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ABSTRACT. Let m (#1) be a square-free positive integer. We say that a positive
integer n is a congruent number over Q(y/m) if it is the area of a right triangle with
three sides in Q(y/m). We put K = Q(y/m). We prove that if m % 2, then n is a
congruent number over K if and only if E,(K) has a positive rank, where E,(K) denotes
the group of K-rational points on the elliptic curve E, defined by y?> = x> —n’x.
Moreover, we classify right triangles with area n and three sides in K.

1. Introduction

A positive integer n is called a congruent number if it is the area of a right
triangle whose three sides have rational lengths. For each positive integer n,
let E, be the elliptic curve over Q defined by y? = x* —n’x, and E,(k) the
group of k-rational points on E, for a number field k. By the following well-
known theorem, we have a condition such that n is a congruent number in terms

of E,(Q).

THEOREM A (cf. [4, p. 46]). A positive integer n is a congruent number if
and only if E,(Q) has a point of infinite order.

Let oo be the point at infinity of E,(Q) which is regarded as the identity
for the group structure on E,. We note that, in the proof of Theorem A, we
use that the torsion subgroup of E,(Q) consists of four elements oo, (0,0), and
(+n,0) of order 1 or 2.

For any positive integer 7, determining whether it is a congruent number
or not is a classical problem. In relation to Theorem A, some important results
are known. By the result of J. Coates and A. Wiles [2] for elliptic curves
E over Q with complex multiplication, if the rank of E,(Q) is positive, then
L(E,, 1) =0, where L(E,,s) is the Hasse-Weil L-function of E,/Q. Assuming
the weak Birch and Swinnerton-Dyer conjecture [1], it is known that if L(E,, 1)
= 0, then the rank of E,(Q) is positive. F. R. Nemenzo [7] showed that for
n < 42553, the weak Birch and Swinnerton-Dyer conjecture holds for E,, i.e.,
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the rank of E,(Q) is positive if and only if L(E,,1) = 0. Moreover, J. B. Tunnell
[9] gave a necessary and sufficient condition for n such that L(E,,1) =0. And
hence, assuming the weak Birch and Swinnerton-Dyer conjecture, it gives a
simple criterion to determine whether or not n is a congruent number.

When # is a non-congruent number, one can ask if » is the area of a right
triangle with three sides in a real quadratic field. The first aim of this paper
is to study an analogy to Theorem A in the case of real quadratic fields, so we
will consider congruent numbers over real quadratic fields. Let m (#1) be a
square-free positive integer, and put K = Q(y/m). We say that n is a congruent
number over K if it is the area of a right triangle with three sides consisting of
elements in K. For the sake of avoiding confusion, when 7 is the area of a
right triangle whose three sides have rational lengths, in this paper, we say that
n is a congruent number over Q.

Using the result of Kwon [6, Theorem 1 and Proposition 1] which classify
the torsion subgroup of E: y*=x(x+ M)(x+ N), with M,N € Z, one can
determine the torsion subgroup of E,(K) and prove the following theorem.

THEOREM 1. Let n be a positive integer. Assume that m # 2. Then nis a
congruent number over K = Q(y/m) if and only if E,(K) has a point of infinite
order.

When m = 2, Theorem 1 does not hold. For example, when m = 2 and
n =1, there is the right triangle with three sides (\/E, V2, 2) and area 1.
However, by using Theorem B which will be reviewed in §2, one can see that
the rank of Ej(Q(v/2)) is 0.

Combining Theorem 1 with Theorem B, we have the following corollary.

COROLLARY 1. Let n be a positive integer. Assume that m # 2. Then n is
a congruent number over K = Q(y/m) if and only if either n or nm is a congruent
number over Q.

We assume that » is a non-congruent number over Q. The second aim of
this paper is to classify right triangles with three sides in K and area n. By
using a correspondence between the set of points 2P € 2E,(K)\{oo} and the
set of three sides (X, Y,Z) € K* of right triangles with area n, and by studying
P+ 0(P), where o is the generator of Gal(K/Q), we can classify the right
triangles with area n and three sides in K as follows.

