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Cobordism group of Morse functions on manifolds
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ABSTRACT. The n-dimensional cobordism group of Morse functions on manifolds is
defined by using maps into R x [0,1] with only fold singularities. In this paper, we
show that in the un-oriented case it is a direct sum of the n-dimensional cobordism
group and a certain number of infinite cyclic groups. In the oriented case a finite cyclic
group Z, is further added when n =4k + 1.

1. Introduction

The n-dimensional oriented cobordism group .#, of Morse functions was
introduced in Ikegami—Saeki [2], where we used a different notation. The pur-
pose of this paper is to determine the structures of .#, and the n-dimensional
un-oriented cobordism group .4, of Morse functions. We use “‘elimination of
cusps” [4] and “semi-characteristics” [5]. Note that we showed in [2] that ./,
is an infinite cyclic group, by a different method.

For the cobordism theory of smooth maps, Thom [8] showed that the
cobordism group of embeddings is isomorphic to a homotopy group of a
certain Thom complex by using the Pontrjagin-Thom construction. Wells [10]
studied the cobordism group of immersions in a similar way. Rimanyi and
Szilics [6] extended these results to the cobordism group of maps with singu-
larities by using the notion of a z-map.

Usually a cobordism group is computed by using the method of algebraic
topology as a certain homotopy group of a Thom complex. However, in this
paper the cobordism group of Morse functions is completely determined in a
geometric way.

Recently Saeki [7] considered another kind of n-dimensional cobordism
groups of special Morse functions and got a relation with the /A-cobordism
group of homotopy n-spheres for n > 6.

The paper is organized as follows. In §2 we recall the precise definition of
the n-dimensional cobordism group of Morse functions and state our main
theorem. In §3 defining fold and cusp points of a smooth map into R? to-
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gether with their absolute indices, we review Levine’s method for the elimi-
nation of cusps. In §4 we define cobordism invariants of Morse functions and
prove our main theorem for the un-oriented case by using the elimination of
cusps. In §5 we complete the proof of our main theorem in the oriented case
by using a method similar to the un-oriented case and especially the semi-
characteristics for n =4k + 1.

Throughout the paper, all manifolds and maps are of class C*. The
symbol “=” denotes an appropriate isomorphism between algebraic objects.

The author would like to express his thanks to Professor Takao Matumoto
and Professor Osamu Saeki for their precious suggestions. He would also like
to thank Professor Isao Takata for kindly indicating the Dold manifolds, and
Shun-ichiro Okuda for patiently teaching him how to use Latex.

2. Statement of the main theorems

A smooth real-valued function on a smooth manifold is called a Morse
function if its critical points are all non-degenerate. For a positive integer n,
we denote by M (n) and N(n) the sets of all Morse functions on closed, possibly
disconnected, oriented and un-oriented r-dimensional manifolds respectively.
We adopt the convention that the function on the empty set ¢ is an element of
both M(n) and N(n) for all n.

DeriniTION 2.1. Two Morse functions f: My — R and f;: M; — R in
M(n) are said to be oriented cobordant (or more precisely oriented fold
cobordant) if there exist a compact oriented (n+ 1)-dimensional manifold X
and a smooth map F : X — R x [0, 1] which has only fold points as its singu-
larities (for the definition of a fold point, see Definition 3.1) such that

(1) the boundary 0X of X is the disjoint union M, II (—M;), where —M;

denotes the manifold M; with the orientation reversed, and

(2) we have

F|M0><[O,r,):f0><id[07£) 2M()>< [0,8)—>RX [0,8), and

F‘Mlx(l—&l] :fl X id(lfe,l] : My x (1 —8,1] — R x (1 — &, 1]

for some sufficiently small ¢ > 0, where we identify the collar neigh-
borhoods of M, and M; in X with M, x [0,¢) and M| x (1 —¢,1]
respectively.
In this case, we call F an oriented cobordism between fy and fi.
If a Morse function in M (n) is oriented cobordant to the function on the
empty set, then we say that it is oriented null-cobordant.
It is easy to show that the above relation defines an equivalence relation



Cobordism group of Morse functions on manifolds 213

on the set M(n) for each n. Furthermore, it is easy to see that the set of all
equivalence classes forms an additive group under the disjoint union: the neu-
tral element is the class corresponding to oriented null-cobordant Morse func-
tions, and the inverse of a class represented by a Morse function f: M — R is
given by the class of —f : —M — R, where (—f)(x) = —f(x) for all xe M.
We denote by .#, the additive group of all oriented cobordism classes of
elements of M (n) and call it the cobordism group of Morse functions on oriented
manifolds of dimension n, or the n-dimensional oriented cobordism group of
Morse functions.

