Polyharmonicity and algebraic support of measures

Ognyan Kounchev and Hermann Render

(Received January 31, 2006)
(Revised July 20, 2006)

Abstract

Our main result states that two signed measures μ and v with bounded support contained in the zero set of a polynomial $P(x)$ are equal if they coincide on the subspace of all polynomials of polyharmonic degree N_{P} where the natural number N_{P} is explicitly computed by the properties of the polynomial $P(x)$. The method of proof depends on a definition of a multivariate Markov transform which is another major objective of the present paper. The classical notion of orthogonal polynomial of second kind is generalized to the multivariate setting: it is a polyharmonic function which has similar features to those in the one-dimensional case.

1. Introduction

Recall that a complex-valued function f defined on a domain G in the euclidean space \mathbf{R}^{n} is polyharmonic of order N if f is $2 N$-times continuously differentiable and

$$
\Delta^{N} f(x)=0 \quad \text { for all } x \in G
$$

where Δ^{N} is the N-th iterate of the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}$. For $N=1$ this class of functions are just the harmonic functions, while for $N=2$ the term biharmonic function is used which is important in elasticity theory. Fundamental work about polyharmonic functions is due to E. Almansi [2], M. Nicolesco (see e.g. [25]) and N. Aronszajn [3], and still this is an area of active research; see e.g. [7], [8], [9], [12], [17], [18], [23], [27], [28]. Polyharmonic functions are also important in applied mathematics, e.g. in approximation theory, radial basis functions and wavelet analysis; see e.g. [5], [19], [20], [21], [24].

In this paper we address the following question: Let μ and v be signed measures with compact support. Suppose that there exists a polynomial $P(x)$ such that the supports of μ and v are contained in the zero set of P. Under which conditions do μ and v coincide? As motivating example consider the polynomial $P(x)=|x|^{2}-1$ where $|x|:=r(x):=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ is the euclidean

[^0]norm in \mathbf{R}^{n}. It is well known that two measures μ and v with support in the unit sphere $\mathbf{S}^{n-1}=\left\{x \in \mathbf{R}^{n}:|x|=1\right\}$ coincide if they are equal on the set of all harmonic polynomials. We shall show that two measures μ and v with support in the set $K_{P}(R)$ (defined below in (2)), are equal if the moments $\mu(f)$ and $v(f)$ are equal for polyharmonic polynomials f of a certain degree N_{P} which depends on the polynomial P. In order to formulate this precisely, let us introduce the polyharmonic degree $d(f)$ defined by
\[

$$
\begin{equation*}
d(f):=\min \left\{N \in \mathbf{N}_{0}: \Delta^{N+1}(f)=0\right\} . \tag{1}
\end{equation*}
$$

\]

In the appendix we shall compare properties of the polyharmonic degree and the total degree. Note that f has polyharmonic degree $\leq N$ if and only if f is of polyharmonic order $N+1$.

Let us denote by \mathscr{P} the set of all polynomials. One of the main results of this paper reads as follows:

Theorem 1. Let

$$
\begin{equation*}
K_{P}(R):=\left\{x \in \mathbf{R}^{n}: P(x)=0 \text { and }|x| \leq R\right\} \tag{2}
\end{equation*}
$$

for $R>0$ and for a polynomial $P(x)$, and define

$$
\begin{equation*}
N_{P}=\sup \{d(P \cdot h): h \text { is a harmonic polynomial }\} . \tag{3}
\end{equation*}
$$

Let μ and v be signed measures with support contained in the set $K_{P}(R)$ for some $R>0$. If $\int h d \mu=\int h d v$ for all polynomials h in the subspace

$$
U_{N_{P}}=\left\{Q \in \mathscr{P}: \Delta^{N_{P}} Q=0\right\}
$$

then μ and v are identical.
It is not difficult to see that N_{P} is lower or equal to the total degree of the polynomial $P(x)$, see Corollary 20. In the appendix we shall give a procedure to determine the number N_{P} explicitly.

An application of the Hahn-Banach theorem shows us the following consequence of Theorem 1: the space $U_{N_{P}}$ is dense in the space $C\left(K_{P}(R), \mathbf{C}\right)$ of all continuous complex-valued functions on the compact space $K_{P}(R)$ endowed with the supremum norm, see Corollary 18. Let us emphasize that Theorem 1 is only a sufficient criterion, and does not always give the expected result: As illustrating examples consider the case of a sphere and an ellipsoid. In the first case, the defining polynomial $P(x)=|x|^{2}-1$ has the property that $N_{P}=1$, so $U_{N_{P}}$ is equal to the space of all harmonic polynomials. In the case of an ellipsoid, N_{P} is equal to 2 , although it would be sufficient to know that the measures μ and v are identical for harmonic polynomials. However, density results for solutions to $\Delta^{p} h=0$ in $C(K)$ for compact sets K for $p>1$ are much
more complicated and obtained with the techniques of Potential theory in the 1970s; see [13], [14] and the references therein. The following example shows that our approach delivers a nontrivial criterion for density which is not covered by the other approaches so far: take $P(x)=\langle a, x\rangle\left(|x|^{2}-1\right)$ where $\langle a, x\rangle=a_{1} x_{1}+\cdots+a_{n} x_{n}$. Then $N_{P}=2$, and we need now the space of all biharmonic polynomials to ensure that two measures σ and v are equal. Indeed, harmonic polynomials are not sufficient: take σ as the usual measure $d \theta$ on the unit sphere \mathbf{S}^{n-1} and v as the point evaluation in $x=0$. Then σ and v coincide on the space of all harmonic polynomials and both measures have support in $P^{-1}(0)$. Clearly σ and v are different measures.

The proof of Theorem 1 will be a by-product of our investigation of the so-called multivariate Markov transform which we will introduce below and which we consider as a suitable generalization of the univariate Markov transform, an important tool in the classical moment problem and its applications to Spectral theory. Recall that the Markov transform ${ }^{1}$ of a finite measure σ with support in the interval $[-R, R]$ is defined on the upper halfplane by the formula

$$
\begin{equation*}
\hat{\sigma}(\zeta):=\int \frac{1}{\zeta-x} d \sigma(x) \quad \text { for } \operatorname{Im} \zeta>0 \tag{4}
\end{equation*}
$$

see e.g. [1, Chapter 2], [26, Chapter 2.6]. Let us recall a central result called Markov's theorem: the N-th Pade approximant $\pi_{N}(\zeta)=Q_{N}(\zeta) / P_{N}(\zeta)$ of the asymptotic expansion of $\hat{\sigma}(\zeta)$ at infinity converges compactly in the upper half plane to $\hat{\sigma}(\zeta)$; here the polynomial P_{N} is the N-th orthogonal polynomial with respect to the measure σ and Q_{N} is the orthogonal polynomial of the second kind with respect to the measure σ given through the formula

$$
\begin{equation*}
Q_{N}(\zeta)=\int \frac{P_{N}(\zeta)-P_{N}(x)}{\zeta-x} d \sigma(x) . \tag{5}
\end{equation*}
$$

Further, to each $\pi_{N}(\zeta)$ there corresponds a (non-negative) measure σ_{N} with support in the zeros of the nominator P_{N}, thus leading to a proof of the famous Gauß quadrature formula.

