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Abstract. Let ab ¼ 1

4
for positive constants a; b. Hardy’s theorem states that the

function f ðxÞ ¼ e�ax2

is the only function (modulo constants) satisfying the decay

conditions f ðxÞ ¼ Oðe�ax2 Þ and f̂f ðxÞ ¼ Oðe�bx2 Þ, where f̂f denotes the Fourier trans-

form of f . We generalise this theorem and its L
p
analogues to the Jacobi trans-

form. We then consider the Fourier transform on the real hyperbolic spaces

SOoðm; nÞ=SOoðm� 1; nÞ, m; n A N, and show, as an application of our results for the

Jacobi transform, that Hardy’s theorem only can be generalised to the Riemannian

ðm ¼ 1Þ case. It can, in particular, not be generalised to SLð2;RÞFSUð1; 1ÞF
SOoð2; 2Þ=SOoð1; 2Þ.

1. Introduction

Let f be a measurable function on R and let f̂f be its Fourier transform.

Assume that j f ðtÞjaCe�ajtj2 and j f̂f ðlÞjaCe�bjlj2 , where C; a; b are positive

constants. Hardy’s theorem, [11], states that if:

(1) ab >
1

4
, then f ¼ 0.

(2) ab ¼ 1

4
, then f ðtÞ ¼ const: e�at2 .

(3) ab <
1

4
, then there are infinitely many linearly independent solutions.

We note that (2) implies (1) and (3). The central part of Hardy’s

theorem, the ab ¼ 1

4
case, can be reformulated in terms of the Heat kernel:

htðxÞ :¼ ð4ptÞ�1=2
e�x2=4t, t > 0. We note that ĥhtðxÞ ¼ e�tx2

, and thus the only

functions satisfying (2) are constant multiples of hb, with b ¼ 1=4a. The

ab >
1

4
case is also known as Hardy’s uncertainty principle: f and f̂f cannot

both be very rapidly decreasing. A Generalisation of Hardy’s theorem with L
p

growth conditions was furthermore given by Cowling and Price in [6].
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Analogues of Hardy’s uncertainty principle and its L
p
versions for the

Fourier transforms on (semisimple) Lie groups and Riemannian symmetric

spaces of the non-compact type have now been studied in several papers, see

[7], [17], [21], [24] and references therein.

The Heat kernel on a Riemannian symmetric space is also a well-defined

and much studied object, in particular its decay properties. It was very

recently shown that the Heat kernel in this set-up also characterises the

functions satisfying a natural analogue of the decay conditions above, with the

Helgason–Fourier transform replacing the Fourier transform, for ab ¼ 1

4
, see

[18] and [23]. See also [19] for generalisations of the Cowling–Price results.

Consider the Jacobi transform f 7! f̂f a;b of order ða; bÞ, where f is an

even function and a; b are complex numbers. We remark that the spherical

Helgason–Fourier transform for Riemannian symmetric spaces of rank 1 can

be viewed as the Jacobi transform for certain half-integer values of a and b, but

that in general the notion of the Heat kernel is not defined. However, we can

show the following generalisation of Hardy’s theorem:

Theorem 1.1. Let a; b A C, a B �N and r :¼ aþ bþ 1. Assume that f is

an even measurable function on R satisfying:

j f ðtÞjaCð1þ jtjÞMe�<rjtje�ajtj2 ; t A R

and j f̂f a;bðlÞjaCe�bjlj2 ; l A R;

for non-negative constants C;M; a; b, with Mb<aþ 1

2
and ab ¼ 1

4
, then

f̂f a;bðlÞ ¼ const: e�bl2 .

We remark that the (Jacobi) inverse of the function e�bl2

is a non-zero

even Cy function on R satisfying the left-hand-side growth estimate, and that

we also prove injectivity for the Jacobi transform on the appropriate subspaces

of even functions, for all a; b with a B �N. The Jacobi transform reduces to

the cosine–Fourier transform when a ¼ b ¼ � 1

2
, in which case Theorem 1.1 is

a slight modification of Hardy’s classical theorem.

The above theorem is part of our main result for the Jacobi transform,

Theorem 3.5, which is a L
p

version of Hardy’s theorem for the Jacobi

transform. We use a Cowling–Price approach to prove this Theorem. The

ab >
1

4
and ab <

1

4
cases again follow as corollaries, see also [2] and [3] for

di¤erent proofs of Hardy’s uncertainty principle and its L
p
versions for the

Jacobi transform.
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As an application of our results for the Jacobi transform, we consider the

Fourier transform on the real hyperbolic spaces X ¼ SOoðm; nÞ=SOoðm� 1; nÞ,
m; n A N. We first give a (di¤erent) proof of Hardy’s theorem in the Rie-

mannian ðm ¼ 1Þ case, using explicit expressions of the matrix coe‰cients in

terms of modified Jacobi functions. We stress that a function satisfying the

natural decay properties necessarily is spherical (bi-K-invariant), being a scalar

multiple of the (spherical) Heat kernel.

We then show that a similar result does not hold in the pseudo-

Riemannian case. The K-types on X can be identified with integers ðr; sÞ,
where r is identically zero when m ¼ 1. It turns out that the natural decay

properties only imply a restriction on the second of the K-type variables and we

can construct an infinite, albeit countable (indexed by the K-types ðr; 0Þ), family

of linearly independent functions on X satisfying them.

We note that Hardy’s Uncertainty Principle and its L
p
-versions (the

abbð>Þ 1
4

cases) still hold and that there are infinitely (uncountably) many

linearly independent functions satisfying the natural decay conditions with

ab <
1

4
; this also follows as corollaries of the results for the Jacobi transform.

Hardy’s uncertainty principle for X was also proved in [22], as a corollary

of the similar result for the Heckman–Opdam transform (of which the Jacobi

transform is a special case).

We end the paper by discussing the SLð2;RÞFSUð1; 1ÞFSOoð2; 2Þ=
SOoð1; 2Þ case in more detail.

2. Jacobi functions and the Jacobi transform

Let a; b; l A C and 0 < t < y. We consider the di¤erential equation

ðDa;bðtÞÞ�1 d

dt
Da;bðtÞ duðtÞ

dt

� �
¼ �ðl2 þ r2ÞuðtÞ;ð1Þ

where r :¼ aþ bþ 1 and Da;bðtÞ ¼ ð2 sinhðtÞÞ2aþ1ð2 coshðtÞÞ2bþ1. Using the

substitution x ¼ �sinh2ðtÞ, we can rewrite (1) as a hypergeometric di¤erential

equation with parameters
1

2
ðrþ ilÞ, 1

2
ðr� ilÞ and aþ 1 (see [8, 2.1.1]). Let

2F1 denote the Gauß hypergeometric function. The Jacobi function (of order

ða; bÞ),

ja;b
l ðtÞ :¼ 2F1

1

2
ðrþ ilÞ; 1

2
ðr� ilÞ; aþ 1;�sinh2ðtÞ

� �
;
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is for a B �N the unique solution to (1) satisfying ja;b
l ð0Þ ¼ 1 and

d

dt

����
t¼0

ja;b
l ¼ 0. The Jacobi functions satisfy the following growth estimates:

Lemma 2.1. There exists for each a; b A C a constant C > 0 such that:

jGðaþ 1Þ�1ja;b
l ðtÞjaCð1þ jljÞkð1þ tÞeðj=lj�<rÞt;

for all tb 0, where k ¼ 0 if <a > � 1

2
and k ¼ 1

2
� <a

� �
if <aa� 1

2
.

