On a-minimally thin sets at infinity in a cone

Dedicated to Professor Yoshihiro Mizuta on his 60th birthday

Ikuko Miyamoto and Hidenobu Yoshida
(Received March 2, 2006)

(Revised July 6, 2006)

Abstract

This paper gives the definition and some properties of a-minimally thin sets at ∞ in a cone. Our results are based on estimating Green potential with a positive measure by connecting with a kind of density of the modified measure.

1. Introduction

Let \mathbf{R} and \mathbf{R}_{+}be the set of all real numbers and all positive real numbers, respectively. We denote by $\mathbf{R}^{n}(n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbf{R}^{n} is denoted by $P=(X, y), X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. The Euclidean distance of two points P and Q in \mathbf{R}^{n} is denoted by $|P-Q|$. Also $|P-O|$ with the origin O of \mathbf{R}^{n} is simply denoted by $|P|$. The boundary and the closure of a set S in \mathbf{R}^{n} are denoted by ∂S and \bar{S}, respectively.

We introduce a system of spherical coordinates $(r, \Theta), \quad \Theta=$ $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in \mathbf{R}^{n} which are related to cartesian coordinates $\left(x_{1}, x_{2}, \ldots, x_{n-1}, y\right)$ by

$$
x_{1}=r\left(\prod_{j=1}^{n-1} \sin \theta_{j}\right) \quad(n \geq 2), \quad y=r \cos \theta_{1}
$$

and if $n \geq 3$, then

$$
x_{n+1-k}=r\left(\prod_{j=1}^{k-1} \sin \theta_{j}\right) \cos \theta_{k} \quad(2 \leq k \leq n-1)
$$

where $0 \leq r<+\infty, \quad-\frac{1}{2} \pi \leq \theta_{n-1}<\frac{3}{2} \pi, \quad$ and \quad if $n \geq 3$, then $0 \leq \theta_{j} \leq \pi$ ($1 \leq j \leq n-2$).

The unit sphere and the upper half unit sphere are denoted by \mathbf{S}^{n-1} and \mathbf{S}_{+}^{n-1}, respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Lambda \subset \mathbf{R}_{+}$and $\Omega \subset \mathbf{S}^{n-1}$, the set

$$
\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Lambda,(1, \Theta) \in \Omega\right\}
$$

2000 Mathematics Subject Classification. 31B05, 31B20.
Key words and phrases. cone, Green potential, a-minimally thin.
in \mathbf{R}^{n} is simply denoted by $\Lambda \times \Omega$. In particular, the half-space

$$
\mathbf{R}_{+} \times \mathbf{S}_{+}^{n-1}=\left\{(X, y) \in \mathbf{R}^{n} ; y>0\right\}
$$

will be denoted by \mathbf{T}_{n}.
Let Ω be a domain on $\mathbf{S}^{n-1}(n \geq 2)$ with smooth boundary. Consider the Dirichlet problem

$$
\begin{aligned}
\left(\Lambda_{n}+\tau\right) f=0 & \text { on } \Omega \\
f=0 & \text { on } \partial \Omega,
\end{aligned}
$$

where Λ_{n} is the spherical part of the Laplace operator Δ_{n}

$$
\Delta_{n}=\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+r^{-2} \Lambda_{n}
$$

We denote the least positive eigenvalue of this boundary value problem by τ_{Ω} and the normalized positive eigenfunction corresponding to τ_{Ω} by $f_{\Omega}(\Theta)$;

$$
\int_{\Omega}\left\{f_{\Omega}(\Theta)\right\}^{2} d \sigma_{\Theta}=1
$$

where $d \sigma_{\theta}$ is the surface element on \mathbf{S}^{n-1}. We denote the solutions of the equation

$$
t^{2}+(n-2) t-\tau_{\Omega}=0
$$

by $\alpha_{\Omega},-\beta_{\Omega}\left(\alpha_{\Omega}, \beta_{\Omega}>0\right)$. If $\Omega=\mathbf{S}_{+}^{n-1}$, then $\alpha_{\Omega}=1, \beta_{\Omega}=n-1$ and

$$
f_{\Omega}(\Theta)=\left(2 n s_{n}^{-1}\right)^{1 / 2} \cos \theta_{1}
$$

where s_{n} is the surface area $2 \pi^{n / 2}\{\Gamma(n / 2)\}^{-1}$ of \mathbf{S}^{n-1}.
To simplify our consideration in the following, we shall assume that if $n \geq 3$, then Ω is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{S}^{n-1} (e.g. see Gilbarg and Trudinger [9] for the definition of $C^{2, \alpha}$-domain).

By $C_{n}(\Omega)$, we denote the set $\mathbf{R}_{+} \times \Omega$ in \mathbf{R}^{n} with a domain $\Omega\left(\Omega \neq \mathbf{S}^{n-1}\right)$ on $\mathbf{S}^{n-1}(n \geq 2)$. We call it a cone. Then \mathbf{T}_{n} is a special cone obtained by putting $\Omega=\mathbf{S}_{+}^{n-1}$. The set $I \times \Omega$ with an interval I on \mathbf{R}_{+}is denoted by $C_{n}(\Omega ; I)$.

It is known that the Martin boundary of $C_{n}(\Omega)$ is the set $\partial C_{n}(\Omega) \cup\{\infty\}$, each of which is a minimal Martin boundary point. When we denote the Martin function at ∞ by $K(P ; \infty, \Omega)\left(P \in C_{n}(\Omega)\right)$ with respect to a reference point chosen suitably, we know

$$
K(P ; \infty, \Omega)=r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \quad\left(P=(r, \Theta) \in C_{n}(\Omega)\right)
$$

We denote the Green function of $C_{n}(\Omega)$ by $G_{\Omega}(P, Q)\left(P \in C_{n}(\Omega)\right.$, $\left.Q \in C_{n}(\Omega)\right)$ and the Green potential

$$
\int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d v(Q) \quad\left(P \in C_{n}(\Omega)\right)
$$

with a positive measure v on $C_{n}(\Omega)$ by $G_{\Omega} v(P)\left(P \in C_{n}(\Omega)\right)$.
The regularized reduced function $\hat{R}_{K(; ;, \Omega)}^{E}$ of $K(\cdot ; \infty, \Omega)$ relative to a bounded subset E of $C_{n}(\Omega)$ is bounded on $C_{n}(\Omega)$. Hence we see from the Riesz decomposition theorem that there exists a unique positive measure λ_{E} on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
\hat{R}_{K(; ; \infty, \Omega)}^{E}(P)=G_{\Omega} \lambda_{E}(P) \quad\left(P \in C_{n}(\Omega)\right) . \tag{1.1}
\end{equation*}
$$

The (Green) energy $\gamma_{\Omega}(E)$ of E is defined by

$$
\gamma_{\Omega}(E)=\int_{C_{n}(\Omega)}\left(G_{\Omega} \lambda_{E}\right) d \lambda_{E} .
$$

For a subset E of $C_{n}(\Omega)$ we put

$$
E(k)=E \cap C_{n}\left(\Omega ;\left[2^{k}, 2^{k+1}\right)\right) \quad(k=0,1,2, \ldots)
$$

We gave a criterion of Wiener's type for a subset E of $C_{n}(\Omega)$ to be minimally thin at ∞ with respect to $C_{n}(\Omega)$ (for the definition of minimal thinness, e.g. see Brelot [4, p. 103]);

$$
\begin{equation*}
\sum_{k=0}^{\infty} \gamma_{\Omega}(E(k)) 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)}<+\infty \tag{1.2}
\end{equation*}
$$

(Miyamoto and Yoshida [13, Theorem 1]).
The "if" part of the following Theorem A is well known (e.g. see Doob [6, p. 213]). The proof of the "only if" part is found in the proof of Miyamoto and Yoshida [13, Theorem 1].