Our definition of a multivariate Markov transform depends on the work of N. Aronszajn [3] on polyharmonic functions, and of L. K. Hua [15] about harmonic analysis on Lie groups; the definition is related to the Poisson formula for the ball $B_{R}:=\left\{x \in \mathbf{R}^{n}:|x|<R\right\}$ which we recall now: Let $R>0$

[^1]and h be a function harmonic in the ball B_{R} and continuous on the closure $\overline{B_{R}}$; then for any $x \in \mathbf{R}^{n}$ with $|x|<R$
\[

$$
\begin{equation*}
h(x)=\frac{1}{\omega_{n}} \int_{\mathbf{S}^{n-1}} \frac{\left(R^{2}-|x|^{2}\right) R^{n-2}}{r(R \theta-x)^{n}} h(R \theta) d \theta, \tag{6}
\end{equation*}
$$

\]

where ω_{n} denotes the area of $\mathbf{S}^{n-1}, \theta \in \mathbf{S}^{n-1}$, and $r(x)$ is the euclidean norm of x. Note that for fixed x with $|x|<R$ the function $\rho \mapsto r(\rho \theta-x)$ defined for $\rho \in \mathbf{R}$ with $|\rho|>R$ has an analytic continuation for $\zeta \in \mathbf{C}$ with $|\zeta|>R$, so we can write $r(\zeta \theta-x)$ for $\zeta \in \mathbf{C}$ with $|\zeta|>R$. The following Cauchy type integral formula, proved in [3, p. 125], is important for our approach: for any polynomial $u(x)$ and for any $|x|<R$ the following identity holds

$$
\begin{equation*}
u(x)=\frac{1}{2 \pi i \omega_{n}} \int_{\Gamma_{R}} \int_{\mathbf{S}^{n-1}} \frac{\zeta^{n-1}}{r(\zeta \theta-x)^{n}} u(\zeta \theta) d \theta d \zeta \tag{7}
\end{equation*}
$$

where the contour $\Gamma_{R}(t)=R \cdot e^{i t}$ for $t \in[0,2 \pi]$. A similar result is also valid for holomorphic functions u defined on the so-called harmonicity hull of B_{R}; we refer the reader to [3, p. 125] for details.

Assume now that μ is a signed measure with support in the closed ball $\left\{x \in \mathbf{R}^{n}:|x| \leq R\right\}$. The multivariate Markov transform $\hat{\mu}$ of μ is a function defined for all $\theta \in \mathbf{S}^{n-1}$ and all $\zeta \in \mathbf{C}$ with $|\zeta|>R$ by the formula

$$
\begin{equation*}
\hat{\mu}(\zeta, \theta)=\frac{1}{\omega_{n}} \int_{\mathbf{R}^{n}} \frac{\zeta^{n-1}}{r(\zeta \theta-x)^{n}} d \mu(x) . \tag{8}
\end{equation*}
$$

Since $\zeta \mapsto r(\zeta \theta-x)$ has no zeros for $|\zeta|>R$ the function $\zeta \mapsto \hat{\mu}(\zeta, \theta)$ is defined for all $|\zeta|>R$. In the following Section we shall show that the multivariate Markov transform $\hat{\mu}$ determines the measure μ uniquely, cf. Theorem 3.

Our second main innovation is the introduction of the notion of the function $Q_{P}(\zeta, \theta)$ of the second kind with respect to a given polynomial $P(x)$ which is the multivariate analogue of (5), defined by

$$
\begin{equation*}
Q_{P}(\zeta, \theta)=\int_{\mathbf{R}^{n}} \frac{P(\zeta \theta)-P(x)}{r(\zeta \theta-x)^{n}} \zeta^{n-1} d \mu(x) \tag{9}
\end{equation*}
$$

for all $|\zeta|>R, \theta \in \mathbf{S}^{n-1}$. Let us emphasize that Q_{P} is in general not a polynomial. However, we shall show the surprising and interesting result that the function $r \theta \mapsto r^{-(n-1)} Q_{P}(r \theta)$ is a polyharmonic function of order $\leq \operatorname{deg} P(x)$ where deg denotes the total degree of a polynomial.

One further main result of the paper, Theorem 13, is concerned with measures μ having their supports in algebraic sets: Let us assume that the measure μ has support in $K_{P}(R)$. Then the Markov transform $\hat{\mu}$ has the representation

$$
\begin{equation*}
\hat{\mu}(\zeta, \theta)=\frac{Q_{P}(\zeta, \theta)}{P(\zeta \theta)} \quad \text { for }|\zeta|>R \tag{10}
\end{equation*}
$$

where Q_{P} is the function of second kind with respect to $P(x)$. The reverse statement holds as well, i.e. if the measure μ with $\operatorname{supp}(\mu) \subset \overline{B_{R}}$ satisfies (10) for some polynomial P where Q_{P} is defined by (9), then $\operatorname{supp}(\mu) \subset K_{P}(R)$. By means of these characterizations we can deduce our main result Theorem 1.

Finally let us recall some terminology from measure theory: a signed measure on \mathbf{R}^{d} is a set function on the Borel σ-algebra on \mathbf{R}^{d} which takes real values and is σ-additive. By the Jordan decomposition [6, p. 125], a signed measure μ is the difference of two non-negative finite measures, say $\mu=\mu^{+}-\mu^{-}$with the property that there exists a Borel set A such that $\mu^{+}(A)=0$ and $\mu^{-}\left(\mathbf{R}^{n} \backslash A\right)=0$. The variation of μ is defined as $|\mu|:=\mu^{+}+\mu^{-}$. The support of a non-negative measure μ on \mathbf{R}^{d} is defined as the complement of the largest open set U such that $\mu(U)=0$. The support of a signed measure σ is defined as the support of the total variation $|\sigma|=\sigma_{+}+\sigma_{-}$(see [6, p. 226]). Recall that in general, the supports of σ_{+}and σ_{-}are not disjoint (cf. exercise 2 in [6, p. 231]). Note that if a signed measure μ has compact support then all polynomials are integrable with respect to μ^{+}, μ^{-}, and $|\mu|$.

2. The multivariate Markov transform

Recall that the univariate Markov transform has, for $|\zeta|>R$, the asymptotic expansion

$$
\begin{equation*}
\hat{\sigma}(\zeta)=\sum_{k=0}^{\infty} \frac{1}{\zeta^{k+1}} \int t^{k} d \sigma(t) \tag{11}
\end{equation*}
$$

Let Γ_{R} denote the contour in \mathbf{C} defined by $\Gamma_{R}(t)=R \cdot e^{i t}$ for $t \in[0,2 \pi]$. By means of standard facts from complex analysis the following identity may be proved:

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} p(\zeta) \hat{\sigma}(\zeta) d \zeta=\int p(x) d \sigma(x) \tag{12}
\end{equation*}
$$

for all polynomials p and any $R_{1}>R$.
In this Section we want to show that similar results hold for the multivariate Markov transform $\hat{\mu}$; in particular the following is the analogue of formula (12) in the multivariate case:

Proposition 2. Let μ be a signed measure over \mathbf{R}^{n} with support in $\overline{B_{R}}$ and let $R_{1}>R$. Then for every polynomial $P(x)$

$$
\begin{equation*}
M_{\mu}(P):=\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} P(\zeta \theta) \hat{\mu}(\zeta, \theta) d \zeta d \theta=\int_{\mathbf{R}^{n}} P(x) d \mu(x) \tag{13}
\end{equation*}
$$

Proof. Replace $\hat{\mu}(\zeta, \theta)$ in (13) by (8) and interchange integration. Then

$$
\begin{equation*}
M_{\mu}(P)=\int_{\mathbf{R}^{n}} \frac{1}{2 \pi i \omega_{n}} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} P(\zeta \theta) \frac{\zeta^{n-1}}{r(\zeta \theta-x)^{n}} d \zeta d \theta d \mu(x) . \tag{14}
\end{equation*}
$$

According to (7) we obtain $M_{\mu}(P)=\int P(x) d \mu(x)$.
Theorem 3. Let μ, v be finite signed measures over \mathbf{R}^{n} with compact support. If the multivariate Markov transforms of μ and v coincide for large ζ, i.e., if there exists $R>0$ such that $\hat{\mu}(\zeta, \theta)=\hat{v}(\zeta, \theta)$ for all $|\zeta|>R$ and for all $\theta \in \mathbf{S}^{n-1}$, then μ and v are identical.

Proof. Since the multivariate Markov transforms coincide for large $|\zeta|$ it is clear that the functionals M_{μ} and M_{v} in (13) are identical by taking the radius R_{1} of the path $\Gamma_{R_{1}}$ large enough. Then Proposition 2 shows that $\int P(x) d \mu(x)=\int P(x) d v(x)$ for all polynomials $P(x)$. Further we apply a standard argument: since μ and v have compact supports we may apply the Stone-Weierstrass theorem according to which the polynomials are dense in the space $C(\operatorname{supp}(\mu) \cup \operatorname{supp}(v))$ which implies that $\mu=v$.

