Longitudinal slope and Dehn fillings

Daniel Matignon and Nabil Sayari
(Received March 18, 2002)
(Revised September 10, 2002)

Abstract

Let M be an irreducible 3-manifold with an incompressible torus boundary T, and γ a slope on T, which bounds an incompressible surface, with genus g say. We assume that there exists a slope r that produces an essential 2 -sphere by Dehn filling. Let q be the minimal geometric intersection number between the essential 2 -sphere and the core of the Dehn filling. Then, we show that $q=2$ or the minimal geometric intersection number between γ and r is bounded by $2 g-1$.

In the special case that M is the exterior of a non-cable knot K in S^{3}, we show that $q \geq 6$ and $|r| \leq 2 g-1$, where g is the genus of the knot K. We get also similar and simpler results for the projective slopes. These imply immediately a known result that the cabling and $\mathbf{R} P^{3}$ conjectures are true for genus one knots.

1. Introduction

All 3-manifolds are assumed to be compact and orientable. Let M be a 3-manifold, with a torus T as boundary. A slope r on T is the isotopy class of an unoriented essential simple closed curve on T. The slopes are parametrized by $\mathbf{Q} \cup\{\infty\}$ (for more details, see [25]).

A Dehn filling on M is to glue a solid torus $V=S^{1} \times D^{2}$ to M along T. We call it an r-Dehn filling when the attaching homeomorphism sends a meridian curve of ∂V to the slope r on T. We denote by $M(r)$ the resulting 3manifold after the r-Dehn filling.

A 3-manifold is reducible if it contains an essential 2-sphere, that is, a 2sphere which does not bound a 3-ball; otherwise it is an irreducible 3-manifold. A slope r in T is said to be a reducing slope if M is irreducible and $M(r)$ is reducible (that means that r produces an essential 2 -sphere).

Similarly, a projective slope is a slope p that produces a projective plane by Dehn filling. This means that M does not contain a projective plane but $M(p)$ contains a projective plane.

Many papers focus on projective or reducing slopes:
i) There exist at most three reducing slopes (see [15, 19]) and three projective slopes (see [22, 28]);

[^0]ii) M is not necessarily cabled, because there exists an infinite family of hyperbolic manifolds, which admit two reducing slopes (see [20]) and many of them are also projective slopes;
iii) When M is the exterior of a knot in S^{3}, reducing slopes (see [13]) and projective slopes (see the proof of Corollary 1.4 below) are integers; and there is at most one projective slope (see [22, 28]).

A slope γ on T is called a longitudinal slope if there exists an orientable surface F properly embedded in M, whose boundary is a loop having slope γ. In fact, for any such (M, T) there is at most one longitudinal slope (see [21, Lemma 8.1]).

Then the genus of γ is defined to be the minimal genus of such F.
Recall that the distance between two distinct slopes α and β is their minimal geometrical intersection number, denoted by $\Delta(\alpha, \beta)$.

The main result of this paper is the following:
THEOREM 1.1. Let M be an irreducible 3-manifold with a torus T as boundary. Assume that M is not a solid torus. Let γ be a longitudinal slope, and g the genus of γ.
i) If there exists a reducing slope r, then $\Delta(r, \gamma) \leq 2 g-1$ or $q=2$, where q is the minimal geometric intersection number between essential 2-spheres in $M(r)$ and the core of the r-Dehn filling.
ii) If there exists a projective slope p which is not a reducing slope, then $\Delta(p, \gamma) \leq 2 g-1$.

Corollary 1.2. If M is hyperbolic and θ is a reducing or projective slope, then $\Delta(\gamma, \theta) \leq 2 g-1$.

Proof. Assume that θ is a reducing slope. Recall that q is the minimal geometric intersection number between essential 2-spheres in $M(r)$ and the core of the r-Dehn filling.

If $q=2$ then M contains an essential annulus, so M is Seifert fibered or toroidal.

Note that the examples of infinite family of irreducible manifolds M, which admit two distinct reducing slopes (see [6, 20] for more details) are hyperbolic manifolds.