Theorem A. A subset E of $C_{n}(\Omega)$ is minimally thin at ∞ with respect to $C_{n}(\Omega)$ if and only if there exists a positive measure ξ on $C_{n}(\Omega)$ such that

$$
E \subset\left\{P \in C_{n}(\Omega) ; G_{\Omega} \xi(P) \geq K(P ; \infty, \Omega)\right\} .
$$

Both Theorem A and (1.2) are qualitative. So we had a quantitative property of minimally thin sets as follows. As an extension of a result of Dahlberg [5, Theorem 4]), we proved the following measure theoretical property of minimally thin sets at ∞ with respect to $C_{n}(\Omega)$ by using an inequality of Hardy in Ancona [2] (also Lewis [11]); Let a Borel subset E of $C_{n}(\Omega)$ be minimally thin at ∞ with respect to $C_{n}(\Omega)$. Then we have

$$
\begin{equation*}
\int_{E} \frac{d P}{(1+|P|)^{n}}<+\infty \tag{1.3}
\end{equation*}
$$

(Miyamoto, Yanagishita and Yoshida [12, Theorem 2]).

By observing that (1.3) is equivalent to the conclusion of the following Theorem B, we immediately have a covering theorem for a minimally thin set in $C_{n}(\Omega)$ as in \mathbf{T}_{n} (Essén, Jackson and Rippon [7, Corollary 3]).

Theorem B. If a subset E of $C_{n}(\Omega)$ is minimally thin at ∞ with respect to $C_{n}(\Omega)$, then E is covered by a sequence of balls $B_{k}(k=0,1,2, \ldots)$ satisfying

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\frac{r_{k}}{d_{k}}\right)^{n}<+\infty \tag{1.4}
\end{equation*}
$$

where r_{k} is the radius of B_{k}, and d_{k} is the distance between the origin and the center of B_{k}.

To classify minimally thin sets in \mathbf{T}_{n}, for each number $a(0<a \leq 1)$, Aikawa [1] introduced the notion of a-minimally thin sets, in which 1-minimally thin sets are minimally thin sets. By a different way from Yanagishita's in [15], we shall give a conical version of a-minimally thin sets.

Let a be a number satisfying $0<a \leq 1$ and E a bounded subset of $C_{n}(\Omega)$. Since $\{K(P ; \infty, \Omega)\}^{a}\left(P \in C_{n}(\Omega)\right)$ is a positive superharmonic function on $C_{n}(\Omega)$ vanishing on $\partial C_{n}(\Omega)$ and $\hat{R}_{\{K(; ; \infty, \Omega)\}^{a}}^{E}(P)$ is bounded on $C_{n}(\Omega)$, there exists a unique positive measure $\lambda_{E, a}$ on $C_{n}(\Omega)$ concentrated on B_{E}, where

$$
B_{E}=\left\{P \in C_{n}(\Omega) ; E \text { is not thin at } P\right\}
$$

(see Brelot [4, Theorem VIII, 11] and Doob [6, XI. 14. Theorem.(d)]), such that

$$
\begin{equation*}
\hat{R}_{\{K(\cdot ; \infty, \Omega)\}^{a}}^{E}(P)=G_{\Omega} \lambda_{E, a}(P) \quad\left(P \in C_{n}(\Omega)\right) . \tag{1.5}
\end{equation*}
$$

By using this positive measure $\lambda_{E, a}$, we further define another positive measure $\eta_{E, a}$ on $C_{n}(\Omega)$ by

$$
d \eta_{E, a}(P)=K(P ; \infty, \Omega) d \lambda_{E, a}(P) \quad\left(P \in C_{n}(\Omega)\right)
$$

It is easy to see that $\eta_{E, a}\left(C_{n}(\Omega)\right)<+\infty$.
Let E be a subset of $C_{n}(\Omega)$ and k be any non-negative integer. A subset E of $C_{n}(\Omega)$ is said to be a-minimally thin at ∞ with respect to $C_{n}(\Omega)$, if

$$
\begin{equation*}
\sum_{k=0}^{\infty} \eta_{E(k), a}\left(C_{n}(\Omega)\right) 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)}<+\infty . \tag{1.6}
\end{equation*}
$$

Remark 1. Yanagishita [15, Definition 3] defined a measure $\eta_{E(k)}^{a}$ on $C_{n}(\Omega)$ by using Martin type kernel as in Aikawa [1] on \mathbf{T}_{n}. It is easily seen that it is the same measure to ours $\eta_{E(k), a}$. Hence the definition of a-minimal thinness given by Yanagishita [15, Definition 4] is also equal to ours.

Remark 2. We see from (1.1) and (1.5) that if $a=1$, then

$$
\lambda_{E(k), 1}=\lambda_{E(k)}
$$

for any non-negative integer k. Since $\lambda_{E(k)}$ is concentrated on $B_{E(k)}$ and

$$
\hat{R}_{K(; ; \infty, \Omega)}^{E(k)}(P)=K(P ; \infty, \Omega) \quad\left(P \in B_{E(k)}\right),
$$

we have

$$
\begin{aligned}
\gamma_{\Omega}(E(k)) & =\int_{C_{n}(\Omega)} G_{\Omega} \lambda_{E(k)}(Q) d \lambda_{E(k)}(Q)=\int_{C_{n}(\Omega)} \hat{R}_{K(; ; \infty, \Omega)}^{E(k)}(Q) d \lambda_{E(k)}(Q) \\
& =\int_{C_{n}(\Omega)} K(Q ; \infty, \Omega) d \lambda_{E(k)}(Q)=\int_{C_{n}(\Omega)} K(Q ; \infty, \Omega) d \lambda_{E(k), 1}(Q) \\
& =\int_{C_{n}(\Omega)} d \eta_{E(k), 1}=\eta_{E(k), 1}\left(C_{n}(\Omega)\right) .
\end{aligned}
$$

Hence we see from (1.2) and (1.6) that in the conical case the 1-minimal thinness at ∞ with respect to $C_{n}(\Omega)$ is also equivalent to the minimal thinness at ∞ with respect to $C_{n}(\Omega)$.

In this paper we shall obtain a measure-theoretic property of a-minimally thin sets at ∞ with respect to $C_{n}(\Omega)$ (Theorem 3), which extends a result in Essén, Jackson and Rippon [7] for \mathbf{T}_{n} by the way completely different from theirs. Our proof is essentially based on Hayman [10], Ušakova [14] and Azarin [3]. This property follows from the following two results. One is another characterization of a-minimally thin sets at ∞ with respect to $C_{n}(\Omega)$ (Theorem 1), as Theorem A characterizes minimal thinness. The other is the fact that the value distribution of Green potential with any positive measure is connected with a kind of density of the measure (Theorem 2).

In order to avoid complexity of our proofs, we shall assume $n \geq 3$. But our all results in this paper are also true for $n=2$. All constants appearing in the following sections will be always written as A_{1}, A_{2}, \ldots as far as we do not need to specify them.

