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Abstract. Our main result states that two signed measures m and n with bounded

support contained in the zero set of a polynomial PðxÞ are equal if they coincide on the

subspace of all polynomials of polyharmonic degree NP where the natural number NP is

explicitly computed by the properties of the polynomial PðxÞ. The method of proof

depends on a definition of a multivariate Markov transform which is another major

objective of the present paper. The classical notion of orthogonal polynomial of second

kind is generalized to the multivariate setting: it is a polyharmonic function which has

similar features to those in the one-dimensional case.

1. Introduction

Recall that a complex-valued function f defined on a domain G in the

euclidean space Rn is polyharmonic of order N if f is 2N-times continuously

di¤erentiable and

DN f ðxÞ ¼ 0 for all x A G

where DN is the N-th iterate of the Laplace operator D ¼ q2

qx2
1

þ � � � þ q2

qx2
n

. For

N ¼ 1 this class of functions are just the harmonic functions, while for N ¼ 2

the term biharmonic function is used which is important in elasticity theory.

Fundamental work about polyharmonic functions is due to E. Almansi [2], M.

Nicolesco (see e.g. [25]) and N. Aronszajn [3], and still this is an area of active

research; see e.g. [7], [8], [9], [12], [17], [18], [23], [27], [28]. Polyharmonic

functions are also important in applied mathematics, e.g. in approximation

theory, radial basis functions and wavelet analysis; see e.g. [5], [19], [20], [21],

[24].

In this paper we address the following question: Let m and n be signed

measures with compact support. Suppose that there exists a polynomial PðxÞ
such that the supports of m and n are contained in the zero set of P. Under

which conditions do m and n coincide? As motivating example consider the

polynomial PðxÞ ¼ jxj2 � 1 where jxj :¼ rðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ � � � þ x2

n

q
is the euclidean
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norm in Rn. It is well known that two measures m and n with support in the

unit sphere Sn�1 ¼ fx A Rn : jxj ¼ 1g coincide if they are equal on the set of all

harmonic polynomials. We shall show that two measures m and n with support

in the set KPðRÞ (defined below in (2)), are equal if the moments mð f Þ and nð f Þ
are equal for polyharmonic polynomials f of a certain degree NP which depends

on the polynomial P. In order to formulate this precisely, let us introduce the

polyharmonic degree dð f Þ defined by

dð f Þ :¼ minfN A N0 : D
Nþ1ð f Þ ¼ 0g: ð1Þ

In the appendix we shall compare properties of the polyharmonic degree and

the total degree. Note that f has polyharmonic degreeaN if and only if f is

of polyharmonic order N þ 1.

Let us denote by P the set of all polynomials. One of the main results of

this paper reads as follows:

Theorem 1. Let

KPðRÞ :¼ fx A Rn : PðxÞ ¼ 0 and jxjaRg ð2Þ

for R > 0 and for a polynomial PðxÞ, and define

NP ¼ supfdðP � hÞ : h is a harmonic polynomialg: ð3Þ

Let m and n be signed measures with support contained in the set KPðRÞ for some

R > 0. If
Ð
h dm ¼

Ð
h dn for all polynomials h in the subspace

UNP
¼ fQ A P : DNPQ ¼ 0g

then m and n are identical.

It is not di‰cult to see that NP is lower or equal to the total degree of the

polynomial PðxÞ, see Corollary 20. In the appendix we shall give a procedure

to determine the number NP explicitly.

An application of the Hahn-Banach theorem shows us the following

consequence of Theorem 1: the space UNP
is dense in the space CðKPðRÞ;CÞ of

all continuous complex-valued functions on the compact space KPðRÞ endowed

with the supremum norm, see Corollary 18. Let us emphasize that Theorem 1

is only a su‰cient criterion, and does not always give the expected result: As

illustrating examples consider the case of a sphere and an ellipsoid. In the first

case, the defining polynomial PðxÞ ¼ jxj2 � 1 has the property that NP ¼ 1, so

UNP
is equal to the space of all harmonic polynomials. In the case of an

ellipsoid, NP is equal to 2, although it would be su‰cient to know that the

measures m and n are identical for harmonic polynomials. However, density

results for solutions to Dph ¼ 0 in CðKÞ for compact sets K for p > 1 are much
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more complicated and obtained with the techniques of Potential theory in the

1970s; see [13], [14] and the references therein. The following example shows

that our approach delivers a nontrivial criterion for density which is not

covered by the other approaches so far: take PðxÞ ¼ ha; xiðjxj2 � 1Þ where

ha; xi ¼ a1x1 þ � � � þ anxn. Then NP ¼ 2, and we need now the space of all

biharmonic polynomials to ensure that two measures s and n are equal.

Indeed, harmonic polynomials are not su‰cient: take s as the usual measure dy

on the unit sphere Sn�1 and n as the point evaluation in x ¼ 0. Then s and n

coincide on the space of all harmonic polynomials and both measures have

support in P�1ð0Þ. Clearly s and n are di¤erent measures.