For the set N(n) of Morse functions on closed un-oriented manifolds, we
can define the relation of un-oriented cobordism by ignoring the orientations of
the manifolds in the above definition. We denote by ./}, the additive group of
all un-oriented cobordism classes of elements of N(n) and call it the cobordism
group of Morse functions on un-oriented manifolds of dimension n, or the n-
dimensional un-oriented cobordism group of Morse functions.

For a Morse function f : M — R on an n-dimensional closed manifold M,
we denote by C;(f) the number of its critical points of index 4 (0 < 4 < n).

DerFINTION 2.2, For 0 <A <n, we define the maps ¢;: .4, — Z and
¢, My — L by

0,([f]) = Ci(f) = Coi(f) e Z

and ¢, = ¢, o (natural map : M, — N,). Here, [f] denotes the cobordism
class of f e N(n).

Note that ¢, and ¢, are well-defined by Lemma 4.1 which will be proved
in §4, and that ¢, and ¢, are homomorphisms, since we define the sum
[f]+ 9] as [fIg], where f1lg: MIIN — R is defined by

J(x) (xeM)

e ={5 Gew,
for f: M —R and g: N — R in N(n) (resp. in M(n)).

DEFINITION 2.3.  We define the maps @ : A4, — Z"/? and & : .4, — 2"/
by
o([f]) = (§0L(n+3)/2j([f])v(ﬂun+3)/2j+1([f})’ o eu([f]) € z!"?

and

B(1f1) = @320 D) Pnsnyyair (D 2a([]) € 2

respectively, where |x| means the greatest integer less than or equal to x for a
real number x, and [f] is the cobordism class of f.
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DEerFINITION 2.4, Let 9, and Q, be the usual n-dimensional un-oriented
and oriented cobordism groups of manifolds respectively (see [8] and [9]). We
define ¥ : N, = N, and ¥ : .4, — 2, by

Y([f: M —R]) =[M],eN,
and
(f: M—R])=[M]eg,

respectively, where [M], or [M] is the un-oriented (resp. oriented) cobordism
class of M. Here, [f: M — R] is the cobordism class of f.

It is clear that ¥ and ¥ are well-defined homomorphisms. Moreover,
they are surjective, since there exist at least one Morse function on any
manifold.

We prepare some definitions which will be used in Theorem 2.9.

DErFINITION 2.5. Let M be a closed oriented (4k + 1)-dimensional mani-
fold, and K a coefficient field (for example, Z, or Q). The semi-characteristic
o(M;K)eZ, of M with respect to the coefficient field K is defined as
follows:

2%k
o(M;K) = _dim H;(M;K) (mod2)eZ,.
i=0
DErINITION 2.6. Let f: M — R be a Morse function on a closed ori-
ented (4k + 1)-dimensional manifold. Then we define o(f) € Z, as follows:

2k

a(f)=>_ Ci(f) (mod2)eZ,.

7=0
Furthermore, we define the map A : .#4.1 — Z, by
A([f: M — R]) =0o(f) —o(M;Q) € Z>.

Note that the map A is a well-defined homomorphism by Lemma 5.3
which will be proved in §5. See also Remark 5.4.

Main results of this paper are the following three theorems.

THEOREM 2.7 (The wun-oriented case). The n-dimensional un-oriented
cobordism group N, of Morse functions is isomorphic to the direct sum of the
n-dimensional un-oriented cobordism group W, and |n/2] copies of the infinite
cyclic group.  More precisely, the map
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YOD: N, — N, DL
defined by

(P@D)([f: M — R]) = ([M]y, 04132 ([F]): 010432041 (] - - 0, ([S]))

is an isomorphism. Here | x| means the gratest integer less than or equal to x
for a real number Xx.

The oriented case is divided into the following two cases.

THEOREM 2.8 (The oriented case with n # 4k +1). For n # 1 (mod 4) the
n-dimensional oriented cobordism group M, of Morse functions is isomorphic to
the direct sum of the n-dimensional oriented cobordism group Q, and |n/2|
copies of the infinite cyclic group. More precisely, the map

YOD: My — Q, DL
defined by
(P @B)([f: M —R]) = (M1, 6032 [/ Ds B3y 2101 (D5 -, (/1)

is an isomorphism.

THEOREM 2.9 (The oriented case with n =4k +1). For n=1 (mod 4), the
n-dimensional oriented cobordism group M, of Morse functions is isomorphic to
the direct sum of the n-dimensional oriented cobordism group Q,, |n/2| copies of
the infinite cyclic group, and the finite cyclic group of order two. More pre-
cisely, the map

VOODA: My — Q, L") D7,
defined by
(P@D@®A)([f : M —R]) = (IM], 000132 (/D) - -, 8, ([f]), 6(f) — 6(M;Q))

is an isomorphism.

