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1 ..
ABSTRACT. Let of = for positive constants «,. Hardy’s theorem states that the

function f(x)=e " is the only function (modulo constants) satisfying the decay
conditions f(x) = O(e=>") and f(x) = O(e#"), where f denotes the Fourier trans-
form of f. We generalise this theorem and its L’ analogues to the Jacobi trans-
form. We then consider the Fourier transform on the real hyperbolic spaces
S0,(m,n)/SO,(m — 1,n), m,n e N, and show, as an application of our results for the
Jacobi transform, that Hardy’s theorem only can be generalised to the Riemannian
(m=1) case. It can, in particular, not be generalised to SL(2,R) ~SU(1,1) ~
50,(2,2)/S0,(1,2).

1. Introduction
Let f be a measurable function on R and let f be its Fourier transform.
2 ~ .12 ..
Assume that |f(1)| < Ce="" and |f(A)| < Ce P, where C,a,f are positive
constants. Hardy’s theorem, [11], states that if:

(1) oc[)’>l, then f =0.
(2) af= %, then f(f) = const. e=*".

1 . . . . .
(3) af< T then there are infinitely many linearly independent solutions.
We note that (2) implies (1) and (3). The central part of Hardy’s
1 .

theorem, the off = case, can be reformulated in terms of the Heat kernel:
hy(x) == (4nt)"2e=*/% 1> 0. We note that &, (x) = ¢, and thus the only
functions satisfying (2) are constant multiples of /p, with f=1/4a. The

1 . . . P
off > 7 case is also known as Hardy’s uncertainty principle: f and f cannot
both be very rapidly decreasing. A Generalisation of Hardy’s theorem with L”
growth conditions was furthermore given by Cowling and Price in [6].
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Analogues of Hardy’s uncertainty principle and its L” versions for the
Fourier transforms on (semisimple) Lie groups and Riemannian symmetric
spaces of the non-compact type have now been studied in several papers, see
[7], [17], [21], [24] and references therein.

The Heat kernel on a Riemannian symmetric space is also a well-defined
and much studied object, in particular its decay properties. It was very
recently shown that the Heat kernel in this set-up also characterises the
functions satisfying a natural analogue of the decay conditions above, with the

. . . 1
Helgason—Fourier transform replacing the Fourier transform, for off = 7 See

(18] and [23]. See also [19] for generalisations of the Cowling—Price results.

Consider the Jacobi transform f +— f @b of order (a,b), where f is an
even function and a,b are complex numbers. We remark that the spherical
Helgason—Fourier transform for Riemannian symmetric spaces of rank 1 can
be viewed as the Jacobi transform for certain half-integer values of a and b, but
that in general the notion of the Heat kernel is not defined. However, we can
show the following generalisation of Hardy’s theorem:

THEOREM 1.1. Let a,beC,a¢ —N and p:=a+b+1. Assume that [ is
an even measurable function on R satisfying:

1£(0)] < C(1 + o) Me Prlle® | teR

and FeP ) < Ce M, JeR,

1 1
for non-negative constants C, M, o, f, with M2§Ra+§ and oc/)’:Z, then
£ (2) = const. e ¥

We remark that the (Jacobi) inverse of the function ¢ is a non-zero
even C* function on R satisfying the left-hand-side growth estimate, and that
we also prove injectivity for the Jacobi transform on the appropriate subspaces
of even functions, for all a,b with a¢ —N. The Jacobi transform reduces to

. . I . . .
the cosine—Fourier transform when a = b = —5 in which case Theorem 1.1 is

a slight modification of Hardy’s classical theorem.

The above theorem is part of our main result for the Jacobi transform,
Theorem 3.5, which is a L’ version of Hardy’s theorem for the Jacobi
transform. We use a Cowling—Price approach to prove this Theorem. The

1 1
off > 1 and off < 1 cases again follow as corollaries, see also [2] and [3] for
different proofs of Hardy’s uncertainty principle and its L” versions for the
Jacobi transform.
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As an application of our results for the Jacobi transform, we consider the
Fourier transform on the real hyperbolic spaces X = SO,(m,n)/SO,(m — 1,n),
m,neN. We first give a (different) proof of Hardy’s theorem in the Rie-
mannian (m = 1) case, using explicit expressions of the matrix coefficients in
terms of modified Jacobi functions. We stress that a function satisfying the
natural decay properties necessarily is spherical (bi-K-invariant), being a scalar
multiple of the (spherical) Heat kernel.

We then show that a similar result does not hold in the pseudo-
Riemannian case. The K-types on X can be identified with integers (r,s),
where r is identically zero when m = 1. It turns out that the natural decay
properties only imply a restriction on the second of the K-type variables and we
can construct an infinite, albeit countable (indexed by the K-types (r,0)), family
of linearly independent functions on X satisfying them.

We note that Hardy’s Uncertainty Principle and its L”-versions (the

1 . oo
aff >(>) 1 cases) still hold and that there are infinitely (uncountably) many
linearly independent functions satisfying the natural decay conditions with
| . .
off < 7 this also follows as corollaries of the results for the Jacobi transform.

Hardy’s uncertainty principle for X was also proved in [22], as a corollary
of the similar result for the Heckman—Opdam transform (of which the Jacobi
transform is a special case).

We end the paper by discussing the SL(2,R) ~ SU(1,1) ~ S0,(2,2)/
S0,(1,2) case in more detail.