Next we want to determine the asymptotic expansion of the multivariate Markov transform and we need some notations from harmonic analysis; for a detailed account we refer to [4] or [30]. Recall that a function $Y: \mathbf{S}^{n-1} \rightarrow \mathbf{C}$ is called a spherical harmonic of degree $k \in \mathbf{N}_{0}$ if there exists a homogeneous harmonic polynomial $P(x)$ of degree k (in general, with complex coefficients ${ }^{2}$) such that $P(\theta)=Y(\theta)$ for all $\theta \in \mathbf{S}^{n-1}$. Throughout the paper we assume that $Y_{k, m}(x), m=1, \ldots, a_{k}$, is a basis of the set of all harmonic homogeneous polynomials of degree k which are orthonormal with respect to scalar product

$$
\langle f, g\rangle_{\mathbf{S}^{n-1}}:=\int_{\mathbf{S}^{n-1}} f(\theta) \overline{g(\theta)} d \theta
$$

For a continuous function $f: \mathbf{S}^{n-1} \rightarrow \mathbf{C}$ we define the Laplace-Fourier series by

$$
f(\theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} f_{k, m} Y_{k, m}(\theta)
$$

and $f_{k, m}=\int_{\mathbf{S}^{n-1}} f(\theta) \overline{Y_{k, m}(\theta)} d \theta$ are the Laplace-Fourier coefficients of f.
Using the Gauss decomposition of a polynomial (see Theorem 5.5 in [4]) it is easy to see that the system

$$
|x|^{2 t} Y_{k, m}(x), \quad t, k \in \mathbf{N}_{0}, m=1, \ldots, a_{k}
$$

is a basis of the set of all polynomials. The numbers

[^2]\[

$$
\begin{equation*}
c_{t, k, m}:=\int_{\mathbf{R}^{n}}|x|^{2 t} \overline{Y_{k, m}(x)} d \mu(x), \quad t, k \in \mathbf{N}_{0}, m=1, \ldots, a_{k} \tag{15}
\end{equation*}
$$

\]

are sometimes called the distributed moments, see [16]. For a treatment and formulation of the multivariate moment problem we refer to [10], see also [31].

Theorem 4. Let μ be a signed measure over \mathbf{R}^{n} with support in the closed ball $\overline{B_{R}}$. Then for all $|\zeta|>R$ and for all $\theta \in \mathbf{S}^{n-1}$ the following relation holds

$$
\begin{equation*}
\hat{\mu}(\zeta, \theta)=\sum_{t=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{Y_{k, m}(\theta)}{\zeta^{2 t+k+1}} \int_{\mathbf{R}^{n}}|x|^{2 t} \overline{Y_{k, m}(x)} d \mu(x) . \tag{16}
\end{equation*}
$$

Proof. A zonal harmonic of degree k with pole $\theta \in \mathbf{S}^{n-1}$ is the unique spherical harmonic $Z_{\theta}^{(k)}$ of degree k such that for all spherical harmonics Y of degree k the relation $Y(\theta)=\int_{\mathbf{S}^{n-1}} Z_{\theta}^{(k)}(\eta) \overline{Y(\eta)} d \eta$ holds. Let $p_{n}(\theta, x)=\frac{1}{\omega_{n}} \frac{1-|x|^{2}}{\left.|x-\theta|\right|^{n}}$ be the Poisson kernel for $0 \leq|x|<1=|\theta|$. Theorem 2.10 in [30, p. 145] gives $p_{n}(\theta, x)=\sum_{k=0}^{\infty}|x|^{k} Z_{\theta}^{(k)}\left(x^{\prime}\right)$ for all $\theta, x^{\prime} \in \mathbf{S}^{n-1}$, where $x=|x| \cdot x^{\prime}$, $|x|<1$. Lemma 2.8 in [30] shows that $Z_{\theta}^{(k)}\left(x^{\prime}\right)=\sum_{m=1}^{a_{k}} \overline{Y_{k, m}\left(x^{\prime}\right)} Y_{k, m}(\theta)$ where $x^{\prime}, \theta \in \mathbf{S}^{n-1}$, so

$$
\begin{equation*}
p_{n}(\theta, x)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}}|x|^{k} \overline{Y_{k, m}\left(x^{\prime}\right)} Y_{k, m}(\theta) \tag{17}
\end{equation*}
$$

for $|x|<1$. Let R be as in the theorem, and replace now x in (17) by x / ρ, $\rho \in \mathbf{R}$ such that $|x|<R<\rho$; one obtains that

$$
\begin{equation*}
\frac{1}{\omega_{n}} \frac{\rho^{n-2}\left(\rho^{2}-|x|^{2}\right)}{r(\rho \theta-x)^{n}}=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{1}{\rho^{k}} \overline{Y_{k, m}(x)} Y_{k, m}(\theta) \tag{18}
\end{equation*}
$$

The real variable ρ can now be replaced by a complex variable ζ with $|\zeta|>R$. We multiply by $\zeta\left(\zeta^{2}-|x|^{2}\right)^{-1}$, and integrate over the closed ball $\overline{B_{R}}$ with respect to μ. This gives

$$
\begin{equation*}
\hat{\mu}(\zeta, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} Y_{k, m}(\theta) \zeta^{-k+1} \int_{\mathbf{R}^{n}} \frac{\overline{Y_{k, m}(x)}}{\zeta^{2}-|x|^{2}} d \mu(x), \tag{19}
\end{equation*}
$$

and we have determined the Laplace-Fourier series of $\theta \mapsto \hat{\mu}(\zeta, \theta)$. Since $|\zeta|>R \geq|x|$ we can expand $1 /\left(1-\frac{|x|^{2}}{\zeta^{2}}\right)$ in a geometric series and we obtain

$$
\begin{equation*}
\hat{\mu}(\zeta, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{Y_{k, m}(\theta)}{\zeta^{k+1}} \int_{\mathbf{R}^{n}} \overline{Y_{k, m}(x)}\left(\sum_{t=0}^{\infty} \frac{|x|^{2 t}}{\zeta^{2 t}}\right) d \mu(x) . \tag{20}
\end{equation*}
$$

After interchanging summation and integration the claim is obvious.

3. The function of the second kind

In the following we want to a give a multivariate analogue of the polynomial of second kind. It turns out that in the multivariate case the corresponding definition does not lead to a polynomial but to a polyharmonic function $Q_{P}(\zeta, \theta)$ which is defined only for all $|\zeta|>R, \theta \in \mathbf{S}^{n-1}$.

Definition 5. Let $P(x)$ be a polynomial and μ be a non-negative measure with support in $\overline{B_{R}}$. Then the function $Q_{P}(\zeta, \theta)$ of the second kind is defined by

$$
\begin{equation*}
Q_{P}(\zeta, \theta)=\frac{1}{\omega_{n}} \int_{\mathbf{R}^{n}} \frac{P(\zeta \theta)-P(x)}{r(\zeta \theta-x)^{n}} \zeta^{n-1} d \mu(x) \tag{21}
\end{equation*}
$$

for all $|\zeta|>R, \theta \in \mathbf{S}^{n-1}$. Similarly we define the function $R_{P}(\zeta, \theta)$ by

$$
\begin{equation*}
R_{P}(\zeta, \theta)=\frac{1}{\omega_{n}} \int_{\mathbf{R}^{n}} \frac{P(x)}{r(\zeta \theta-x)^{n}} \zeta^{n-1} d \mu(x) \tag{22}
\end{equation*}
$$

for all $|\zeta|>R, \theta \in \mathbf{S}^{n-1}$.
The last definitions immediately give the identity

$$
\begin{equation*}
P(\zeta \theta) \hat{\mu}(\zeta, \theta)=Q_{P}(\zeta, \theta)+R_{P}(\zeta, \theta) \tag{23}
\end{equation*}
$$

Theorem 6. Let $P(x)$ be a polynomial, μ be a signed measure with support in $\overline{B_{R}}$ and $Q_{P}(\zeta, \theta)$ the function of the second kind. Then for any $R_{1}>R$ and for each polynomial $h(x)$

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} h(\zeta \theta) Q_{P}(\zeta, \theta) d \zeta d \theta=0 \tag{24}
\end{equation*}
$$

Proof. Let us denote the integral in (24) by $I(h)$. By (23) we obtain that $I(h)=I_{1}(h)-I_{2}(h)$ where

$$
\begin{align*}
& I_{1}(h)=\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} h(\zeta \theta) P(\zeta \theta) \hat{\mu}(\zeta, \theta) d \zeta d \theta \tag{25}\\
& I_{2}(h)=\frac{1}{2 \pi i \omega_{n}} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} h(\zeta \theta) \int_{\mathbf{R}^{n}} \frac{P(x)}{r(\zeta \theta-x)^{n}} \zeta^{n-1} d \mu(x) d \zeta d \theta \tag{26}
\end{align*}
$$

Proposition 2 yields $I_{1}(h)=\int_{\mathbf{R}^{n}} h(x) P(x) d \mu(x)$. Change the integration order in (26) and use formula (7). Then we obtain $I_{2}(h)=I_{1}(h)$, therefore $I(h)=0$ which was our claim.