3. Elimination of cusps

In this section, we review some results of [4] which will be used in the
proof of the main theorems.

DEFINITION 3.1. Let F: W — R? be a smooth map of an m-dimensional
manifold with m > 2. A singular point p e W of F is a fold point if we can
choose coordinates (u,z,...,z,—1) centered at p and (U, Y) centered at F(p)
so that we can express F as
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(3.1)

~
I
|
M~
u,
_|_
]
=~

k=1 k=241

for some 0<A<m-—1 in a neighborhood of p. We set <(p)=
max{l,m — 1 — 1} and call it the absolute index of the fold point p.
We say that p is a cusp point if we can choose coordinates (u,x,

Z1,...,Zm—2) centered at p and (U, Y) centered at F(p) so that we can express
F as
U =u,
32 A m=2
(32 Y=ux+x*=> zi+ Y 3
k=1 k=i+1

for some 0<A<m-—2 in a neighborhood of p. We set (p)=
max{A,m —2 — 1} and call it the absolute index of the cusp point p. Note
that ¢(p) is well-defined.

It is well-known that any smooth map of an m-dimensional manifold
W (m=>2) into R? can be approximated arbitrarily well by a C*-map
F : W — R? which has the following properties (1), (2), (3), (4) and (5) (see, for
example, [4]).

(1) The rank of the differential of F is never zero.

(2) If S|(F) denotes the set of points in the domain of F at which the
differential of F has rank one, then S;(F) consists of smooth non-
intersecting curves.

(3) Let SZ(F) = Si(F) be the set of points where Flg,(r) has zero dif-
ferential. Then S7(F) is a discrete set.

4) If peS|(F)— Si(F), then p is a fold point.

(5) If peS#(F), then p is a cusp point.

We say that a smooth map of an m-dimensional manifold into R? is
generic if it has properties (1) through (5) above. If W is compact and
F: W — R? is generic, then S|(F) is a compact 1-dimensional regular sub-
manifold of W and the number of cusps is finite.

In a neighborhood of a cusp point, the absolute index varies as follows.
First of all we note that the absolute index is constant on every component
of Si(F)— S}(F). For a cusp point p of absolute index i, the absolute in-
dices of the nearby fold points are as follows. If i> (m —2)/2 then they
are as depicted in Fig. 1, and if i = (m —2)/2 then they are as depicted in
Fig. 2.

Let F: W — R? be a generic map and G be the cokernel bundle of
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i 1 i+1
in W
fold cusp fold
Fig. 1
m 1] I
2 2
’ in W

fold cusp fold

Fig. 2

Fig. 3

dF : TW|g, ) — (F*TR?)|g, .

For a point p e S|(F), the index i(p,y) of p is defined to be 7(p) or m—
1 —1(p) if p is a fold point and z(p) or m —2 —1(p) if p is a cusp point
depending on the given orientation y of the fiber G, over p (for details, see
[4]). Intuitively, the orientation y determines a positive direction of the Y-axis
with respect to the coordinates giving the normal form as in (3.1) or (3.2), and
i(p,y) counts the number of minus signs appearing in the expression of Y.

Let F: W — R? be a generic map, where W is an m-dimensional con-
nected manifold with m > 3. Suppose that F has two cusp points p; and p».
If they satisfy certain conditions, then we can eliminate them by homotopy of
F as follows (for details, see [4]). Let 4:[0,1] — W be a smooth embedding
such that A(0) = p1, A(1) = pa, A([0,1]) N S1(F) = {p1, p2}, that 2'(0) (or A'(1))
points upward (resp. downward) in the sense of [4, p. 284] and that Fo 4l is
an immersion (see [4, (4.4)]). Note that such a joining curve 1 always exists,
since W is connected. Note also that (F o /)" TR? is orientable and we fix an
orientation. Let y; be an orientation of G, j = 1,2, such that (F o 2)'(0) Ay,
and —(F o 1)'(1) Ay, are consistent with the orientation of (F o A)*TR? as in
Fig. 3. Let i(p;,7;) be the index of the cusp point p; with respect to y;,
j=1,2. Then we say that the pair of cusp points p; and p, is a matching pair
if i(p1,7,) +i(p2,7,) =m—2. In this case we can eliminate the cusp points
p1 and p, by a homotopy of F whose support is contained in a small
neighborhood of A([0,1]).
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Although Levine [4] assumes that the source manifolds are orientable, the
method is applicable also for non-orientable source manifolds.

By [4] every generic map F : W — R? of a closed connected m-dimensional
manifold W with m > 3 into R? is homotopic to a generic map without cusp
points if the Euler characteristic y(7) is even, and to a generic map with
exactly one cusp point if y(W) is odd.

