larger for the large angle of incidence. In consideration of this

observation, we use the following function for the correction:

gðp; yinÞ ¼ exp q yin �
p

4
ð0:5� pÞr signð0:5� pÞ

� �� �
; ð7Þ

or

gðp; yinÞ ¼ exp q yin �
p

4
ð0:5� pÞr

� �� �
: ð8Þ

Fig. 26. Function gðpÞ and corrected function by (5) with q ¼ 100, r ¼ 9.
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Fig. 27. The relation between the aspect ratio c and reflection positions at y ¼ 0 (upper: q ¼ 7,

r ¼ 8, lower: q ¼ 100, r ¼ 9).
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Fig. 28. Reflection near the corner in the domain.
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Fig. 29. The relation between the aspect ratio and reflection positions (upper: (7) with q ¼ 175,

r ¼ 9, lower: (8) with q ¼ 50, r ¼ 8).
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But it is di‰cult to derive rigorously the correction function because of the

property of the particle model of reflecting without collision.

By use of (7) or (8), we determine the angle of reflection by

yout ¼ FðyinÞgðp; yinÞ: ð9Þ
Thus, we can consider the motion of the particle as an essentially two

dimensional discrete-time dynamical system defined by the map

yout

p

� �
7! G1ðyout; pÞ

G2ðyout; pÞ

� �
: ð10Þ

Fig. 30. Non-periodic orbits in the modified discrete-time model.
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Table 2. Lyapunov exponents and dimension for the modified discrete-time model.

Parameter values Lyapunov spectrum Lyapunov dimension

c ¼ 1:00 l1 ¼ �0:3301; 0.0000

l2 ¼ �0:4502

c ¼ 1:48 l1 ¼ 0:0071; 1.0103

l2 ¼ �0:6914

c ¼ 1:97 l1 ¼ 0:0431; 1.0592

l2 ¼ �0:7276

c ¼ 2:33 l1 ¼ 0:1444; 1.1977

l2 ¼ �0:7303

c ¼ 2:91 l1 ¼ �0:0050; 0.0000

l2 ¼ �0:6302

c ¼ 3:10 l1 ¼ 0:0521; 1.0756

l2 ¼ �0:6900

c ¼ 3:12 l1 ¼ �0:1583; 0.0000

l2 ¼ �0:6372

c ¼ 4:41 l1 ¼ 0:0704; 1.1309

l2 ¼ �0:5381

c ¼ 4:84 l1 ¼ 0:2170; 1.3080

l2 ¼ �0:7046

Fig. 30. Continued
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We simulate the orbit in a rectangular domain by using this formula.

Figure 29 shows the relation between the aspect ratio c of the rectangular

domain and reflection positions at y ¼ 0. This modified discrete-time system

shows the fault structure of periodic orbits and non-periodic orbits.

Non-periodic orbits in the discrete-time model are similar to those in the

particle model. Compare Figure 30 and 9. Then, we calculate Lyapunov

exponents for these non-periodic orbits. We consider the modified discrete-

time system as two dimensional system. So we pay attention to the sign of

two exponents. Table 2 shows Lyapunov exponents obtained by using the

correction function (7) with q ¼ 175, r ¼ 9. The result is almost the same as

that in the case of the particle model. For a simple periodic orbit appearing

Fig. 31. Orbits defined by the modified discrete-time model plotted on ðyin; pÞ-plane.
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near c ¼ 1:0, the sign of exponents become ð�;�Þ and the Lyapunov dimension

dL ¼ 0:0. These are the same for other periodic orbits. On the other hand, a

positive exponent appears for non-periodic orbit. In this case, the sign of two

exponents is ðþ;�Þ and dL becomes a fractal dimension 1 < dL < 2. Even if

parameters of the correction function q; r are changed, a similar result is

obtained.

Fig. 32. Strange structure observed in the orbit for c ¼ 4:84.
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Non-periodic orbits in the modified discrete-time model have an interesting

feature. Plot sequence of points ðyin; pÞ defined by the map (10) on the plane

after a su‰cient long calculation. Naturally, when a periodic orbit appears in

a rectangular domain, the attractor becomes a periodic point. On the other

hand, the more complex structure appears for the orbit with a positive

Lyapunov exponent as shown in Figure 31. Furthermore, the nest structure

like the fractal can be observed by expanding a part the orbit for c ¼ 4:84 as

shown in Figure 32.

In the final part of this paper, we again emphasize that the strange

behavior of the solutions of the system is due to the existence of an

intermittent-type chaotic attractor, and we elucidate it numerically at the first

time for this interesting problem. Surprisingly, this is simply because the

reflection rule at the corner is irregular a little. We are a little interested in the

fact that such a small e¤ect raises the serious result in this nonlinear and non-

equilibrium system. We expect in the future that our result is improved and is

made precise more and more especially in mathematically rigorous point of

view.
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