We consider now the case that M is the exterior $E(K)$ of a non-trivial knot in S^{3}. An r-Dehn surgery on K is an r-Dehn filling on $E(K)$. Concerning the existence of reducing or projective slopes, we have two famous following conjectures:

The Cabling Conjecture (González-Acuña and Short [8]).
If a Dehn surgery on a non-trivial knot in S^{3} produces a reducible manifold, then K is a cable knot.

The R P^{3} Conjecture (Gordon [10]).
Any Dehn surgery on a non-trivial knot in S^{3} cannot produce $\mathbf{R} P^{3}$.
We prove the followings:
Proposition 1.3. Let K be a non-trivial knot in S^{3}, and g be its genus.
i) Assume there exists a reducing slope r in $\partial E(K)$. Let q be the minimal geometric intersection number with essential 2-spheres in $E(K)(r)$ and the core of the r-Dehn surgery.

If K is not a cable knot, then $q \geq 6$ and $|r| \leq 2 g-1$.
ii) Assume that there exists a projective slope p in $\partial E(K)$, which is not a reducing slope, then $|p| \leq 2 g-1$.

We can note that in case ii), all projective planes are pierced at least five times by the core of the Dehn surgery (see [5]). Consequently, the spheres, which are the 2 -covering of them, are pierced at least ten times by the core of the Dehn surgery.

Corollary 1.4. Genus one knots satisfy the cabling conjecture, and the $\mathbf{R} P^{3}$-conjecture.

Proof. Let K be a genus one knot, and let r be a reducing slope. If K is not a cable knot, then $|r|=0$ or 1 by Proposition 1.3. But $E(K)(0)$ is irreducible by [7]. Also $E(K)(\pm 1)$ is an irreducible homology sphere by [14, Corollary 3.1]. This proves the cabling conjecture for genus one knots.

If p is a projective slope, which is not a reducing slope, then $E(K)(p)=$ $\mathbf{R} P^{3}$. Since K is not a torus knot (by [23]), we obtain that p is an integer (by the cyclic surgery theorem, see [2]). Finally the first homology group of $E(K)(p)$ is $H_{1}(E(K)(p))=\mathbf{Z} / p$. Therefore $p=2=2 / 1$, which does not satisfy the inequality $2 \leq 2 g-1$.

This corollary is also known by [1] for the cabling conjecture, and independently, by [3, 27] for the $\mathbf{R} P^{3}$ conjecture.

The core of the paper is divided into two parts. § 2 concerns the general case of Dehn fillings, and the proof of the Theorem 1.1. §3 studies the special case of Dehn surgeries, and results towards the cabling conjecture, or the $\mathbf{R} P^{3}$ conjecture. In $\S 4$ we give comments and questions.

We would like to thank Masakazu Teragaito for helpfull discussions and comments, especially concerning $\S 4$.

2. Proof of Theorem 1.1

Proof of i)
Let P be an incompressible surface in M, properly embedded in M, such
that ∂P is one simple closed curve, representing the slope γ in T. Let g be the genus of P.

We suppose that T contains a reducing slope r. Let K_{r} be the core of the r-Dehn filling, and V_{r} the attached solid torus of the r-Dehn filling.

Let \hat{Q} be a minimal essential 2 -sphere in $M(r)$, that means that \hat{Q} is pierced a minimal number of times by K_{r}, among all essential 2 -spheres in $M(r)$.

Let q be the number of intersection between \hat{Q} and the core of the r-Dehn surgery. Since M does not contain an essential 2 -sphere, then q is a positive integer. Let $Q=\hat{Q} \cap M=\hat{Q}-$ int V_{r}.

If $q=1$ then by the uniqueness of longitudinal slope, we have that $\gamma=r$ and so $\Delta(\gamma, r)=0$. But the essential 2-sphere is non-separating, and so the knot is trivial by [7]. Therefore, we may assume that $q>2$.

Now we consider the pair of intersection graphs $\left(G_{P}, G_{Q}\right)$, which comes from the intersection of the surfaces P and Q in the usual way (see [9] for more details). We recall some basic definitions, useful for the following.