When m =2, we cannot always find a joining curve for a given pair of
cusps. So, one cannot directly apply Levine’s method, but can instead apply
Kalman’s method for the elimination of a pair of cusps [3, Lemma 1.4].

4. Proof of the main theorem (un-oriented case)

In this section we prove Theorem 2.7. Let M,N be n-dimensional un-
oriented closed manifolds, f: M — R, g: N — R be Morse functions, and
F:X —Rx[0,1] a cobordism between f and g. For a Morse function f,
S(f) denotes the set of critical points of f.

For 1€ [0,1] put

M, = F'(R x {t}),

Ji=Fly, : My — R x {t}.
Let 7: R x [0,1] — [0, 1] be the projection to the second factor. Take a regu-
lar value 7€ [0,1] of o F|g ) : S1(F) — [0,1]. Then M, is a smooth manifold
of dimension n and f; is a Morse function. Moreover, we have S(f;) =
S1(F)N M,. For each point p e S(f;) = S|(F)N M, let 7(p) be the absolute
index of the fold point p with respect to F, and let i(p) be the index of the
critical point p with respect to the Morse function f;. Then we have

C(ip) ((p) = [n/2)),
"p)= { n—i(p) (i(p) < n/2]).

Here, F is considered to be a restriction of a map of M x (—& 0JUXUN x
[1,1+¢) for some ¢ > 0.

LemMma 4.1. If two Morse functions [ and g are cobordant, then we have

Cl(f) - Cn—/l(f) = C/u(g) - Cn—/l(g)
Sfor all A.

ProoOF. Let us consider
(4.1) no Flg g S1(F) — [0, 1].

By slightly perturbing F if necessary, we may assume that (4.1) is a Morse
function whose critical values are all distinct.
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Let us study the change of C,(f;) when ¢ varies from 0 to 1. We see
easily that C;(f;) does not change if ¢ does not cross a critical value of (4.1).
Let T be a critical value of (4.1) and we denote its corresponding critical point
by pe Si(F). For a sufficiently small ¢ >0, set tp=7 —¢ and t, =T +e.
Let 4 be an arc neighborhood of p in S;(F) so that F(A) is as depicted in Fig.
4; M,,NA (or M, NA) consists of two points, say p; and p,.

F(A) F(A)
Flpr) |, |/ \ L F(m)
I>1F(p) or F(p) K} in R x [0,1]
F(ps2) F(p2)
to T ty ty T t

Fig. 4

Let G be the cokernel bundle of

Then G|, is a trivial line bundle and we fix an orientation. Since the
normal direction of F(A4) gives the opposite orientations at F(p;) and F(p,),
compared with the natural orientation of R x {#} (or R x {#}), we see that
i(p1) +i(p2) =n, since 7(p;) = t(p2). Hence, for 7 =i(p;), we have

Cr(flo) - Cn—r(ffo) = Cf(fll) - Cn—f(ﬁl)a

since one of the following sets of equations holds:

{ C‘E(fto) - C‘E(ﬁl) = +1,
Cn—r(ffo) - Cn—r(ftl) =+1

or

{ Cr(/‘;o) - C‘L’(ﬁl) = _13
Cn*f(fto) - Cn*f(fh) =—1

For 1 # t,n— 1, we see easily that C;(f,) = C,(f;,) and hence we have
C/l(ffo) - Cn*/"»(flo) = C)(ffl) - Cﬂ*l(ffl)
for all 4. Therefore, we have the required conclusion. O

Now we can use the notation ¢, ([f]) for C,(f) — C,—,(f) as in Definition
2.2.

ProOOF OF THEOREM 2.7. We have only to show that the homomorphism
¥ @ @ is bijective.
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Let us first show that it is surjective. We will show that for arbitrary
(M5, ds3)2) AY(n13)j2) 15 - - - » An) € Ty @ ZL2,
there exists a Morse function f : M — R such that

(P D)[f]) = ([M]y, ayni3)/2)» @ (n+3)/2) 415 - - > n)-

We may assume that there is a Morse function go: M — R with

(Y ® D)([90]) = (IM1],b)(n13)/2)> DL (ns3)/2) 415 - - - > Dn)-

Recall that b, = ¢,([go]) = Ci(g0) — Co—s(g90) and a pair of critical points of
indices A+ 1 and A can be created for 0 <1 <n—1. First we increase the
number of critical points of indices n,n — 1 if @, > b, or 0,1 if a, < b, so that
we have C,(g1) — Co(g1) = a,, where g; is the new Morse function. Similarly
by increasing the number of critical points of indices n — 1,n—2 or 1,2, we
get a Morse function g, such that C,_1(g2) — Ci1(92) = a,—1. Repeating this
procedure, we can change b; to a, inductively for n > A > [(n+ 3)/2]. Then
the resulting Morse function f satisfies the required property.