2. Statements of results

First of all we shall state
Theorem 1. Let a be a number satisfying $0<a \leq 1$. A subset E of $C_{n}(\Omega)$ is a-minimally thin at ∞ with respect to $C_{n}(\Omega)$ if and only if there exists a positive measure $\xi_{E, a}$ on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
G_{\Omega} \xi_{E, a}(P) \xlongequal[\bar{〒}]{\perp}+\infty \quad\left(P \in C_{n}(\Omega)\right) \tag{2.1}
\end{equation*}
$$

and

$$
E \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega} \xi_{E, a}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\}
$$

Remark 3. Let $0<a_{1} \leq a_{2} \leq 1$. We see from Theorem 1 that if a subset E of $C_{n}(\Omega)$ is a_{1}-minimally thin at ∞ with respect to $C_{n}(\Omega)$, then E is a_{2}-minimally thin at ∞ with respect to $C_{n}(\Omega)$.

Let μ be any positive measure on $C_{n}(\Omega)$ such that

$$
G_{\Omega} \mu(P) \stackrel{\perp}{\bar{\tau}+\infty} \quad\left(P \in C_{n}(\Omega)\right)
$$

For this μ we define a positive measure $m(\mu)$ on \mathbf{R}^{n} by

$$
d m(\mu)(Q)= \begin{cases}t^{-\beta_{\Omega}} f_{\Omega}(\Phi) d \mu(t, \Phi) & \left(Q=(t, \Phi) \in C_{n}(\Omega ;[1,+\infty))\right) \\ 0 & \left(Q \in \mathbf{R}^{n}-C_{n}(\Omega ;[1,+\infty))\right)\end{cases}
$$

Remark 4. We remark that the total mass of $m(\mu)$ is finite (see Miyamoto and Yoshida [13, (i) of Lemma 1]).

Let m be any positive measure on \mathbf{R}^{n} having the finite total mass. Let ε and q be two positive numbers. For each $P=(r, \Theta) \in \mathbf{R}^{n}$ we set

$$
M(P ; m, q)=\sup _{0<p \leq 2^{-1} r} \frac{m(B(P, \rho))}{\rho^{q}},
$$

where $B(P, \rho)$ denotes a ball in \mathbf{R}^{n} having a center P and a radius ρ. The set $\left\{P=(r, \Theta) \in \mathbf{R}^{n} ; M(P ; m, q) r^{q}>\varepsilon\right\}$ is denoted by $\mathscr{S}(\varepsilon ; m, q)$.

Remark 5. If $m(\{P\})>0$, then $M(P ; m, q)=+\infty$. Hence we see

$$
\left\{P \in \mathbf{R}^{n} ; m(\{P\})>0\right\} \subset \mathscr{S}(\varepsilon ; m, q)
$$

for any positive number q and any positive number ε.
The following Theorem 2 gives a way to estimate the Green potenial with a measure.

Theorem 2. Let μ be any positive measure on $C_{n}(\Omega)$ such that

$$
G_{\Omega} \mu(P) \not \equiv+\infty \quad\left(P \in C_{n}(\Omega)\right)
$$

Let a be a number satisfying $0<a<1$. Then for a sufficiently large L and a sufficiently small $\varepsilon>0$

$$
\left\{P=(r, \Theta) \in C_{n}(\Omega ;(L,+\infty)) ; G_{\Omega} \mu(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\} \subset \mathscr{S}(\varepsilon ; m(\mu), n-1+a)
$$

As in \mathbf{T}_{n} (Essén, Jackson and Rippon [7, Remark]) we shall give a covering theorem for an a-minimally thin set in $C_{n}(\Omega)$ by using Theorems 1 and 2.

Theorem 3. Let a be a number satisfying $0<a<1$. If a subset E of $C_{n}(\Omega)$ is a-minimally thin at ∞ with respect to $C_{n}(\Omega)$, then E is covered by a sequence of balls $B_{k}(k=0,1,2, \ldots)$ satisfying

$$
\sum_{k=0}^{\infty}\left(\frac{r_{k}}{d_{k}}\right)^{n-1+a}<+\infty
$$

where r_{k} is the radius of B_{k}, and d_{k} is the distance between the origin and the center of B_{k}.

By an example we shall show that the reverse of Theorem 3 is not true.
Example. When the radius r_{k} and the distance d_{k} between the origin and the center of a ball B_{k} are given by

$$
r_{k}=\frac{3}{2} 2^{k} k^{-1 /(n-1)}, \quad d_{k}=\frac{3}{2} 2^{k},
$$

a sequence $\left\{B_{k}\right\}$ of these balls satisfies

$$
\sum\left(\frac{r_{k}}{d_{k}}\right)^{n-1+a}=\sum k^{-(n-1+a) /(n-1)}<+\infty
$$

Let $C_{n}\left(\Omega^{\prime}\right)$ be a subcone of $C_{n}(\Omega)$ i.e. $\overline{\Omega^{\prime}} \subset \Omega$. Suppose that those balls are so located: there is an integer k_{0} such that

$$
B_{k} \subset C_{n}\left(\Omega^{\prime}\right), \quad \frac{r_{k}}{d_{k}}<\frac{1}{2}
$$

for every $k \geq k_{0}$. Then the set

$$
E=\bigcup_{k=k_{0}}^{\infty} B_{k}
$$

is not a-minimally thin at ∞ with respect to $C_{n}(\Omega)$. This fact will be proved at the end in this paper.

3. Proof of Theorem 1

Lemma 1. Let a be a number satisfying $0<a \leq 1$ and k be any nonnegative integer. If E is a subset of $C_{n}(\Omega)$ and ξ is a positive measure on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
G_{\Omega} \xi(P) \geq\{K(P ; \infty, \Omega)\}^{a} \quad(P \in E(k)), \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\eta_{E(k), a}\left(C_{n}(\Omega)\right) \leq \int_{C_{n}(\Omega)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \xi(t, \Phi) \tag{3.2}
\end{equation*}
$$

When $\xi=\lambda_{E(k), a}$, the equality holds in (3.2).

Proof. First of all, we shall prove

$$
\begin{equation*}
\eta_{E(k), a}\left(C_{n}(\Omega)\right)=\int_{C_{n}(\Omega)}\{K(P ; \infty, \Omega)\}^{a} d \lambda_{E(k)}(P) . \tag{3.3}
\end{equation*}
$$

Since both $\eta_{E(k), a}$ and $\lambda_{E(k)}$ are concentrated on $B_{E(k)}$ and

$$
\hat{R}_{\{K(; ; \infty, \Omega)\}^{a}}^{E(k)}(P)=\{K(P ; \infty, \Omega)\}^{a} \quad\left(P \in B_{E(k)}\right),
$$

we have

$$
\begin{aligned}
\eta_{E(k), a}\left(C_{n}(\Omega)\right) & =\int_{C_{n}(\Omega)} d \eta_{E(k), a}=\int_{C_{n}(\Omega)} \frac{\hat{R}_{K(\cdot ; \infty, \Omega)}^{E(k)}(Q)}{K(Q ; \infty, \Omega)} d \eta_{E(k), a}(Q) \\
& =\int_{C_{n}(\Omega)}\left(\int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \lambda_{E(k), a}(Q)\right) d \lambda_{E(k)}(P) \\
& =\int_{C_{n}(\Omega)} \hat{R}_{\{K(; ; \infty, \Omega)\}^{a}}^{E(k)}(P) d \lambda_{E(k)}(P) \\
& =\int_{C_{n}(\Omega)}\{K(P ; \infty, \Omega)\}^{a} d \lambda_{E(k)}(P) .
\end{aligned}
$$

We see from (3.1) and (3.3) that

$$
\begin{align*}
\eta_{E(k), a}\left(C_{n}(\Omega)\right) & =\int_{C_{n}(\Omega)}\{K(P ; \infty, \Omega)\}^{a} d \lambda_{E(k)}(P) \leq \int_{C_{n}(\Omega)} G_{\Omega} \xi(P) d \lambda_{E(k)}(P) \tag{3.4}\\
& =\int_{C_{n}(\Omega)}\left(\int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \lambda_{E(k)}(P)\right) d \xi(Q) \\
& =\int_{C_{n}(\Omega)} \hat{R}_{K(\cdot ; \infty, \Omega)}^{E(k)}(Q) d \xi(Q) \leq \int_{C_{n}(\Omega)} K(Q ; \infty, \Omega) d \xi(Q),
\end{align*}
$$

which gives (3.2).
If $\xi=\lambda_{E(k), a}$, the equalities always hold in (3.4), which gives the second part of Lemma 1.