2. Jacobi functions and the Jacobi transform

Let a,b,AeC and 0 <t < oo. We consider the differential equation

o d du(t) ,
1 Au,b e Au,b Y 2
1 (o) G (400 M) = <G+ P,
where p:=a+b+1 and A4%’(¢) = (2 sinh())* ™ (2 cosh(z))**™!. Using the
substitution x = —sinh?(7), we can rewrite (1) as a hypergeometric differential
equation with parameters %(er i), %(p —iA) and a+1 (see [8, 2.1.1]). Let

»F) denote the GauBl hypergeometric function. The Jacobi function (of order
(a,b)),

1 1 .
¢f’b(l) =, F (5 (p+ M),E(p —id),a+1; —smh2(1)>7
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is for a¢ —N the unique solution to (1) satisfying (pjf’b(O)zl and
d a,b

o= 0. The Jacobi functions satisfy the following growth estimates:
=0

LEmMMA 2.1. There exists for each a,be C a constant C >0 such that:

IF(a+ 1) ()] < C(1+ [A)*(1 + 1)elPH=01
for all t >0, where k=0 if Ra > —% and k = E—&Ea] if %as_%.

PrOOE. See [15, Lemma 2.3]. O

Here [-] denotes integer part. We note that I’ (a+1)71¢f’b(t) is an
entire function in the variables a,b and A€ C (also for a € —N). The Jacobi
transform (of order (a,b)) is defined by:

Fob(3) = j F(0)p2 (1) 4% (1,

for all even functions f and all complex numbers A for which the right hand
side is well-defined. The Paley—Wiener theorem for the Jacobi transform,
[15, Theorem 3.4], states that the (normalised) application f — I'(a+1)"'f*®
is a bijection from CF(R).,., onto H#(C)...,, the space of even entire rapidly
decreasing functions of exponential type, for all a,b e C.

The Jacobi functions of the second kind:

. 1 |
f’b(t) = (2 cosh(2))"“ ", F (z (p— M)’i (a—b+1-il),1—il cosh_2(1)>7

defines for 1 ¢ —iN another solution of (1), characterised by the property that
/‘{’b(l) ~ el*=P) for t — oo.  We also remark that qﬁjf”’ is singular if, and only if]
A€ —iN, with simple poles. Define the meromorphic Jacobi c-functions as:

I(a+ 1)I(i2)

(2) () =2 1 :
r(E(M +p))r(§(i,1 +a—b+ 1))

then

(3) 05" = (D) + et (=2t

as a meromorphic identity, see [16, (2.15-18)].

1
LemMma 2.2, Let 0 <p < 7 There exists for S > —n a converging series
such that:

o0

;’b(t) _ e(i).fp)t Zl—;la,b(/ﬂh)efnt’ (Z > 0),
n=0
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with I**(1) e C, I?)”’b = 1. There furthermore exist positive constants C and d
(depending on a and b) such that:

1L ()] < C(1+n)",

for SA > —n and all neN.  Fix 6 > 0. There exists a constant Cs such that:
¢ (0)] < Coe™ OFH0),

Jor SA=—n and all teld, .

ProOF. The lemma follows by extending [9, Lemma 7] to complex a,b.
See also [5] for a more general set-up. ]

The polynomial estimates on |c%?(—2)"'| away from the poles given by
[15, Lemma 2.2] can also be extended to S4 > —y.

The inversion formula for the Jacobi transform can be written as (with
w=0, u>-RNa+b+1)):

@ SO = | F O s (>0)

for /'€ CP(R)uen see [16, Theorem 2.2]. Using residual calculus we can
rewrite (4) as follows:

THEOREM 2.3. Assume that a¢ —N. Let D, denote the finite set of
zeroes for c%b(—1) with $2>0. Let n =0 if D, NR ={F} and otherwise

1
choose 0 < n < 3 such that ¢®*(+2) #0 for SLe[—n,y\{0}. Then:

S N AR R RO . AROUG
f(t):EJRC“J’(—)V—iiy)c“vb(/{i—kin) A2 = 3 e RS Carhycan(y [

VGDU,},
for f e CP(R),pm Where k,:=1/2 if veiNUR, and k, :=1 otherwise.

ProoF. The set D, is determined by the poles of the [I'-functions of
(2). 1t follows that D, consists of those elements v # 0, with Sv > 0, which
are of the form: v=i(+b—a—1-2m), me NU{0}.

Let veD,,, that is, ¢®’(—v)=0. Assume first that v¢iN, then
c®b(v) #0 by the condition a ¢ —N, and:

ra,b a,b a,b a,b
Res,l_v{f Cu(,izi,l)(t)} - Resﬁ”‘v{fmb(/l) <cu,;};(([,)1) + fa/ll((;D }

J;u,b(l)(pz"b(t
— ReSz_v{cmb(—i)d’ab(}u)}7

by (3), since ¢f’f(t)/c“*b(ﬂu) is regular at 1 =v.
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Now assume veiNND,,. Then v is a zero for ¢“?(—2) of order 1; a
double pole in the denominator of ¢®?(—A) at veiN would imply a € —N,
which we have excluded. The c-function ¢*?(J) is regular and non-zero at
A=, as the poles arising from the I'-functions in (2) cancel each other (we
have excluded the cases with double poles in the denominator). We also note
that ¢j’b(t) is regular at A =v.