Proof. See [15, Lemma 2.3]. r

Here ½ � � denotes integer part. We note that Gðaþ 1Þ�1ja;b
l ðtÞ is an

entire function in the variables a; b and l A C (also for a A �N). The Jacobi

transform (of order ða; bÞ) is defined by:

f̂f a;bðlÞ :¼
ð
Rþ

f ðtÞja;b
l ðtÞDa;bðtÞdt;

for all even functions f and all complex numbers l for which the right hand

side is well-defined. The Paley–Wiener theorem for the Jacobi transform,

[15, Theorem 3.4], states that the (normalised) application f 7! Gðaþ 1Þ�1
f̂f a;b

is a bijection from Cy
c ðRÞeven onto HðCÞeven, the space of even entire rapidly

decreasing functions of exponential type, for all a; b A C.

The Jacobi functions of the second kind:

fa;b
l ðtÞ ¼ ð2 coshðtÞÞ il�r

2F1
1

2
ðr� ilÞ; 1

2
ða� bþ 1� ilÞ; 1� il; cosh�2ðtÞ

� �
;

defines for l B �iN another solution of (1), characterised by the property that

fa;b
l ðtÞ@ eðil�rÞt for t ! y. We also remark that fa;b

l is singular if, and only if,

l A �iN, with simple poles. Define the meromorphic Jacobi c-functions as:

ca;bðlÞ :¼ 2r�il Gðaþ 1ÞGðilÞ

G
1

2
ðilþ rÞ

� �
G

1

2
ðilþ a� bþ 1Þ

� � ;ð2Þ

then

ja;b
l ¼ ca;bðlÞfa;b

l þ ca;bð�lÞfa;b
�l ;ð3Þ

as a meromorphic identity, see [16, (2.15–18)].

Lemma 2.2. Let 0a h <
1

2
. There exists for =lb�h a converging series

such that:

fa;b
l ðtÞ ¼ eðil�rÞt

Xy
n¼0

G a;b
n ðlÞe�nt; ðt > 0Þ;
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with G a;b
n ðlÞ A C, G a;b

0 1 1. There furthermore exist positive constants C and d

(depending on a and b) such that:

jG a;b
n ðlÞj < Cð1þ nÞd ;

for =lb�h and all n A N. Fix d > 0. There exists a constant Cd such that:

jfa;b
l ðtÞjaCde

�ð=lþ<rÞt;

for =lb�h and all t A �d;y½ .

Proof. The lemma follows by extending [9, Lemma 7] to complex a; b.

See also [5] for a more general set-up. r

The polynomial estimates on jca;bð�lÞ�1j away from the poles given by

[15, Lemma 2.2] can also be extended to =lb�h.

The inversion formula for the Jacobi transform can be written as (with

mb 0, m > �<ðaG bþ 1Þ):

f ðtÞ ¼ 1

2p

ð
R

f̂f a;bðlþ imÞfa;b
lþimðtÞ

dl

ca;bð�l� imÞ ; ðt > 0Þ;ð4Þ

for f A Cy
c ðRÞeven, see [16, Theorem 2.2]. Using residual calculus we can

rewrite (4) as follows:

Theorem 2.3. Assume that a B �N. Let Da;b denote the finite set of

zeroes for ca;bð�lÞ with =lb 0. Let h ¼ 0 if Da;b VR ¼ fqg and otherwise

choose 0 < h <
1

2
such that ca;bðGlÞ0 0 for =l A ½�h; h�nf0g. Then:

f ðtÞ ¼ 1

4p

ð
R

f̂f a;bðlþ ihÞja;b
lþihðtÞ

ca;bð�l� ihÞca;bðlþ ihÞ dl�
X

n ADa; b

ikn Resl¼n

f̂f a;bðlÞja;b
l ðtÞ

ca;bð�lÞca;bðlÞ

( )
;

for f A Cy
c ðRÞeven, where kn :¼ 1=2 if n A iNUR, and kn :¼ 1 otherwise.

Proof. The set Da;b is determined by the poles of the G-functions of

(2). It follows that Da;b consists of those elements n0 0, with =nb 0, which

are of the form: n ¼ iðGb� a� 1� 2mÞ, m A NU f0g.
Let n A Da;b, that is, ca;bð�nÞ ¼ 0. Assume first that n B iN, then

ca;bðnÞ0 0 by the condition a B �N, and:

Resl¼n

f̂f a;bðlÞfa;b
l ðtÞ

ca;bð�lÞ

( )
¼ Resl¼n f̂f a;bðlÞ fa;b

l ðtÞ
ca;bð�lÞ þ

fa;b
�l ðtÞ

ca;bðlÞ

 !( )

¼ Resl¼n

f̂f a;bðlÞja;b
l ðtÞ

ca;bð�lÞca;bðlÞ

( )
;

by (3), since fa;b
�l ðtÞ=ca;bðlÞ is regular at l ¼ n.
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Now assume n A iNVDa;b. Then n is a zero for ca;bð�lÞ of order 1; a

double pole in the denominator of ca;bð�lÞ at n A iN would imply a A �N,

which we have excluded. The c-function ca;bðlÞ is regular and non-zero at

l ¼ n, as the poles arising from the G-functions in (2) cancel each other (we

have excluded the cases with double poles in the denominator). We also note

that fa;b
l ðtÞ is regular at l ¼ n.

Write n ¼ iðGb� a� 1� 2mÞ. Fix a and m, and define, for l in some

small neighbourhood of n, a continuous function bðlÞ by the condition:

l ¼ iðGbðlÞ � a� 1� 2mÞ. It follows that ca;bðlÞð�lÞ ¼ 0 and j
a;bðlÞ
l ðtÞ ¼

ca;bðlÞðlÞfa;bðlÞ
l ðtÞ, for l0 n, by (3), and bðnÞ ¼ b. Since liml!n

Gððl� nÞ=2Þ
GðlÞ ¼

2 for n A �NU f0g, it can be seen from (2), that liml!n c
a;bðlÞðlÞ ¼

2 liml!n c
a;bðlÞ, and thus, by continuity of the Jacobi functions in all the

variables:

Resl¼n

f̂f a;bðlÞfa;b
l ðtÞ

ca;bð�lÞ

( )
¼ 1

2
Resl¼n

f̂f a;bðlÞja;b
l ðtÞ

ca;bð�lÞca;bðlÞ

( )
;

since 2fa;b
n ðtÞ ¼ 2 liml!n f

a;bðlÞ
l ðtÞ ¼ 2 liml!n

j
a;bðlÞ
l ðtÞ

ca;bðlÞðlÞ ¼ liml!n

j
a;bðlÞ
l ðtÞ
ca;bðlÞ ¼

ja;b
n ðtÞ

ca;bðnÞ .