Proof of Theorem 1. Suppose that

$$
\begin{equation*}
E \subset H\left(\xi_{E, a}\right)=\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega} \xi_{E, a}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\} \tag{3.5}
\end{equation*}
$$

for a positive measure $\xi_{E, a}$ on $C_{n}(\Omega)$ satisfying (2.1). We write

$$
\begin{equation*}
G_{\Omega} \xi_{E, a}(P)=F_{1}^{(k)}(P)+F_{2}^{(k)}(P)+F_{3}^{(k)}(P), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{1}^{(k)}(P) & =\int_{C_{n}\left(\Omega ;\left(0,2^{k-1}\right)\right)} G_{\Omega}(P, Q) d \xi_{E, a}(Q) \\
F_{2}^{(k)}(P) & =\int_{C_{n}\left(\Omega ;\left[2^{k-1}, 2^{k+2}\right)\right)} G_{\Omega}(P, Q) d \xi_{E, a}(Q)
\end{aligned}
$$

and

$$
F_{3}^{(k)}(P)=\int_{C_{n}\left(\Omega ;\left[2^{k+2}, \infty\right)\right)} G_{\Omega}(P, Q) d \xi_{E, a}(Q) \quad\left(P \in C_{n}(\Omega) ; k=1,2,3, \ldots\right)
$$

Now we shall show the existence of an integer N such that

$$
\begin{equation*}
H\left(\xi_{E, a}\right)(k) \subset\left\{P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{k}, 2^{k+1}\right)\right) ; F_{2}^{(k)}(P) \geq \frac{1}{2} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\} \tag{3.7}
\end{equation*}
$$

for any integer $k, k \geq N$. We set

$$
J_{\Omega}=\sup _{\Theta \in \Omega} f_{\Omega}(\Theta)
$$

Then J_{Ω} is finite, because $f_{\Omega}=0$ on $\partial \Omega$. First we shall remark that

$$
\begin{equation*}
\frac{f_{\Omega}(\Theta)}{J_{\Omega}} \leq\left\{\frac{f_{\Omega}(\Theta)}{J_{\Omega}}\right\}^{a} \quad \text { i.e. } \quad f_{\Omega}(\Theta) \leq J_{\Omega}^{(1-a)}\left\{f_{\Omega}(\Theta)\right\}^{a} \quad(\Theta \in \Omega) \tag{3.8}
\end{equation*}
$$

To estimate $F_{1}^{(k)}(P)$ and $F_{3}^{(k)}(P)$ we use the following inequality;

$$
\begin{equation*}
G_{\Omega}(P, Q) \leq A_{1} r^{\alpha_{\Omega}} t^{-\beta_{\Omega}} f_{\Omega}(\Theta) f_{\Omega}(\Phi) \tag{3.9}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in C_{n}(\Omega)$ satisfying $0<r / t \leq 4 / 5$ and hence $0<r / t \leq 1 / 2$ (Azarin [3, Lemma 1], Essén and Lewis [8, Lemma 2]). Then for any $P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{k}, 2^{k+1}\right)\right)$, we have

$$
F_{1}^{(k)}(P) \leq A_{1} r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}\left(\Omega ;\left(0,2^{k-1}\right)\right)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \xi_{E, a}(t, \Phi)
$$

and

$$
F_{3}^{(k)}(P) \leq A_{1} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}\left(\Omega ;\left[2^{k+2}, \infty\right)\right)} d m\left(\xi_{E, a}\right) .
$$

By applying Lemma 1 in Miyamoto and Yoshida [13], we can take an integer N such that for any $k, k \geq N$,

$$
2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \int_{C_{n}\left(\Omega ;\left(0,2^{k-1}\right)\right)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \xi_{E, a}(t, \Phi) \leq \frac{1}{4 A_{1} J_{\Omega}^{(1-a)}}
$$

and

$$
\int_{C_{n}\left(\Omega ;\left[2^{k+2}, \infty\right)\right)} d m\left(\xi_{E, a}\right) \leq \frac{1}{4 A_{1} J_{\Omega}^{(1-a)}}
$$

Thus we obtain from (3.8) that

$$
\begin{equation*}
F_{1}^{(k)}(P) \leq \frac{1}{4} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{3}^{(k)}(P) \leq \frac{1}{4} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \tag{3.11}
\end{equation*}
$$

for any $\quad P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{k}, 2^{k+1}\right)\right), \quad(k \geq N)$. Hence if $\quad P=(r, \Theta) \in$ $H\left(\xi_{E, a}\right)(k)(k \geq N)$, then we obtain

$$
F_{2}^{(k)}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}-\frac{1}{2} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}=\frac{1}{2} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}
$$

from (3.5), (3.10) and (3.11), which gives (3.7).
If we define a function $u_{k}(P)$ on $C_{n}(\Omega)$ by

$$
u_{k}(P)=2^{1-k(1-a) \alpha_{\Omega}} F_{2}^{(k)}(P) \quad\left(P \in C_{n}(\Omega) ; k=0,1,2, \ldots\right),
$$

then we have from (3.5) and (3.7)

$$
u_{k}(P) \geq\{K(P ; \infty, \Omega)\}^{a}
$$

for any $P \in E(k)(k \geq N)$. Since

$$
u_{k}(P)=\int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \tau_{k}(Q)
$$

where

$$
d \tau_{k}(Q)= \begin{cases}2^{1-k(1-a) \alpha_{\Omega}} d \xi_{E, a}(Q) & \left(Q \in C_{n}\left(\Omega ;\left[2^{k-1}, 2^{k+2}\right)\right)\right) \\ 0 & \left(Q \in C_{n}\left(\Omega ;\left(0,2^{k-1}\right)\right) \cup C_{n}\left(\Omega ;\left[2^{k+2}, \infty\right)\right)\right)\end{cases}
$$

we obtain

$$
\begin{aligned}
\eta_{E(k), a}\left(C_{n}(\Omega)\right) & \leq \int_{C_{n}(\Omega)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \tau_{k}(t, \Phi) \\
& =2^{1-k(1-a) \alpha_{\Omega}}\left\{\int_{C_{n}\left(\Omega ;\left[2^{k-1}, 2^{k+2}\right)\right)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \xi_{E, a}(t, \Phi)\right\} \quad(k \geq N)
\end{aligned}
$$

by applying Lemma 1 to $u_{k}(P)$. Finally we have

$$
\sum_{k=N}^{\infty} 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)} \eta_{E(k), a}\left(C_{n}(\Omega)\right) \leq 6 \cdot 4^{\delta_{\Omega}} \int_{C_{n}\left(\Omega ;\left[2^{N-1}, \infty\right)\right)} d m\left(\xi_{E, a}\right),
$$

in which the integral of the right side is finite by Remark 4 and hence E is a-minimally thin at ∞ with respect to $C_{n}(\Omega)$.