The proof of Theorem 1 will be a by-product of our investigation of the

so-called multivariate Markov transform which we will introduce below and

which we consider as a suitable generalization of the univariate Markov

transform, an important tool in the classical moment problem and its appli-

cations to Spectral theory. Recall that the Markov transform1 of a finite

measure s with support in the interval ½�R;R� is defined on the upper half–

plane by the formula

ŝsðzÞ :¼
ð

1

z� x
dsðxÞ for Im z > 0; ð4Þ

see e.g. [1, Chapter 2], [26, Chapter 2.6]. Let us recall a central result called

Markov’s theorem: the N-th Padé approximant pNðzÞ ¼ QNðzÞ=PNðzÞ of the

asymptotic expansion of ŝsðzÞ at infinity converges compactly in the upper half

plane to ŝsðzÞ; here the polynomial PN is the N-th orthogonal polynomial with

respect to the measure s and QN is the orthogonal polynomial of the second kind

with respect to the measure s given through the formula

QNðzÞ ¼
ð
PNðzÞ � PNðxÞ

z� x
dsðxÞ: ð5Þ

Further, to each pNðzÞ there corresponds a (non-negative) measure sN with

support in the zeros of the nominator PN , thus leading to a proof of the

famous Gauß quadrature formula.

Our definition of a multivariate Markov transform depends on the work of

N. Aronszajn [3] on polyharmonic functions, and of L. K. Hua [15] about

harmonic analysis on Lie groups; the definition is related to the Poisson

formula for the ball BR :¼ fx A Rn : jxj < Rg which we recall now: Let R > 0

1 In some recent works in Approximation theory, Potential theory, and Probability theory this

function is called the Markov function of a measure, see e.g. [29] or [11]. On the other hand

apparently Widder [32] was the first who has given the name Stieltjes transform to this function. If

m has infinite support the transform is also called Stieltjes transform. This tradition has been

followed by Akhiezer [1] and other Russian mathematicians.
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and h be a function harmonic in the ball BR and continuous on the closure BR;

then for any x A Rn with jxj < R

hðxÞ ¼ 1

on

ð
Sn�1

ðR2 � jxj2ÞRn�2

rðRy� xÞn hðRyÞdy; ð6Þ

where on denotes the area of Sn�1, y A Sn�1, and rðxÞ is the euclidean norm of

x. Note that for fixed x with jxj < R the function r 7! rðry� xÞ defined for

r A R with jrj > R has an analytic continuation for z A C with jzj > R, so we

can write rðzy� xÞ for z A C with jzj > R. The following Cauchy type integral

formula, proved in [3, p. 125], is important for our approach: for any

polynomial uðxÞ and for any jxj < R the following identity holds

uðxÞ ¼ 1

2pion

ð
GR

ð
Sn�1

zn�1

rðzy� xÞn uðzyÞdydz ð7Þ

where the contour GRðtÞ ¼ R � eit for t A ½0; 2p�. A similar result is also valid

for holomorphic functions u defined on the so-called harmonicity hull of BR; we

refer the reader to [3, p. 125] for details.

Assume now that m is a signed measure with support in the closed ball

fx A Rn : jxjaRg. The multivariate Markov transform m̂m of m is a function

defined for all y A Sn�1 and all z A C with jzj > R by the formula

m̂mðz; yÞ ¼ 1

on

ð
R n

zn�1

rðzy� xÞn dmðxÞ: ð8Þ

Since z 7! rðzy� xÞ has no zeros for jzj > R the function z 7! m̂mðz; yÞ is defined

for all jzj > R. In the following Section we shall show that the multivariate

Markov transform m̂m determines the measure m uniquely, cf. Theorem 3.

Our second main innovation is the introduction of the notion of the

function QPðz; yÞ of the second kind with respect to a given polynomial PðxÞ
which is the multivariate analogue of (5), defined by

QPðz; yÞ ¼
ð
R n

PðzyÞ � PðxÞ
rðzy� xÞn zn�1 dmðxÞ ð9Þ

for all jzj > R, y A Sn�1. Let us emphasize that QP is in general not a

polynomial. However, we shall show the surprising and interesting result that

the function ry 7! r�ðn�1ÞQPðryÞ is a polyharmonic function of ordera deg PðxÞ
where deg denotes the total degree of a polynomial.

One further main result of the paper, Theorem 13, is concerned with

measures m having their supports in algebraic sets: Let us assume that the

measure m has support in KPðRÞ. Then the Markov transform m̂m has the

representation
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m̂mðz; yÞ ¼ QPðz; yÞ
PðzyÞ for jzj > R; ð10Þ

where QP is the function of second kind with respect to PðxÞ. The reverse

statement holds as well, i.e. if the measure m with suppðmÞHBR satisfies (10)

for some polynomial P where QP is defined by (9), then suppðmÞHKPðRÞ. By

means of these characterizations we can deduce our main result Theorem 1.

Finally let us recall some terminology from measure theory: a signed

measure on Rd is a set function on the Borel s-algebra on Rd which takes real

values and is s-additive. By the Jordan decomposition [6, p. 125], a signed

measure m is the di¤erence of two non-negative finite measures, say

m ¼ mþ � m� with the property that there exists a Borel set A such that

mþðAÞ ¼ 0 and m�ðRnnAÞ ¼ 0. The variation of m is defined as jmj :¼ mþ þ m�.

The support of a non-negative measure m on Rd is defined as the complement of

the largest open set U such that mðUÞ ¼ 0. The support of a signed measure s

is defined as the support of the total variation jsj ¼ sþ þ s� (see [6, p. 226]).

Recall that in general, the supports of sþ and s� are not disjoint (cf. exercise 2

in [6, p. 231]). Note that if a signed measure m has compact support then all

polynomials are integrable with respect to mþ, m�, and jmj.

2. The multivariate Markov transform

Recall that the univariate Markov transform has, for jzj > R, the

asymptotic expansion

ŝsðzÞ ¼
Xy
k¼0

1

zkþ1

ð
tk dsðtÞ: ð11Þ

Let GR denote the contour in C defined by GRðtÞ ¼ R � eit for t A ½0; 2p�. By

means of standard facts from complex analysis the following identity may be

proved:

1

2pi

ð
GR1

pðzÞŝsðzÞdz ¼
ð
pðxÞdsðxÞ ð12Þ

for all polynomials p and any R1 > R.