Write v=i(xb—a—1-2m). Fix a and m, and define, for 1 in some
small neighbourhood of v, a continuous function b(4) by the condition:
A=i(+h(2) —a—1—-2m). It follows that ¢**#(—2)=0 and ¢?"" (1) =
bW ()¢ (1), for 2 # v, by (3), and b(v) = b. Since lim;_,, ’W =
2 for ne —NU{0}, it can be seen from (2), that lim;_, c*** (1) =
21lim;_, ¢®?(%), and thus, by continuity of the Jacobi functions in all the

variables:
A=V C”’b(—/l) 2 A=V Ca’b(—ﬂ.)c"vb(/l) ,
b(2) a,b(d)
! t

since  20%0(0) = 2limy -y () = 20im, ., L i, % W

u’b ) Ca’ (/V)(}v) Ca7 (i)

9y (1)

ch(v)’

Now choose # as in the theorem. Using the estimates from Lemma 2.2,
polynomial estimates on ¢%?(1)~" and since f“’ satisfies the usual Paley—
Wiener growth estimates, we can shift the contour toward the real axis, and (4)
becomes:

_ 1 ra,b . a,b L .
f() = 2n JRf (A +in)¢;,, (1) P + Residual terms
1 rab . ab di
= - 4 ;\, L _
T 7m0

1 fFab . a,b d .
+EJRJ£ (=4 —in) 7/1—1‘;1(1)6,011,(14»1.;7) + Residual terms,

where we have moved half the integral across the real axis if D, TR # ¢ and
made a sign change 4 — —/ in the integral over the line $4 = —5. Since f%°
is even, we get our inversion formula from the identity (3). ]

As a corollary we get injectivity of the Jacobi transform for nice functions:

COROLLARY 2.4. Let a,beC, a¢ —N. Assume that f is an even mea-
2
surable function on R satisfying |f(t)| < Ce=*", t e R, for positive constants C
and o. Then f*° =0 implies f =0 almost everywhere.
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Proor. The very rapid decay implies that f e L'(Ry,|4%%(r)|df)N
L2*(R,,|4%"(1)|df) and that f“?(}) defines an analytic function in A € C for all
a,be C. Using (the proof of) Theorem 2.3, we see that:

1

| romoaera=3-| | om0
R. TR, JR

diA%b(t)dt
ctb (=2 — i)

AP (1)dtd ).

o S(Oes) (0§ (G + in)
B EJR JR+ c@b(—4 —in)cab (A + in)

— Z ik, Res;—_,

veD,

1 J £+ in)heb (4 + in)
A g eab(=A —in)esb (A + in)

. 2ab y) ilu,b )
_ Z ik, RCS;LV{%}7

veD,

Jr. L@ ()heP (1) A% (1)dr
ctb(=2)c®b(])

da

is identically zero for any & € C°(R),,.,, and we conclude that f is zero almost
everywhere. O

REMARK 2.5. Theorem 2.3 and its proof was communicated to us by H.
Schlichtkrull.  For a> —1, beR (which implies 5w =0), it is due to [10,
Appendix 1] (a minor error has been corrected with the introduction of the
constant k,).

3. Hardy’s theorem for the Jacobi transform

Our approach to Hardy’s Theorem for the Jacobi transform is inspired
by [17] and [19], which in turn are heavily inspired by the Cowling—Price
approach. The following lemma from [6] is crucial:

Lemma 3.1. Let 1 <g<oo. Let Q:{G€i00>0,9€(0,g)}. Sup-

pose that h is analytic on Q, continuous on the closure Q of Q, and that h satisfies
the following growth conditions:

(D) < Ce™ Aed  and J h(3)|%d < C9 < o,
R.

for positive constants C and y. Then
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n+1 )
J Ih(oe”)|do < € max{e’, (g + 1)/,
n

for O€ [O,g} and neR,.

LemMma 3.2, Let 1 < g < 0. Assume that h is an entire function on C
such that:

W) < CO+|S)Me™ jeC  and J (1 + 14" h(2)) di < oo,
R

for positive constants C,y, M and N. Then h is a polynomial with deg P < M
and deg P < N — 1.

Proor. The bounds on the degrees are obvious as soon as we have
proved that % is a polynomial. Define the function:

h(A ~
MO o

H(2) = (i+7)

The function H satisfies the conditions of the previous lemma, whence:

n+1 )
| itoe 1o < € maxter, tr-+ 1)1,
n

for e [O,ﬂ and 7€ R, where C here and in the following denotes some

positive constant, and

n+1 )
| intoe e < € maxer, -+ 1) 1) 2,
n

for Oe [Og] and n7eR,. Applying the same procedure to H;(4):=

W)+ )N, Hy(2) = h(=2) /(i + 2" and Hs(A) == h(=2)/(i + 2)" for i€ O,
implies that:

n+1 )
| thtoeyido < cg-+ 21010,
n

for 8 €[0,27] and large . Cauchy’s integral formula:
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n (% ; ;
A (0) J h(oe™)(ce™) " do),

:ZO

yields the estimate:

n+l p2n )
1A (0)] < n!J J Ih(ce™)|o~"d0do
n 0

2n pp+l )
< n!;f"J J Ih(ce™)|dod0
0 Jy
< Cn!;y_”(zy + 2)M+N+1/q.
We conclude that 42" (0) = 0 for n > M + N + 1/q, that is, & is a polynomial.
[

In the following, we define: L*(R,|4%?(1)|dt) := L*(R), and otherwise
define L”(R,|4%%(t)|dt) for 0 < p < oo as usual.

THEOREM 3.3. Let a,beC,a¢ —N,and 1 < p< oo, 1 <qg < 0. Assume
that f is an even measurable function on R satisfying:

(L |- ) Me 2ot Uy o L2 (R, | 4% (1) dr)

and (1] ) NeATfad e LaR),

2

1 A .
for positive constants M,N,a, [ such that oc[)’:Z. Then f*°(J) = P(A)e P

Jfor some polynomial P, with deg P < min{k + M + 1, N}, and deg P < N — 1 if
q < 0.