A similar argument to that in the proof of formula (16) proves the following:

Theorem 7. The function $R_{P}(\zeta, \theta)$ has the asymptotic expansion

$$
\begin{equation*}
\sum_{t=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{Y_{k, m}(\theta)}{\zeta^{2 t+k+1}} \int_{\mathbf{R}^{n}} P(x)|x|^{2 t} \overline{Y_{k, m}(x)} d \mu(x) . \tag{27}
\end{equation*}
$$

Note that the map $\zeta \mapsto R_{P}(\zeta, \theta)$ for $|\zeta|>R$ and $\theta \in \mathbf{S}^{n-1}$ is holomorphic in the complex variable ζ. So we can consider the Laurent series of the function $\zeta \mapsto R_{P}(\zeta, \theta)$ and we write for $|\zeta|>R$ and fixed $\theta \in \mathbf{S}^{n-1}$

$$
\begin{equation*}
R_{P}(\zeta, \theta)=\sum_{s=0}^{\infty} r_{s}[P](\theta) \frac{1}{\zeta^{s+1}} . \tag{28}
\end{equation*}
$$

From (27), by putting $s=2 t+k$, it follows that

$$
\begin{equation*}
r_{s}[P](\theta)=\sum_{t=0}^{[s / 2} \sum_{m=1}^{a_{s-2 t}} Y_{s-2 t, m}(\theta) \int_{\mathbf{R}^{n}} P(x)|x|^{2 t} \overline{Y_{s-2 t, m}(x)} d \mu(x) . \tag{29}
\end{equation*}
$$

Hence the coefficient function $r_{s}[P]$ is a sum of spherical harmonics with degree $\leq s$.

We can now formulate a characterization of orthogonality in asymptotic analysis:

Theorem 8. Let μ be a signed measure with compact support and $P(x)$ be a polynomial. Then P is orthogonal to all polynomials of degree $<M$ with respect to μ if and only if

$$
r_{0}[P]=\cdots=r_{M-1}[P]=0
$$

where $r_{s}[P]$ are the functions defined in (28)-(29).
Proof. From (29) we see that $r_{0}[P]=\cdots=r_{M-1}[P]=0$ if and only for all $s=0, \ldots, M-1$

$$
\int_{\mathbf{R}^{n}} P(x)|x|^{2 t} \overline{Y_{s-2 t, m}(x)} d \mu(x)=0 .
$$

But the polynomials $|x|^{2 t} Y_{s-2 t, m}(x)$ with $s=0, \ldots, M-1, t=0, \ldots,[s / 2]$, $m=1, \ldots, a_{s-2 t}$, span up the space of polynomials of degree $\leq M-1$.

The next theorem, interesting in its own right, is not needed later, and therefore the proof will be omitted.

Theorem 9. Let μ be a signed measure with compact support and let $P(x)$ be a polynomial of degree $2 N$. If P is orthogonal to all polynomials of degree $\leq 2 N$ and polyharmonic degree $<N$ then $r_{0}[P]=\cdots=r_{2 N-1}[P]=0$ and $r_{2 N}[P](\theta)$ is constant.

4. Polyharmonicity of the function of second kind

In this Section we want to show that the function $Q_{P}(\zeta, \theta)$ of the second kind, multiplied by $\zeta^{-(n-1)}$, is a polyharmonic function.

Recall that we have defined $N_{P}=\sup \{d(P \cdot h): h$ harmonic polynomial $\}$ for a polynomial $P(x)$. In the Appendix we will show that $N_{P} \leq \operatorname{deg} P(x)$ and an explicit determination of N_{P} will be given there as well.

Proposition 10. Let $Y_{k, m}, m=1, \ldots, a_{k}$, be an orthonormal basis of the space of all homogeneous harmonic polynomials. Then

$$
\begin{equation*}
N_{P}=\sup _{k \in \mathbf{N}_{0}, m=1, \ldots, a_{k}} d\left(P(x) Y_{k, m}(x)\right) . \tag{30}
\end{equation*}
$$

Proof. Let us denote the right hand side by M_{P}. Then the inequality $M_{P} \leq N_{P}$ is trivial. For the converse let $h(x)$ be a harmonic polynomial and write $h(x)=\sum_{k=0}^{N} \sum_{m=1}^{a_{k}} \lambda_{k, m} Y_{k, m}(x)$. Then

$$
d(P \cdot h) \leq \sup _{k \in \mathbf{N}_{0}, m=1, \ldots, a_{k}} d\left(P(x) Y_{k, m}(x)\right) \leq M_{P}
$$

Note that $N_{P}=\sup _{k \in \mathbf{N}_{0}, m=1, \ldots, a_{k}} d\left(P(x) \overline{Y_{k, m}(x)}\right)$ since $\overline{Y_{k, m}}, m=1, \ldots, a_{k}$ is an orthonormal basis as well. Now we determine the asymptotic expansion of the function of the second kind:

Theorem 11. Let $P(x)$ be a polynomial and μ be a signed measure with support in $\overline{B_{R}}$. Then $\theta \mapsto Q_{P}(\zeta, \theta)$, the function of the second kind, possesses a Laplace-Fourier series of the form

$$
\begin{equation*}
Q_{P}(\zeta, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{1}{\zeta^{k-1}} p_{k, m}\left(\zeta^{2}\right) Y_{k, m}(\theta) \tag{31}
\end{equation*}
$$

where $p_{k, m}(t)$ are univariate polynomials of degree strictly smaller than $N_{k, m}:=$ $d\left(P(x) Y_{k, m}(x)\right)$. The function $Q_{P}(\zeta, \theta)$ of the second kind depends on those distributed moments

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} h(x)|x|^{2 t} d \mu(x) \tag{32}
\end{equation*}
$$

where $t \leq \sup _{k \in \mathbf{N}_{0}} \operatorname{deg} p_{k, m}$ and $h(x)$ is a harmonic polynomial.
Proof. For each fixed ζ with $|\zeta|>R$ the function $\theta \mapsto Q_{P}(\zeta, \theta)$ possesses a Laplace-Fourier expansion, say

$$
Q_{P}(\zeta, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} e_{k m}(\zeta) Y_{k, m}(\theta)
$$

Recall that $Q_{P}(\zeta, \theta)=P(\zeta \theta) \hat{\mu}(\zeta, \theta)-R_{P}(\zeta, \theta)$, see (23). Formula (27) easily yields the Laplace-Fourier expansion of $\theta \mapsto R_{P}(\zeta, \theta)$: in (27) one has only to compute the sum over the variable t obtaining

$$
\begin{equation*}
R_{P}(\zeta, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} Y_{k, m}(\theta) \frac{1}{\zeta^{k-1}} \int_{\mathbf{R}^{n}} \frac{P(x) \overline{Y_{k, m}(x)}}{\zeta^{2}-|x|^{2}} d \mu(x) \tag{33}
\end{equation*}
$$

The Laplace-Fourier coefficients of $\theta \mapsto P(\zeta \theta) \hat{\mu}(\zeta, \theta)$ are given through

$$
\begin{equation*}
f_{k, m}(\zeta):=\int_{\mathbf{S}^{n-1}} P(\zeta \theta) \hat{\mu}(\zeta, \theta) \overline{Y_{k, m}(\theta)} d \theta \tag{34}
\end{equation*}
$$