In this Section we want to show that similar results hold for the mul-

tivariate Markov transform m̂m; in particular the following is the analogue of

formula (12) in the multivariate case:

Proposition 2. Let m be a signed measure over Rn with support in BR and

let R1 > R. Then for every polynomial PðxÞ

MmðPÞ :¼
1

2pi

ð
GR1

ð
Sn�1

PðzyÞm̂mðz; yÞdzdy ¼
ð
R n

PðxÞdmðxÞ: ð13Þ
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Proof. Replace m̂mðz; yÞ in (13) by (8) and interchange integration. Then

MmðPÞ ¼
ð
R n

1

2pion

ð
GR1

ð
S n�1

PðzyÞ zn�1

rðzy� xÞn dzdydmðxÞ: ð14Þ

According to (7) we obtain MmðPÞ ¼
Ð
PðxÞdmðxÞ. 9

Theorem 3. Let m, n be finite signed measures over Rn with compact

support. If the multivariate Markov transforms of m and n coincide for large z,

i.e., if there exists R > 0 such that m̂mðz; yÞ ¼ n̂nðz; yÞ for all jzj > R and for all

y A Sn�1, then m and n are identical.

Proof. Since the multivariate Markov transforms coincide for large jzj
it is clear that the functionals Mm and Mn in (13) are identical by taking

the radius R1 of the path GR1
large enough. Then Proposition 2 shows thatÐ

PðxÞdmðxÞ ¼
Ð
PðxÞdnðxÞ for all polynomials PðxÞ. Further we apply a

standard argument: since m and n have compact supports we may apply the

Stone–Weierstrass theorem according to which the polynomials are dense in the

space CðsuppðmÞU suppðnÞÞ which implies that m ¼ n. 9

Next we want to determine the asymptotic expansion of the multivariate

Markov transform and we need some notations from harmonic analysis; for a

detailed account we refer to [4] or [30]. Recall that a function Y : Sn�1 ! C is

called a spherical harmonic of degree k A N0 if there exists a homogeneous

harmonic polynomial PðxÞ of degree k (in general, with complex coe‰cients2)

such that PðyÞ ¼ YðyÞ for all y A Sn�1. Throughout the paper we assume that

Yk;mðxÞ, m ¼ 1; . . . ; ak, is a basis of the set of all harmonic homogeneous

polynomials of degree k which are orthonormal with respect to scalar product

h f ; giSn�1 :¼
ð
Sn�1

f ðyÞgðyÞdy:

For a continuous function f : Sn�1 ! C we define the Laplace-Fourier series by

f ðyÞ ¼
Xy
k¼0

Xak
m¼1

fk;mYk;mðyÞ

and fk;m ¼
Ð
Sn�1 f ðyÞYk;mðyÞdy are the Laplace-Fourier coe‰cients of f .

Using the Gauss decomposition of a polynomial (see Theorem 5.5 in [4]) it

is easy to see that the system

jxj2tYk;mðxÞ; t; k A N0; m ¼ 1; . . . ; ak

is a basis of the set of all polynomials. The numbers

2One may restrict the attention to real valued spherical harmonics and this does not change the

results essentially.
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ct;k;m :¼
ð
R n

jxj2tYk;mðxÞdmðxÞ; t; k A N0; m ¼ 1; . . . ; ak ð15Þ

are sometimes called the distributed moments, see [16]. For a treatment and

formulation of the multivariate moment problem we refer to [10], see also [31].

Theorem 4. Let m be a signed measure over Rn with support in the closed

ball BR. Then for all jzj > R and for all y A Sn�1 the following relation holds

m̂mðz; yÞ ¼
Xy
t¼0

Xy
k¼0

Xak
m¼1

Yk;mðyÞ
z2tþkþ1

ð
Rn

jxj2tYk;mðxÞdmðxÞ: ð16Þ

Proof. A zonal harmonic of degree k with pole y A Sn�1 is the unique

spherical harmonic Z
ðkÞ
y of degree k such that for all spherical harmonics Y of

degree k the relation Y ðyÞ ¼
Ð
Sn�1 Z

ðkÞ
y ðhÞY ðhÞdh holds. Let pnðy; xÞ ¼ 1

on

1�jxj2

jx�yj n
be the Poisson kernel for 0a jxj < 1 ¼ jyj. Theorem 2.10 in [30, p. 145] gives

pnðy; xÞ ¼
Py

k¼0 jxj
k
Z

ðkÞ
y ðx 0Þ for all y; x 0 A Sn�1, where x ¼ jxj � x 0,

jxj < 1. Lemma 2.8 in [30] shows that Z
ðkÞ
y ðx 0Þ ¼

Pak
m¼1 Yk;mðx 0ÞYk;mðyÞ where

x 0; y A Sn�1, so

pnðy; xÞ ¼
Xy
k¼0

Xak
m¼1

jxjkYk;mðx 0ÞYk;mðyÞ: ð17Þ

for jxj < 1. Let R be as in the theorem, and replace now x in (17) by x=r,

r A R such that jxj < R < r; one obtains that

1

on

rn�2ðr2 � jxj2Þ
rðry� xÞn ¼

Xy
k¼0

Xak
m¼1

1

rk
Yk;mðxÞYk;mðyÞ: ð18Þ

The real variable r can now be replaced by a complex variable z with jzj > R.