Now choose h as in the theorem. Using the estimates from Lemma 2.2,

polynomial estimates on ca;bðlÞ�1 and since f̂f a;b satisfies the usual Paley–

Wiener growth estimates, we can shift the contour toward the real axis, and (4)

becomes:

f ðtÞ ¼ 1

2p

ð
R

f̂f a;bðlþ ihÞfa;b
lþihðtÞ

dl

ca;bð�l� ihÞ þResidual terms

¼ 1

4p

ð
R

f̂f a;bðlþ ihÞfa;b
lþihðtÞ

dl

ca;bð�l� ihÞ

þ 1

4p

ð
R

f̂f a;bð�l� ihÞfa;b
�l�ihðtÞ

dl

ca;bðlþ ihÞ þResidual terms;

where we have moved half the integral across the real axis if Da;b VR0q and

made a sign change l 7! �l in the integral over the line =l ¼ �h. Since f̂f a;b

is even, we get our inversion formula from the identity (3). r

As a corollary we get injectivity of the Jacobi transform for nice functions:

Corollary 2.4. Let a; b A C, a B �N. Assume that f is an even mea-

surable function on R satisfying j f ðtÞjaCe�ajtj2 , t A R, for positive constants C

and a. Then f̂f a;b ¼ 0 implies f ¼ 0 almost everywhere.
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Proof. The very rapid decay implies that f A L1ðRþ; jDa;bðtÞjdtÞV
L2ðRþ; jDa;bðtÞjdtÞ and that f̂f a;bðlÞ defines an analytic function in l A C for all

a; b A C. Using (the proof of ) Theorem 2.3, we see that:ð
Rþ

f ðtÞhðtÞDa;bðtÞdt ¼ 1

2p

ð
Rþ

ð
R

f ðtÞĥha;bðlþ imÞfa;b
lþimðtÞ

dlDa;bðtÞdt
ca;bð�l� imÞ

¼ 1

4p

ð
R

ð
Rþ

f ðtÞja;b
lþihðtÞĝga;bðlþ ihÞ

ca;bð�l� ihÞca;bðlþ ihÞD
a;bðtÞdtdl

�
X

n ADa; b

ikn Resl¼n

Ð
Rþ

f ðtÞja;b
l ðtÞĥha;bðlÞDa;bðtÞdt

ca;bð�lÞca;bðlÞ

( )

¼ 1

4p

ð
R

f̂f a;bðlþ ihÞĥha;bðlþ ihÞ
ca;bð�l� ihÞca;bðlþ ihÞ dl

�
X

n ADa; b

ikn Resl¼n
f̂f a;bðlÞĥha;bðlÞ
ca;bð�lÞca;bðlÞ

( )
;

is identically zero for any h A Cy
c ðRÞeven, and we conclude that f is zero almost

everywhere. r

Remark 2.5. Theorem 2.3 and its proof was communicated to us by H.

Schlichtkrull. For a > �1, b A R (which implies h ¼ 0), it is due to [10,

Appendix 1] (a minor error has been corrected with the introduction of the

constant kn).

3. Hardy’s theorem for the Jacobi transform

Our approach to Hardy’s Theorem for the Jacobi transform is inspired

by [17] and [19], which in turn are heavily inspired by the Cowling–Price

approach. The following lemma from [6] is crucial:

Lemma 3.1. Let 1a q < y. Let Q ¼ seiy j s > 0; y A 0;
p

2

� �� �
. Sup-

pose that h is analytic on Q, continuous on the closure Q of Q, and that h satisfies

the following growth conditions:

jhðlÞjaCegj<lj
2

; l A Q and

ð
Rþ

jhðlÞjqdlaCq < y;

for positive constants C and g. Then
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ð hþ1

h

jhðseiyÞjdsaC maxfeg; ðhþ 1Þ1=qg;

for y A 0;
p

2

� �
and h A Rþ.

Lemma 3.2. Let 1a q < y. Assume that h is an entire function on C

such that:

jhðlÞjaCð1þ j=ljÞMegj<lj
2

; l A C and

ð
R

ðð1þ jljÞ�N jhðlÞjÞqdl < y;

for positive constants C; g;M and N. Then h is a polynomial with deg PaM

and deg P < N � 1.

Proof. The bounds on the degrees are obvious as soon as we have

proved that h is a polynomial. Define the function:

HðlÞ :¼ hðlÞ
ði þ lÞMþN

; l A Q:

The function H satisfies the conditions of the previous lemma, whence:

ð hþ1

h

jHðseiyÞjdsaC maxfeg; ðhþ 1Þ1=qg;

for y A 0;
p

2

� �
and h A Rþ, where C here and in the following denotes some

positive constant, and

ð hþ1

h

jhðseiyÞjdsaC maxfeg; ðhþ 1Þ1=qgðhþ 2ÞMþN ;

for y A 0;
p

2

� �
and h A Rþ. Applying the same procedure to H1ðlÞ :¼

hðlÞ=ði þ lÞN , H2ðlÞ :¼ hð�lÞ=ði þ lÞN and H3ðlÞ :¼ hð�lÞ=ði þ lÞN for l A Q,

implies that: ð hþ1

h

jhðseiyÞjdsaCðhþ 2ÞMþNþ1=q;

for y A ½0; 2p� and large h. Cauchy’s integral formula:
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hðnÞð0Þ ¼ n!

2p

ð2p
0

hðseiyÞðseiyÞ�n
dy;

yields the estimate:

jhðnÞð0Þja n!

ð hþ1

h

ð2p
0

jhðseiyÞjs�ndyds

a n!h�n

ð2p
0

ð hþ1

h

jhðseiyÞjdsdy

aCn!h�nðhþ 2ÞMþNþ1=q:

We conclude that hðnÞð0Þ ¼ 0 for n > M þN þ 1=q, that is, h is a polynomial.

r

In the following, we define: LyðR; jDa;bðtÞjdtÞ :¼ LyðRÞ, and otherwise

define L
pðR; jDa;bðtÞjdtÞ for 0 < p < y as usual.

Theorem 3.3. Let a; b A C, a B �N, and 1a pay, 1a qay. Assume

that f is an even measurable function on R satisfying:

ð1þ j � jÞ�M
eð1�2=pÞ<rj�jeaj�j

2

f A L
pðR; jDa;bðtÞjdtÞ

and ð1þ j � jÞ�N
ebj�j

2

f̂f a;b A LqðRÞ;

for positive constants M;N; a; b such that ab ¼ 1

4
. Then f̂f a;bðlÞ ¼ PðlÞe�bl2

for some polynomial P, with deg Paminfk þM þ 1;Ng, and deg P < N � 1 if

q < y.

For p ¼ y and q ¼ y, we can rewrite the above decay properties as

j f ðtÞjaCð1þ jtjÞMe�<rjtje�ajtj2 ; t A R

and j f̂f a;bðlÞjaCð1þ jljÞNe�bjlj2 ; l A R;

for some positive constant C.

Proof. Let f be an even measurable function satisfying the above

growth conditions. Then, as before, we have f A L1ðRþ; jDa;bðtÞjdtÞV
L2ðRþ; jDa;bðtÞjdtÞ and f̂f a;bðlÞ defines an analytic function in l A C for all

a; b A C.