The (fat) vertices of G_{Q} are the disks \hat{Q} - int Q. If we cap off the boundary component of P by a disk (which corresponds to a meridian disk of γ-Dehn filling) we obtain a closed surface \hat{P}. The disk $\hat{P}-\operatorname{int} P$ is the vertex of G_{P}.

The edges of G_{P} are the arc components of $P \cap Q$ in \hat{P}, and similarly the edges of G_{Q} are the arc components of $P \cap Q$ in \hat{Q}. We number the components of ∂T by $1,2, \ldots, q$ in the order in which they appear. This gives a numbering of the vertices of G_{Q}. Furthermore, it induces a labelling of the endpoints of the edges of G_{P} : the label at one endpoint of an edge corresponds to the number of the boundary component of Q that contains this endpoint.

Two vertices on any graph are said to be parallel if the ordering of the labels on each is the same (clockwise for example); otherwise the vertices are said to be antiparallel.

A Scharlemann cycle is a cycle σ which bounds a disk face, whose vertices are parallel, and such that the endpoints of the edges of σ have the same pair of labels. Consequently, any Scharlemann cycle has two successive labels, which are called the labels of the Scharlemann cycle.

A trivial loop is an edge that bounds a disk face.
Claim 2.1. The graphs G_{Q} and G_{P} do not contain a trivial loop.
Proof. Since P is an incompressible and boundary incompressible surface, G_{Q} cannot contain a trivial loop.

Similarly, since \hat{Q} is minimal and $q>2$, it is also an incompressible and boundary incompressible surface. Therefore G_{P} cannot contain a trivial loop.

Let x be a label of G_{P}. Note that G_{P} has only one vertex. Therefore, since \hat{Q} is orientable, any edge in G_{P} cannot have the same label at both endpoints (by the parity rule). We denote by Γ_{x} the subgraph of G_{P} consisting of the unique vertex and the edges with one endpoint labelled by x.

Claim 2.2. If $\Delta(\gamma, r) \geq 2 g$ then Γ_{x} contains a disk face, for all labels x of G_{P}.

Proof. The Euler characteristic calculation for Γ_{x} gives $\chi(\hat{P})=2-2 g=$ $V-E+F$, where V is the number of vertices, E is the number of edges of Γ_{x}, and $F=\sum_{f \text { face of } \Gamma_{x}} \chi(f)$.

Since $V=1$ and $E=\Delta(\gamma, r)$, we obtain that $F=1-2 g+\Delta(\gamma, r)$. Therefore, if $\Delta(\gamma, r) \geq 2 g$ then $F \geq 1$, which means there exists a disk face in Γ_{x}.

Assume for contradiction that $\Delta(\gamma, r) \geq 2 g$, and that $q \geq 3$.
A strict great cycle is a great cycle which is not a Scharlemann cycle. From [18] a strict great cycle in G_{P} implies that \hat{Q} is not minimal. More precisely, in [18] Hoffman proves that any strict great cycle contains seemly pairs ([18, Lemma 5.2]) and find a new essential 2 -sphere, using the seemly pairs, which is pierced less than the first by the core of the surgery. We want to find seemly pairs, which represents a contradiction to the minimality of \hat{Q}.

Let $L=\{1,2, \ldots, q\}$ be the set of labels of G_{P}. Then for each $x \in L, \Gamma_{x}$ contains a disk face. Therefore G_{P} contains a Scharlemann cycle [16]. By [15, Theorem 2.4] all the Scharlemann cycles in G_{P} have the same labels. Without loss of generality, we may assume that $\{1,2\}$ are the labels of the Scharlemann cycle.

We consider the graph Γ_{3}. Let D be a disk face of Γ_{3}. Since 3 is not the label of a Scharlemann cycle, D contains a seemly pair by [24], which gives the required contradiction.

Proof of ii)
Let \hat{S} be a projective plane in $M(p)$ pierced a minimal number of times s by the core of the Dehn filling. If $s=1$, then $S=\hat{S} \cap M$ is a Mobius band, and so M is a cabled manifold; therefore p is also a reducing slope or M is a solid torus. Thus, we may assume that $s \geq 2$. Now, we consider the 2 -sphere \hat{Q}, which is the 2-covering of \hat{S} in $M(p)$. Again, q is the intersection number between \hat{Q} and the core of the p-Dehn filling. Since \hat{Q} is the boundary of a thin regular neighbourhood of \hat{S}, we have that $q=2 s>2$.