Suppose that a subset E of $C_{n}(\Omega)$ satisfies

$$
\begin{equation*}
\sum_{k=0}^{\infty} 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)} \eta_{E(k), a}\left(C_{n}(\Omega)\right)<+\infty . \tag{3.12}
\end{equation*}
$$

Consider a function $v_{E, a}(P)$ on $C_{n}(\Omega)$ defined by

$$
v_{E, a}(P)=\sum_{k=-1}^{\infty} 2^{(k+1-a k) \alpha_{\Omega}} \hat{R}_{\{K(\cdot ; \infty, \Omega)\}^{a}}^{E(P)}(P) \quad\left(P \in C_{n}(\Omega)\right),
$$

where

$$
E(-1)=E \cap\left\{P=(r, \Theta) \in C_{n}(\Omega) ; 0<r<1\right\} .
$$

When we put

$$
\xi_{E, a}^{(1)}=\sum_{k=-1}^{\infty} 2^{(k+1-a k) \alpha_{\Omega}} \lambda_{E(k), a},
$$

we have from (1.5) that

$$
v_{E, a}(P)=\int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \xi_{E, a}^{(1)}(Q) \quad\left(P \in C_{n}(\Omega)\right)
$$

We shall show that $v_{E, a}(P)$ is always finite on $C_{n}(\Omega)$. Take any point $P=(r, \Theta) \in C_{n}(\Omega)$ and a positive integer $k(P)$ satisfying $r \leq 2^{k(P)+1}$. We represent $v_{E, a}(P)$ as

$$
v_{E, a}(P)=v_{E, a}^{(1)}(P)+v_{E, a}^{(2)}(P),
$$

where

$$
v_{E, a}^{(1)}(P)=\sum_{k=-1}^{k(P)+1} 2^{(k+1-a k) \alpha_{\Omega}} \int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \lambda_{E(k), a}(Q)
$$

and

$$
v_{E, a}^{(2)}(P)=\sum_{k=k(P)+2}^{\infty} 2^{(k+1-a k) \alpha_{\Omega}} \int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \lambda_{E(k), a}(Q) .
$$

Since $\lambda_{E(k), a}$ is concentrated on $B_{E(k)} \subset \overline{E(k)} \cap C_{n}(\Omega)$, we have from (3.9) that

$$
\begin{aligned}
& 2^{(k+1-a k) \alpha_{\Omega}} \int_{C_{n}(\Omega)} G_{\Omega}(P, Q) d \lambda_{E(k), a}(Q) \\
& \quad \leq A_{1} 2^{(k+1-a k) \alpha_{\Omega}} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}(\Omega)} t^{-\beta_{\Omega}} f_{\Omega}(\Phi) d \lambda_{E(k), a}(t, \Phi) \\
& \quad \leq A_{1} 2^{\alpha_{\Omega}} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)} \int_{C_{n}(\Omega)} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \lambda_{E(k), a}(t, \Phi) \quad(k \geq k(P)+2)
\end{aligned}
$$

Hence we know

$$
v_{E, a}^{(2)}(P) \leq A_{1} 2^{\alpha_{\Omega}} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \sum_{k=k(P)+2}^{\infty} 2^{-k\left(a \alpha_{\Omega}+\beta_{\Omega}\right)} \eta_{E(k), a}\left(C_{n}(\Omega)\right)
$$

from the second part of Lemma 1. This and (3.12) show that $v_{E, a}^{(2)}(P)$ is finite and hence $v_{E, a}(P)$ is also finite for any $P \in C_{n}(\Omega)$.

Since

$$
\hat{R}_{\{K(\cdot ; \infty, \Omega)\}^{a}}^{E(P)}(P)=\{K(P ; \infty, \Omega)\}^{a}
$$

on $B_{E(k)}$ and $B_{E(k)} \subset \overline{E(k)} \cap C_{n}(\Omega)$ (Brelot [4, p. 61] and Doob [6, p. 169]), we see

$$
\begin{equation*}
v_{E, a}(P) \geq 2^{(k+1-a k) \alpha_{\Omega}} \hat{R}_{\{K(; ; \infty, \Omega)\}^{a}}^{E(k)}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \tag{3.13}
\end{equation*}
$$

for any $P=(r, \Theta) \in B_{E(k)}(k=-1,0,1,2, \ldots)$ and hence for any $P=(r, \Theta) \in$ E^{\prime}, where

$$
E^{\prime}=\bigcup_{k=-1}^{\infty} B_{E(k)} .
$$

Since E^{\prime} is equal to E except a polar set S, we can take another positive superharmonic function $v_{E, a}^{(3)}(P)$ on $C_{n}(\Omega)$ such that $v_{E, a}^{(3)}(P)=G_{\Omega} \xi_{E, a}^{(2)}(P)$ with a positive measure $\xi_{E, a}^{(2)}$ on $C_{n}(\Omega)$ and $v_{E, a}^{(3)}$ is identically $+\infty$ on S (see Doob [6, p. 58]). Finally, define a positive superharmonic function v on $C_{n}(\Omega)$ by

$$
v(P)=v_{E, a}(P)+v_{E, a}^{(3)}(P)=G_{\Omega} \xi_{E, a}(P) \quad\left(P \in C_{n}(\Omega)\right)
$$

with $\xi_{E, a}=\xi_{E, a}^{(1)}+\xi_{E, a}^{(2)}$. Also we see from (3.13) that

$$
E \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega} \xi_{E, a}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\}
$$

4. Proof of Theorem 2

To prove Theorem 2, we need the following new type of covering theorem which is purely measure-theoretical.

Lemma 2. Let m be any positive measure on \mathbf{R}^{n} having the finite total mass $\|m\|$. Let ε and q be two any positive numbers. Then $\mathscr{S}(\varepsilon ; m, q)$ is covered by a sequence of balls $B_{k}(k=1,2, \ldots)$ satisfying

$$
\sum_{k=0}^{\infty}\left(\frac{r_{k}}{d_{k}}\right)^{q}<+\infty
$$

where r_{k} is the radius of B_{k}, and d_{k} is the distance between the origin and the center of B_{k}.

Proof. Put

$$
\mathscr{S}_{k}(\varepsilon ; m, q)=\mathscr{S}(\varepsilon ; m, q) \cap E(k) \quad(k=2,3, \ldots)
$$

Let k be any positive integer satisfying $k \geq 2$. If $P=(r, \Theta) \in \mathscr{S}_{k}(\varepsilon ; m, q)$, then there exists a positive number $\rho(P)\left(\rho(P) \leq 2^{-1} r\right)$ such that

$$
\begin{equation*}
\{\rho(P)\}^{q} \leq r^{q} \varepsilon^{-1} m\left(B(P, \rho(P)) \leq 2^{(k+1) q} \varepsilon^{-1}\|m\|\right. \tag{4.1}
\end{equation*}
$$