THEOREM 2. We assume that n is a non-congruent number over Q. Then
we have;
(1) Any right triangles with area n and three sides X,Y,Z € K = Q(y/m)
(X <Y < Z) is necessarily one of the following types:

Type 1. X\/m,Y+/m,Z\/meQ,
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Type 2. X,Y,Z\/meQ,
Type 3. X,Y e K\Q such that (X)) =Y, Z€Q,
Type 4. X,Y € K\Q such that o(X)=-Y, Z€Q,
where o is the generator of Gal(K/Q).

(2) If m=3,6,7 (mod 8) or m has a prime factor ¢ =3 (mod 4), then there is
no right triangle of Type 2. Moreover, there is no right triangle of Type 3
or no right triangle of Type 4.

(3) Ifm=3,56,10,11,13 (mod 16) or m has a prime factor ¢ = 3,5 (mod 8),
then there is no right triangle of Type 3 nor that of Type 4.

REMARK. Suppose that m =2. If n=c¢? for some c e N, then there is
a right triangle with X = Y = ¢v/2 and area n, which is of Type 4. And if
n=2¢'"? for some ¢’ €N, then there is a right triangle with X = ¥ = 2¢’ and
area n, which is of Type 2.

The third aim of this paper is to give a condition on types of right
triangles with area n and three sides in Q(/m) which is equivalent that n
and nm are congruent numbers over Q as follows.

THEOREM 3. A positive integer n is the area of a right triangle with three
sides X, Y,Z € Q(v/m) such that X <Y < Z, Z¢Q and Z\/m ¢ Q if and only
if n and nm are congruent numbers over Q.

2. Known results

For any real quadratic field K, we need to know the rank of E,(K) to
prove Theorems 1, 2 and Corollary 1. And hence, we recall the following
result.

THEOREM B (cf. [8, p. 63]). Let E be an elliptic curve over a number field k
which is given by

E:y?=x*+ax® +bx +c, a,b,cek.
And let D be an element of k\{o*|aek}. Then
rank(E(k(vV/D))) = rank(E(k)) + rank(EP (k)),
where EP is the twist of E over k(/D) which is defined by
EP: y* = x* 4 aDx> + bD?’x + ¢D>.

The following theorem allows us to recognize elements of 2E,(K).
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THEOREM C (cf. [3, p. 85]). Let k be a field of characteristic not equal to 2
nor 3, and E an elliptic curve over k. Suppose E is given by

E:y’=(x—a)(x—f)(x—7)
with o,f,y in k. Let (xo,yy) be a k-rational point of E\{oc}. Then there
exists a k-rational point (x1,y,) of E with 2(x1,y,) = (x0,y) if and only if
xXo— o, xXo — f8, and xo —y are squares in k.

3. Proof of Theorem 1

We first describe the torsion subgroup of E,(Q(y/m)) in Proposition 1.
In the proof of Proposition 1, we use a result of Kwon [6, Theorem 1 and
Proposition 1].

PROPOSITION 1. Let n be either 1 or a square-free positive integer. Let
T(Ey, k) be the torsion subgroup of E,(k) over a number field k, and E,[2] the
2-torsion subgroup of E,. If n=1, m=2, then

T(Ei,Q(v2))

={0,(0,0), (£1,0), (1 + V2, +(2 + v2)), (1 — V2, +(2 — V2))}.
If n=2, m=2, then
T(E,Q(V2))
= {00, (0,0), (+2,0), (2 +2v2, +4(1 + v2)), (2 — 22, +4(1 — V2))}.
Otherwise, T(E,,Q(y/m)) = E,[2] = {00, (0,0), (+n,0)}.
Proor. First, note that the 2-torsion subgroup FE,[2] consists of four
elements (0,0), (+#,0), the point at infinity oo, i.e.,
T(E,,Q(vm)) o E,2] @ Z/2Z.® Z/2Z.

Here, E” is the twist of E, over Q(y/m) and defined by y* = x3 — (nm)’x,
hence E)" is E,,. Therefore, T(E)", Q) = T(Ey,, Q) = Z/2Z® Z/2Z. And
because T(E,, Q) =~ Z/2Z ® Z/2Z, by using the result of Kwon [6, Theorem 1
and Proposition 1], we have

T(E,,Q(vm)) = Z2ZDZ/2Z  or Z/2Z® Z/AZ.