Now let us consider the injectivity. Since the injectivity is equivalent to
Ker(¥ @ @) =0, we assume that [f: M — R] e Ker(¥ @ @) and show that
[f:M —R]|=0 in ./,. By the definition of ¥, we have [M], =0eN,.

Lemma 4.2. We have ¢,([f]) =0, that is, C)(f)= Co_;(f) for all
0<Ai<n.

ProoF. When n is even, we put n=2k. By assumption, we have

Pkt (f]) = oea([f]) = - = 02 ([f]) = 0. Since ¢,([f]) =0 is equivalent to

92— ([f]) = 0 for each 4, we have ¢, ([f]) = ¢ 2([f]) =+ = po([f]) =0 as
well. Furthermore, we clearly have ¢, ([f]) = Cr([f]) — Ck([f]) = 0.

When 7 is odd, we put n=2k+ 1. Similarly to the above we have
0,([f]) =0 for A # k,k+1 and ¢, ([f]) = —¢r41([f]). Since the Euler char-
acteristic y(M) of M satisfies

k
2(M) =" (=1 p([f]) =0,

=0
we have ¢, ([f]) =0. Therefore we have the desired conclusion. O

Since M is null-cobordant, there exists a compact (n -+ 1)-dimensional
manifold W with W = M. Then there exists a smooth map F: W —
R x [0, 1] which satisfies the following properties.

(1) F is a generic map, i.e. F has only fold points and cusp points as its

singularities.
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(2)  Flyxe =/ x1dp, for some sufficiently small &>0, where
M x [0,¢) is a collar neighborhood of M in W.

(3) For any cusp point p e S (F), we have F-1(F(p))NS|(F) = {p}.

4) F |(Sl(F)—Slz(F)) is an immersion with normal crossings.

(5) Si(F) is a compact 1-dimensional manifold which is properly em-

bedded in W.
Such a map F exists, since R x [0,1] is contractible and any smooth map
satisfying (2) can be approximated by a generic map satisfying items (1), (3), (4)
and (5).

If F has no cusps, then the proof is finished. When F has cusps, let us
remove the cusps of F. By composing a diffeomorphism of R x [0,1] if
necessary, we may assume that the F-images of all the cusps lie on the line
R x {1/2+ 6} for some small 6 >0 and that the F-images of their neighbor-
hoods in S;(F) are arranged as depicted in Fig. 5. Furthermore, we may also
assume that the map no F : W — [0, 1] has no singular values on [1/2,1/2 +J].

()
(ST
Lol

+

>

—

Fig. 5

Set N=F'(Rx {1/2}) and g = F|y : N — R x {1/2}. Note that N is a
smooth closed n-dimensional manifold and that g is a Morse function. Since
there is no cusps of F on F~!(R x [0,1/2]), we see that f and g are fold
cobordant as Morse functions. Therefore, we have only to show that
[g: N — R] is the neutral element in .4},

Set V = F~'(R x [1/2,1]), which is a compact (n + 1)-dimensional mani-
fold such that 0V = N. If V is not connected, then we take two points p; and
p> from distinct components of V' such that they are definite fold points of
Fliv- (Such points p; and p, always exist.) We remove small open disk
neighborhoods of p; and p, from V and attach S” x [—1,1] along the sphere
boundaries. Then we can construct a generic map from the resulting manifold
into R x [1/2,1] appropriately by modifying F|, (see Fig. 6).

Since the number of connected components of the resulting manifold is
smaller than that of 7 by one, we may assume that V' is connected by repeating
this procedure.
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F(p1)

TVYTYY,
T

Fig. 6

Note that there are two kinds of components of Si(F|,), i.e., arcs and
circles. The end points of the arc components liec on N and they form the set
of critical points of g. Furthermore by the special construction above of V°
each arc component has at most one cusp point. Take an arc component
of S|(F|,) without cusp points. Then the indices of its end points as critical
points of g are of the form (1,n — 1) for some 0 < A < n by the property of a
regular plane arc, as is explained around Fig. 4.

LemMma 4.3.  Take an arc component of S1(F|,,) which contains a cusp point
as in Fig. 5. Then the indices of its end points as critical points of g are of the
form (A+1,2) for some 0 <1 <n—1, where the value of the critical point of
index A+ 1 is greater than that of index A.