Since $\mathscr{S}_{k}(\varepsilon ; m, q)$ has a trivial covering $\left\{B(P, \rho(P)) ; P \in \mathscr{S}_{k}(\varepsilon ; m, q)\right\}$ satisfying

$$
\sup _{P \in \mathscr{S}_{k}(\varepsilon ; m, q)} \rho(P) \leq 2^{(k+1)} \varepsilon^{-1 / q}\|m\|^{1 / q}<+\infty
$$

by the Besicovitch covering theorem there exists a countable subfamily $\left\{B\left(P_{k, i}, \rho_{k, i}\right)\right\}\left(\rho_{k, i}=\rho\left(P_{k, i}\right)\right)$ which covers $\mathscr{S}_{k}(\varepsilon ; m, q)$ and intersects each other at most N times, where N depends only on the dimension n. Since $B(P, \rho(P)) \cap E(k+2)=\varnothing \quad$ and $\quad B(P, \rho(P)) \cap E(k-2)=\varnothing \quad$ for \quad any $\quad P \in$ $\mathscr{S}_{k}(\varepsilon ; m, q)$, we have from (4.1)

$$
\varepsilon \sum_{i}\left(\frac{\rho_{k, i}}{\left|P_{k, i}\right|}\right)^{q} \leq \sum_{i} m\left(B\left(P_{k, i}, \rho_{k, i}\right)\right) \leq N m(E(k-1) \cup E(k) \cup E(k+1)) .
$$

Thus $\bigcup_{k} \mathscr{S}_{k}(\varepsilon ; m, q)$ is covered by a sequence of balls $\left\{B\left(P_{k, i}, \rho_{k, i}\right)\right\}$ ($k=2,3,4, \ldots ; i=1,2,3, \ldots$) satisfying

$$
\sum_{k, i}\left(\frac{\rho_{k, i}}{\left|P_{k, i}\right|}\right)^{q} \leq 3 N\|m\| \varepsilon^{-1}
$$

Since

$$
\mathscr{S}(\varepsilon ; m, q) \cap\left\{P=(r, \Theta) \in \mathbf{R}^{n} ; r \geq 4\right\}=\bigcup_{k=2}^{\infty} \mathscr{S}_{k}(\varepsilon ; m, q),
$$

$\mathscr{S}(\varepsilon ; m, q)$ is finally covered by a sequence of balls $\left\{B\left(P_{k, i}, \rho_{k, i}\right), B\left(P_{0}, 6\right)\right\}$ ($k=2,3,4, \ldots ; i=1,2,3, \ldots)$ satisfying

$$
\sum_{k, i}\left(\frac{\rho_{k, i}}{\left|P_{k, i}\right|}\right)^{q} \leq 3 N\|m\| \varepsilon^{-1}+6^{q}<+\infty
$$

where $B\left(P_{0}, 6\right) \quad\left(P_{0}=(1,0, \ldots, 0) \in \mathbf{R}^{n}\right)$ is the ball which covers $\{P=(r, \Theta) \in$ $\left.\mathbf{R}^{n} ; r<4\right\}$.

Proof of Theorem 2. If we can show that
(4.2) $\quad G_{\Omega} \mu(P)<r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \quad\left(P \in C_{n}(\Omega ;(L,+\infty))-\mathscr{S}(\varepsilon ; m(\mu), n-1+a)\right)$
for a sufficiently large L and a sufficiently small ε, then we can conclude Theorem 2.

For any point $P=(r, \Theta) \in C_{n}(\Omega)$, write $G_{\Omega} \mu(P)$ as the sum

$$
\begin{equation*}
G_{\Omega} \mu(P)=I_{1}(P)+I_{2}(P)+I_{3}(P), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}(P)=\int_{C_{n}(\Omega ;(0,(4 / 5) r])} G_{\Omega}(P, Q) d \mu(Q), \\
& I_{2}(P)=\int_{C_{n}(\Omega ;((4 / 5) r,(5 / 4) r])} G_{\Omega}(P, Q) d \mu(Q), \\
& I_{3}(P)=\int_{C_{n}(\Omega ;((5 / 4) r,+\infty))} G_{\Omega}(P, Q) d \mu(Q) .
\end{aligned}
$$

To estimate $I_{1}(P)$ and $I_{3}(P)$, we shall again use (3.9).
We first have

$$
\begin{aligned}
I_{1}(P) & \leq A_{1} r^{-\beta_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}(\Omega ;(0,(4 / 5) r])} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \mu(Q) \\
& \leq A_{1} r^{\alpha_{\Omega}} f_{\Omega}(\Theta)\left(\frac{4}{5} r\right)^{-\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \int_{C_{n}(\Omega ;(0,(4 / 5) r])} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \mu(Q)
\end{aligned}
$$

Since

$$
\lim _{R \rightarrow+\infty} R^{-\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \int_{C_{n}(\Omega ;(0, R))} t^{\alpha_{\Omega}} f_{\Omega}(\Phi) d \mu(t, \Phi)=0
$$

(Miyamoto and Yoshida [13, Lemma 1]), we see

$$
\begin{equation*}
I_{1}(P)=o(1) K(P ; \infty, \Omega) \quad(r \rightarrow+\infty) . \tag{4.4}
\end{equation*}
$$

Similarly we have

$$
I_{3}(P) \leq A_{1} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}(\Omega ;((5 / 4) r,+\infty))} t^{-\beta_{\Omega}} f_{\Omega}(\Phi) d \mu(Q)
$$

and hence

$$
\begin{equation*}
I_{3}(P)=o(1) K(P ; \infty, \Omega) \quad(r \rightarrow+\infty) \tag{4.5}
\end{equation*}
$$

by Remark 4. Thus we have from (3.8), (4.4) and (4.5) that

$$
\begin{equation*}
I_{1}(P), I_{3}(P)=o(1) r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \quad(r \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

To estimate $I_{2}(P)$ we use the following inequality;

$$
G_{\Omega}(P, Q) \leq A_{2} \frac{f_{\Omega}(\Theta) f_{\Omega}(\Phi)}{t^{n-2}}+t^{-\beta_{\Omega}} f_{\Omega}(\Phi) U_{\Omega}(P, Q)
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in C_{n}\left(\Omega ;\left[\frac{4}{5} r, \frac{5}{4} r\right]\right)$, where

$$
U_{\Omega}(P, Q)=\min \left\{\frac{t^{\beta_{\Omega}}}{|P-Q|^{n-2} f_{\Omega}(\Phi)}, \frac{A_{3} r t^{\beta_{\Omega}+1} f_{\Omega}(\Theta)}{|P-Q|^{n}}\right\}
$$

(Azarin [3, Lemma 4 and Remark]). Then we have

$$
\begin{equation*}
I_{2}(P) \leq I_{2,1}(P)+I_{2,2}(P) \tag{4.7}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ satisfying $\frac{4}{5} r>1$, where

$$
I_{2,1}(P)=A_{2} f_{\Omega}(\Theta) \int_{C_{n}(\Omega ;((4 / 5) r,(5 / 4) r)} t^{2-n+\beta_{\Omega}} d m(\mu)(Q)
$$

and

$$
I_{2,2}(P)=\int_{C_{n}(\Omega ;((4 / 5) r,(5 / 4) r])} U_{\Omega}(P, Q) d m(\mu)(Q)
$$

Then from Remark 4 and (3.8) we immediately have

$$
\begin{align*}
I_{2,1}(P) & \leq\left(\frac{5}{4}\right)^{\alpha_{\Omega}} A_{2} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}(\Omega ;((4 / 5) r,(5 / 4) r))} d m(\mu)(Q) \tag{4.8}\\
& =o(1) K(P ; \infty, \Omega)=o(1) r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \quad(r \rightarrow+\infty)
\end{align*}
$$