Suppose that T(E,,Q(v/m)) = Z/2Z ® Z./4Z. Then there exists a point
P of order 4 in T(E,,Q(y/m)). Therefore, 2P must be (0,0) or (+n,0). By
Theorem C, if 2P = (0,0) or (—n,0), then —n must be a square in Q(y/m)
which is a contradiction. If 2P = (n,0), by Theorem C, then n and 2n must
be squares in Q(y/m). Since n is a square-free integer, one can see that n = 1,
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m=2 or n=m=2. By solving equations obtained by the duplication for-
mula on elliptic curves, we can describe T(E,, Q(y/m)) concretely. Otherwise,
T(E,,Q(yv/m)) =Z/22Z®Z/2Z. We have completed the proof of Proposi-
tion 1. [

Proor oF THEOREM 1. Let k be a subfield of R. For a positive integer n,
let S be the set which consists of (X, Y, Z) e k* satisfying that 0 < X < Y < Z,
X2+ Y?>=2% and XY =2n, and put

T = {(u,v) € 2E,(k)\{o0} |v = 0}.
Then the map ¢ :S — T is defined by

2 2 y2
o(X.7.2)) = (@ Ao

By Theorem C, one can define a map : T'— S by
W((,v) = (Vi n—Va—nJuFn+vi—n2va) () eT).

Then it is easy to see that y gives the inverse map ¢! of ¢.

We shall prove that S # ¢ if and only if E,(k)\E,[2] # &. First,
We assume that S# 5. For (X,Y,Z)eS, we put Q=¢((X,Y,2Z)).
Because Q is the point on 7, there is a point P e E,(k)\E,[2] such that
Q =2P. Therefore, we see that E,(k)\E,[2] # &J. Conversely, we assume
that E,(k)\E,[2] # . We take P e E,(k)\E,[2], and put 2P = (x¢, yy)- By
Theorem C, xg,x¢ + n are squares in k. Therefore, by the map , we obtain a
right triangle with three sides in k.

Here we take a quadratic field K = Q(y/m) as k. Assume that m # 2.
Then we have T(E,,K) = E,[2] by Proposition 1. Therefore, E,(K) has a
positive rank if and only if E,(K)\E,[2] # &. We have completed the proof
of Theorem 1. O

) (X,Y,Z)€S).

PrOOF OF COROLLARY 1. By Theorem B, rank(E,(K)) >0 if and only
if rank(E,(Q)) > 0 or rank(E)*(Q)) > 0. Here, E)" is the twist of E, over K
and defined by y? = x3 — (nm)*x. Hence E™ is E,,, which implies that
rank(E)"(Q)) > 0 if and only if nm is a congruent number. This completes
the proof of Corollary 1. O

4. Proof of Theorem 2

First, we describe a formula for the additive law on E,. For two points
Py, P, € E,(R) such that P} + P, # o0, we put Py = (x1, ), P» = (x2, y,) and
Py + Py = (x3,);), where x1,x2,X3, )1, )2, y3 € R. If Py # P, then

X3 = A% — X1 — X2, vz =A(x1 — x3) — yy,
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where 1 = u. If P, = P,, then we have

X2 — X1
- x7 + n? :
3= 2y1 )

which is called the duplication formula.

Now we prove (1) in Theorem 2. Assume that n is a congruent number
over K=Q(y/m), and let X,Y,Z (0 < X <Y < Z) be the three sides of a
right triangle with area n and three sides in K. Then, as is seen in the proof
of Theorem 1, there is a point P € E,(K)\E,[2] such that y(2P) = (X, Y, Z).
Further, by the geometric interpretation of the group law on E,(R), we may
assume that P = (x, y) satisfies that x > (1++/2)n by replacing P with P+ (0,0),
P+ (n,0) or P+ (—n,0) if necessary. We put 2P = (u,v), and let |-| be the
usual absolute value which is induced from the embedding  : K — R such that
1(y/m) is positive. Then, by the duplication formula on elliptic curves, we have

X2+ n?\
u:< 2y )
2

e

and hence,

2|yl
,__ﬁu_n:xz—an—na
2|y|
2,2
X" +n
\/a =
2|y|
Therefore, using the map  in Section 3, we have
 2nx _x?—n? _xt4n?
I’ I By

Let o be the generator of Gal(K/Q), and put ¢(P) = (o(x),a(y)). Because
P+ o(P) is an element in E,(Q) and » is a non-congruent number over Q, we
have

P+0o(P)eT(E,,Q)={00,(0,0),(+n,0)}.