Let first p < y. Using Lemma 2.1, we get the following estimates on

f̂f a;bðlÞ (for di¤erent positive constants C):
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j f̂f a;bðlÞjaC

ð
Rþ

j f ðtÞjð1þ jljÞkð1þ tÞeðj=lj�<rÞtjDa;bðtÞjdt

aCð1þ jljÞk
ð
Rþ

j f ðtÞjeat2eð1�2=pÞ<rtð1þ tÞej=ljte�at2eð2=p�2Þ<rtjDa;bðtÞjdt

aCð1þ jljÞk
ð
Rþ

ðð1þ tÞMþ1
ej=ljte�at2e�ð2=p 0Þ<rtÞp

0
jDa;bðtÞjdt

� �1=p 0

aCð1þ jljÞk
ð
Rþ

ð1þ tÞp
0ðMþ1Þ

ep
0j=ljte�p 0at2 dt

� �1=p 0

¼ Cð1þ jljÞkej=lj
2=4a

ð
Rþ

ð1þ tÞp
0ðMþ1Þ

e�p 0aðt�j=lj=2aÞ2 dt

� �1=p 0

¼ Cð1þ jljÞkej=lj
2=4a

ðy
�j=lj=2a

ð1þ tþ j=lj=2aÞp
0ðMþ1Þ

e�p 0at2 dt

 !1=p 0

aCð1þ jljÞkej=lj
2=4a

ð
R

ð1þ jtj þ j=lj=2aÞp
0ðMþ1Þ

e�p 0at2 dt

� �1=p 0

aCð1þ jljÞkþMþ1
ej=lj

2=4a

ð
R

ð1þ jtjÞp
0ðMþ1Þ

e�p 0at2 dt

� �1=p 0

aCð1þ jljÞkþMþ1
ej=lj

2=4a;

for l A C, using translation invariance of dt, the Hölder inequality (with

1

p
þ 1

p 0 ¼ 1) and the inequality j=lja jlj. For p ¼ y, we have:

j f̂f a;bðlÞjaC

ð
Rþ

e�at2e�<rtð1þ jljÞkð1þ tÞMþ1
eðj=lj�<rÞtjDa;bðtÞjdt

aCð1þ jljÞkej=lj
2=4a

ð
Rþ

ð1þ tÞMþ1
e�aðt�j=lj=2aÞ2 dt

¼ Cð1þ jljÞkej=lj
2=4a

ðy
�j=lj=2a

ð1þ tþ j=lj=2aÞMþ1
e�at2 dt

aCð1þ jljÞkþMþ1
ej=lj

2=4a;

for l A C.

Define gðlÞ :¼ f̂f a;bðlÞel2=4a ¼ f̂f a;bðlÞebl2

. Then g is an entire function,

and:

jgðlÞjaCð1þ jljÞkþMþ1
ebj<lj

2

aCð1þ j=ljÞkþMþ1
eb

0j<lj2 ;
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for some b 0 > b. Let q < y, then:ð
R

ðð1þ jljÞ�N jgðlÞjÞqdl ¼
ð
R

ðð1þ jljÞ�N
ebjlj

2

j f̂f a;bðlÞjÞqdl < y;

so Lemma 3.2 implies that g is a polynomial, with deg ga k þM þ 1 and

deg g < N � 1. Let now q ¼ y, then:

jgðlÞjaCð1þ jljÞN ; l A R;

which implies that g is a polynomial, with deg gaminfk þM þ 1;Ng. We

conclude the result since f̂f a;bðlÞ ¼ gðlÞe�bl2 . r

As a corollary of Theorem 3.3, we get a L
p
version of Hardy’s Uncertainty

Theorem for the Jacobi transform, see also [3, Theorem 2.3] for a di¤erent

approach:

Corollary 3.4. Let a; b A C, a B �N, and 1a pay, 1a q < y.

Assume that f is an even measurable function on R satisfies:

eaj�j
2

eð1�2=pÞ<rj�jf A L
pðR; jDa;bðtÞjdtÞ and ebj�j

2

f̂f a;b A LqðRÞ;

for positive constants a; b such that abb
1

4
. Then f ¼ 0 almost everywhere.

Proof. It su‰ces to prove the theorem for ab ¼ 1

4
. Put M ¼ N ¼ 1,

then the function f above satisfy the decay conditions in Theorem 3.3, whence

f̂f a;bðlÞ ¼ 0 as deg P < 0, and f ¼ 0 by Corollary 2.4. r

Let b > 0. Inspired by the (definition of ) the Heat kernel, we define the

function ha;b
b as the inverse of e�bðl2þr2Þ, that is, by the inversion formula (4):

h
a;b
b ðtÞ :¼ 1

2p

ð
R

e�bððlþimÞ2þr2Þfa;b
lþimðtÞ

dl

ca;bð�l� imÞ ; ðt > 0Þ:

Using residual calculus as before, it can be seen that ha;b
b extends to an even

Cy function on R. The function h
a;b
b is for certain half integers a; b exactly

the heat kernel (with index b) for some Riemannian symmetric space of rank 1,

see [16, § 3] for details. We finally sketch a proof of the very important fact

that
d
ha;b
bh
a;b
b

a;bðlÞ ¼ e�bðl2þr2Þð�Þ:
The application ða; bÞ 7! d

h
a;b
bh
a;b
b

a;bðlÞ is an entire function in a and b. Fol-

lowing [15, § 4] we can show that ð�Þ holds for <a > � 1

2
and j<bj < <ðaþ 1Þ

(writing the Jacobi transform as a composition of the ‘‘Abel’’ transform and the

cosine transform). Then ð�Þ holds for all a; b by holomorphy. Note that we

also have used the growth estimates deduced below.
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As for the Heat kernel, we can prove nice growth estimates for h
a;b
b : Fix

d > 0. Using Lemma 2.2 we get, for tb d:

h
a;b
b ðtÞ ¼ 1

2p

Xy
n¼0

e�ntþbm2�br2�mt�rt

ð
R

e�bl2e�2ibmleilt
G a;b
n ðlþ imÞ

ca;bð�l� imÞ dl

¼ 1

2p

Xy
n¼0

e�ntþbm2�br2�mt�rt�t2=4b

ð
R

e�bðl�it=2bÞ2e�2ibml G a;b
n ðlþ imÞ

ca;bð�l� imÞ dl

¼ 1

2p

Xy
n¼0

e�ntþbm2�br2�mt�rt�t2=4b

�
ð
R

e�bl2e�2ibmðlþit=2bÞ G a;b
n ðlþ imþ it=2bÞ

ca;bð�l� im� it=2bÞ dl

¼ 1

2p

Xy
n¼0

e�ntþbm2�br2�rt�t2=4b

ð
R

e�bl2

e�2ibml G a;b
n ðlþ imþ it=2bÞ

ca;bð�l� im� it=2bÞ dl:

We have the following estimates of the c-function:

jca;bð�l� im� it=2bÞj�1
aCð1þ jlþ imþ it=2bjÞaþ1=2

aCð1þ jljÞaþ1=2ð1þ t=2bÞaþ1=2;

for some positive constant C. Together with the estimates of G a;b
n ðlÞ from

Lemma 2.2, we thus have, for some positive constant C:

jha;b
b ðtÞjaCð1þ tÞaþ1=2

e�<rt�t2=4b;ð5Þ

for t A Rþ. We actually have the following sharp estimate for a; 2b A NU f0g
and ab b:

ha;b
b ðtÞ � b�3=2ð1þ tÞð1þ ð1þ tÞ=bÞa�1=2

e�rt�br2�t2=4b;

for tb 0, see [4, Theorem 5.9].