For p= o0 and ¢ = o0, we can rewrite the above decay properties as
f(0)] < C(1 + [f))Me e eR

and Feb() < 1+ 2) Ve P JeR,

for some positive constant C.

Proor. Let f be an even measurable function satisfying the above
growth conditions. Then, as before, we have feL'(Ry,|4%"(1)|dr)N
L2(Ry,|4%"(1)|dr) and f“°(2) defines an analytic function in Ae C for all
a,beC.

Let first p < co. Using Lemma 2.1, we get the following estimates on
£%°(3) (for different positive constants C):
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V”MNSCJIﬂMU+MWO+ﬂW%%”M”@W’

|f(t)|eoctze(172/p)%pt(1 + [>e\i‘d|tefxtze(2/p72)%pt|Aa,b([)|dl

<C(1+ |)»|)"J
R,

1/p’'
((1 + l) M+1e%/1|te—xtze—(2/p’)8?pt)p'|Aa,b(l)|dl>

Ry

<C(1+ |)»|)k<J

! Iy ’ l/p’
scr ([ av oo a)

R.

/

1
)ke|§‘f/12/4o:( (1 +Z)p’(MJrl)e_pra(t—|§‘f).\/2a)2 dt)
R,

=C(1+]2

o0 1/17'
141+ S| 20)P M) g=pat® gy
(

= C(1+ |2])*elS/4
— |34 /24

’ , 1/1’,
< C(1+ | feldH/4 (J (14 [1] + [ 2] /20)? WD) gp's? dt)
R

1/p’'
< C(1+|;u|)k+M+l€SA|2/4a(J (1+|t|)p/(M+1)67pzwz dl‘)
R

< C(1+ |2l oS4,
for 2eC, using translation invariance of dr, the Holder inequality (with

1 1 . .
=1) and the inequality |34| < |i|. For p = oo, we have:

P /
|fu,b(i)| < CJ efarzefé}?pt(l + |/«L|)k(1 + Z)M+1e(|%/l\7§}?/))t‘Aa‘b(t)|dl

<c(l+ |;L|)ke|%/l\2/4xj (1+ t)M+le—a<(t—\%M/2ac)z dt
R,

ks aa [
= C(t+ fa e |
~137)/2a

(1+ 14|32 /20) M e ar

< C(l + |;L|)k+M+1e‘c\\H|2/4o(7
for 7€ C.
Define g(1) := f*"(2)e* /4 = f%*(1)eP”’. Then g is an entire function,

and:
|g()~)| < C(l + |)b|)k+M+1€[f|?R/l‘2 < C(l + |C\};\,|)k+M+le/}/|§RM2,
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for some p' > B. Let g < oo, then:

|,y Migapraz = | (1 e e an < o,
R R

so Lemma 3.2 implies that g is a polynomial, with degg <k+ M + 1 and
degg < N—1. Let now g = oo, then:

lg()| < c(1+ 2N, LeR,
which implies that g is a polynomial, with degg < min{k + M + 1, N}. We
conclude the result since f @b (A) = g(}v)e*ﬁiz, 0

As a corollary of Theorem 3.3, we get a L’ version of Hardy’s Uncertainty
Theorem for the Jacobi transform, see also [3, Theorem 2.3] for a different
approach:

CorOLLARY 34. Let a,beC, a¢ —N, and 1<p<o0, 1<qg< oo
Assume that [ is an even measurable function on R satisfies:

1200k e LP(R |42 (1)|df)  and PV f4P e LYR),
1
for positive constants o, such that off > 7 Then f =0 almost everywhere.

1
Proor. It suffices to prove the theorem for off =7 Put M =N=1,

then the function f above satisfy the decay conditions in Theorem 3.3, whence
£%%(2) =0 as deg P <0, and f/ =0 by Corollary 2.4. O

Let > 0. Inspired by the (definition of) the Heat kernel, we define the
function hﬁ”"b as the inverse of ¢ #(*’+), that is, by the inversion formula (4):

1 SN2, 2 di
abey . 2 | B+ 4P?) yab
B0 =5 e B g (12 0)

Using residual calculus as before, it can be seen that h/‘;’b extends to an even
C* function on R. The function hg’b is for certain half integers a,b exactly
the heat kernel (with index f) for some Riemannian symmetric space of rank 1,
see [16, §3] for details. We finally sketch a proof of the very important fact
that """ (2) = e P ()

The application (a,b) — hg’ba" (A) is an entire function in ¢ and b. Fol-

lowing [15, §4] we can show that (x) holds for Ra > —% and |Rb| < R(a+1)

(writing the Jacobi transform as a composition of the “Abel” transform and the
cosine transform). Then (x) holds for all a,b by holomorphy. Note that we
also have used the growth estimates deduced below.
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As for the Heat kernel, we can prove nice growth estimates for hg’b . Fix
0> 0. Using Lemma 2.2 we get, for ¢t > J:

0 a,b .
h;=b(t) — L o MBI —pp —pt—pt J o PP 2B il Fnb (4 + l:“) i
T n=0 R cé (_l - llu)
S b .
_I¢ o BBt pt— 4 J o BO—it/29)? =2y I (A + i) a
21—~ R 4P (=4 —ip)

1 o0
_ Z o MBI —fp —pt—pt—1> /45

2 pard

Cl‘b . .
o J o B g 2iBulitit/28) L7 (2 + iu + l{/zﬁ) "
R c®(=4 —iu—it/2f)

— ii efnt+ﬂ/427ﬂ/)27/ltflz/4ﬂj efﬂizefb'ﬂ/d I—yvza’b(/l + llu + lt/2ﬂ> d«
2r R b (=4 —iu—it/2p)

