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ABSTRACT. In [8], we characterized absolute normalized norms on C" by using a
continuous convex function with some appropriate conditions on a certain convex subset
of R". In this paper, we introduce the notion of generalized /,-spaces, that is, /-
spaces, and study their structures.

1. Introduction and preliminaries

The study of the geometrical structure of Banach spaces is the main line
of the theory of functional analysis. In this paper, we present the systematic
examples of certain Banach spaces and study the geometrical structure.

Let /y denote the set of all infinite sequences of complex numbers with

only finitely many non-zero elements. A norm | -|| on ¢ is called absolute if
bl = {1 3

for all {x,}~, €/, and normalized if |le,| =1 for all n=1,2,..., where

e, =(0,0,...,0,1,0,...). Asin [8], to every absolute normalized norm | - ||

on /, there corresponds a unique continuous convex function i satisfying some
appropriate conditions on the convex subset

Ay =S 5= {8y}, E/o:ZSn:LSnZO (Vn)

e}
n=1
under the equation (s) = ||s||. Using this, we introduce the following spaces.
For a corresponding convex function , we define the space 7, by

ty = {1l € ot Jim (31,0, 0,0,. )], < o0

where /., is the Banach space of all bounded infinite sequences of complex
numbers. Then 7, is a Banach space with the norm
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[{xa} oy, = lim [[(xr, - X0, 0,0,
n—oo

Further, we define ¢y by the closure of 7 in (4, ||,). This is a gener-
alization of the /,-spaces. Also, this space is concerned with the infinite
sequence spaces which are given by symmetric norming functions as in [3] (cf.
[10]). Our norm is not necessarily symmetric. However, we believe that our
theory gives many interesting examples of Banach spaces to study their ge-
ometrical structure.

In this paper, we study the norm structure of ¢;-spaces and characterize
the separability and the geometrical structure using the corresponding convex
function. In section 2, we consider the norm structure of /y-spaces using the
convex functions in 4.,. In section 3, we introduce the notion of the absolute
ideal % of /., and study the separability of % and /,-spaces. Namely, we
show that if % is an absolute ideal of 7/, then ¢, = % if and only if % is
separable. In particular, if ¢, # Zy, then 7, is not separable. In section 4, we
consider the strict convexity and uniform convexity of 7. As in [8], (%, | - [|,)
is strictly convex if and only if  is strictly convex on A4,. However we
present an example of strictly convex functions ¥ such that /, is not strictly
convex. On the other hand, we show that ¢ is uniformly convex if and only
it (%o, - ll,) is uniformly convex. In section 5, we consider the absolute
normalized norms on /4y which are equivalent to /- and /.,,-norms, respectively.

2. /y-spaces

In this section, we introduce the notion of the /,-spaces. Let AN, be the
family of all absolute normalized norms on /. The /,-norm || - |, is a basic
example:

oy O D i1 < p < oo,
||{xn}n:l||p - .
maxj<p<eo|Xy| if p = c0.

We summarize some basic properties about the absolute norms on /4. As in
the proof of [8, Lemmas 2.1 and 2.2], we have

LemMmA 2.1. (i) Let |- || € ANw. If x={xu},21s ¥ ={Vu}, i €0, then
1]l < |||, whenever |x,| < |yn| for all n.
(i) For every | -||€ ANy, we have

Il < 1P <10 M-

As in Saito, Kato and Takahashi [8], we can characterize an absolute
normalized norm on /, by using a continuous convex function on 4, (see also

2])-
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THEOREM 2.2. (i) For every || -|| € AN, we define

Yis) =lisll (s€dw). ()
Then \ is a continuous convex function on A, satisfying the following conditions:
Y(en) =1 (4o)
S1 Sn—1 () Sn+1
> (1- . -
lp(s) = (1 Sn)lp(l—s,,? ;1 —Sn’ ’1 _S”7 > (An)

or all n=1,2,... and every s = {s,}", € A, with s, # 1.
n=1
(i) Let ¥, denote the family of all continuous convex functions ¥ on A,

satisfying (Ay) for all n=0,1,2,.... For any y € ¥y, we define
., O I) I 8 Fp
b2 lly = ‘ DOAETERS DR 1
Oa lf {xn};ozl = 0

Then || -||, € ANy and satisfies (1). Therefore ANy, and ¥, are in a one-to-
one correspondence under the equation (1).