Let a ¼ 1=4b. Then:ð
R

ðð1þ tÞ�M
eð1�2=pÞ<rteat

2

h
a;b
b ðtÞÞpjDa;bðtÞjdt < y;

if M > <aþ 1

2
þ 1

p
. Putting all the above together, we can formulate Hardy’s

theorem for the Jacobi transform:

Theorem 3.5. Let a; b A C, a B �N, and 1a pay, 1a qay. Let

1 < Na 2 if q < y and 0aN < 1 if q ¼ y. Assume that f is an even

measurable function on R satisfying:
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ð1þ j � jÞ�M
eð1�2=pÞ<rj�jeaj�j

2

f A L
pðR; jDa;bðtÞjdtÞ

and ð1þ j � jÞ�N
ebj�j

2

f̂f a;b A LqðRÞ;

with M a positive constant such that M > <aþ 1

2
þ 1

p
, and ab ¼ 1

4
for positive

a; b. Then f ¼ f̂f a;bðirÞha;b
b .

Proof. Theorem 3.3 implies that f̂f a;b ¼ const: ĥh
a;b
b , so f ¼ const: h

a;b
b by

Corollary 2.4. We finally note that f̂f a;bðGirÞ ¼
Ð
Rþ

f ðtÞDa;bðtÞdt. r

For p ¼ y, it is easily seen that the decay condition on f can be

reformulated as:

j f ðtÞjaCð1þ jtjÞMe�<rjtje�ajtj2 ; t A R;

for a non-negative constant M such that Mb<aþ 1

2
, and Theorem 1.1 in the

introduction follows with N ¼ 0.

For completeness, we finally consider the ab >
1

4
and ab <

1

4
cases:

Corollary 3.6. Let 1a pay, 1a qay. Assume that f is an even

measurable function on R satisfying:

eaj�j
2

f A L
pðR; jDa;bðtÞjdtÞ and ebj�j

2

f̂f a;b A LqðRÞ;

for positive constants a and b. If

(1) ab >
1

4
, then f ¼ 0.

(2) ab <
1

4
, then there are infinitely many linearly independent solutions.

Proof. Let ab >
1

4
. Choose 0 < a 0 < a and 0 < b 0 < b such that

a 0b 0 ¼ 1

4
. Then f satisfy the conditions in Theorem 3.3 with a; b replaced with

a 0; b 0, whence f̂f a;bðlÞ ¼ PðlÞhb 0 ðlÞ for some polynomial P. But Phb 0 does not

satisfy ð1þ j � jÞ�N
ebj�j

2

Phb 0 A LqðRÞ, that is, f̂f a;b ¼ 0 almost everywhere and

f ¼ 0 by Corollary 2.4.

Let ab <
1

4
. Choose any b 0 > b such that ab 0 <

1

4
still holds. It follows

that hb 0 satisfies the above conditions. r

The p ¼ q ¼ y, ab >
1

4
case is Hardy’s Uncertainty Principle for the

Jacobi transform, see also [2, Theorem 2.3] for a di¤erent proof.
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4. The Fourier transform on real hyperbolic spaces

Let mb 1 and nb 2 be two integers and consider the bilinear form h� ; �i
on Rmþn given by

hx; yi ¼ x1y1 þ � � � þ xmym � xmþ1ymþ1 � � � � � xmþn ymþn; x; y A Rmþn:

Let G ¼ SOoðm; nÞ denote the connected group of ðmþ nÞ � ðmþ nÞ matrices

preserving h� ; �i and let H ¼ SOoðm� 1; nÞHG denote the isotropy sub-

group of the point ð1; 0; . . . ; 0Þ A Rmþn. Let K ¼ SOðmÞ � SOðnÞHG be the

(maximal compact) subgroup of elements fixed by the classical Cartan involu-

tion on G: yðgÞ ¼ ðg�Þ�1.

The space X :¼ G=H is a semisimple symmetric space (an involution t of

G fixing H is given by tðgÞ ¼ JgJ, where J is the diagonal matrix with entries

ð1;�1; . . . ;�1Þ). The map g 7! g � ð1; 0; . . . ; 0Þ induces an embedding of X in

Rmþn as the hypersurface (with x1 > 0 if m ¼ 1):

X ¼ fx A Rmþn j hx; xi ¼ 1g:

Let Y :¼ Sm�1 � Sn�1. We introduce spherical coordinates on X as:

xðt; yÞ ¼ ðv coshðtÞ;w sinhðtÞÞ; t A Rþ; y ¼ ðv;wÞ A Y:

The map is injective, continuous and maps onto a dense subset of X. The (K-

invariant) metric distance from x A X to the origin is given by jxj ¼ jxðt; yÞj ¼
jtj.

The unique (up to a constant) G-invariant measure on X is in spherical

coordinates given by:ð
X

f ðxÞdx ¼
ð
Rþ�Y

f ðxðt; yÞÞJðtÞdtdy;

see [12, Part II, Example 2.3], where JðtÞ ¼ coshm�1ðtÞ sinhn�1ðtÞ is the Jacobian,
dt the Lebesgue measure on R and dy an invariant measure on Y, normalised

such that
Ð
Y
1 dy ¼ 1.

The action of SOðmÞ on CyðSm�1Þ decomposes into irreducible repre-

sentations Hr of spherical harmonics of degree jrj, see [13, Introduction],

characterised as the eigenfunctions of the Laplace–Beltrami operator Dm on

Sm�1 with eigenvalue �rðrþm� 2Þ. Here r ¼ 0 if m ¼ 1, r A Z for m ¼ 2 and

r A NU f0g for m > 2.

Let H r; s ¼ H r nH s and denote the representation of K on Hr; s by

dr; s. Let dr; s ¼ dim Hr; s and wr; s denote the dimension and the character of

dr; s. A function in L2ðXÞ is said to be of K-type ðr; sÞ if its translations under

the left regular action of K span a vector space which is equivalent to Hr; s as

a K-module. We write L2ðXÞr; s for the collection of functions of K-type

ðr; sÞ. The projection P r; s of L2ðXÞ onto L2ðXÞr; s is given by:
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Pr; s f ðxÞ ¼ dr; s

ð
K

wr; sðk�1Þ f ðk � xÞdk; f A L2ðXÞ;

for x A X, see [13, Chapter V, § 3] and [14, Chapter III, § 5]. There are similar

definitions and results for functions in L2ðYÞ and also for functions in CyðXÞ
and CyðYÞ.