We multiply by zðz2 � jxj2Þ�1, and integrate over the closed ball BR with

respect to m. This gives

m̂mðz; yÞ ¼
Xy
k¼0

Xak
m¼1

Yk;mðyÞz�kþ1

ð
R n

Yk;mðxÞ
z2 � jxj2

dmðxÞ; ð19Þ

and we have determined the Laplace-Fourier series of y 7! m̂mðz; yÞ. Since

jzj > Rb jxj we can expand 1= 1� jxj2

z2

� �
in a geometric series and we obtain

m̂mðz; yÞ ¼
Xy
k¼0

Xak
m¼1

Yk;mðyÞ
zkþ1

ð
R n

Yk;mðxÞ
Xy
t¼0

jxj2t

z2t

 !
dmðxÞ: ð20Þ

After interchanging summation and integration the claim is obvious. 9
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3. The function of the second kind

In the following we want to a give a multivariate analogue of the

polynomial of second kind. It turns out that in the multivariate case the

corresponding definition does not lead to a polynomial but to a polyharmonic

function QPðz; yÞ which is defined only for all jzj > R, y A Sn�1.

Definition 5. Let PðxÞ be a polynomial and m be a non-negative measure

with support in BR. Then the function QPðz; yÞ of the second kind is defined by

QPðz; yÞ ¼
1

on

ð
R n

PðzyÞ � PðxÞ
rðzy� xÞn zn�1 dmðxÞ ð21Þ

for all jzj > R, y A Sn�1. Similarly we define the function RPðz; yÞ by

RPðz; yÞ ¼
1

on

ð
R n

PðxÞ
rðzy� xÞn z

n�1 dmðxÞ ð22Þ

for all jzj > R, y A Sn�1.

The last definitions immediately give the identity

PðzyÞm̂mðz; yÞ ¼ QPðz; yÞ þ RPðz; yÞ: ð23Þ

Theorem 6. Let PðxÞ be a polynomial, m be a signed measure with support

in BR and QPðz; yÞ the function of the second kind. Then for any R1 > R and

for each polynomial hðxÞ

1

2pi

ð
GR1

ð
S n�1

hðzyÞQPðz; yÞdzdy ¼ 0: ð24Þ

Proof. Let us denote the integral in (24) by IðhÞ. By (23) we obtain

that IðhÞ ¼ I1ðhÞ � I2ðhÞ where

I1ðhÞ ¼
1

2pi

ð
GR1

ð
S n�1

hðzyÞPðzyÞm̂mðz; yÞdzdy; ð25Þ

I2ðhÞ ¼
1

2pion

ð
GR1

ð
S n�1

hðzyÞ
ð
R n

PðxÞ
rðzy� xÞn z

n�1 dmðxÞdzdy: ð26Þ

Proposition 2 yields I1ðhÞ ¼
Ð
R n hðxÞPðxÞdmðxÞ. Change the integration order

in (26) and use formula (7). Then we obtain I2ðhÞ ¼ I1ðhÞ, therefore IðhÞ ¼ 0

which was our claim. 9

A similar argument to that in the proof of formula (16) proves the

following:
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Theorem 7. The function RPðz; yÞ has the asymptotic expansion

Xy
t¼0

Xy
k¼0

Xak
m¼1

Yk;mðyÞ
z2tþkþ1

ð
R n

PðxÞjxj2tYk;mðxÞdmðxÞ: ð27Þ

Note that the map z 7! RPðz; yÞ for jzj > R and y A Sn�1 is holomorphic in

the complex variable z. So we can consider the Laurent series of the function

z 7! RPðz; yÞ and we write for jzj > R and fixed y A Sn�1

RPðz; yÞ ¼
Xy
s¼0

rs½P�ðyÞ
1

zsþ1
: ð28Þ

From (27), by putting s ¼ 2tþ k, it follows that

rs½P�ðyÞ ¼
X½s=2�
t¼0

Xas�2t

m¼1

Ys�2t;mðyÞ
ð
R n

PðxÞjxj2tYs�2t;mðxÞdmðxÞ: ð29Þ

Hence the coe‰cient function rs½P� is a sum of spherical harmonics with

degreea s.

We can now formulate a characterization of orthogonality in asymptotic

analysis:

Theorem 8. Let m be a signed measure with compact support and PðxÞ be

a polynomial. Then P is orthogonal to all polynomials of degree < M with

respect to m if and only if

r0½P� ¼ � � � ¼ rM�1½P� ¼ 0

where rs½P� are the functions defined in (28)–(29).

Proof. From (29) we see that r0½P� ¼ � � � ¼ rM�1½P� ¼ 0 if and only for

all s ¼ 0; . . . ;M � 1 ð
R n

PðxÞjxj2tYs�2t;mðxÞdmðxÞ ¼ 0:

But the polynomials jxj2tYs�2t;mðxÞ with s ¼ 0; . . . ;M � 1, t ¼ 0; . . . ; ½s=2�,
m ¼ 1; . . . ; as�2t, span up the space of polynomials of degreeaM � 1. 9

The next theorem, interesting in its own right, is not needed later, and

therefore the proof will be omitted.

Theorem 9. Let m be a signed measure with compact support and let

PðxÞ be a polynomial of degree 2N. If P is orthogonal to all polynomials of

degreea 2N and polyharmonic degree < N then r0½P� ¼ � � � ¼ r2N�1½P� ¼ 0 and

r2N ½P�ðyÞ is constant.
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4. Polyharmonicity of the function of second kind

In this Section we want to show that the function QPðz; yÞ of the second

kind, multiplied by z�ðn�1Þ, is a polyharmonic function.