Therefore, one of the following cases necessarily happens:
Case 1. P+ o(P)=oo. In this case, by the geometric interpretation
of the group law on E,(R), o(x) =x and o(y)=—y. So, x
and yy/m are rational. Therefore, X\/m, Y+/m and Z\/m are
rational, and so we obtain a right triangle of Type 1.
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Case 3.

Case 4.
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P+ o(P)=(0,0). In this case, by the geometric interpretation
of the group law on E,(R), we have o(x)/x = a(y)/y, which we
denote by a. Then we have

o(y)? = o?y? = o®x® — o?n’x.

And since o(P) is a point on E,, we have

2 3 2 3.3

a(y)” = a(x)’ —n’o(x) = &*x> — n’ox.

Because we easily see that o # 0,1 and x # 0, by these equations,
we have

Substituting this for Y and Z, we have Y = x(x+ a(x))/|y|
and Zv/m = x(x — a(x))y/m/|y|. Since x/y =a(x/y) and x >
(1 ++2)n >0, x/|y| is rational. Therefore, X = 2nx/|y|, Y and
Z\/m are rational, and so we obtain a right triangle with two
rational sides including a right angle, which is of Type 2.

P+ o(P)= (n,0). In this case, by the geometric interpretation
of the group law on E,(R), we have o(x —n)/(x —n) = a(»)/y,
which we denote by . And we put z=x—n. Then we have

o(y)? = B223 4+ 3p%2%n + 2% zn>.
And since ¢(P) is a point on E,, we have
o(y)? = B33 4+ 3p%2%n + 2pzn”.

Because we easily see that f # 0,1 and z # 0, by these equations,
we have

pz* =2n?.

Substituting this equation and x =z +n for three sides X, Y
and Z, we have X =z(o(z)+2n)/|y|, Y =z(z+2n)/|y| and
Z =z(z+2n+0(z))/|y|. Since z/y =a(z/y) and z > 0, z/|y| is
rational. Therefore, Z is rational and ¢(X) =Y, and so we
obtain a right triangle with one rational side and two conjugate
sides, which is of Type 3.

P+0(P)=(—n,0). Inthiscase, we put w=x+n. Then onecan
show, as in the case of Type 3, that w/|y| and Z are rational and
that X = w(—a(w) +2n)/|y|, Y = w(w —2n)/|y|, which implies
that o(X) = —Y. Hence, we obtain a right triangle with one
rational side Z and two sides X, Y such that g(X) = —Y, which
is of Type 4.
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Second, we prove (3) in Theorem 2. Suppose that there is a right triangle
of Type 3 (resp. Type 4), and let a — b\/m (resp. —a + b\/m), a + by/m be two
sides including a right angle and ¢ the hypotenuse, where a,b,c are positive
rational numbers. Then (x, y,z) = (a,b,c¢) is a non-zero solution of the fol-
lowing equation

2x% 4+ 2my? = 22

By the Hasse principle, the above equation has a solution in Q if and only if it
has a solution in Q,, for every prime p, where Q, is the field of p-adic numbers.
Using Hilbert symbols, one can see that it has a solution in Q, if and only if
m=1,2,7,9,14,15 (mod 16), and that, when p = ¢ for prime factor ¢ # 2 of
m, the above equation has a solution in Q, if and only if 2 is a quadratic
residue mod ¢, ie., ¢ =1,7 (mod 8).

Third, we prove (2) in Theorem 2. Using Hilbert symbols as in the case
of (3), one can prove that if m = 3,6,7 (mod 8) or m has a prime factor ¢ = 3
(mod 4), then there is no right triangle of Type 2. And since a set {P + o(P)}
becomes a subgroup of E,[2], the number of different types of right triangles
with area n must not be 3. Therefore, one can see that if there is no right
triangle of Type 2, then there is not the right triangle of Type 3 or not the right
triangle of Type 4. This completes the proof of Theorem 2. ]

5. Proof of Theorem 3

First, suppose that n and nm are congruent numbers over Q. By defi-
nition, there are rational numbers a,b, ¢ such that a® + b = ¢2, ab = 2n, and
a < b < c. Similarly, there are rational numbers d, e, f such that d> + e*> = f 2,
de =2nm and d < e < f. Hence, n is also the area of a right triangle

< d e f
We recall the maps ¢:S— T and ¥ : 7 — S in §3, and put P= (u,v) =
9((a,b,c)) + o((d/v/m,e//m, [/\/m)). Then
[2@ &)+ mB? —a?)’ — (/7 +m) (7 —me)’
4m(f? — me2)?