The algebra of left-G-invariant di¤erential operators on X is generated by

the Laplace–Beltrami operator DX, see [12, Part II, Example 4.1], which in

spherical coordinates is given by:

DX f ¼ 1

JðtÞ
q

qt
JðtÞ qf

qt

� �
� 1

cosh2ðtÞ
Dm f þ 1

sinh2ðtÞ
Dn f ; f A CyðXÞ;

see [20, p. 455]. It reduces to a di¤erential operator Dr; s
X in the t-variable when

acting on functions of K-type ðr; sÞ:

Dr; s
X f ¼DX f ¼

1

JðtÞ
q

qt
JðtÞ qf

qt

� �
þ rðrþm� 2Þ

cosh2ðtÞ
f � sðsþ n� 2Þ

sinh2ðtÞ
f ; f ACyðXÞr; s:

Consider the di¤erential equation:

DX f ¼ D r; s
X f ¼ ðl2 � r2Þ f ; f A CyðXÞr; s;ð6Þ

where r ¼ 1

2
ðmþ n� 2Þ. Altering the proof of [14, Chapter I, Proposition 2.7]

to fit our setup, we see that we can write any function f A CyðXÞ r; s in spherical

coordinates as:

f ðxðt; yÞÞ ¼
X
i

fiðtÞfr; s
i ðyÞ;ð7Þ

where ffr; s
i g ¼ ff r n f sgi is a (finite) basis for H r; s, and fi is a function

of the form fiðtÞ ¼ tjsjfi;oðtÞ, with fi;o even. Let x ¼ �sinh2ðtÞ and g ¼
ð1� xÞ�jrj=2ð�xÞ�jsj=2

fi. Then g is a solution to the hypergeometric di¤er-

ential equation with parameters 1=2ðlþ rþ jrj þ jsjÞ, 1=2ð�lþ rþ jrj þ jsjÞ
and q=2þ jsj. Let Fr; s

o ðl; �Þ denote the regular (for generic l) solution to

this hypergeometric di¤erential equation satisfying the asymptotic condition

Fr; s
o ðl; tÞ@ eðl�rÞt for t ! y (for <l > 0 and when defined), then

Fr; s
o ðl; tÞ ¼ 2l�r�jrj�jsj coshjrjðtÞ sinhjsjðtÞ

�
G

1

2
ðlþ rþ jrj þ jsjÞ

� �
G

1

2
ðl� rþ n� jrj þ jsjÞ

� �
GðlÞG n

2
þ jsj

� �

� 2F1
1

2
ðlþ rþ jrj þ jsjÞ; 1

2
ð�lþ rþ jrj þ jsjÞ; n

2
þ jsj;�sinh2ðtÞ

� �
;
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for <l > 0, see [1, pp. 72 and 76]. We also note that the function xðt; yÞ 7!
Fr; s
o ðl; tÞfðyÞ extends to a solution of (6) on X for any f A Hr; s.

Let " A f0; 1g and define Cy
" ðYÞ :¼ ff A CyðYÞ j fð�yÞ ¼ ð�1Þ"fðyÞg.

The Poisson transform, F";l : C
y
" ðYÞ ! CyðXÞ, is defined as:

F"; lfðxÞ ¼
ð
Y

jhx; yijð�l�rÞ sign"hx; yifðyÞdy; f A Cy
" ðYÞ;ð8Þ

when �<lb r.

Lemma 4.1. Let f A Cy
" ðYÞ. The (meromorphic extension of the) func-

tion F"; lf is an eigenfunction of the Laplace–Beltrami operator DX with eigen-

value l2 � r2 (when defined), i.e.,:

DXF";lf ¼ ðl2 � r2ÞF";lf:

The asymptotic behaviour of F";lf for t ! y is given by (when defined):

F"; lfðxðt; yÞÞ@ eðl�rÞtcð"; lÞfðyÞ;

for <l > 0, where cð"; lÞ is the so-called c-function for X given by:

cð"; lÞ ¼
22r�1G

m

2

� �
G

n

2

� �
p

GðlÞ
Gðlþ rÞ

tan
p

2
ðlþ rþ "Þ

� �
if m is even

1 if m is odd:

8><>:ð9Þ

Proof. The function F";lf extends meromorphically to C by distribu-

tion theory, see [20, Lemma 5(a)]. Di¤erentiating under the integral sign for

<ðlþ rÞ very negative and then using meromorphic continuation shows that

it is an eigenfunction of the Laplace–Beltrami operator DX with eigenvalue

l2 � r2. The asymptotic behaviour is computed in [20, Appendix A], see also

[20, Lemma 4 and Lemma 5]. r

Let f A Hr; s. Using Schur’s Lemma and properties of the Poisson trans-

form, see [1, pp. 74–76] for details, it can be seen that (with "1 rþ s mod 2):

F";lfðxðt; yÞÞ ¼ cð"; lÞFr; s
o ðl; tÞfðyÞ ¼ Fr; sðl; tÞfðyÞ; ððt; yÞ A R� YÞ;ð10Þ

where Fr; sðl; �Þ :¼ cð"; lÞFr; s
o ðl; �Þ.

We define the Fourier transform Ff of any function f A Cy
c ðXÞ as:

Ff ð"; l; yÞ :¼
ð
X

jhx; yijðl�rÞ sign"hx; yi f ðxÞdx;ð11Þ

for " A f0; 1g, <lb r and y A Y. Let now f A Cy
c ðXÞr; s for some fixed K-

type ðr; sÞ. Using spherical coordinates and (10), we can (re)write the Fourier

transform of f as:
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Ff ð"; l; yÞ ¼
ð
Rþ

Fr; sð�l; tÞ f ðxðt; yÞÞJðtÞdt:

We see that Ff ð"; l; yÞ extends to a meromorphic function in the l-variable,

with zeros and poles completely determined by the above expressions of Fr; s
o

and (9).

We first consider the Riemannian case, that is m ¼ 1 ð)r ¼ 0Þ. We note

that hx; yi > 0 for all x A X, y A Y. The Fourier transform (11) is thus the

Helgason–Fourier transform on SOoð1; nÞ=SOoðnÞ, see [14, Chapter 3], and we

can formulate Hardy’s theorem in this case as follows:

Theorem 4.2. Let 1a pay, 1a qay. Let 1 < Na 2 if q < y
and 0aN < 1 if q ¼ y. Assume that f is a measurable function on X ¼
SOoð1; nÞ=SOoðnÞ satisfying:

ð1þ j � jÞ�M
eð1�2=pÞrj�jeaj�j

2

f A L
pðXÞ and ð1þ j � jÞ�N

ebj�j
2

Ff A LqðiR� YÞ;

for positive constants M; a; b, with M > rþ 1

p
, and ab ¼ 1

4
. Then f is a con-

stant multiple of the Heat kernel hb ¼ h
n=2�1;�1=2
b on X, i.e., f is in particular a

spherical (bi-K-invariant) function.

Proof. Let f be a measurable function satisfying the above growth

conditions, whence as before f A L1ðXÞVL2ðXÞ, and we see that the Fourier

transform Ff is well-defined.