Proor. Let us consider the normal form of a cusp point as follows:

U=u,

A n—1

Y=ux+x=> z+ > =
k=1 k=141
Then we have Si(F) = {u= —3x2,2) =0,z =0,...,z,.1 =0} and F(S|(F)) =
{(=3x%,-2x*)}. For the proof of the lemma, we may assume that R x {1/2}
corresponds to U = —3¢? for some small ¢ > 0 and that g corresponds to Y.
Then the corresponding critical points are p; = (—3¢?, +¢,0,...,0) and the
Hessians are given by the diagonal matrices whose diagonal entries are

(£6e,—2,...,-2,2,...,2).
———— ——
A n—i—1
Therefore, the index of p, (or p_) with respect to the Morse function g is equal

to A (resp. A+ 1). Finally we have g(p_) > g(p.) and the conclusion follows.
O
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By Lemma 4.2 we have

Ci(f) = i)

for all 0 <1 <n. Since the Morse functions f and g are cobordant we have

G (g) =GCu (q)

for all 0 </ <n by Lemma 4.1. Let C; be the number of critical points of
g of index A which are end points of arc components of S|(F|,) containing
cusps. Then, we see that C; = C,_, for all 0 < A <n, since C; = C,_, for the
number C} of critical points of g of index A which are end points of arc
components of S;(F|,) without cusps. Let x4 be the greatest integer 4 with
C; #0. Then we have C;=C, , #0 and C; =0 for all 2>y and for all
A <n—p. Note also that 7(p) <u—1 for each cusp point p of F|,.

(A) When n is even.

Suppose that u—1>n—pu. We take two distinct arc components of
S1(F|,) which contain cusps and have end points of critical points with indices
w and n — p respectively. Let p; and p; be the corresponding cusp points as in
Fig. 7, where p,pu—1,n—pu+1 and n — u indicate the indices of the corre-
sponding critical points of g¢.

p— tF D (Pl o n)((0,1))
p—1—
’I’L—/L—f—l—»
n— Fly(p2)
0 3 1
Fig. 7

If we take the orientation p; of the fiber G, over p; (i =1,2) parallel to
the orientation of R x {1/2} as in Fig. 7, then we see that the indices of the
cusp points p; and p, are given by i(p1,y;) =pu—1 and i(ps,y,) =n—pu
respectively. Let 1:[0,1] — Int 7 be a joining curve connecting p; and p;.
Then (F|, 02)'(0) Ay, and —(F|, 0 4)'(1) Ay, are consistent with an orienta-
tion of (F|, o Z)"T(R x [0,1]), as is depicted in Fig. 7. Therefore, the pair of
cusp points p; and p; is a matching pair in the sense of Levine [4], since we
have i(p1,7,) +i(p2,7,) = (n+1) —2. Thus, we can eliminate the pair of two
cusps by a homotopy of F|, by using Levine’s method, since n+ 1 > 3.

Repeating this procedure, we can eliminate all the cusp points p with
(p)=pu—1if p—1>n—pu Since the absolute index of a cusp point is in
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{n/2,n/2+1,...,n—1}, we see that we can eliminate all the cusp points in
this case.

(B) When n is odd.

Repeating the procedure in (A) we finally reach the case where u— 1=
n—u. Now the absolute indices of the two end points of the relevant arc
component are both equal to x4 = (n+1)/2, and hence the absolute index of
the relevant cusp point is equal to (n — 1)/2. So, any joining curve connecting
two cusp points gives a matching pair at least when n > 3. Therefore if the
number of cusp points of absolute index (n —1)/2 of F|,, is even, then we can
eliminate all such cusp points by a homotopy of F|,, by using Levine’s method
[4] when n >3 and Kédlman’s method [3, Lemma 1.4] when n=1. If the
number of such cusp points is odd, then we modify F|, as follows.

Since n is odd, we can take a closed non-orientable (n + 1)-dimensional
manifold Y with odd Euler characteristic. (For example ¥ = RP"*!) Then
there exists a generic map F) : ¥ — R x (1/2,1) which has a unique cusp point
by [4]. This cusp point has absolute index (n—1)/2. Now we apply the
argument that we used in order to make V' connected: we combine F|, and F;
to get a new generic map of the connected sum V#Y into R x [1/2,1]. Then,
the number of cusp points of absolute index (n — 1)/2 of the resulting map is
even and hence we can eliminate them by pairs by homotopy.

Therefore, we have removed all the cusps in both cases (A) and (B). This
completes the proof of the injectivity of ¥ @ &, and hence the proof of
Theorem 2.7. O

5. Proof of the main theorem (oriented case)
In this section, we prove Theorems 2.8 and 2.9.

Proor oF THEOREM 2.8. We can prove that ¥ @ & is well-defined and
surjective as in the un-oriented case.

The injectivity can also be proved as in the un-oriented case when 7 is
even. So, we will prove that ¥ @ & is injective when n = 4k — 1.