Let us write $P(x) \overline{Y_{k, m}(x)}$ in the Gauß decomposition, see Theorem 5.5 in [4], in the form

$$
\begin{equation*}
P(x) \overline{Y_{k, m}(x)}=\sum_{j=0}^{N_{k, m}} h_{j, k, m}(x)|x|^{2 j}, \tag{35}
\end{equation*}
$$

where $h_{j, k, m}$ are harmonic polynomials and $N_{k, m}$ is the polyharmonic degree of $P(x) Y_{k, m}(x)$. Then (34) and (35) yield

$$
\begin{aligned}
f_{k, m}(\zeta) & =\frac{1}{\zeta^{k}} \int_{\mathbf{S}^{n-1}} P(\zeta \theta) \zeta^{k} \overline{Y_{k, m}(\theta)} \hat{\mu}(\zeta, \theta) d \theta \\
& =\frac{1}{\zeta^{k}} \sum_{j=0}^{N_{k, m}} \zeta^{2 j} \int_{\mathbf{S}^{n-1}} h_{j, k, m}(\zeta \theta) \hat{\mu}(\zeta, \theta) d \theta \\
& =\frac{1}{\zeta^{k}} \sum_{j=0}^{N_{k, m}} \zeta^{2 j} \int_{\mathbf{R}^{n}} \int_{\mathbf{S}^{n-1}} h_{j, k, m}(\zeta \theta) \frac{1}{\omega_{n}} \frac{\zeta^{n-1}}{r(\zeta \theta-x)^{n}} d \theta d \mu(x) .
\end{aligned}
$$

Since $h_{j, k, m}$ is a harmonic polynomial the Poisson formula shows that for real $\zeta>R$ holds

$$
h_{j, k, m}(x)=\frac{1}{\omega_{n}} \int_{\mathbf{S}^{n-1}} h_{j, k, m}(\zeta \theta) \frac{\zeta^{n-2}\left(\zeta^{2}-|x|^{2}\right)}{r(\zeta \theta-x)^{n}} d \theta
$$

Since the integrand is holomorphic in ζ this holds for all complex values ζ with $|\zeta|>R$ as well. Thus

$$
\begin{equation*}
f_{k, m}(\zeta)=\frac{1}{\zeta^{k}} \sum_{j=0}^{N_{k, m}} \zeta^{2 j} \int_{\mathbf{R}^{n}} \frac{\zeta}{\zeta^{2}-|x|^{2}} h_{j, k, m}(x) d \mu(x) \tag{36}
\end{equation*}
$$

are the Laplace Fourier coefficients of $\theta \mapsto P(\zeta \theta) \hat{\mu}(\zeta, \theta)$.

Replace now $P(x) \overline{Y_{k, m}(x)}$ in (33) by the right hand side of (35) and take the difference of the Laplace-Fourier coefficients we computed so far. Then the Laplace-Fourier coefficients of $Q_{P}(\zeta, \theta)$ are given by

$$
e_{k, m}(\zeta)=\frac{1}{\zeta^{k-1}} \sum_{j=0}^{N_{k, m}} \int_{\mathbf{R}^{n}} \frac{1}{\zeta^{2}-|x|^{2}} h_{j, k, m}(x)\left(\zeta^{2 j}-|x|^{2 j}\right) d \mu(x)
$$

Note that for $j=0$ the summand is just zero. For $j \geq 1$ we have

$$
\frac{\zeta^{2 j}-|x|^{2 j}}{\zeta^{2}-|x|^{2}}=|x|^{2(j-1)}+|x|^{2(j-1)} \zeta^{2}+\cdots+\zeta^{2(j-1)} .
$$

We conclude that $\zeta \mapsto \zeta^{k-1} e_{k, m}(\zeta)=: P_{k, m}\left(\zeta^{2}\right)$ is a polynomial in ζ^{2} of degree at most $N_{k, m}-1$. It follows that $e_{k, m}(\zeta)$ can be computed if we know all moments of the form (32) where $t \leq \operatorname{deg} p_{k, m}$ and $h(x)$ is a harmonic polynomial. The proof is complete.

From this we have the following interesting consequence:
Corollary 12. Let $P(x)$ be a polynomial, μ be a signed measure with support in $\overline{B_{R}}$ and $Q_{P}(\zeta, \theta)$ be the corresponding function of the second kind. Then the function $r \theta \mapsto r^{-(n-1)} Q_{P}(r, \theta)$ defined for $r>R$ and $\theta \in \mathbf{S}^{n-1}$, is a polyharmonic function of polyharmonic degree $<N_{P}$ where N_{P} is defined in (3).

Proof. By the last theorem the function $\theta \mapsto r^{-(n-1)} Q_{P}(r, \theta)$ has the following Laplace-Fourier expansion

$$
f(r \theta):=r^{-(n-1)} Q_{P}(r, \theta)=\sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{1}{r^{n+k-2}} p_{k, m}\left(r^{2}\right) Y_{k, m}(\theta) .
$$

Let us define the differential operator

$$
\begin{equation*}
L_{(k)}:=\frac{d^{2}}{d r^{2}}+\frac{n-1}{r} \frac{d}{d r}-\frac{k(k+n-2)}{r^{2}} . \tag{37}
\end{equation*}
$$

It is known that a function $g(r \theta)$ is a solution of $\Delta^{p} g(x)=0$ if and only if the coefficient functions $g_{k, m}(r)$ of its Laplace-Fourier expansion are solutions of the equation $\left[L_{(k)}\right]^{p} g_{k, m}(r)=0$; an elaboration of these classical results can be found in [19]. Further the polynomials r^{j} with $j=-k-n+2,-k-n+$ $4, \ldots,-k-n+2 p$ are solutions of this equation. It follows that

$$
f_{k, m}(r)=\frac{1}{r^{n+k-2}} p_{k, m}\left(r^{2}\right)
$$

are solutions of the equation $\left[L_{(k)}\right]^{p} g_{k, m}(r)=0$ when $p \geq N_{k}$. The proof is complete.

5. Measures with algebraic support

A measure μ over \mathbf{R}^{n} has algebraic support if the support of the measure is contained in an algebraic set, i.e. if the support of μ is contained in $P^{-1}(0)$ for some polynomial $P(x)$. Further we say that μ has finite support if the support has only finitely many elements. The following gives a characterization of algebraic support of a measure in terms of the Markov function:

Theorem 13. Let μ be a measure with support in $\overline{B_{R}}$ and let $P(x)$ be a polynomial. Then μ has support in $P^{-1}(0)$ if and only if

$$
\begin{equation*}
P(\zeta \theta) \hat{\mu}(\zeta, \theta)=Q_{P}(\zeta, \theta) \quad \text { for all } \theta \in \mathbf{S}^{n-1},|\zeta|>R, \tag{38}
\end{equation*}
$$

where $Q_{P}(\zeta, \theta)$ is the function of the second kind.
Proof. If μ has support in $P^{-1}(0)$ it follows that the function $R_{P}(\zeta, \theta)$ is equal to zero and (38) is evident by (23). For the converse assume that $P(\zeta \theta) \hat{\mu}(\zeta, \theta)=Q_{P}(\zeta, \theta)$. Define the polynomial P^{*} by $P^{*}(x):=\overline{P(x)}$ for $x \in \mathbf{R}^{n}$. By Proposition 2 and Theorem 6

$$
\begin{align*}
\int h P^{*} P d \mu & =\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} h(\zeta \theta) P^{*}(\zeta \theta) P(\zeta \theta) \hat{\mu}(\zeta, \theta) d \zeta d \theta \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbf{S}^{n-1}} h(\zeta \theta) P^{*}(\zeta \theta) Q_{P}(\zeta, \theta) d \zeta d \theta=0 \tag{39}
\end{align*}
$$

for any polynomial $h(x)$. Since the polynomials are dense it follows that $P^{*} P d \mu$ is the zero measure. Let $\mu=\mu^{+}-\mu^{-}$be the Jordan decomposition. It follows that $P^{*} P d \mu^{+}$and $P^{*} P d \mu^{-}$are zero measures, and it is easy to see that this implies that the support of μ^{+}and μ^{-}is contained in $P^{-1}(0)$. Thus μ has support in $P^{-1}(0)$.