Recall that we have defined NP ¼ supfdðP � hÞ : h harmonic polynomialg
for a polynomial PðxÞ. In the Appendix we will show that NP a deg PðxÞ and
an explicit determination of NP will be given there as well.

Proposition 10. Let Yk;m, m ¼ 1; . . . ; ak, be an orthonormal basis of the

space of all homogeneous harmonic polynomials. Then

NP ¼ sup
k AN0;m¼1;...;ak

dðPðxÞYk;mðxÞÞ: ð30Þ

Proof. Let us denote the right hand side by MP. Then the inequality

MP aNP is trivial. For the converse let hðxÞ be a harmonic polynomial and

write hðxÞ ¼
PN

k¼0

Pak
m¼1 lk;mYk;mðxÞ. Then

dðP � hÞa sup
k AN0;m¼1;...;ak

dðPðxÞYk;mðxÞÞaMP: 9

Note that NP ¼ supk AN0;m¼1;...;ak
dðPðxÞYk;mðxÞÞ since Yk;m, m ¼ 1; . . . ; ak

is an orthonormal basis as well. Now we determine the asymptotic expansion

of the function of the second kind:

Theorem 11. Let PðxÞ be a polynomial and m be a signed measure with

support in BR. Then y 7! QPðz; yÞ, the function of the second kind, possesses a

Laplace-Fourier series of the form

QPðz; yÞ ¼
Xy
k¼0

Xak
m¼1

1

zk�1
pk;mðz2ÞYk;mðyÞ ð31Þ

where pk;mðtÞ are univariate polynomials of degree strictly smaller than Nk;m :¼
dðPðxÞYk;mðxÞÞ. The function QPðz; yÞ of the second kind depends on those

distributed moments ð
R n

hðxÞjxj2tdmðxÞ ð32Þ

where ta supk AN0
deg pk;m and hðxÞ is a harmonic polynomial.

Proof. For each fixed z with jzj > R the function y 7! QPðz; yÞ possesses

a Laplace-Fourier expansion, say

QPðz; yÞ ¼
Xy
k¼0

Xak
m¼1

ekmðzÞYk;mðyÞ:
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Recall that QPðz; yÞ ¼ PðzyÞm̂mðz; yÞ � RPðz; yÞ, see (23). Formula (27) easily

yields the Laplace-Fourier expansion of y 7! RPðz; yÞ: in (27) one has only to

compute the sum over the variable t obtaining

RPðz; yÞ ¼
Xy
k¼0

Xak
m¼1

Yk;mðyÞ
1

zk�1

ð
R n

PðxÞYk;mðxÞ
z2 � jxj2

dmðxÞ: ð33Þ

The Laplace-Fourier coe‰cients of y 7! PðzyÞm̂mðz; yÞ are given through

fk;mðzÞ :¼
ð
Sn�1

PðzyÞm̂mðz; yÞYk;mðyÞdy: ð34Þ

Let us write PðxÞYk;mðxÞ in the Gauß decomposition, see Theorem 5.5 in [4], in

the form

PðxÞYk;mðxÞ ¼
XNk;m

j¼0

hj;k;mðxÞjxj2j; ð35Þ

where hj;k;m are harmonic polynomials and Nk;m is the polyharmonic degree of

PðxÞYk;mðxÞ. Then (34) and (35) yield

fk;mðzÞ ¼
1

zk

ð
S n�1

PðzyÞzkYk;mðyÞm̂mðz; yÞdy

¼ 1

zk

XNk;m

j¼0

z2j
ð
S n�1

hj;k;mðzyÞm̂mðz; yÞdy

¼ 1

zk

XNk;m

j¼0

z2j
ð
R n

ð
S n�1

hj;k;mðzyÞ
1

on

zn�1

rðzy� xÞn dydmðxÞ:

Since hj;k;m is a harmonic polynomial the Poisson formula shows that for real

z > R holds

hj;k;mðxÞ ¼
1

on

ð
Sn�1

hj;k;mðzyÞ
zn�2ðz2 � jxj2Þ
rðzy� xÞn dy:

Since the integrand is holomorphic in z this holds for all complex values z with

jzj > R as well. Thus

fk;mðzÞ ¼
1

zk

XNk;m

j¼0

z2j
ð
R n

z

z2 � jxj2
hj;k;mðxÞdmðxÞ ð36Þ

are the Laplace Fourier coe‰cients of y 7! PðzyÞm̂mðz; yÞ.
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Replace now PðxÞYk;mðxÞ in (33) by the right hand side of (35) and take

the di¤erence of the Laplace-Fourier coe‰cients we computed so far. Then

the Laplace-Fourier coe‰cients of QPðz; yÞ are given by

ek;mðzÞ ¼
1

zk�1

XNk;m

j¼0

ð
R n

1

z2 � jxj2
hj;k;mðxÞðz2j � jxj2jÞdmðxÞ:

Note that for j ¼ 0 the summand is just zero. For jb 1 we have

z2j � jxj2j

z2 � jxj2
¼ jxj2ð j�1Þ þ jxj2ð j�1Þz2 þ � � � þ z2ð j�1Þ:

We conclude that z 7! zk�1ek;mðzÞ ¼: Pk;mðz2Þ is a polynomial in z2 of degree

at most Nk;m � 1. It follows that ek;mðzÞ can be computed if we know all

moments of the form (32) where ta deg pk;m and hðxÞ is a harmonic poly-

nomial. The proof is complete. 9

From this we have the following interesting consequence:

Corollary 12. Let PðxÞ be a polynomial, m be a signed measure with

support in BR and QPðz; yÞ be the corresponding function of the second kind.