Let [f: M — R] be an arbitrary element in Ker(¥ @ ®). Since the
(4k — 1)-dimensional manifold M is oriented null-cobordant, there exists a
compact oriented 4k-dimensional manifold W with 0W = M. Then we con-
struct a generic map F: W — R x [0,1] of a special kind as in the un-
oriented case and set N = F'(R x {1/2}), g=F|y: N - R x {1/2} and V =
F7'(R x [1/2,1]). We may assume that V is connected.

If the number of cusps of the generic map F|, : V — R x [1/2,1] is odd,
then we use a generic map of ¥ = CP* into R x (1/2,1) in order to modify
F|,. Note that CP* is an oriented closed manifold of dimension 4k =n + 1
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and that the Euler characteristic y(CP*) is odd. Thus, as in the un-oriented
case, we may assume that the number of cusps is even. Then we can remove
all the cusp points by homotopy by using the theory of matching pairs. This
completes the proof. O

In order to prove Theorem 2.9, we need the following.

LemMmA 5.1. Let W be a compact oriented (4k + 2)-dimensional manifold
with OW = M. Then we have

a(M;Q) = (W) (mod 2),
where y(W) denotes the Euler characteristic of W.

Proor. We consider the exact sequence of homology with Q-coefficients
of the pair (W, M):

0= Hap2(M) — Hyero(W) — Hyero(W, M)
— Hy 1 (M) — Hyt(W) — Hyet (W, M)

— Hao(M) — Hopo(W) — Hopo( W, M)

— Hy 1 (M) — Hayp (W) 5 Hy (W, M).

By Poincaré-Lefschetz duality and the universal coefficient theorem, we
have

H(4k+2)7(](W7 M) = Hq(W) = Hom(Hq(W), Q)
for every ¢g. Furthermore, we have Hom(H,(W),Q) =~ H,(W) and hence
biaki2)-q(W, M) = by(W),

where b; denotes the dimension of the i-th homology. By Poincaré duality we
also have buyyy1)—g(M) = by(M).
Then by the above exact sequence, we have

(bo(M) + b (M) + -+« + ba (M) + (bo(W) + by (W) + -+ + by (W) + rank j)
= bajs2r (W) + bkt (W) + -+ + bag1 (W) (mod 2).
Therefore we have
o(M;Q) — (W) = rank j (mod 2).

Hence, we have only to show that rank j is even.
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Since we have Hy (W, M) = H**\ (W) =~ Hom(Hy1(W),Q) by
Poincaré-Lefschetz duality and the universal coefficient theorem,

J: Ha1 (W) — Hom(Hai1 (W), Q)
can be identified with the intersection form
I: Hy (W) X Hy (W) — Q

of W. Note that this is a skew-symmetric bilinear form. Let Q be a skew-
symmetric matrix representing the intersection form /. It is easy to see that
rank j =rank Q. So we have only to prove the following.

LeMMmA 5.2.  The rank of a skew-symmetric matrix Q whose components are
complex numbers is always even.

Proor. The charactristic polynomial Ay(¢) satisfies the following:
Ag(1) = det(tE — Q) = det((tE — Q)") = det(tE + Q)
= (=1)" det(—1E — Q) = (=1)"do(-1),

where r is the size of Q and FE is the unit matrix of degree r. Hence, if 4
is a non-zero eigenvalue of Q, then —1 is also a non-zero eigenvalue and
their multiplicities coincide. Therefore counting the number of non-zero eigen-
values, we get the result. ]

This completes the proof of Lemma 5.1. O

LemMma 5.3. If two Morse functions f: M — R and g: N — R of closed
oriented (4k + 1)-dimensional manifolds are oriented cobordant, then we have

a(f) —a(M;Q) =a(g) —a(N;Q).

Proor. Let F: W — R x [0,1] be an oriented cobordism between f and
g. Then by Lemma 5.1 we have

a(M;Q) +a(N;Q) = x(W) (mod 2).
Consequently we have
(5.1) a(M;Q) —a(N;Q) = x(W) (mod 2).

Let 7: R x [0,1] — [0,1] be the projection to the second factor, and we
consider the composite function 7 =7mo F: W — R. Slightly perturbing F if
necessary, we may assume that the composite function 2 : W — R is a Morse
function. As in the un-oriented case we may assume that W is connected,
although we have to be careful about the orientation of the components of W.

The components of S;(F) are divided into four types as follows.
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(1) An arc joining two points, say p; and pp, of M. Such an arc
contains an odd number of critical points of 4. The indices of p;
and p, as critical points of f are of the form A, 4k + 1 — / for some
0<A<4k+1.

(2) An arc joining two points, say ¢; and ¢, of N. Such an arc con-
tains an odd number of critical points of 4. The indices of ¢; and
¢» as critical points of g are of the form A, 4k +1— 1 for some
0<A<4k+1.