We have the following estimates of the c-function:

c#b (= — i — it/2B) " < C(L+ 1+ i+ it 2))

n=0

< C(L+ 2N 21+ 1/2p) 42,

for some positive constant C. Together with the estimates of I;“’(1) from
Lemma 2.2, we thus have, for some positive constant C:

(5) e (0)] < C(1+ 1)1 2= Rr=r/48,

for re R;. We actually have the following sharp estimate for a,2b e NU{0}
and a > b:

B0 = B (L o)) e,

for + >0, see [4, Theorem 5.9].
Let o =1/4f. Then:

JR((I + 1) M=ot g b (1)) P 40 (1) | dt < oo,

1 1
if M > Ra+ 3 + ; Putting all the above together, we can formulate Hardy’s

theorem for the Jacobi transform:

THEOREM 3.5. Let a,beC, a¢ —N, and 1 <p< o, 1 <g<ow. Let
I<N<2ifg<ow and 0<N<1 if q= 0. Assume that [ is an even
measurable function on R satisfying:
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(14| [) M2kl £ ¢ LP(R, |44 (1) dr)

and (1+]-)NeAPfod e LIR),

1 1 1
with M a positive constant such that M > Ra +§+—, and off = 1 for positive
wf. Then f = f*"(ip)h". P

Proor. Theorem 3.3 implies that f @b — const. h , S0 f = const. h by
Corollary 2.4. We finally note that f“(+ip) = fR () A%?(1)dr. [

For p = oo, it is easily seen that the decay condition on f can be
reformulated as:

F(0)] < CO+ [e)Me W= 1R,

1
for a non-negative constant M such that M > Ra + 3 and Theorem 1.1 in the
introduction follows with N = 0. 1 1
For completeness, we finally consider the of > 1 and off < 1 cases:

COROLLARY 3.6. Let 1 <p<oo, 1 <g<oo. Assume that f is an even
measurable function on R satisfying:

Mf e LPR AP (0)|dt)  and PV F4P e LY(R),
for positive constants o and . If

1
(1) o >- 1 then f =0.
1
(2) af< 1 then there are infinitely many linearly independent solutions.

1
Proor. Let off > 1 Choose 0< o' <o and 0<p' <p such that
1
a'pl = 1 Then f satisfy the conditions in Theorem 3.3 with «, f replaced with

o' B, whence fe b( ) = P(2)hy () for some polynomial P. But Phy does not
satlsfy (I+1]-D~ Nebl’ Phy € LY(R), that is, f%% =0 almost everywhere and
f =0 by Corollary 2.4.

1 1
Let aff < R Choose any ' > f such that af’ < 1 still holds. It follows

that hﬁ« satisfies the above conditions. O

1 . . .
The p=¢g= o0, af >Z case is Hardy’s Uncertainty Principle for the

Jacobi transform, see also [2, Theorem 2.3] for a different proof.
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4. The Fourier transform on real hyperbolic spaces

Let m > 1 and n > 2 be two integers and consider the bilinear form <-,-»
on R given by

m-+n
<X, y> = X1)1 +"'+mem — Xm+1Vm+1 — = Xm+nVm+n, X,yGR .

Let G = SO,(m,n) denote the connected group of (m + n) x (m + n) matrices
preserving <-,-» and let H =SO,(m—1,n) = G denote the isotropy sub-
group of the point (1,0,...,0) e R™"". Let K = SO(m) x SO(n) = G be the
(maximal compact) subgroup of elements fixed by the classical Cartan involu-
tion on G: 6(g) = (9*)"".

The space X := G/H is a semisimple symmetric space (an involution 7 of
G fixing H is given by t(g) = JgJ, where J is the diagonal matrix with entries
(1,-1,...,—1)). The map g g-(1,0,...,0) induces an embedding of X in
R™”*" as the hypersurface (with x; >0 if m = 1):

X ={xeR""|{x,x)=1}.
Let Y:=S""!xS"!. We introduce spherical coordinates on X as:
x(t,y) = (veosh(r),wsinh(z)),  teRi,y=(v,w)eY.

The map is injective, continuous and maps onto a dense subset of X. The (K-
invariant) metric distance from x € X to the origin is given by |x| = |x(¢, y)| =
|7].

The unique (up to a constant) G-invariant measure on X is in spherical
coordinates given by:

j F(x)dx = j F(x(t, 9)J (t)dedy,
b'e R, xY

see [12, Part II, Example 2.3], where J(7) = cosh”~!(¢) sinh" ' () is the Jacobian,
dt the Lebesgue measure on R and dy an invariant measure on Y, normalised
such that [, 1dy=1.

The action of SO(m) on C*(S™!) decomposes into irreducible repre-
sentations #" of spherical harmonics of degree |r|, see [13, Introduction],
characterised as the eigenfunctions of the Laplace—Beltrami operator 4,, on
S™~! with eigenvalue —r(r +m —2). Here r=0if m =1, re Z for m = 2 and
re NU{0} for m > 2.

Let #"% = #"® #° and denote the representation of K on #"* by
Ors. Let dy g =dim #"" and y, ; denote the dimension and the character of
6r5. A function in L?(X) is said to be of K-type (r,s) if its translations under
the left regular action of K span a vector space which is equivalent to #"* as
a K-module. We write L?(X)"" for the collection of functions of K-type
(r,s). The projection P"* of L*(X) onto L?*(X)"’ is given by:
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P f(x) = d j sk f G- Xk, f e L3(X),

for x € X, see [13, Chapter V, §3] and [14, Chapter III, §5]. There are similar
definitions and results for functions in L?(Y) and also for functions in C*(X)
and C*(Y).