Then the function ry 7! r�ðn�1ÞQPðr; yÞ defined for r > R and y A Sn�1, is a

polyharmonic function of polyharmonic degree < NP where NP is defined in (3).

Proof. By the last theorem the function y 7! r�ðn�1ÞQPðr; yÞ has the

following Laplace-Fourier expansion

f ðryÞ :¼ r�ðn�1ÞQPðr; yÞ ¼
Xy
k¼0

Xak
m¼1

1

rnþk�2
pk;mðr2ÞYk;mðyÞ:

Let us define the di¤erential operator

LðkÞ :¼
d 2

dr2
þ n� 1

r

d

dr
� kðk þ n� 2Þ

r2
: ð37Þ

It is known that a function gðryÞ is a solution of DpgðxÞ ¼ 0 if and only if the

coe‰cient functions gk;mðrÞ of its Laplace-Fourier expansion are solutions of

the equation ½LðkÞ�pgk;mðrÞ ¼ 0; an elaboration of these classical results can

be found in [19]. Further the polynomials r j with j ¼ �k � nþ 2;�k � nþ
4; . . . ;�k � nþ 2p are solutions of this equation. It follows that

fk;mðrÞ ¼
1

rnþk�2
pk;mðr2Þ

are solutions of the equation ½LðkÞ�pgk;mðrÞ ¼ 0 when pbNk. The proof is

complete. 9
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5. Measures with algebraic support

A measure m over Rn has algebraic support if the support of the measure is

contained in an algebraic set, i.e. if the support of m is contained in P�1ð0Þ for

some polynomial PðxÞ. Further we say that m has finite support if the support

has only finitely many elements. The following gives a characterization of

algebraic support of a measure in terms of the Markov function:

Theorem 13. Let m be a measure with support in BR and let PðxÞ be a

polynomial. Then m has support in P�1ð0Þ if and only if

PðzyÞm̂mðz; yÞ ¼ QPðz; yÞ for all y A Sn�1; jzj > R; ð38Þ

where QPðz; yÞ is the function of the second kind.

Proof. If m has support in P�1ð0Þ it follows that the function RPðz; yÞ
is equal to zero and (38) is evident by (23). For the converse assume

that PðzyÞm̂mðz; yÞ ¼ QPðz; yÞ. Define the polynomial P� by P�ðxÞ :¼ PðxÞ for

x A Rn. By Proposition 2 and Theorem 6ð
hP�P dm ¼ 1

2pi

ð
GR1

ð
Sn�1

hðzyÞP�ðzyÞPðzyÞm̂mðz; yÞdzdy

¼ 1

2pi

ð
GR1

ð
Sn�1

hðzyÞP�ðzyÞQPðz; yÞdzdy ¼ 0 ð39Þ

for any polynomial hðxÞ. Since the polynomials are dense it follows that

P�P dm is the zero measure. Let m ¼ mþ � m� be the Jordan decomposition.

It follows that P�P dmþ and P�P dm� are zero measures, and it is easy to see

that this implies that the support of mþ and m� is contained in P�1ð0Þ. Thus m

has support in P�1ð0Þ. 9

Let U be an open non-empty subset of the complex plane C and f be a

function defined on U � Sn�1. We say that f is pointwise rational if there

exists a polynomial PðxÞ in n variables such that for each fixed y A Sn�1 the

function z 7! PðzyÞ f ðz; yÞ is a polynomial in the variable z.

Proposition 14. Let m be a signed measure with bounded support and

suppose that the Markov function m̂mðz; yÞ is pointwise rational. Then m has

algebraic support.

Proof. Let PðxÞ be a polynomial such that the map z 7! PðzyÞm̂mðz; yÞ is a
polynomial in the variable z. Then the integral over GR1

in (39) is already zero

and as in the last proof we obtain that m has support in P�1ð0Þ. 9

The converse of the last proposition is not true as the following result with

s equal to the Lebesgue measure on the unit interval shows:
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Proposition 15. Let s be a measure over R with compact support, d0 the

Dirac measure over R at the point 0 and let m ¼ sn d0. Then for jzj > R the

multivariate Markov transform is given by

dsn d0sn d0ðz; eitÞ ¼
1

o2

Xy
l¼0

ð
xl dsðxÞ sinðl þ 1Þt

sin t

1

z lþ1
: ð40Þ

The measure m has algebraic support. Its multivariate Markov transform dsn d0sn d0
is pointwise rational if and only if the measure s has finite support.

Proof. Let y ¼ eit with t A R. It is straightforward to verify that for

jzj > R holds

dsn d0sn d0ðz; yÞ ¼
1

o2

ð
R2

z

rðzy� ðx; yÞÞ2
dðsn d0Þ

¼ 1

o2

ð
z

z2 � 2zx cos tþ x2
ds:

Note that

2iz sin t

z2 � 2zx cos tþ x2
¼ 1

zy� x
� 1

zy� x
:

Define for the measure s the one-dimensional Markov transform by ~ssðzÞ ¼Ð
1

z�x
dsðxÞ. Then 2io2 sin t � dsn d0sn d0ðz; yÞ ¼ ~ssðzyÞ � ~ssðzyÞ and the asymptotic

expansion of ~ss leads to (40).