Proor. (i) For every |- || € AN, we define y(s) = ||s|| (s = {sx} € 4x)-
Clearly, iy is a continuous convex function on 4,,. By Lemma 2.1, we have
for every n

W(s) = |I(s1,82, s Sy - )l

(n)
> H(Sl,Sz,...7Sn,1, O;Sn+17~~.)H

51 $2 Spm1 M sy
) A ) ) 0 ) P
1—s,1—3s, 1—s, 1—s,

s1 Sno1 s
= (1 —sn)1/1<1 T O,I_Sn,...)
Thus, we have € ¥..

(i) As in the proof of [8, Theorem 3.4], all properties of an absolute norm
are clear except the triangular inequality. Let x, y € /). Then there exists
some m e N such that x = (x1,...,x,,0,0,...) and y = (y1,..., ¥m,0,0,...).
We can consider that x and y are elements in C™. By [8, Theorem 3.4], we
have |x+ y[l, <|x][, + | ¥ll,- This completes the proof. O

=(1-s,)

Let , be the corresponding convex function in ¥, for || - ||,. Using this
characterization, we introduce the following spaces. Let {x,},~, be an infinite
sequence of complex numbers. By Lemma 2.1, {||(x,...,x,,0,0,.. )||W}ZC:1 is

an increasing sequence. Thus we have
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DEerFINITION 2.3, For y € ¥, we define the space 7, by

ly = {{xn};; &/t lim |(x1,...%,,0,0,..), < oo}.
Further, we define ¢y by the closure of /4 in (4, |- |,)-

ProPOSITION 2.4. ¢y and c; are Banach spaces with the norm
||{X,1};i1 Hl// = nan:}J ||(X] y ey Xy 07 07 < )Hlp

Proor. Since ¢y is closed in 7, we only show that /,, is a Banach space.
Let {yx};-, be any Cauchy sequence of /;,. We put y, = {x¥} 2, for every k.
By Lemma 2.1, {x¥},° is a Cauchy sequence of C for each n. Thus there
exists x, € C such that x*¥ — x, for every n. By Lemma 2.1,

||(x{‘—xl,...,x,lf—xn70707...)\|l/, = lim ||(xF =", xF = x,,0,0,.. )]l

< lim [|ye = ylly-

m—oo

As n— o, we have y = {x,},_, €/ and ||yx — ||, — 0. This completes the
proof. ]

If 1<p<oo, then ¢y =cy, =4, and if p= oo, then 4, =/, and
¢y, = co. Also, this space is concerned with the sequence spaces which are
given by symmetric norming functions in [3] (cf. [10]). We next consider some
norm properties of the /y-spaces.

PROPOSITION 2.5. Let y € V... Then we have for every x = {x,},_, € ¢y,

lim [/(0,0,...,0, Xy Xuy1, - .)[l, = 0.
n—oo

Proor. We put x = {x,},~, €¢,. Fixanye>0. Then there exists some

Y= (ylv"‘aynoflvovov"')

in /p such that [x—y|, <& By Lemma 2.1, we have, for every n with
n = n,

”(07'"aoaxn7xn+17"')H1// = H(Ov'~~707xn07xl’lo+1a"')||l//
S H(xl - yla"'axno—] - yn0—17xn0)xl’lo+la"')||1//
= llx—=ylly <e O

DEerFINITION 2.6, Let W € ¥,,. Then  is called regular if /), = cy.
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Since 7y = ¢y =/, for 1 < p < oo, , is regular. Next, we consider the
dual spaces of ¢, and 7. Let ye ¥, and let ||-||, be the dual norm on
(Z0; 1 - 1l,)- That is, for any y = {y.},_; € /o,

17l = sup{[<{xnb, 2y {om b0l x = {xa}, 2y € s lIxlly, = 1}

©
= sup{ anyn X = {xn}:;l € %, Hx”‘ﬁ - l}'
n=1

Then it is clear that |- ||, € AN, and the corresponding convex function is
given by
; S Suln
Yr(s) = sup ==—
Y A0
for every s = {s,},_; € 4... We note that " € ¥, and || ||, =/ -||,~. Then

we easily have

PropPOSITION 2.7 (Generalized Holder Inequality). Let y € ¥,.. Then we
have

|6 oL < Ayl -
Jor any x ety and any ye/y-.