The algebra of left-G-invariant differential operators on X is generated by
the Laplace—Beltrami operator Ax, see [12, Part II, Example 4.1], which in
spherical coordinates is given by:

of ) 1 ' 1 e
= J(t - Anf + Anf, e C*(X),
IS = ( ) ot ( % cosh?(7) / sinh?(7) 4 / X)
see [20, p. 455]. It reduces to a differential operator 4y" in the z-variable when

acting on functions of K-type (r,s):

rs B of r(r+m-=2) s(s+n—2)
a7 =axf = 55 5 (0T ) +

[ fecr(X)”

cosh?(t) - sinh?(7)
Consider the differential equation:
(6) Af =4 =P =p0)f, feC”(X)"™,

1 . .
where p = 5 (m+n—2). Altering the proof of [14, Chapter I, Proposition 2.7]

to fit our setup, we see that we can write any function /' € C*(X)"" in spherical
coordinates as:

(7) J(x(t, ) = Zfi(t)qﬁl ()

where {¢;°} = {¢" ® ¢°}, is a (finite) basis for #"°, and f; is a function
of the form f(r) = Mf; ,(¢), with f;, even. Let x= —sinh’*(r) and g =
(1 —x)"72(=x)7¥72f, Then ¢ is a solution to the hypergeometric differ-
ential equation with parameters 1/2(1+p+ |r|+s]), 1/2(=A+p+ 1] +s])
and ¢/2+|s|. Let @°(4,-) denote the regular (for generic ) solution to
this hypergeometric differential equation satisfying the asymptotic condition
@5 (2,1) ~ e P for t — oo (for R4 >0 and when defined), then

@ (2, 1) = 24771171 coshl () sinhll(¢)
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for R > 0, see [1, pp. 72 and 76]. We also note that the function x(¢,y) —
D% (A,t)¢(y) extends to a solution of (6) on X for any ¢ e #"°.

Let £€{0,1} and define C*(Y):={¢e C*(Y)|¢(—y)=(-1)d(»)}.
The Poisson transform, F; ; : C*(Y) — C*(X), is defined as:

8)  Fo(x)— j e, 4P sign®Cx, yg(n)dy, e CE(Y),

when —RA > p.

Lemma 4.1. Let p€ CX(Y). The (meromorphic extension of the) func-
tion F; ¢ is an eigenfunction of the Laplace—Beltrami operator Ax with eigen-
value 2* — p> (when defined), i.e.,:

AXFE.).¢ = (;“2 - pz)FE‘,Mﬁ-
The asymptotic behaviour of F. ;¢ for t — oo is given by (when defined):
Foig(x(1, ) ~ " le(e, 2)g(p),

Jor RA >0, where c(e, 1) is the so-called c-function for X given by:

_ m n
22p 1F<§)F<§> () tan(g(;»-HH‘E)) if m is even
T

9) ¢le, ) = TU+7)

if mis odd.

Proor. The function F; ;¢ extends meromorphically to C by distribu-
tion theory, see [20, Lemma 5(a)]. Differentiating under the integral sign for
R(A+ p) very negative and then using meromorphic continuation shows that
it is an eigenfunction of the Laplace—Beltrami operator Ax with eigenvalue
)% — p%. The asymptotic behaviour is computed in [20, Appendix A], see also
[20, Lemma 4 and Lemma 5]. O

Let ¢ € #*. Using Schur’s Lemma and properties of the Poisson trans-
form, see [1, pp. 74-76] for details, it can be seen that (with € = r +s mod 2):

(10) F.id(x(t, ) = (e, HB (4, 0p(y) = B 0d(»),  ((1.) eRx ),
where @"°(4,-) = c(e,A)D)*(4,-).
We define the Fourier transform Zf of any function f e C*(X) as:

(1) Ff(edyy) = j [, 137 sign' (e, > f (),

for e€{0,1}, RA>p and yeY. Let now fe C*(X)"" for some fixed K-
type (r,s). Using spherical coordinates and (10), we can (re)write the Fourier
transform of f as:
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Ff(e,hy) = L &7 (=4, 1)1 (x(t, )T ()d.
We see that Zf(e, A, y) extends to a meromorphic function in the A-variable,
with zeros and poles completely determined by the above expressions of @,°*
and (9).

We first consider the Riemannian case, that is m =1 (=r=10). We note
that {x, > >0 for all xeX, yeY. The Fourier transform (11) is thus the
Helgason—Fourier transform on SO,(1,n)/SO,(n), see [14, Chapter 3], and we
can formulate Hardy’s theorem in this case as follows:

THEOREM 4.2. Let 1<p<ow, 1<g<o. Let I<N<2 if g<
and 0 < N <1 if q= 0. Assume that f is a measurable function on X =
SO,(1,n)/S0O,(n) satisfying:

(I+]- |)7Me(1*2/1’)/’"‘e“‘"|2f eL’(X) and (1+]- \)7Neﬁ|“29"f e LIiR xY),

1 1
for positive constants Mo, 8, with M > p+ —, and off = T Then f is a con-
p

n/2—1,-1/2
hﬁ

stant multiple of the Heat kernel hg = on X, ie., f is in particular a

spherical (bi-K-invariant) function.