Assume now that dsn d0sn d0ðz; yÞ is pointwise rational. Then for t ¼ p=2 the

function

dsn d0sn d0ðz; p=2Þ ¼
1

o2

Xy
k¼0

ð
x2k dsðxÞ ð�1Þk

z2kþ1
¼ 1

o2
z

ð
1

z2 þ x2
dsðxÞ

must be a rational functional in z. As it is known from univariate Padé

approximation this implies that s must have finite support, [26, chapter 2,

section 3, Theorem 3.1]. Conversely, if a measure m over Rn has finite

support, and the dimension n is even then it is easy to see that zm̂mðz; yÞ is a

quotient of two polynomials, in particular it is pointwise rational. 9

We finish this section with the following example:

Example 16. Let m be the Lebesgue measure on the unit circle S1. Since

the measure is rotation-invariant it follows that m̂mðz; yÞ ¼ z

z2�1
. Hence the

multivariate Markov transform zm̂mðz; yÞ is pointwise rational but m does not have

finite support.
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6. Proof of Theorem 1

Proof. In Theorem 11 we have seen that Qm;P and Qn;P only depend on

the moments ct;k;m defined in (15) where t < NP. It follows that Qm;P ¼ Qn;P.

By Theorem 13 PðzyÞm̂mðz; yÞ ¼ Qm;Pðz; yÞ and PðzyÞn̂nðz; yÞ ¼ Qn;Pðz; yÞ for all

large z and for all y A Sn�1, therefore PðzyÞm̂mðz; yÞ ¼ PðzyÞn̂nðz; yÞ. We want to

conclude that m̂mðz; yÞ ¼ n̂nðz; yÞ; in that case Theorem 3 yields m ¼ n. If PðzyÞ
has no zeros for large z it is clear that m̂mðz; yÞ ¼ n̂nðz; yÞ. In the general case, it

su‰ces to show that A :¼ fðz; yÞ A C� Sn�1 : PðzyÞ ¼ 0g is nowhere dense since

then a continuity argument leads to m̂mðz; yÞ ¼ n̂nðz; yÞ. This fact will be proven

in the next Proposition. 9

Proposition 17. The set A :¼ fðz; yÞ A C� Sn�1 : PðzyÞ ¼ 0g is closed and

has no interior point, i.e. A is nowhere dense in C� Sn�1.

Proof. Clearly A is closed. Suppose that there y0 A Sn�1 and z0 such

that PðzyÞ ¼ 0 for all z in a neighborhood U of z0 and for all y in a

neighborhood V of y0. For fixed y A V it follows that z ! PðzyÞ must be

the zero polynomial since for all z A U (hence uncountably many zÞ we have

PðzyÞ ¼ 0. It follows that PðzyÞ ¼ 0 for all z A C and for all y A V . Hence

PðxÞ ¼ 0 for all x in an open set W of Rn and, by the properties of real

analytic functions, we conclude that P1 0. 9

Corollary 18. Let PðxÞ be a polynomial and NP be given by (30). Then

the space

UNP
:¼ fQ A P : DNPQ ¼ 0g

is dense in the space CðKPðRÞ;CÞ of all continuous complex-valued functions on

KPðRÞ endowed with the supremum norm.

Proof. Since UNP
is closed under complex conjugation we may reduce

the problem to the case of real-valued continuous functions. Suppose that UNP

is not dense in CðKPðRÞ;RÞ. By the Hahn-Banach theorem there exists a

continuous non-trivial real-valued functional L which vanishes on UNP
. By

Riesz’s Theorem there exists a signed measures s representing the functional L

with support in KP. By Theorem 1 (applied to s and the zero measure) we

conclude that s ¼ 0, a contradiction. 9

7. Appendix: The polyharmonic degree

We want to list some of the properties of the polyharmonic degree map.

Note that the inequality dðPþQÞamaxfdðPÞ; dðQÞg is trivial. In [3] the

important equality
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dðQ � jxj2Þ ¼ dðQÞ þ dðjxj2Þ ¼ dðQÞ þ 1: ð41Þ

is proved for any polyharmonic function Q defined on a domain containing

zero. The following inequality is implicitly contained in [3, Theorem 1.2, p.

31]. For completeness we give the short proof.

Proposition 19. Let f , g be harmonic. Then dð fgÞaminfdeg f ; deg gg
and dð ff �Þ ¼ deg f .

Proof. Let ‘f be the gradient of f . Then Dð fgÞ ¼ ðDf Þgþ 2h‘ f ;‘giþ
fDg. If h and g are harmonic it is easy to show by induction that

Dpð fgÞ ¼ 2p
Xn

i1;...; ip¼1

q

qxi1
. . .

q

qxip
f

� �
q

qxi1
. . .

q

qxip
g

� �
: ð42Þ

Suppose that s :¼ deg f a deg g. Then qb

qx b f ¼ 0 for all b A Nn
0 with

jbj ¼ sþ 1. It follows from (42) that D sþ1ð fgÞ ¼ 0: Hence dð fgÞa s and the

first statement is proved. Clearly this implies also that dð ff �Þa deg f .

Suppose that Dpþ1ð ff �Þ ¼ 0 for some p A N. Then
Pn

i1;...; ipþ1¼1
q

qxi1
. . . q

qxipþ1

f

���� ����2
¼ 0. It follows that qb

qx b f ¼ 0 for all b A Nn
0 with jbj ¼ pþ 1. Hence

deg f a p, and we have proved that deg f a dð ff �Þ. 9

Now we can prove the following:

Corollary 20. Let PðxÞ be a polynomial with the Gauß decomposition

PðxÞ ¼ h0ðxÞ þ jxj2h1ðxÞ þ � � � þ jxj2NhNðxÞ: ð43Þ

Then for Np defined in (3) the following inequality holds:

NP a max
r¼0;...;N

frþ deg hrga deg PðxÞ: ð44Þ

Proof. Recall formula (30) for NP and let Yk be a harmonic homo-

geneous polynomial of degree k. An iteration argument in (41) implies

that dðjxj2rhrYkÞ ¼ rþ dðhrYkÞ. By Proposition 19 dðhrYkÞa deg hr. Hence

dðP � YkÞamaxr¼0;...;Nfrþ deg hrg, and this proves the first inequality.