As in [10], we have

ProprosiTION 2.8. Let € ¥,. Then
(1) (cy)" =4y~ In particular, if \ is regular, then ((y)" =1y~
(ii) ¢y (resp. cy) is reflexive if and only if \y and " are regular.

Proor. For every ye/y:, we define F), on ¢, by

[e¢]
Fy(x) = Z XnVn-
n=1

By Proposition 2.7, F) is a bounded linear functional on ¢ and [|F[| < |||,
For every n, let x = (x1,...,x,,0,0,...) €. Then |>;  xiyi| = |F(x)] <
[ Fyll [|x[l,- Since 7o is dense in ¢, we have

115 ¥, 0,0,

for every n. Thus we have |[y[,- <|[|F|| and so [y|,-=[F|. Thus
we only prove that any Fe(cy)" has the requisite form. For every
neN, we put [(x1,....x)[, = [[(x1,-..,%4,0,0,.. )|, and [[(x1,...,x4),- =
(X1, %,0,0,..)|l,-, respectively. Since (C",|-,)" = (C",|l-[,.) for
every n, we can find a sequence {y,},—, with F(x)=>" x,y, for any
x €ty. For any n, we have

yr <5
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n
(215 0,0, )l :sup{ > Xy ;||x|¢,:1}
k=1

< sup{|F(x)] : [[x]l, = 1} < [|F]].

Since y € £+, we have F = F,. This implies (¢;)" = /,+. This completes the
proof. ]

3. Separability

It is well known that there is a natural correspondence between all
symmetric sequence spaces and all symmetric normed ideals (cf. [3, 10]).
Connecting with this result, we introduce the following.

DEFINITION 3.1. Let % be an ideal of /,, such that % > ¢,. Then % is
said to be absolute if there exists some norm || - || on % such that (%, || - ) is a
Banach space and

leal =1 (vn)  and Jlax|| < lal[, [Ix]| (Vael,,Vxewu).  (2)

PROPOSITION 3.2.  The norm || -|| on U satisfying (2) is an absolute nor-
malized norm on ¢,.

Proor. For any x = (xi,...,%,,0,0,...) € £, we put p, = arg x, € [0,2n)
for each n, where arg 0 =0. Then

(X1, .00 %0,0,0,..)] = [(e?|x1],...,e"|x,],0,0,...)]
<™, .,e0,0,0,. Il (-, 0,0,. )]
= ||(Jx1];---,]xa],0,0,...)]

We similarly have

||(X1,...,X,1,0,0,...)H = ||(|x1|,...,\x,,|7070,.‘.)\|.
Thus || - || is an absolute norm on /. O
THEOREM 3.3. Let % be an absolute ideal with || -|. Then
(i) There exists some € Wy, such that ¢y = U <ty and |- || = -],

(ii) % is separable if and only if U = cy. In particular, £y is separable if and
only if £y = cy.
Proor. (i) By Proposition 3.2, there exists a convex function ¥ € ¥,

such that [|x[| = [|x[[, for any xe€ /. By Definition 3.1(2), we have for any
X= (X1, Xpy...) EU
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H(xl,...,xn,0,0,...)Hw = |(x1,. .., %,,0,0,..)]l
< |I(1,...,1,0,0, . )| (X1, ey Xy o) || = (X))

Thus x e 4y and so % < /. Further, since % is a Banach space and /) = %,
we have ¢y c %.

(i) Assume that # 2 c¢y,. We take an element b= {b,},_, € % with
b¢cy. Then there exists a 6 > 0 such that for every positive integer n,

1(0,0,...,0,b4, byy1, .- )l > 0.
Hence, for each n, there exists an m(n) (>n) such that
100,0,..+,0,bu, bty - ooy by()-1,0,0,.. )|, > 0.