Proor. Let f be a measurable function satisfying the above growth
conditions, whence as before f e L!'(X)NL?(X), and we see that the Fourier
transform Zf is well-defined. " 1

Define p=p+1s|, a= |s|+§—1 and b:_i (e, p=a+b+1), then
(modulo constants):

F(A‘ +,D + |S|) a,b

@%*(), 1) = sinh (1) TGy i

(1) = sinh" (1) Py(2)p"; (1),

where Py(A) = (A +p)A+p+ 1) ... A+p+|s| = 1). Let fo5(t,») ==
P%f(x(t, y))/sinh¥(r). By (7) and continuity of the projection P** we sce
that fj , is a measurable function on R x Y, even in the ¢-variable. With these
identifications, we get:

i, y) = JR Jo.s(t, )ps (0440 (1)de = Py(2) " F PO (2, y).

We note that f,,f’s’b(/l, y) is well-defined for all Ae C. Using spherical coor-
dinates and the definition of P**, we get the following estimates of fo.s and
rab,
0,5 *

_ - 2
(L |- [) M2t U fy (-, y) € L7 (R, [4“P(1)|dr)

and PN+ NPT ) € LIR),
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for yeY. It follows from (the proof of) Theorem 3.3 (and Lemma 3.2), that
(A, y) = const. e P and that f;"" =0 for s #0. We conclude that 7f =
ZP%'f and thus f/ =P%’f, that is, / is a spherical (bi-K-invariant) function
and Zf = const. Fhp, implying that f = const. hp. O

The above theorem has for general Riemannian symmetric spaces of
the non-compact type been proved in [19] for the p = ¢ = oo case and in [18]
for the p,q < oo case. Note however that our proof is different, in par-
ticular the conclusion that the contribution from the K-types (0,s) is zero
for s #0. Let us sketch their argument for this: It follows from (8) and
(10) that |@%%(4,7)| < ®*°(RA,¢), for all s, whence also |[ZP"f(2, )| <
|ZP%Of(R1, y)|. Assume that f and Zf satisfy the natural decay conditions.
Arguing as in the proof of theorem 3.3, it follows that ZP%*f(1,y) =
¢"*(»)e P for some function ¢** on Y. But @5(—p, 1) = 0 since F_,¢(x) =
Jy#(y)dy =0 for ¢ € A5, s #0, and we conclude that #P%f =0 for s # 0.

We now turn to the pseudo-Riemannian case, that is, m > 1. It is
in this case more convenient to consider a normalised Fourier transform:
Fof (g, A, p) == c(e, —A)flff(s,l, ¥); in particular:

Fof (e, dy) = j O (i f (x(t, y)) (1),

for fe C*(X)"".

It is remarkable that the decay conditions in the Riemannian case force
the function f to be spherical (bi-K-invariant). More so, because this is not
the case in the pseudo-Riemannian case. In fact, we will show that there are
infinitely (albeit countably) many linearly independent non-zero functions f on
1
T namely the pseudo-Heat
kernels defined below: Let a= g —1 and b=|r|+ % —1 and define the

X satisfying the natural decay conditions with aff =

pseudo-Heat kernel h/';,‘o((/ﬁ) with index (r,0) on X by:

hy*(@)(x(t, y)) = cosh" (DAL (D(r), (1, y) eRy x ),

for any ¢ e #"°. Tt can be seen that h;;o((/ﬁ) defines a function in C*(X)"",
see [1, p. 71], and (5) yields the following estimates:

(12) [ @) (x(r, )] < CU+ et gy,
for all (¢,y) e Ry xY, where C >0 is a positive constant.
1
THEOREM 4.3. Let m>2. Let 1 <p<oo, 1 <¢g< . Leti(n+1) <
1 1 1
N < E(n—|—3) if ¢ < oo and E(n— 1) §N<§(n+l) if q=o0. Assume that

[ is a measurable function on X satisfying:
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(14 |- ) Me(-2/P0t e £ & L2(X)

and (1+1-) NP’ 7 f e L9{0,1} x iR x Y),

1 1 1
for positive constants M, o, 8, with M > E(n -1 +[—), and off = T Then f =

S, P"f. The pseudo-Heat kernels h/';’o(qﬁ) satisfy the above decay conditions
for any r and any ¢ e #"°.

Proor. Let f be a measurable function satisfying the above growth
conditions, then f e L'(X)NL?*(X) and the Fourier transform Zf is well-
defined. " "

Define pg=p+|r|+]s|, a=lsi+z—1 and b=J|+=—-1 (e,
- 2 2
p=a+b+1), then:

;()v+ﬁ)>F<;(iﬁ+n+2|S|)>

r('; + |s)r(z)

Let f,(z, ) := P"*f(x(t, y))/cosh"(z) sinh®(r). By (7) and continuity of the
projection P"’, we see that f, ; is a measurable function on R x Y, even in the
t-variable. Let also

at
@5 (4, 1) = 2777 cosh"l(z) sinh (7) 0"l (1).

%(;, +,5)>r(% (Z=p+n+ ZISI))

r(g + |s>r(z)

al
Ors (1) = 94=3p

We note that |Q,,(id)] ~ const. |[A|F1/20=D for 7] = o0, see [8, 1.18(6)].
From the above we can write:

fabin, y) = L Fost )0l () A (1)dt = O, (1) TP S (e, 4, p).