Let U be an open non-empty subset of the complex plane \mathbf{C} and f be a function defined on $U \times \mathbf{S}^{n-1}$. We say that f is pointwise rational if there exists a polynomial $P(x)$ in n variables such that for each fixed $\theta \in \mathbf{S}^{n-1}$ the function $\zeta \mapsto P(\zeta \theta) f(\zeta, \theta)$ is a polynomial in the variable ζ.

Proposition 14. Let μ be a signed measure with bounded support and suppose that the Markov function $\hat{\mu}(\zeta, \theta)$ is pointwise rational. Then μ has algebraic support.

Proof. Let $P(x)$ be a polynomial such that the map $\zeta \mapsto P(\zeta \theta) \hat{\mu}(\zeta, \theta)$ is a polynomial in the variable ζ. Then the integral over $\Gamma_{R_{1}}$ in (39) is already zero and as in the last proof we obtain that μ has support in $P^{-1}(0)$.

The converse of the last proposition is not true as the following result with σ equal to the Lebesgue measure on the unit interval shows:

Proposition 15. Let σ be a measure over \mathbf{R} with compact support, δ_{0} the Dirac measure over \mathbf{R} at the point 0 and let $\mu=\sigma \otimes \delta_{0}$. Then for $|\zeta|>R$ the multivariate Markov transform is given by

$$
\begin{equation*}
\widehat{\sigma \otimes} \delta_{0}\left(\zeta, e^{i t}\right)=\frac{1}{\omega_{2}} \sum_{l=0}^{\infty} \int x^{l} d \sigma(x) \frac{\sin (l+1) t}{\sin t} \frac{1}{\zeta^{l+1}} \tag{40}
\end{equation*}
$$

The measure μ has algebraic support. Its multivariate Markov transform $\widehat{\sigma \otimes \delta_{0}}$ is pointwise rational if and only if the measure σ has finite support.

Proof. Let $\theta=e^{i t}$ with $t \in \mathbf{R}$. It is straightforward to verify that for $|\zeta|>R$ holds

$$
\begin{aligned}
\sigma \widehat{\otimes} \delta_{0}(\zeta, \theta) & =\frac{1}{\omega_{2}} \int_{\mathbf{R}^{2}} \frac{\zeta}{r(\zeta \theta-(x, y))^{2}} d\left(\sigma \otimes \delta_{0}\right) \\
& =\frac{1}{\omega_{2}} \int \frac{\zeta}{\zeta^{2}-2 \zeta x \cos t+x^{2}} d \sigma
\end{aligned}
$$

Note that

$$
\frac{2 i \zeta \sin t}{\zeta^{2}-2 \zeta x \cos t+x^{2}}=\frac{1}{\zeta \bar{\theta}-x}-\frac{1}{\zeta \theta-x} .
$$

Define for the measure σ the one-dimensional Markov transform by $\tilde{\sigma}(\zeta)=$ $\int \frac{1}{\zeta-x} d \sigma(x)$. Then $2 i \omega_{2} \sin t \cdot \sigma \widehat{\otimes \otimes} \delta_{0}(\zeta, \theta)=\tilde{\sigma}(\zeta \bar{\theta})-\tilde{\sigma}(\zeta \theta)$ and the asymptotic expansion of $\tilde{\sigma}$ leads to (40).

Assume now that $\sigma \widehat{\otimes} \delta_{0}(\zeta, \theta)$ is pointwise rational. Then for $t=\pi / 2$ the function

$$
\widehat{\sigma \otimes \delta_{0}}(\zeta, \pi / 2)=\frac{1}{\omega_{2}} \sum_{k=0}^{\infty} \int x^{2 k} d \sigma(x) \frac{(-1)^{k}}{\zeta^{2 k+1}}=\frac{1}{\omega_{2}} \zeta \int \frac{1}{\zeta^{2}+x^{2}} d \sigma(x)
$$

must be a rational functional in ζ. As it is known from univariate Padé approximation this implies that σ must have finite support, [26, chapter 2 , section 3, Theorem 3.1]. Conversely, if a measure μ over \mathbf{R}^{n} has finite support, and the dimension n is even then it is easy to see that $\zeta \hat{\mu}(\zeta, \theta)$ is a quotient of two polynomials, in particular it is pointwise rational.

We finish this section with the following example:
Example 16. Let μ be the Lebesgue measure on the unit circle \mathbf{S}^{1}. Since the measure is rotation-invariant it follows that $\hat{\mu}(\zeta, \theta)=\frac{\zeta}{\zeta^{2}-1}$. Hence the multivariate Markov transform $\zeta \hat{\mu}(\zeta, \theta)$ is pointwise rational but μ does not have finite support.

6. Proof of Theorem 1

Proof. In Theorem 11 we have seen that $Q_{\mu, P}$ and $Q_{v, P}$ only depend on the moments $c_{t, k, m}$ defined in (15) where $t<N_{P}$. It follows that $Q_{\mu, P}=Q_{v, P}$. By Theorem $13 P(\zeta \theta) \hat{\mu}(\zeta, \theta)=Q_{\mu, P}(\zeta, \theta)$ and $P(\zeta \theta) \hat{v}(\zeta, \theta)=Q_{v, P}(\zeta, \theta)$ for all large ζ and for all $\theta \in \mathbf{S}^{n-1}$, therefore $P(\zeta \theta) \hat{\mu}(\zeta, \theta)=P(\zeta \theta) \hat{v}(\zeta, \theta)$. We want to conclude that $\hat{\mu}(\zeta, \theta)=\hat{v}(\zeta, \theta)$; in that case Theorem 3 yields $\mu=v$. If $P(\zeta \theta)$ has no zeros for large ζ it is clear that $\hat{\mu}(\zeta, \theta)=\hat{v}(\zeta, \theta)$. In the general case, it suffices to show that $A:=\left\{(\zeta, \theta) \in \mathbf{C} \times \mathbf{S}^{n-1}: P(\zeta \theta)=0\right\}$ is nowhere dense since then a continuity argument leads to $\hat{\mu}(\zeta, \theta)=\hat{v}(\zeta, \theta)$. This fact will be proven in the next Proposition.

Proposition 17. The set $A:=\left\{(\zeta, \theta) \in \mathbf{C} \times \mathbf{S}^{n-1}: P(\zeta \theta)=0\right\}$ is closed and has no interior point, i.e. A is nowhere dense in $\mathbf{C} \times \mathbf{S}^{n-1}$.

Proof. Clearly A is closed. Suppose that there $\theta_{0} \in \mathbf{S}^{n-1}$ and ζ_{0} such that $P(\zeta \theta)=0$ for all ζ in a neighborhood U of ζ_{0} and for all θ in a neighborhood V of θ_{0}. For fixed $\theta \in V$ it follows that $\zeta \rightarrow P(\zeta \theta)$ must be the zero polynomial since for all $\zeta \in U$ (hence uncountably many ζ) we have $P(\zeta \theta)=0$. It follows that $P(\zeta \theta)=0$ for all $\zeta \in \mathbf{C}$ and for all $\theta \in V$. Hence $P(x)=0$ for all x in an open set W of \mathbf{R}^{n} and, by the properties of real analytic functions, we conclude that $P \equiv 0$.

Corollary 18. Let $P(x)$ be a polynomial and N_{P} be given by (30). Then the space

$$
U_{N_{P}}:=\left\{Q \in \mathscr{P}: \Delta^{N_{P}} Q=0\right\}
$$

is dense in the space $C\left(K_{P}(R), \mathbf{C}\right)$ of all continuous complex-valued functions on $K_{P}(R)$ endowed with the supremum norm.

Proof. Since $U_{N_{P}}$ is closed under complex conjugation we may reduce the problem to the case of real-valued continuous functions. Suppose that $U_{N_{P}}$ is not dense in $C\left(K_{P}(R), \mathbf{R}\right)$. By the Hahn-Banach theorem there exists a continuous non-trivial real-valued functional L which vanishes on $U_{N_{P}}$. By Riesz's Theorem there exists a signed measures σ representing the functional L with support in K_{P}. By Theorem 1 (applied to σ and the zero measure) we conclude that $\sigma=0$, a contradiction.