Now we take an integer n; (j =1,2,...) satistying n; = 1 and n; = m(n;_,) for
j=2. Define 4= {{oj}~Z;:=0or 1}. For each o = {0}, € 4, we put

Xy = (0(11717 N ,Oclbnlfl, OCzbn] Sy OCzbnz,l7 N ,Ockbn,H gy “kbnkfh .. )

Since % is an absolute ideal of /,, {x,:a€ A} is an uncountable subset of
. Suppose that o # o, where o = {o;}”) and o' = {0/} ). We take any jy
with o, # o and so o, —of | =1. Then we have

(B _xrx’”l//
= [(o1by, ..., 00bp 1,060, ... 02byy 1, Oy kD1, )
e CAL N0 P 7Y, SN SR TN 74 SN/ SRS T || 1Y
> o, — o) [ 100,50,y ysvvy by -1,0,0,. )],

> o, — a0 = 0.

Therefore % is not separable. O

4. Strict convexity and uniform convexity

A Banach space X or its norm |- || is called strictly convex if, for all
x,y € X such that x # y and [|x|| = ||y = 1, |5%|| < 1. A function y € ¥, is

called strictly convex if for any s,te€ 4, with s # ¢, one has

w(ﬁ r> 940

In [8], we characterized the strict convexity of absolute norms on C". For
(0,1l - 1l,) and £y, we similarly have
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THEOREM 4.1. Let Yy € W,. Then
(i) (%0, -ly) is strictly convex if and only if Y is strictly convex on A,
(i) If £y is strictly convex, then W is strictly convex on A.

However, the converse of the assertion (ii) is not true in general. For

o0

example, let {p,},_, be the sequence defined by

log 2
Pn =
1
log(l + n2+4n+3)

Note that 1 < p, < 4o (Vn) and p, — +o0 as n — +o0. By the induction,
we define Banach spaces X, (n=1,2,...) by

Xi=(Ce0),
and
Xy = X1 ®C), (n>2).
Let |- ||y, be the norm of X,. We define the norm |- || on 4 by
Ix]| = 1| (x1, x2, - - . ,xn)||X”71 (x = (x1,x2,...,%,,0,0,...) € p).
Then || - || € AN, and we define ¢ by the corresponding convex function, that is,

¢(s) = ||s|]| (s€d). Since Xi,X>,... are strictly convex, (4o, || - ||,) is strictly
convex. However /4 is not strictly convex. Indeed, we put

(2234 o1 m
S \3'3'4’577 n n4177

and
B 2234 n—1 n
y_ 3)37475" ) n 7n+17
Note that
”*17’”“1 _nt oy, _nt2 (3)
n+2'n+2 n n+2 n+3
for every positive integer n. Then we show that
223 n n+1 n+2 @)
3’3’4 'n4+1"n+2 Xn_”+3

holds true for any n with n > 2. If n =2, then we have by (3

[ I [{ eI I e

)s
4
5

Xz P2
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Now assume that (4) holds true for n. For n+ 1, we have

223 atlatN| (223 n+l
3’3’47 "'n+2"n+3 X“_ 3’3’47 'n+2
A (n+2 n+2
\n+3'n+3

_n+3
Cn+4

n+2
. n+3

n

Pn+1

DPn+1

Hence (4) holds true for every n with n>3. Letting n — o0, xe/; and
[xll, =1, and hence y €/, and ||y, =1. By the definition of | -[|,, we also
have for every n,

o M(o23 ot o 3 <2 <
n+1 34 n+1'n+2 p 2 p

—_—

So we have [|(x+ »)/2|,=1. Therefore 7, is not strictly convex.
ProBLEM. If ¥ is strictly convex on A, is ¢y strictly convex?

We next consider the uniform convexity of /;,. A Banach space X
or its norm is called wumiformly convex if, for every ¢ >0, there exists
some 0 (0<od<1) such that |[x—y||=¢ |x]| <1 and |y| <1 implies
(e +3)/2l < 1-0.

THEOREM 4.2. Let e ¥,,. Then ¢y is uniformly convex if and only if
(20,11 - |ly) is uniformly convex.