To estimate $I_{2,2}(P)$, take a sufficiently small positive number η independent of P such that

$$
\begin{equation*}
\Delta(P)=\left\{(t, \Phi) \in C_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right]\right) ;|(1, \Phi)-(1, \Theta)|<\eta\right\} \subset B\left(P, \frac{r}{2}\right) \tag{4.9}
\end{equation*}
$$

and divide $C_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right]\right)$ into two sets $\Delta(P)$ and $\Delta^{\prime}(P)$, where

$$
\Delta^{\prime}(P)=C_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right]\right)-\Delta(P)
$$

We set

$$
\begin{equation*}
I_{2,2}(P)=I_{2,2}^{(1)}(P)+I_{2,2}^{(2)}(P) \tag{4.10}
\end{equation*}
$$

where

$$
I_{2,2}^{(1)}(P)=\int_{\Delta(P)} U_{\Omega}(P, Q) d m(\mu)(Q), \quad I_{2,2}^{(2)}(P)=\int_{\Delta^{\prime}(P)} U_{\Omega}(P, Q) d m(\mu)(Q) .
$$

For any $Q \in \Delta^{\prime}(P)$ we have $|P-Q| \geq r \sin \eta$ and hence

$$
\begin{align*}
I_{2,2}^{(2)}(P) & \leq \int_{C_{n}(\Omega ;((4 / 5) r,(5 / 4) r])} A_{3} \frac{r t^{\beta_{\Omega}+1} f_{\Omega}(\Theta)}{|P-Q|^{n}} d m(\mu)(Q) \tag{4.11}\\
& \leq A_{4} r^{\alpha_{\Omega}} f_{\Omega}(\Theta) \int_{C_{n}(\Omega ;((4 / 5) r, \infty))} d m(\mu)(Q) \\
& =o(1) K(P ; \infty, \Omega)=o(1) r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \quad(r \rightarrow+\infty)
\end{align*}
$$

from Remark 4 and (3.8).
Now we shall estimate $I_{2,2}^{(1)}(P)$ under the assumption $P \xi \mathscr{P}(\varepsilon ; m(\mu)$, $n-1+a$) for a positive number ε. Now put

$$
D_{i}(P)=\left\{Q \in \Delta(P) ; 2^{i-1} \delta(P) \leq|P-Q|<2^{i} \delta(P)\right\} \quad(i=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

where

$$
\delta(P)=\inf _{Q \in \partial C_{n}(\Omega)}|P-Q| .
$$

Since $P \xi \mathscr{S}(\varepsilon ; m(\mu), n-1+a)$ and hence $m(\mu)(\{P\})=0$ from Remark 5, we can divide $I_{2,2}^{(1)}(P)$ into

$$
\begin{equation*}
I_{2,2}^{(1)}(P)=J_{1}(P)+J_{2}(P), \tag{4.12}
\end{equation*}
$$

where

$$
J_{1}(P)=\sum_{i=-1}^{-\infty} \int_{D_{i}(P)} U_{\Omega}(P, Q) d m(\mu)(Q), \quad J_{2}(P)=\sum_{i=0}^{\infty} \int_{D_{i}(P)} U_{\Omega}(P, Q) d m(\mu)(Q)
$$

Since $\delta(Q)+|P-Q| \geq \delta(P)$, we have

$$
A_{5} t f_{\Omega}(\Phi) \geq \delta(Q) \geq 2^{-1} \delta(P)
$$

for any $Q=(t, \Phi) \in D_{i}(P)(i=-1,-2, \ldots)$ and hence

$$
\begin{aligned}
\int_{D_{i}(P)} U_{\Omega}(P, Q) d m(\mu)(Q) \leq & \int_{D_{i}(P)} \frac{t^{\beta_{\Omega}}}{} d P-\left.Q\right|^{n-2} f_{\Omega}(\Phi) \\
\leq & A_{6} 2^{(1+a) i} r^{1+a+\beta_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \frac{m(\mu)\left(B\left(P, 2^{i} \delta(P)\right)\right)}{\left\{2^{i} \delta(P)\right\}^{n-1+a}} \\
\leq & A_{6} 2^{(1+a) i} r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} r^{n-1+a} M(P ; m(\mu), n-1+a) \\
& (i=-1,-2, \ldots) .
\end{aligned}
$$

Since $P=(r, \Theta) \notin \mathscr{S}(\varepsilon ; m(\mu), n-1+a)$, we obtain

$$
\begin{equation*}
J_{1}(P) \leq A_{7} \varepsilon r^{\alpha_{\Omega}} f_{\Omega}^{a}(\Theta) \tag{4.13}
\end{equation*}
$$

Next we shall estimate $J_{2}(P)$. We first remark from (4.9) that when we take a positive integer $i(P)$ satisfying $2^{i(P)-1} \delta(P) \leq r / 2<2^{i(P)} \delta(P)$,

$$
D_{i}(P)=\varnothing \quad(i=i(P)+1, i(P)+2, \ldots)
$$

Since

$$
r f_{\Omega}(\Theta) \leq A_{8} \delta(P) \quad\left(P=(r, \Theta) \in C_{n}(\Omega)\right)
$$

we have

$$
\begin{aligned}
\int_{D_{i}(P)} U_{\Omega}(P, Q) d m(\mu)(Q) \leq & A_{3} r f_{\Omega}(\Theta) \int_{D_{i}(P)} \frac{t^{\beta_{\Omega}+1}}{|P-Q|^{n}} d m(\mu)(Q) \\
\leq & A_{9} 2^{-i(1-a)} r^{a+1+\beta_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \frac{m(\mu)\left(D_{i}(P)\right)}{\left\{2^{i} \delta(P)\right\}^{n-1+a}} \\
& (i=0,1,2, \ldots, i(P))
\end{aligned}
$$

Here we see

$$
\begin{aligned}
\frac{m(\mu)\left(D_{i}(P)\right)}{\left\{2^{i} \delta(P)\right\}^{n-1+a}} & \leq \frac{m(\mu)\left(B\left(P, 2^{i} \delta(P)\right)\right)}{\left\{2^{i} \delta(P)\right\}^{n-1+a}} \leq M(P ; m(\mu), n-1+a) \\
& \leq \varepsilon r^{-n+1-a} \quad(i=0,1,2, \ldots, i(P)-1)
\end{aligned}
$$

and

$$
\frac{m(\mu)\left(D_{i(P)}(P)\right)}{\left\{2^{i(P)} \delta(P)\right\}^{n-1+a}} \leq \frac{m(\mu)(\Delta(P))}{\left(\frac{r}{2}\right)^{n-1+a}} \leq \varepsilon r^{-n+1-a},
$$

because $P=(r, \Theta) \notin \mathscr{S}(\varepsilon ; m(\mu), n-1+a)$. Hence we obtain

$$
\begin{equation*}
J_{2}(P) \leq A_{10} \varepsilon r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a} \tag{4.14}
\end{equation*}
$$

From (4.3), (4.6), (4.7), (4.8), (4.10), (4.11), (4.12), (4.13) and (4.14), we finally obtain that if L is sufficiently large and ε is sufficiently small, then

$$
G_{\Omega} \mu(P)<r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega ;(L,+\infty))-\mathscr{S}(\varepsilon ; m(\mu), n-1+a)$, which gives (4.2).