7. Appendix: The polyharmonic degree

We want to list some of the properties of the polyharmonic degree map. Note that the inequality $d(P+Q) \leq \max \{d(P), d(Q)\}$ is trivial. In [3] the important equality

$$
\begin{equation*}
d\left(Q \cdot|x|^{2}\right)=d(Q)+d\left(|x|^{2}\right)=d(Q)+1 \tag{41}
\end{equation*}
$$

is proved for any polyharmonic function Q defined on a domain containing zero. The following inequality is implicitly contained in [3, Theorem 1.2, p. 31]. For completeness we give the short proof.

Proposition 19. Let f, g be harmonic. Then $d(f g) \leq \min \{\operatorname{deg} f, \operatorname{deg} g\}$ and $d\left(f f^{*}\right)=\operatorname{deg} f$.

Proof. Let ∇f be the gradient of f. Then $\Delta(f g)=(\Delta f) g+2\langle\nabla f, \nabla g\rangle+$ $f \Delta g$. If h and g are harmonic it is easy to show by induction that

$$
\begin{equation*}
\Delta^{p}(f g)=2^{p} \sum_{i_{1}, \ldots, i_{p}=1}^{n}\left(\frac{\partial}{\partial x_{i_{1}}} \cdots \frac{\partial}{\partial x_{i_{p}}} f\right)\left(\frac{\partial}{\partial x_{i_{1}}} \cdots \frac{\partial}{\partial x_{i_{p}}} g\right) . \tag{42}
\end{equation*}
$$

Suppose that $s:=\operatorname{deg} f \leq \operatorname{deg} g$. Then $\frac{\partial^{\beta}}{\partial x^{\beta}} f=0$ for all $\beta \in \mathbf{N}_{0}^{n}$ with $|\beta|=s+1$. It follows from (42) that $\Delta^{s+1}(f g)=0$. Hence $d(f g) \leq s$ and the first statement is proved. Clearly this implies also that $d\left(f f^{*}\right) \leq \operatorname{deg} f$. Suppose that $\Delta^{p+1}\left(f f^{*}\right)=0$ for some $p \in \mathbf{N}$. Then $\sum_{i_{1}, \ldots, i_{p+1}=1}^{n}\left|\frac{\partial}{\partial x_{i_{1}}} \cdots \frac{\partial}{\partial x_{i_{p+1}}} f\right|^{2}$ $=0$. It follows that $\frac{\partial^{\beta}}{\partial x^{\beta}} f=0$ for all $\beta \in \mathbf{N}_{0}^{n}$ with $|\beta|=p+1$. Hence $\operatorname{deg} f \leq p$, and we have proved that $\operatorname{deg} f \leq d\left(f f^{*}\right)$.

Now we can prove the following:
Corollary 20. Let $P(x)$ be a polynomial with the Gau β decomposition

$$
\begin{equation*}
P(x)=h_{0}(x)+|x|^{2} h_{1}(x)+\cdots+|x|^{2 N} h_{N}(x) \tag{43}
\end{equation*}
$$

Then for N_{p} defined in (3) the following inequality holds:

$$
\begin{equation*}
N_{P} \leq \max _{r=0, \ldots, N}\left\{r+\operatorname{deg} h_{r}\right\} \leq \operatorname{deg} P(x) \tag{44}
\end{equation*}
$$

Proof. Recall formula (30) for N_{P} and let Y_{k} be a harmonic homogeneous polynomial of degree k. An iteration argument in (41) implies that $d\left(|x|^{2 r} h_{r} Y_{k}\right)=r+d\left(h_{r} Y_{k}\right)$. By Proposition $19 d\left(h_{r} Y_{k}\right) \leq \operatorname{deg} h_{r}$. Hence $d\left(P \cdot Y_{k}\right) \leq \max _{r=0, \ldots, N}\left\{r+\operatorname{deg} h_{r}\right\}$, and this proves the first inequality. Further we know that $\operatorname{deg}\left(|x|^{2 r} h_{r}\right)=2 r+\operatorname{deg} h_{r} \leq \operatorname{deg} P$ for $r=0, \ldots, N$. Hence the second inequality is established.

In the following we want to give an explicit formula for N_{P}. We need the following result which is interesting in its own right:

Theorem 21. Let $Y_{k, m}(x)$ be an orthonormal basis of spherical harmonics with $k \in \mathbf{N}_{0}$ and $m=1, \ldots, a_{k}$. Then $d\left(Y_{k, m}(x) Y_{k, m_{1}}(x)\right)=k$ if and only if $m=m_{1}$.

Proof. We start with a general remark: Let Y_{k} and Y_{l} be harmonic homogeneous polynomials of degree k and l respectively. Clearly $Y_{k}(x) Y_{l}(x)$ is a homogeneous polynomial of degree $k+l$. By Proposition 19 it has polyharmonic degree at most $\min \{k, l\}$. By Gauß decomposition there exist harmonic homogeneous polynomials $h_{k+l-2 u}$, either $h_{k+l-2 u}$ is zero or of exact degree $k+l-2 u$ for $u=0, \ldots, \min \{k, l\}$, such that

$$
\begin{equation*}
Y_{k}(x) Y_{l}(x)=\sum_{u=0}^{\min \{k, l\}}|x|^{2 u} h_{k+l-2 u}(x) . \tag{45}
\end{equation*}
$$

Now assume that $Y_{k}(x)=Y_{k, m}(x)$ and $Y_{l}(x)=Y_{k, m_{1}}(x)$. Let us consider the summand $|x|^{2 k} h_{0}(x)$ for $u=k$. Then h_{0} must have degree 0 , hence it is a constant polynomial. Integrate equation (45) with respect to $d \theta$. Since $h_{2 k-2 u}$ is either 0 or of exact degree $2 k-2 u>0$ for $u=0, \ldots, k-1$ the integral over the sphere of $|x|^{2 u} h_{k+l-2 u}(x)$ will vanish. Then we obtain with the orthogonality relations for spherical harmonics

$$
\delta_{m, m_{1}}=\int_{\mathbf{S}^{n-1}} h_{0} d \theta=h_{0} \omega_{n} .
$$

Hence for $m \neq m_{1}$ we see that the polyharmonic degree is less than k, for $m=m_{1}$ it is exactly k. The proof is finished.

Theorem 22. Let $P(x)$ be a homogeneous polynomial of degree N, say of the form

$$
P(x)=\sum_{t, k \in \mathbf{N}_{0}, 2 t+k=N} \sum_{m=1}^{a_{k}} b_{t, k, m}|x|^{2 t} Y_{k, m}(x) .
$$

Let $k_{0}=k_{0}(P)$ be the largest natural number such that $b_{t_{0}, k_{0}, m_{0}} \neq 0$ for some m_{0} and t_{0} in the above sum. Then

$$
N_{P}=\frac{1}{2}\left(N+k_{0}(P)\right) .
$$

Proof. Let k_{0} be as specified in the theorem. Let $k_{1} \in \mathbf{N}_{0}$ and $m_{1} \in\left\{1, \ldots, a_{k_{1}}\right\}$, then

$$
\begin{equation*}
d\left(P(x) Y_{k_{1}, m_{1}}(x)\right) \leq \max d\left(|x|^{2 t} Y_{k, m} Y_{k_{1}, m_{1}}(x)\right) \tag{46}
\end{equation*}
$$

where the maximum ranges over all indices t, k, m with $b_{t, k, m} \neq 0$. Using (41) and the inequality $d\left(Y_{k, m} Y_{k_{1}, m_{1}}\right) \leq k$ in (46) we arrive at (note that $2 t+k=N$)

$$
d\left(P(x) Y_{k_{1}, m_{1}}(x)\right) \leq \max \{t+k\}=\frac{1}{2} \max \{N+k\} \leq \frac{1}{2}\left(N+k_{0}\right),
$$