Define ~rr ¼ rþ jsj, a ¼ jsjþ n

2
� 1 and b ¼ � 1

2
(i.e., ~rr ¼ aþ bþ 1), then

(modulo constants):

F0; sðl; tÞ ¼ sinhjsjðtÞGðlþ rþ jsjÞ
Gðlþ rÞ ja;b

�ilðtÞ ¼ sinhjsjðtÞPsðlÞja;b
�ilðtÞ;

where PsðlÞ :¼ ðl þ rÞðl þ r þ 1Þ . . . ðl þ r þ jsj � 1Þ. Let f0; sðt; yÞ :¼
P0; sf ðxðt; yÞÞ=sinhjsjðtÞ. By (7) and continuity of the projection P0; s we see

that f0; s is a measurable function on R� Y, even in the t-variable. With these

identifications, we get:

f̂f a;b
0; s ðil; yÞ :¼

ð
Rþ

f0; sðt; yÞja;b
il ðtÞDa;bðtÞdt ¼ PsðlÞ�1FP0; sf ðl; yÞ:

We note that f̂f a;b
r; s ðl; yÞ is well-defined for all l A C. Using spherical coor-

dinates and the definition of P0; s, we get the following estimates of f0; s and

f̂f
a;b
0; s :

ð1þ j � jÞ�M
eð1�2=pÞ~rrj�jeaj�j

2

f0; sð� ; yÞ A L
pðR; jDa;bðtÞjdtÞ

and jPsði �Þjð1þ j � jÞ�N
ebj�j

2

f̂f
a;b
0; s ð� ; yÞ A LqðRÞ;
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for y A Y. It follows from (the proof of ) Theorem 3.3 (and Lemma 3.2), that

f̂f a;b
0;0 ðl; yÞ ¼ const: e�bl2

and that f̂f a;b
0; s ¼ 0 for s0 0. We conclude that Ff ¼

FP0;0f and thus f ¼ P0;0f , that is, f is a spherical (bi-K-invariant) function

and Ff ¼ const: Fhb, implying that f ¼ const: hb. r

The above theorem has for general Riemannian symmetric spaces of

the non-compact type been proved in [19] for the p ¼ q ¼ y case and in [18]

for the p; q < y case. Note however that our proof is di¤erent, in par-

ticular the conclusion that the contribution from the K-types ð0; sÞ is zero

for s0 0. Let us sketch their argument for this: It follows from (8) and

(10) that jF0; sðl; tÞjaF0;0ð<l; tÞ, for all s, whence also jFP0; sf ðl; yÞja
jFP0;0f ð<l; yÞj. Assume that f and Ff satisfy the natural decay conditions.

Arguing as in the proof of theorem 3.3, it follows that FP0; sf ðl; yÞ ¼
f0; sðyÞe�bl2 , for some function f0; s on Y. But F0; sð�r; tÞ ¼ 0 since F�rfðxÞ ¼Ð
Y
fðyÞdy ¼ 0 for f A H0; s, s0 0, and we conclude that FP0; sf ¼ 0 for s0 0.

We now turn to the pseudo-Riemannian case, that is, m > 1. It is

in this case more convenient to consider a normalised Fourier transform:

Fo f ð"; l; yÞ :¼ cð";�lÞ�1Ff ð"; l; yÞ; in particular:

Fo f ð"; l; yÞ ¼
ð
Rþ

Fr; s
o ð�l; tÞ f ðxðt; yÞÞJðtÞdt;

for f A Cy
c ðXÞr; s.

It is remarkable that the decay conditions in the Riemannian case force

the function f to be spherical (bi-K-invariant). More so, because this is not

the case in the pseudo-Riemannian case. In fact, we will show that there are

infinitely (albeit countably) many linearly independent non-zero functions f on

X satisfying the natural decay conditions with ab ¼ 1

4
, namely the pseudo-Heat

kernels defined below: Let a ¼ n

2
� 1 and b ¼ jrj þm

2
� 1 and define the

pseudo-Heat kernel hr;0
b ðfÞ with index ðr; 0Þ on X by:

h
r;0
b ðfÞðxðt; yÞÞ :¼ coshjrjðtÞha;b

b ðtÞfðyÞ; ððt; yÞ A Rþ � YÞ;

for any f A Hr;0. It can be seen that h
r;0
b ðfÞ defines a function in CyðXÞr;0,

see [1, p. 71], and (5) yields the following estimates:

jhr;0
b ðfÞðxðt; yÞÞjaCð1þ tÞð1=2Þðn�1Þ

e�rt�t2=4bjfðyÞj;ð12Þ

for all ðt; yÞ A Rþ � Y, where C > 0 is a positive constant.

Theorem 4.3. Let mb 2. Let 1a pay, 1a qay. Let
1

2
ðnþ 1Þ <

Na
1

2
ðnþ 3Þ if q < y and

1

2
ðn� 1ÞaN <

1

2
ðnþ 1Þ if q ¼ y. Assume that

f is a measurable function on X satisfying:
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ð1þ j � jÞ�M
eð1�2=pÞrj�jeaj�j

2

f A L
pðXÞ

and ð1þ j � jÞ�N
ebj�j

2

Fo f A Lqðf0; 1g � iR� YÞ;

for positive constants M; a; b, with M >
1

2
ðn� 1Þ þ 1

p
, and ab ¼ 1

4
. Then f ¼P

r P
r;0f . The pseudo-Heat kernels hr;0

b ðfÞ satisfy the above decay conditions

for any r and any f A Hr;0.

Proof. Let f be a measurable function satisfying the above growth

conditions, then f A L1ðXÞVL2ðXÞ and the Fourier transform Ff is well-

defined.

Define ~rr ¼ rþ jrj þ jsj, a ¼ jsj þ n

2
� 1 and b ¼ jrj þm

2
� 1 (i.e.,

~rr ¼ aþ bþ 1), then:

Fr; s
o ðl; tÞ ¼ 2l�~rr coshjrjðtÞ sinhjsjðtÞ

G
1

2
ðlþ ~rrÞ

� �
G

1

2
ðl� ~rrþ nþ 2jsjÞ

� �
G

n

2
þ jsj

� �
GðlÞ

ja;b
�ilðtÞ:

Let fr; sðt; yÞ :¼ P r; sf ðxðt; yÞÞ=coshjrjðtÞ sinhjsjðtÞ. By (7) and continuity of the

projection P r; s, we see that fr; s is a measurable function on R� Y, even in the

t-variable. Let also

Qr; sðlÞ :¼ 2l�3~rr

G
1

2
ðlþ ~rrÞ

� �
G

1

2
ðl� ~rrþ nþ 2jsjÞ

� �
G

n

2
þ jsj

� �
GðlÞ

:

We note that jQr; sðilÞj@ const: jljjsjþð1=2Þðn�1Þ for jlj ! y, see [8, 1.18(6)].