_cf(b* = d¥)(e? — d*)ym
2/ =mer)?

u=

We may assume that P = (u,v) satisfies that v > 0 by replacing P with —P if
necessary. Because (u,v) € T, we have ¥((u,v)) € S, which denotes a system of
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three sides of a right triangle with area n. Let (X, Y, Z) be the system of three
sides of the right triangle with area n obtained above. By Theorem C and the
additive law to the points on the elliptic curve, one can see that X,Y ,Z e
Q(vm), Z¢Q and Zym ¢ Q.

Conversely, suppose to the contrary that either n or nm is non-congruent
number over Q. Assuming that n is a non-congruent number over Q and nm
is a congruent number over Q, by Theorem 2 (1), n is not the area of a right
triangle with three sides X, Y,Z e Q(y/m) such that X <Y < Z, Z¢Q and
Z\/m ¢ Q. Second, we assume that nm is a non-congruent number over Q and
n is a congruent number over K = Q(y/m), and let (a,b,c) € K> be a system of
three sides of right triangles with area n. By multiplying the three sides by /m,
we have a right triangle with area nm and three sides (av/m,b/m,c\/m) € K>.
For a positive integer nm, we define the map ¢’ in the same way as for ¢.
Then one can put 2P’ = ¢'((a\/m, b\/m,cy/m)) for a point P’ € E,,,(K). For
the generator o of Gal(K/Q), because P’ 4+ ¢(P’) is an element in E,,,(Q) and
nm is a non-congruent number over Q, we have

P'+a(P")e T(Eum, Q) = {0, (0,0),(+nm,0)}.

Therefore, by the same way as in the proof of Theorem 2 (1), one can see that
one of the following cases necessarily happens:

Case 1. a,b,ceQ.

Case 2. a\/m,b\/m,ce Q.

Case 3. a,be K\Q such that g(a) = —b, cy/me Q.

Case 4. a,be K\Q such that g(a) =b, cy/me Q.
Hence, n is not the area of a right triangle with hypotenuse Z = ¢ such that
Z¢Q and Z/m ¢ Q. Third, we assume that n and nm are non-congruent
numbers over Q. When m # 2, by Corollary 1, n is not a congruent number
over K. When m =2 and n is a congruent number over K, the right triangle
with area n has three sides such that X = Y. Hence, one can see that n is not
the area of a right triangle with hypotenuse Z such that Z ¢ Q and Z/m ¢ Q.
We have completed the proof of Theorem 3. O

6. Examples

In this section, we give some examples of right triangles. For a positive
integer n and a square-free positive integer m, let X,Y,Ze K = Q(y/m)
(X <Y < Z) be three sides of right triangles with area n, and, using the map ¢
in §3, put Q=9¢((X,Y,Z)) €2E,(K)\{0}.

ExampLE 1. n =2, m =17, We have the following right triangle of Type
1, that of Type 2, that of Type 3 and that of Type 4 in Theorem 2 (1) and the
corresponding points of 2E,(K)\{c0}.
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34 (=2 x17) is a congruent number over Q, and there is a right
triangle with three rational sides (15/2, 136/15, 353/30) and area 34.
By dividing the three sides by v/17, we obtain the following right
triangle;

15V17 8V17 35317
(X’Y’Z)_< 34 15 7 510 )

and we have the corresponding point

(2118353 824572717
~ | 1040400° 62424000

) € 2E(Q(V1T)\{e0}.