We note that fr"f’ (4, y) is well-defined for all e C. Using spherical coor-
dinates and the definition of P"*, we get the following estimates of f, , and

fa,b:
(14| ) MeA=200Hep, (- y) e LP(R, |49 (1) dr)
1005 ()| (14| - ) VP fab (- y) e LY(R),

for yeY. It follows from (the proof of) Theorem 3.3 (and Lemma 3.2), that
£, p) = const. e for yeY, and that £%" =0 for s # 0.

and
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We finally note that :%,hg’o(qﬁ)(a,)v, ) = Or.0(A)e P+ g ) which
together with the estimates (12) show that the pseudo-Heat kernels h[’;o(gﬁ)
satisfy the decay conditions. OJ

In other words, we cannot generalise the main part of Hardy’s theorem,
1 . . . . .
the off = 7 ase, to pseudo-Riemannian symmetric spaces: there is not a unique

(modulo constants) function satisfying the natural decay conditions—unless we
fix the index r in the K-types (r,0).

For completeness, we state Hardy’s Uncertainty Principle, and its L’
versions, for the Fourier transform on X, see also [2, Theorem 3.2] and 3,
Theorem 3.2] for other proofs.

COROLLARY 4.4. Let 1 <p<oo, | <qg<oo. Assume that [ is a mea-
surable function on X satisfying:

2Pt f e LP(X) and PV f e L1({0,1} x iR x Y),
for positive constants o and . If

(1) of > %, then f = 0.
1
(2) of = 1 and q < oo, then f =0.
1
(3) af< 7 then there are infinitely many linearly independent solutions.

Proor. Follows as above from the similar results (or their proofs) for the
Jacobi transform. .

5. Remarks and further results

It is well-known that SO,(2,2)/SO,(1,2) ~ SL(2,R) ~ SU(1,1). We
established in [1, Chapter 5] a link between the Fourier transform on
S0,(2,2)/S0,(1,2) and the group Fourier transform on SL(2,R), and this
allows us to transfer the results in §4 to SL(2,R). A function f of K-type
(r,0) on SO,(2,2)/S0,(1,2) corresponds to a spherical function f of type
(r,r) on SL(2,R), i.e., f(kixks) = e (k1)f(x)er(kz), for all ki, kr € SO(2), x €
SL(2,R), where the ¢,’s are the usual characters on SO(2). So, in the SL(2,R)
picture, the condition s = 0 implies that a function f on SL(2,R) has the same
K-dependence from the left and from the right.

Let us consider the group G = SU(1,1) in more detail. We use [16, §4.3]
as reference. Let G = KAN denote an Iwasawa decomposition of G, where in
particular:
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K= {u() _ <e"(”)/2 6?9/2) 10 e [o,4n[} and
fa=(Gmte S0 1 cr).

Let also M = {+1I}. The irreducible representations K ~ Z/2 of K are given

A

by: J.(up) = €™, and M ~ {0,2} in the same identification. The principal
. . 1 .
series representation (7 ;, #%,), A€C, &€ {0,2}, of G is induced by the

representation man — e~*6:(m) of MAN. Let {e,},., ¢ be an orthonormal
basis of #:,; with e (uy) =e"™. The matrix coefficients 7, (x) =

1 . .
{me i (x)es, e, xEG, E€ {0,2}, r,seZ + ¢, of the principal series repre-
sentation of G can be written in terms of Jacobi functions as:
e ), ,,_S(at) = P\rfs|()v) sinh"*s‘(t) Coshr%\‘(t)(p\/{‘fs\«,r+s(l)7

where P, is a polynomial of degree [r—s|, with Po=1. This explicit
expression of the matrix coefficients on G yields another path to “Hardy’s
theorem” for SU(1,1) ~ SL(2,R). We note in particular that the matrix
coefficients:

0,2
nf,/l,r,r(at) = COShzr(Z)(p;" r(t)a
for t € R, satisfy the ““same” growth estimates and that they do not have any
Zeroes.
The Fourier transform g is defined as:

Fof (e.) = JGf(X)ﬂc,A(x)dM

for a nice function f on G. Let now f be an even function on R and
define a spherical function f" of type (r,r) on G by: [f"(ugauy,) =
cosh? (¢) f(1)e™®+%2)  Using the Cartan decomposition of G, we compute the
matrix coefficients of Zgf"r(n: ;):

(Fof (mz)en ey = | ['(a)<ne (a)er, er) sinh(z) cosh(r)dr
R

= | f"(a;) cosh (1)} (1) sinh(z) cosh(r)dt
JR

= | f()¢>? (¢) sinh(r) cosh¥ ! (r)dr = 24 =Df02r (),
JR
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Consider in particular the functions hj(ug, anuy,) = cosh”(r)hg"zr(l)e”(‘)l*ﬁ?),
for reZ/2, then {(Fghy(ne;)er ey = ce P and hj(ug, asug,)| < C(1+ n'2.
e~="/4 for positive constants ¢ and C.

Let F be either C or H and let x — ¥ be the standard (anti)-involution of
F. Let m and n be two positive integers and let [,] be the Hermitian form on
F"*" given by

[X,y] = xlj}l 4 +xmj}m 7xm+1j}m+l - 7xl71+l1)7m+m

for x, y e F"™". Let G = U(m,n;F) denote the group of all (m+ n) x (m+ n)
matrices over F preserving [,]. Thus U(m,n;C) = U(m,n) and U(m,n;H) =
Sp(m,n) in standard notation. Let H be the subgroup of G stabilising the line
F(1,0,...,0) in F""".  We can identify H with U(1,0;F) x U(m — 1,n;F) and
the homogeneous space G/H (which is a reductive symmetric space) with the
projective image of the space {z € F”™|[z,z] = 1}. The statement and proofs
in the previous chapter also hold for the Fourier transform on G/H. This
is seen either by embedding G/H into SO,(dm,dn)/SO,(dm — 1,dn), with d =
dimg F, or again by expressing the Fourier transform of K-finite functions
using modified Jacobi functions. See [1, p. 117] for more details.
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