Further we know that degðjxj2rhrÞ ¼ 2rþ deg hr a deg P for r ¼ 0; . . . ;N.

Hence the second inequality is established. 9

In the following we want to give an explicit formula for NP. We need the

following result which is interesting in its own right:

Theorem 21. Let Yk;mðxÞ be an orthonormal basis of spherical harmonics

with k A N0 and m ¼ 1; . . . ; ak. Then dðYk;mðxÞYk;m1
ðxÞÞ ¼ k if and only if

m ¼ m1.
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Proof. We start with a general remark: Let Yk and Yl be harmonic

homogeneous polynomials of degree k and l respectively. Clearly YkðxÞYlðxÞ
is a homogeneous polynomial of degree k þ l. By Proposition 19 it has

polyharmonic degree at most minfk; lg. By Gauß decomposition there exist

harmonic homogeneous polynomials hkþl�2u, either hkþl�2u is zero or of exact

degree k þ l � 2u for u ¼ 0; . . . ;minfk; lg, such that

YkðxÞYlðxÞ ¼
Xminfk; lg

u¼0

jxj2uhkþl�2uðxÞ: ð45Þ

Now assume that YkðxÞ ¼ Yk;mðxÞ and YlðxÞ ¼ Yk;m1
ðxÞ. Let us consider the

summand jxj2kh0ðxÞ for u ¼ k. Then h0 must have degree 0, hence it is a

constant polynomial. Integrate equation (45) with respect to dy. Since h2k�2u

is either 0 or of exact degree 2k � 2u > 0 for u ¼ 0; . . . ; k � 1 the integral over

the sphere of jxj2uhkþl�2uðxÞ will vanish. Then we obtain with the ortho-

gonality relations for spherical harmonics

dm;m1
¼
ð
Sn�1

h0 dy ¼ h0on:

Hence for m0m1 we see that the polyharmonic degree is less than k, for

m ¼ m1 it is exactly k. The proof is finished. 9

Theorem 22. Let PðxÞ be a homogeneous polynomial of degree N, say of

the form

PðxÞ ¼
X

t;k AN0;2tþk¼N

Xak
m¼1

bt;k;mjxj2tYk;mðxÞ:

Let k0 ¼ k0ðPÞ be the largest natural number such that bt0;k0;m0
0 0 for some m0

and t0 in the above sum. Then

NP ¼ 1

2
ðN þ k0ðPÞÞ:

Proof. Let k0 be as specified in the theorem. Let k1 A N0 and

m1 A f1; . . . ; ak1g, then

dðPðxÞYk1;m1
ðxÞÞamax dðjxj2tYk;mYk1;m1

ðxÞÞ ð46Þ

where the maximum ranges over all indices t, k, m with bt;k;m 0 0. Using (41)

and the inequality dðYk;mYk1;m1
Þa k in (46) we arrive at (note that 2tþ k ¼ N)

dðPðxÞYk1;m1
ðxÞÞamaxftþ kg ¼ 1

2
maxfN þ kga 1

2
ðN þ k0Þ;
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where the last inequality follows from the choice of k0. Now (30) yields

NP a
1
2 ðN þ k0Þ. For the other direction it su‰ces to show that PðxÞYk0;m0

has polyharmonic degreeb 1
2 ðN þ k0Þ. Clearly it su‰ces to show that there

exists a polynomial RðxÞ of polyharmonic degree < 1
2 ðN þ k0Þ such that

PðxÞYk0;m0
¼ bt0;k0;m0

jxj2t0Yk0;m0
Yk0;m0

þ RðxÞ ð47Þ

since (41) and Theorem 21 imply that bt0;k0;m0
jxj2t0Yk0;m0

Yk0;m0
has poly-

harmonic degree

t0 þ dðYk0;m0
Yk0;m0

Þ ¼ t0 þ k0 ¼
1

2
ðN þ k0Þ

using the fact that 2t0 þ k0 ¼ N. It remains to prove that RðxÞ has poly-

harmonic degree less than 1
2 ðN þ k0Þ. It su‰ces to show that for each non-

zero summand bt;k;mjxj2tYk;mYk0;m0
in RðxÞ

dðbt;k;mjxj2tYk;mYk0;m0
Þ ¼ tþ dðYk;mYk0;m0

Þ < 1

2
ðN þ k0Þ: ð48Þ

If k < k0 this is clear since dðYk;mYk0;m0
Þa k and tþ k ¼ 1

2 ðN þ kÞ. If k ¼ k0
we know that m0m0, and by Theorem 21 we have again strict inequality. By

choice of k0 we always have ka k0, so the theorem is proved. 9

In the last theorem it is essential that the polynomial PðxÞ is homoge-

neous. If PðxÞ is arbitrary, we can write PðxÞ ¼
PN

j¼0 PjðxÞ where PjðxÞ are

homogeneous polynomials. It is not very di‰cult to see that

dðP � Yk;mÞ ¼ max
j¼0;...;N

dðPj � Yk;mÞ;

see e.g. the proof of Theorem 1.27 in [4]. Hence NP is the maximum of NPj

for j ¼ 0; . . . ;N.
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