From the above we can write:

f̂f a;b
r; s ðil; yÞ :¼

ð
Rþ

fr; sðt; yÞja;b
il ðtÞDa;bðtÞdt ¼ Qr; sðlÞ�1FoP

r; sf ð"; l; yÞ:

We note that f̂f a;b
r; s ðl; yÞ is well-defined for all l A C. Using spherical coor-

dinates and the definition of Pr; s, we get the following estimates of fr; s and

f̂f a;b
r; s :

ð1þ j � jÞ�M
eð1�2=pÞ~rrj�jeaj�j

2

fr; sð� ; yÞ A L
pðR; jDa;bðtÞjdtÞ

and jQr; sði �Þjð1þ j � jÞ�N
ebj�j

2

f̂f a;b
r; s ð� ; yÞ A LqðRÞ;

for y A Y. It follows from (the proof of ) Theorem 3.3 (and Lemma 3.2), that

f̂f
a;b
r;0 ðl; yÞ ¼ const: e�bl2

for y A Y, and that f̂f a;b
r; s ¼ 0 for s0 0.
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We finally note that Foh
r;0
b ðfÞð"; l; yÞ ¼ Qr;0ðlÞe�bð�l2þðrþjrjÞ2ÞfðyÞ, which

together with the estimates (12) show that the pseudo-Heat kernels hr;0
b ðfÞ

satisfy the decay conditions. r

In other words, we cannot generalise the main part of Hardy’s theorem,

the ab ¼ 1

4
case, to pseudo-Riemannian symmetric spaces: there is not a unique

(modulo constants) function satisfying the natural decay conditions—unless we

fix the index r in the K-types ðr; 0Þ.
For completeness, we state Hardy’s Uncertainty Principle, and its L

p

versions, for the Fourier transform on X, see also [2, Theorem 3.2] and [3,

Theorem 3.2] for other proofs.

Corollary 4.4. Let 1a pay, 1a qay. Assume that f is a mea-

surable function on X satisfying:

eð1�2=pÞrj�jeaj�j
2

f A L
pðXÞ and ebj�j

2

Fo f A Lqðf0; 1g � iR� YÞ;

for positive constants a and b. If

(1) ab >
1

4
, then f ¼ 0.

(2) ab ¼ 1

4
and q < y, then f ¼ 0.

(3) ab <
1

4
, then there are infinitely many linearly independent solutions.

Proof. Follows as above from the similar results (or their proofs) for the

Jacobi transform. r

5. Remarks and further results

It is well-known that SOoð2; 2Þ=SOoð1; 2ÞFSLð2;RÞFSUð1; 1Þ. We

established in [1, Chapter 5] a link between the Fourier transform on

SOoð2; 2Þ=SOoð1; 2Þ and the group Fourier transform on SLð2;RÞ, and this

allows us to transfer the results in § 4 to SLð2;RÞ. A function f of K-type

ðr; 0Þ on SOoð2; 2Þ=SOoð1; 2Þ corresponds to a spherical function f of type

ðr; rÞ on SLð2;RÞ, i.e., f ðk1xk2Þ ¼ erðk1Þ f ðxÞerðk2Þ, for all k1; k2 A SOð2Þ, x A
SLð2;RÞ, where the er’s are the usual characters on SOð2Þ. So, in the SLð2;RÞ
picture, the condition s ¼ 0 implies that a function f on SLð2;RÞ has the same

K-dependence from the left and from the right.

Let us consider the group G ¼ SUð1; 1Þ in more detail. We use [16, § 4.3]

as reference. Let G ¼ KAN denote an Iwasawa decomposition of G, where in

particular:

Nils Byrial Andersen248



K ¼ uy ¼
eiy=2 0

0 e�iy=2

� �
j y A ½0; 4p½

� �
and

A ¼ at ¼
coshðtÞ sinhðtÞ
sinhðtÞ coshðtÞ

� �
j t A R

� �
:

Let also M ¼ fGIg. The irreducible representations K̂KFZ=2 of K are given

by: drðuyÞ ¼ eiry, and M̂MF 0;
1

2

� �
in the same identification. The principal

series representation ðpx;l;Hx;lÞ, l A C, x A 0;
1

2

� �
, of G is induced by the

representation matn 7! e�iltdxðmÞ of MAN. Let fergr AZþx be an orthonormal

basis of Hx;l with erðuyÞ ¼ eiry. The matrix coe‰cients px;l; r; sðxÞ ¼

hpx;lðxÞes; eri, x A G, x A 0;
1

2

� �
, r; s A Zþ x, of the principal series repre-

sentation of G can be written in terms of Jacobi functions as:

px;l; r; sðatÞ ¼ Pjr�sjðlÞ sinhjr�sjðtÞ coshrþsðtÞjjr�sj; rþs

l ðtÞ;

where Pjr�sj is a polynomial of degree jr� sj, with P0 ¼ 1. This explicit

expression of the matrix coe‰cients on G yields another path to ‘‘Hardy’s

theorem’’ for SUð1; 1ÞFSLð2;RÞ. We note in particular that the matrix

coe‰cients:

px;l; r; rðatÞ ¼ cosh2rðtÞj0;2r
l ðtÞ;

for t A Rþ, satisfy the ‘‘same’’ growth estimates and that they do not have any

zeroes.

The Fourier transform FG is defined as:

FG f ðpx;lÞ :¼
ð
G

f ðxÞpx;lðxÞdx;

for a nice function f on G. Let now f be an even function on R and

define a spherical function f r of type ðr; rÞ on G by: f rðuy1atuy2Þ :¼
cosh2rðtÞ f ðtÞeirðy1þy2Þ. Using the Cartan decomposition of G, we compute the

matrix coe‰cients of FG f rrðpx;lÞ:

hFG f rðpx;lÞer; eri ¼
ð
R

f rðatÞhpx;lðatÞer; eri sinhðtÞ coshðtÞdt

¼
ð
R

f rðatÞ cosh2rðtÞj0;2r
l ðtÞ sinhðtÞ coshðtÞdt

¼
ð
R

f ðtÞj0;2r
l ðtÞ sinhðtÞ cosh4rþ1ðtÞdt ¼ 2ð�4r�1Þ f̂f 0;2rðlÞ:
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Consider in particular the functions hr
bðuy1atuy2Þ :¼ cosh2rðtÞh0;2rb ðtÞeirðy1þy2Þ,

for r A Z=2, then hFGh
r
bðpx;lÞer; eri ¼ ce�bl2 and jhr

bðuy1atuy2ÞjaCð1þ tÞ1=2�
e�t�t2=4b, for positive constants c and C.

Let F be either C or H and let x 7! x be the standard (anti)-involution of

F. Let m and n be two positive integers and let ½ ; � be the Hermitian form on

Fmþn given by

½x; y� ¼ x1 y1 þ � � � þ xmym � xmþ1 ymþ1 � � � � � xmþn ymþn;

for x; y A Fmþn. Let G ¼ Uðm; n;FÞ denote the group of all ðmþ nÞ � ðmþ nÞ
matrices over F preserving ½ ; �. Thus Uðm; n;CÞ ¼ Uðm; nÞ and Uðm; n;HÞ ¼
Spðm; nÞ in standard notation. Let H be the subgroup of G stabilising the line

Fð1; 0; . . . ; 0Þ in Fmþn. We can identify H with Uð1; 0;FÞ �Uðm� 1; n;FÞ and
the homogeneous space G=H (which is a reductive symmetric space) with the

projective image of the space fz A Fmþn j ½z; z� ¼ 1g. The statement and proofs

in the previous chapter also hold for the Fourier transform on G=H. This

is seen either by embedding G=H into SOoðdm; dnÞ=SOoðdm� 1; dnÞ, with d ¼
dimR F, or again by expressing the Fourier transform of K-finite functions

using modified Jacobi functions. See [1, p. 117] for more details.
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