(3) An arc joining a point, say ps, of M and a point, say g3, of N. Such
an arc contains an even number of critical points of 4. The indices
of p3e M and g3 € N as critical points of f and g respectively are
equal to each other.

(4) A circle. Such a component contains an even number of critical
points of /.

Therefore we have

(5.2) a(f)—a(g) =c (mod?2),

where ¢ is the number of critical points of h. Hence, we have y(W) =
¢ (mod 2), since y(M) =0. Therefore by (5.1) and (5.2) we have

o(f) —o(g9) =o(M;Q) —a(N;Q) (mod 2).
This completes the proof of Lemma 5.3. O

ProOOF OF THEOREM 2.9. It is clear that the map PODPDA is a well-
defined homomorphism by Lemmas 4.1 and 5.3.

Let us show that Y@@ @ A is surjective. For any element ([M],
A2f12y - - - a1, 1) € 2, @®Z*®Z,, we can prove, by the argument similar
to that in the proof of Theorem 2.7, that there exists a Morse function
f:M — R such that (¥ @ ®)([f]) = ([M], a2, ..,a4+1). By creating a
pair of critical points of indices 2k and 2k + 1, we can change o(f) without
changing (¥ @ ®)([f]). Therefore, we can arrange so that A([f]) = o(f)—
a(M;Q) = 1.

Now we have only to show that ¥ @ & @ A is injective. Let [f: M — R]
be an arbitrary element of Ker(¥ @ @ @ A). Since the (4k + 1)-dimensional
manifold M is oriented null-cobordant, there exists a compact oriented
(4k + 2)-dimensional manifold W with 0W = M. Then we construct a generic
map F: W — R x [0,1] such that the F-images of the cusp neighborhoods are
as depicted in Fig. 5 as in the un-oriented case, and set N = F~!(R x {1/2}),
g=F|y:N—Rx{1/2} and V =F'(Rx[1/2,1]). Note that the Morse
function ¢ is oriented cobordant to f. Therefore, [g] is an element of
Ker( Yod® A), and it satisfies
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a(g9) —a(N;Q) =0€eZ,
by Lemma 5.3. Then we have
a(N;Q) =x(V) (mod2)

for the semi-characteristic of N with respect to the coefficient field Q by
Lemma 5.1, and so

a(g) =x(V) (mod 2).

Let 7#:R x [0,1] — [0,1] be the projection to the second factor. We may
assume that mwo F is a Morse function. Then we have that

x(V)=c¢ (mod?2)
as in the proof of Lemma 5.3, and hence
(5.3) o(g) =c¢ (mod?2),

where ¢ denotes the number of critical points of mo F.

As in the un-oriented case we may assume that V' is connected, although
we have to be careful about the orientations of the components of V.
Furthermore, we can eliminate all the cusps whose absolute indices are different
from 2k by using Levine’s method [4].

Let us show that then the number of cusps is even assuming that all
the remaining cusps are of absolute index 2k. Take an arc component o of
S1(F|). We have two cases: o contains a cusp or no cusps. In both cases
the indices of the end points of o as critical points of g are equal to A and
(4k +1) — 1 for some 1. Hence, the number ¢(g) of critical points of g whose
indices are between 0 and 2k is equal to the number of arc components of
S1(F|,) (see Fig. 8). Note that an arc component o contains an odd number
of critical points of mo F if it contains no cusps, and o contains no critical
points of mo F if it contains a cusp. By (5.3), we have that the number of
arc components of Sj(F|,) which contain a cusp point is even. Hence, the
number of cusp points is even.

Finally we can remove all the cusps by using the theory of matching pairs
by [4] for n # 1 and by [3] for n = 1. This completes the proof of Theorem
2.9. O

REMARK 5.4. In the definition of A : . #411 — Z, (Definition 2.6), we
used the field of rational numbers Q. In fact, we could as well use any other
field K, for example Z,, since the semi-characteristic o(M; K) is independent of
K for an orientable (4k + 1)-dimensional manifold M which is null-cobordant

[5]-
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N v

9 lF\v

Rx {3} in R x [0,1]

Fig. 8

In fact, in [5] it is shown that

o(M;Zy) — o(M;Q) = WaWy_1[M],

where M is a closed orientable (4k + 1)-dimensional manifold and W) Wa;_[M]
denotes the Stiefel-Whitney number. So, we have another isomorphism

YODA M — QD7 @ Zs,

where A’ :.#, — Z, is the homomorphism defined by A'([f: M — R]) =
o(f) —a(M;Z,) e Z,. Since there exists an M with WroWy_[M] # 0 (for
example, the Dold manifold [1], or see [5, Remark 4]), this isomorphism is
different from the one obtained in Theorem 2.9.
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