We have the following right triangle such that two sides including a
right angle are rational;
(X, Y,Z) = (1,4,V17),

and the corresponding point

0- (17 +15\/ﬁ

o ) € 2B:(Q(VIN)\ {0},

First, we put X = x — yv/17, Y = x + V17, and Z = z, where x, y,z
e Q\{0}. Then (x,y) satisfies that x> —17y> =4. For example,
(13/2,3/2) is a solution of this equation. Representing x and y in
terms of r € Q by using the above solution, we obtain

13 —1027 + 22172 _ =34260— 517
IS W 172 N S Y G B 1 72) B

Substituting them for 2x2+34y2, by using MATHEMATICA, we find
out that if r = 1, then 2x? + 34y? is a square in Q. Hence, we obtain
the following right triangle;

NG 17 31
(X’Y72)2<33 2%7\/_7’33+557\/_7’3Z>’

and we have the corresponding point

0 (961 716117

e 512) € 2E;(Q(V17))\{e0}.



Congruent numbers over real quadratic fields 341

Type 4. The following example is obtained as in the case of Type 3. We have
the following right triangle;

X.7.2) = <1+2\/ﬁ’1+2\/ﬁ73),

and we have the corresponding point

0= (i iwgﬁ> € 2E:(QVTT))\ o0},

We put K = Q(v/17). In the same way as in K. Kume’s paper [5, 4-3],
using the above examples, one can see that the rank of E34(Q) is not less than 2
as follows. We define a homomorphism ¢ : E>(K) — E>(Q) by ¢(P) = P+0o(P),
P e E;(K) and o is the generator of Gal(K/Q). Because 2 is a non-congruent
number over Q, we have E»(Q) = E»[2]. By the existence of four types of right
triangles with area 2, ¢ is surjective, i.e.,

E>(K)/Ker(p) ~ Z/2Z @ Z/2Z.

Here note that Ker(p) > 2E»(K). Let P, P, € E»(K) be a point such that
2P, = (17/4,15\/17/8), 2P, = (961/64,71611/17/512). Then, by the proof of
Theorem 2 (1), p(P1) = (0,0), p(P>) = (2,0). Hence, we have Py, P, ¢ 2E>(K)
and P, + P, ¢ 2E>(K). If we assume that the rank of E>(K) is 1, then Py + P,
€ 2E>(K), which is a contradiction. Hence, by Theorem B, the rank of E34(Q)
is greater than 1.

It is known that the rank of E34(Q) is 2 (for example, see [10]).

ExampLE 2. n =3, m="7; We have the following right triangle of Type
1 and that of Type 4 in Theorem 2 (1), and the corresponding points of
2E,(K)\{o0}. By Theorem 2 (2), there is no right triangle of Type 2 nor that
of Type 3.

Type 1. 21 (=3 x7) is a congruent number over Q, and there is a right
triangle with area 21 and three rational sides (7/2, 12, 25/2). By
dividing the three sides by v/7, we obtain the following right triangle;

and we have the corresponding point

4375  13175V7
Q0= <784 73136

) e 2E;(Q(VT)\ {0}
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Type 4. The following example is obtained as in the case of Type 3 in
Example 1;

(X,Y,Z) = (-1+V71,1+7,4),

and we have the corresponding point

0 = (4, £2v7) € 2E3(Q(V)\ {0}

ExampLE 3. n =2, m = 3; We have the following right triangle of Type
l in Theorem 2 (1) and the corresponding point of 2E,(K)\{co}. By
Theorem 2 (2) and (3), there is no right triangle of Type 2, that of Type 3 and
that of Type 4.

Type 1. 6 (=2x3) is a congruent number over Q, and there is a right
triangle with area 6 and three rational sides (3,4,5). By dividing
the three sides by v/3, we obtain the following three sides of a right
triangle;

4+/3 5v/3
(x.7.2) = (ﬁTfo>

and we have the corresponding point

25 35V3

) € 2E:(Q(V3))\{e0}.

ExaMpLE 4. n =6, m =5; 6 is a congruent number over Q, and there is
a right triangle with area 6 and three rational sides (3,4,5). Further,
30 (=6 x 5) is a congruent number over Q, and there is a right triangle with
area 30 and three rational sides (5,12,13). By dividing the three sides by v/5,
we obtain the right triangle;

12v/5 133
<ﬁTT>

By the calculation in the proof of Theorem 3, we obtain the right triangle with
area 6;

~(33(13 - 5V/5) 4(13+5V/5) 7(85 — 13V/5)
(X’Y’Z)_< 44 ’ 11 ’ 44 >
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