5. Proofs of Theorem 3 and Example

Proof of Theorem 3. Since E is a-minimally thin at ∞ with respect to $C_{n}(\Omega)$, by Theorem 1 there exists a positive superharmonic function
$G_{\Omega} \xi_{E, a}(P) \underset{\bar{\tau}}{\perp}+\infty\left(P \in C_{n}(\Omega)\right)$ with a positive measure $\xi_{E, a}$ on $C_{n}(\Omega)$ such that

$$
E \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega} \xi_{E, a}(P) \geq r^{\alpha_{\Omega}}\left\{f_{\Omega}(\Theta)\right\}^{a}\right\}
$$

Hence by Theorem 2 we have two positive numbers L and ε such that

$$
E \cap C_{n}(\Omega ;(L,+\infty)) \subset \mathscr{S}\left(\varepsilon ; m\left(\xi_{E, a}\right), n-1+a\right)
$$

Here by Lemma 2, $\mathscr{S}\left(\varepsilon ; m\left(\xi_{E, a}\right), n-1+a\right)$ is covered by a sequence of balls B_{k} satisfying

$$
\sum_{k=1}^{\infty}\left(\frac{r_{k}}{d_{k}}\right)^{n-1+a}<+\infty
$$

and hence E is also covered by a sequence of balls $B_{k}(k=0,1, \ldots)$ with an additional finite ball B_{0} covering $C_{n}(\Omega ;(0, L])$, satisfying

$$
\sum_{k=0}^{\infty}\left(\frac{r_{k}}{d_{k}}\right)^{n-1+a}<+\infty
$$

where r_{k} is the radius of B_{k}, and d_{k} is the distance between the origin and the center of B_{k}.

Proof of Example. Since $f_{\Omega}(\Theta) \geq A_{11}$ for any $\Theta \in \Omega^{\prime}$, we have

$$
K(P ; \infty, \Omega) \geq A_{12} d_{k}^{\alpha_{\Omega}}
$$

for any $P \in \overline{B_{k}}\left(k \geq k_{0}\right)$. Hence we have

$$
\begin{equation*}
\hat{R}_{K(\cdot ; \infty, \Omega)}^{B_{k}}(P) \geq A_{12} d_{k}^{\alpha_{\Omega}} \tag{5.1}
\end{equation*}
$$

for any $P \in \overline{B_{k}}\left(k \geq k_{0}\right)$.
Take a measure τ on $C_{n}(\Omega)$, supp $\tau \subset \overline{B_{k}}, \tau\left(\overline{B_{k}}\right)=1$ such that

$$
\begin{equation*}
\int_{C_{n}(\Omega)}|P-Q|^{2-n} d \tau(P)=\left\{\operatorname{Cap}\left(\overline{B_{k}}\right)\right\}^{-1} \tag{5.2}
\end{equation*}
$$

for any $Q \in \overline{B_{k}}$, where Cap denotes the Newtonian capacity. Since

$$
\begin{aligned}
& G_{\Omega}(P, Q) \leq|P-Q|^{2-n} \quad\left(P \in C_{n}(\Omega), Q \in C_{n}(\Omega)\right) \\
&\left\{\operatorname{Cap}\left(\overline{B_{k}}\right)\right\}^{-1} \lambda_{B_{k}}\left(C_{n}(\Omega)\right)=\int\left(\int|P-Q|^{2-n} d \tau(P)\right) d \lambda_{B_{k}}(Q) \\
& \geq \int\left(\int G_{\Omega}(P, Q) d \lambda_{B_{k}}(Q)\right) d \tau(P) \\
&=\int\left(\hat{R}_{K(\cdot ; \infty, \Omega)}^{B_{k}}(P)\right) d \tau(P) \geq A_{12} d_{k}^{\alpha_{\Omega}} \tau\left(\overline{B_{k}}\right)=A_{12} d_{k}^{\alpha_{\Omega}}
\end{aligned}
$$

from (5.1) and (5.2). Hence we have

$$
\begin{equation*}
\lambda_{B_{k}}\left(C_{n}(\Omega)\right) \geq A_{12} \operatorname{Cap}\left(\overline{B_{k}}\right) d_{k}^{\alpha_{\Omega}} \geq A_{12} r_{k}^{n-2} d_{k}^{\alpha_{\Omega}}, \tag{5.3}
\end{equation*}
$$

because $\operatorname{Cap}\left(\overline{B_{k}}\right)=r_{k}^{n-2}$.
Thus from (1.1), (5.1) and (5.3) we obtain

$$
\gamma_{\Omega}\left(B_{k}\right)=\int_{C_{n}(\Omega)}\left(G_{\Omega} \lambda_{B_{k}}\right) d \lambda_{B_{k}}=\int_{C_{n}(\Omega)} \hat{R}_{K(; ; \infty, \Omega)}^{B_{k}}(P) d \lambda_{B_{k}}(P) \geq A_{12}^{2} d_{k}^{2 \alpha_{\Omega}} r_{k}^{n-2} .
$$

If we observe $\gamma_{\Omega}(E(k))=\gamma_{\Omega}\left(B_{k}\right)$, then we have

$$
\sum_{k=k_{0}}^{\infty} 2^{-k\left(\alpha_{\Omega}+\beta_{\Omega}\right)} \gamma_{\Omega}(E(k)) \geq A_{13} \sum_{k=k_{0}}^{\infty} k^{-(n-2) /(n-1)}=+\infty,
$$

from which it follows by (1.2) that E is not minimally thin at ∞ with respect to $C_{n}(\Omega)$. Hence by Remark $3, E$ is not a-minimally thin at ∞ with respect to $C_{n}(\Omega)$.

References

[1] H. Aikawa, On the behavior at infinity of non-negative superharmonic functions in a half space, Hiroshima Math. J. 11 (1981), 425-441.
[2] A. Ancona, On strong barriers and an inequality of Hardy for domains in \mathbf{R}^{n}, J. London Math. Soc. (2)34 (1986), 274-290.
[3] V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Mat. Sb. 66 (108), 1965, 248-264; Amer. Math. Soc. Translation (2)80 (1969), 119-138.
[4] M. Brelot, On Topologies and Boundaries in Potential Theory, Lect. Notes in Math. 175, Springer-Verlag, Berlin, 1971.
[5] B. E. J. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3)33 (1976), 238-250.
[6] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984.
[7] M. Essén, H. L. Jackson and P. J. Rippon, On a-minimally thin sets in a half-space in \mathbf{R}^{p}, $p \geq 2$, Mathematical Structures-Computational Mathematics-Mathematical Modelling, 2 (1984), 158-164.
[8] M. Essén and J. L. Lewis, The generalized Ahlfors-Heins theorems in certain d-dimensional cones, Math. Scand. 33 (1973), 111-129.
[9] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order (Paperback), Springer Verlag, 2001.
[10] W. K. Hayman, Questions of regularity connected with the Phragmén-Lindelöf principle, Math. Pure Appl. 35 (1956), 115-126.
[11] J. L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177-196.
[12] I. Miyamoto, M. Yanagishita and H. Yoshida, Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone, Canad. Math. Bull. 46 (2003), 252-264.
[13] I. Miyamoto and H. Yoshida, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone, J. Math. Soc. Japan. 54 (2002), 487-512.
[14] I. V. Ušakova, Some estimates of subharmonic functions in the circle, Zap. Mech-Mat. Fak. i Har'kov. Mat. Obšč. 29 (1963), 53-66 (Russian).
[15] M. Yanagishita, On the behavior at infinity for non-negative superharmonic functions in a cone, Advanced Studies in Pure Mathematics 44 (2006), Potential Theory in Matsue, 403413.

Ikuko Miyamoto
Department of Mathematics and Informatics
Faculty of Science, Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba 263-8522, Japan
e-mail: miyamoto@math.s.chiba-u.ac.jp
\section*{Hidenobu Yoshida}
Graduate School of Science and Technology, Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba 263-8522, Japan
e-mail: yoshida@math.s.chiba-u.ac.jp