where the last inequality follows from the choice of k_{0}. Now (30) yields $N_{P} \leq \frac{1}{2}\left(N+k_{0}\right)$. For the other direction it suffices to show that $P(x) Y_{k_{0}, m_{0}}$ has polyharmonic degree $\geq \frac{1}{2}\left(N+k_{0}\right)$. Clearly it suffices to show that there exists a polynomial $R(x)$ of polyharmonic degree $<\frac{1}{2}\left(N+k_{0}\right)$ such that

$$
\begin{equation*}
P(x) Y_{k_{0}, m_{0}}=b_{t_{0}, k_{0}, m_{0}}|x|^{2 t_{0}} Y_{k_{0}, m_{0}} Y_{k_{0}, m_{0}}+R(x) \tag{47}
\end{equation*}
$$

since (41) and Theorem 21 imply that $b_{t_{0}, k_{0}, m_{0}}|x|^{2 t_{0}} Y_{k_{0}, m_{0}} Y_{k_{0}, m_{0}}$ has polyharmonic degree

$$
t_{0}+d\left(Y_{k_{0}, m_{0}} Y_{k_{0}, m_{0}}\right)=t_{0}+k_{0}=\frac{1}{2}\left(N+k_{0}\right)
$$

using the fact that $2 t_{0}+k_{0}=N$. It remains to prove that $R(x)$ has polyharmonic degree less than $\frac{1}{2}\left(N+k_{0}\right)$. It suffices to show that for each nonzero summand $b_{t, k, m}|x|^{2 t} Y_{k, m} Y_{k_{0}, m_{0}}$ in $R(x)$

$$
\begin{equation*}
d\left(b_{t, k, m}|x|^{2 t} Y_{k, m} Y_{k_{0}, m_{0}}\right)=t+d\left(Y_{k, m} Y_{k_{0}, m_{0}}\right)<\frac{1}{2}\left(N+k_{0}\right) . \tag{48}
\end{equation*}
$$

If $k<k_{0}$ this is clear since $d\left(Y_{k, m} Y_{k_{0}, m_{0}}\right) \leq k$ and $t+k=\frac{1}{2}(N+k)$. If $k=k_{0}$ we know that $m \neq m_{0}$, and by Theorem 21 we have again strict inequality. By choice of k_{0} we always have $k \leq k_{0}$, so the theorem is proved.

In the last theorem it is essential that the polynomial $P(x)$ is homogeneous. If $P(x)$ is arbitrary, we can write $P(x)=\sum_{j=0}^{N} P_{j}(x)$ where $P_{j}(x)$ are homogeneous polynomials. It is not very difficult to see that

$$
d\left(P \cdot Y_{k, m}\right)=\max _{j=0, \ldots, N} d\left(P_{j} \cdot Y_{k, m}\right)
$$

see e.g. the proof of Theorem 1.27 in [4]. Hence N_{P} is the maximum of $N_{P_{j}}$ for $j=0, \ldots, N$.

Acknowledgement

Both authors have been partially sponsored by the Institutes partnership project at the Alexander von Humboldt Foundation (Bonn); the first has been partially sponsored by the Greek-Bulgarian S\&T Cooperation project BGr-17 while the second has been partially sponsored by Grant BFM2003-06335-C0303 of the D.G.I. of Spain.

References

[1] N. I. Akhiezer, The problem of moments and some related questions in analysis, Oliver \& Boyd, Edinburgh, 1965. (Transl. from Russian ed. Moscow 1961).
[2] E. Almansi, Sull'integrazione dell'equazione $\Delta^{2 n} u=0$, Ann. Math. pura appl. 2 (1899), 151.
[3] N. Aronszajn, T. M. Creese, L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford 1983.
[4] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York 1992.
[5] B. Bacchelli, M. Bozzini, C. Rabut, M. Varas, Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets, Appl. Comput. Harmon. Anal. 18 (2005), 282-299.
[6] D. L. Cohn, Measure Theory. Birkhäuser, Boston 1980 (Reprinted 1993).
[7] J. Edenhofer, Integraldarstellung einer m-polyharmonischen Funktion, deren Funktionswerte und erste $m-1$ Normalableitungen auf einer Hypersphäre gegeben sind, Math. Nachr. 68 (1975), 105-113.
[8] T. Futamura, K. Kishi, Y. Mizuta, A generalization of Bôcher's theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 59-70.
[9] T. Futamura, K. Kishi, Y. Mizuta, Removability of sets for sub-polyharmonic functions, Hiroshima Math. J. 33 (2003), 31-42.
[10] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47-65.
[11] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type. (Russian) Mat. Sb. 188 (1997), no. 5, 33-58; translation in Sb. Math. 188 (1997), no. 5, 671-696.
[12] W. K. Hayman, B. Korenblum, Representation and Uniqueness Theorems for polyharmonic functions, Journal D'Analyse Mathématique 60 (1993), 113-133.
[13] L. I. Hedberg, Approximation in the mean by solutions of elliptic equations, Duke Math. J. 40 (1973), 9-16.
[14] L. I. Hedberg, Two approximation problems in function spaces, Ark. Mat. 16 (1978), no. 1, 51-81.
[15] L. K. Hua, Harmonic Analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, Rhode Island, 1963.
[16] O. Kounchev, Extremal problems for the distributed moment problem. In: Potential theory (Prague, 1987), 187-195, Plenum, New York, 1988.
[17] O. Kounchev, Sharp estimate for the Laplacian of a polyharmonic function. Trans. Amer. Math. Soc. 332 (1992), 121-133.
[18] O. Kounchev, Minimizing the Laplacian of a function squared with prescribed values on interior boundaries - theory of polysplines. Trans. Amer. Math. Soc. 350 (1998), 2105-2128.
[19] O. Kounchev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, San Diego, 2001.
[20] O. Kounchev, H. Render, Polyharmonic splines on grids $\mathbf{Z} \times a \mathbf{Z}^{n}$ and their limits, Math. Comp. 74 (2005), 1831-1841.
[21] O. Kounchev, H. Render, Cardinal interpolation with polysplines on annuli, J. Approx. Theory 137 (2005), 89-107.
[22] O. Kounchev, H. Render, Multivariate Orthogonality, Moments and Transforms, Research Monograph, in preparation.
[23] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions. Studia Math. 88 (1988), 139-163.
[24] W. R. Madych, S. A. Nelson, Polyharmonic Cardinal Splines, J. Approx. Theory 60 (1990), 141-156.
[25] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. Ecole Norm. Sup. 52 (1935), 183-220.
[26] E. M. Nikishin, V. N. Sorokin, Rational Approximations and Orthogonality. Transl. of Math. Monogrpahs, Vol. 92, Amer. Math. Soc., 1991.
[27] H. Render, Real Bargmann spaces, Fischer pairs and Sets of Uniqueness for Polyharmonic Functions, Submitted for publication.
[28] S. L. Sobolev, Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publishers, Montreux, 1992; Russian Edition, Nauka, Moscow, 1974.
[29] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York 1992.
[30] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
[31] J. Stochel, F. H. Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Analysis 159 (1998), 432-491.
[32] D. V. Widder, The Laplace transform, Princeton University Press, Princeton 1941.

Ognyan Kounchev
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
8 Acad. G. Bonchev Str.
1113 Sofia, Bulgaria
e-mail: kounchev@math.bas.bg,kounchev@math.uni-duisburg.de

Hermann Render
Departamento de Matemáticas y Computatión
Universidad de la Rioja
Edificio Vives, Luis de Ulloa, s/n.
26004 Logroño, Spain
e-mail: render@gmx.de; hermann.render@unirioja.es

[^0]: 2000 Mathematics Subject Classification. Primary: 44A15, Secondary: 35D55, 42C05.
 Key words and phrases. Markov function, Stieltjes transform, Polynomial of second kind, Polyharmonic function.

[^1]: ${ }^{1}$ In some recent works in Approximation theory, Potential theory, and Probability theory this function is called the Markov function of a measure, see e.g. [29] or [11]. On the other hand apparently Widder [32] was the first who has given the name Stieltjes transform to this function. If μ has infinite support the transform is also called Stieltjes transform. This tradition has been followed by Akhiezer [1] and other Russian mathematicians.

[^2]: ${ }^{2}$ One may restrict the attention to real valued spherical harmonics and this does not change the results essentially.