Proor. The sufficiency assertion is clear since (4, || - [|,) is isometrically
imbedded into /. Assume that (4, -[|,) is uniformly convex. Take ar-
bitrary &> 0. Then there exists some ¢ (0 <J < 1) such that x,y e/,
l[xll, <1, [[ll, <1 and

&
_ >
Ix = ¥lly = 5

implies [|(x+ »)/2||, <1 -0. Wetake any x = {x,},Z|, ¥ = {¥u},_ €y such
that x|, <1, [[»[|, <1 and

nh*)nch(xl _y17"'7xl’l_yl’l70707"')H|//: ||x_y||1// > &.

For each n, we put

X(n) = (xlax27"'7x”l70707"')
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and

P = (1,2, 20 0,0,

in /p. Then there exists some positive integer ny such that ||x") — y<”)|\l/, >¢/2
for all n with n > ny. By ||x(”)|\l/, <1 and |\y(”)||l/, < 1, we have for all » with
n = ny,

(n) (n)
L] <1
W
So [[(x+»)/2|, <1—0. Thus 7, is uniformly convex. This completes the
proof. ]

PrOBLEM. What are the equivalent conditions for i that ¢ is uniformly
convex?

5. Equivalent norm

In this section, we consider the norms in AN,, which are equivalent to /-
and /,,-norms, respectively. As in [3], we similarly have

ProposITION 5.1. Let Yy € V.. Then the following are equivalent:
(i) |-, is equivalent to | -||.

n

(i) sup 40, = sup nlﬁ<’11,...,rll,0,0,...> < 0.

ted, l//w(l)

Proor. (i) = (ii) If (i) holds, then there exists some M > 0 such that
[xll, < Mlx|,, for xe#y. Thus we have for all 7€ 4,

v _ Il
b0, =M

Thus we have (i) = (ii).
(i) = (i) Assume that sup,. %
x= (b e o, Ixll, < lxly < Milxl,.. Thus ||- |, is equivalent to |||

We next show that

(= M) < 0. Then we have, for all

Y (1)
by S0

For any t= (t1,6,...,4,,0,0,...) € 4., we have

1 1
= sup mﬂ(—,...,—,0,0,...) (5)
" n n
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v(t 1
J (()l)—W|(tl,tz,...,tn,O,O,..‘)||l/,
n
<[I(1,1,...,1,0,0,.. )|,
—
—_" 1 100 B w@..,moo )
0,0, v 100,
which implies (5). This completes the proof. O

Let y € ¥,.. Then we define 4, as the norm closure of 4., in (Zy, | - [[,)-

ProposiTioN 5.2. Let Yy € ¥y,. Then

(1) 4y, =il el 3,0 =15 =0}
(ii) For all Y e ¥, we have Ay < Ay.

Proor. (i) We put 4= {{s,},2 €00 :> ,— s =1,5,>0}. Take any
t={sp},— €A and put t, € 4., as

I = (shSZa"'aSnaOaOa"')'

Zk 15k
Then |7, —t||, — 0 and so 1€ 4;,. Conversely, we take any ¢ = {s,},~, € 4y,.
Then there exists some sequence {#},—, in 4., such that ||z — ¢||, — 0, where
= {sk.n},—. For each n, we have [si, — s, < |t&x — 7], = 0. So s, >0 for
all n.  Since ||#]|; — ||7ll; as k — oo, we have ||7[|, =1 or Y.~ s, = 1. Hence
we have € 4.
(i) Take any redy,. Then there exists {#};, in A, such that
It —¢||;, — 0. By Lemma 2.1,

e — 2l < lltx = 2lly — 0.
Hence we have te 4. This completes the proof. O

ProposITION 5.3. Let y € W,,. Then the following assertions are equiv-
alent:

(1) -y is equivalent to |-
(i) inf w(0) >
(iif) 0 ¢ Aw

PrOOF. As in the proof of Proposition 5.1, we similarly have (i) < (ii).
It is easy to see that 0 € 4y if and only if there exists a sequence {si};—, in
4. such that y(si) — 0. Therefore we have (ii) < (iii). This completes the
proof. ]
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