First, we consider the graphs that come from P and S. They cannot contain a trivial loop, by the minimality of S. Therefore, the graphs $\left(G_{P}, G_{Q}\right)$, from P and Q, can also not contain a trivial loop.

We repeat exactly the same argument, as for the case i).

3. Proof of Proposition 1.3

Let P be an incompressible Seifert surface of K in S^{3}, and g be its genus. Then $\gamma=\partial \hat{P}$, where γ is the preferred longitudinal slope $\frac{0}{1}$ on $T_{K}=\partial E(K)$.

Proof of i)
Assume that there exists a reducing slope r on T_{K}. Let K_{r} be the core of the r-Dehn surgery, and V_{r} the attached solid torus of the r-Dehn surgery. Then $E(K)(r)$ is the union of $E(K)$ and V_{r} along their boundaries.

Let \hat{Q} be a minimal essential 2 -sphere in $E(K)(r)$, that means that \hat{Q} is pierced a minimal number of times, q say, among all essential 2 -spheres in $E(K)(r)$, by the core of the r-Dehn surgery. By [13] we know that r is an integer, so the minimal geometric intersection number between the slopes γ and r is $\Delta(\gamma, r)=|r|$.

Since $E(K)$ does not contain an essential 2 -sphere, then q is a positive number. Recall that the essential 2 -spheres in $E(K)(r)$ are separating. Indeed, by [7] $E(K)(0)$ is irreducible, so $r \neq 0$. Moreover, $H_{1}(E(K)(r))=\mathbf{Z} / r \mathbf{Z}$, then any 2-sphere in $E(K)(r)$ is separating (otherwise $H_{1}(K(E)(r))$ should be infinite).

Consequently, $q \geq 2$ is an even integer.
Let $Q=\hat{Q} \cap E(K)=\hat{Q}-\operatorname{int} V_{r}$.
By Theorem 1.1, we obtain that if $q \neq 2$ then $|r| \leq 2 g-1$.
If $q=2$ then $E(K)$ is toroidal or Seifert fibered. Then K is respectively, a satellite knot or a torus knot. But these knots satisfy the cabling conjecture (see [26] and [23]). Therefore K is cabled.

So, we may assume that $q>2$. Therefore $|r| \leq 2 g-1$.
Claim 3.1. $q \neq 4$.
Proof. There exists a level 2 -sphere \hat{S} in S^{3} corresponding to a thin position of K in S^{3}, so that (for more details, see [7]):
i) Boundary components of $S=\hat{S} \cap E(K)$ have slope ∞.
ii) S and Q intersect transversaly, and each component of ∂S meets each component of ∂Q in exactly one point (since the slope r is an integer slope).
iii) each arc component of $S \cap Q$ is essential in S and Q.

We consider the pair of intersection graphs $\left(G_{Q}, G_{S}\right)$, which comes from the intersection of the surfaces Q and S in the usual way (see [9] for more details).

Since no arc component of $Q \cap S$ is boundary parallel in either S or Q, the graphs G_{S} and G_{Q} do not contain a trivial loop.

Since S^{3} does not contain non-trivial torsions, G_{Q} does not represent all types (see $[9,14]$ for more details). Therefore, G_{S} contains a Scharlemann cycle σ ([14, Proposition 2.8.1]). Without loss of generality, we may assume that $\{1,2\}$ are the labels of a Scharlemann cycle in G_{S}.

Assume now that $q=4$. Let $\{3,4\}$ be the two remaining labels of G_{S}. Let V_{i} be the vertex numbered by i in G_{Q}, for $i \in\{1,2,3,4\}$. The edges of σ, with the vertices V_{1} and V_{2} partition \hat{Q} into distinct disks, called bigons.

Subclaim 3.2. The vertices V_{3} and V_{4} are in the same bigon.
Proof. If V_{3} and V_{4} are not in the same bigon, then let B_{i} be the bigon which contains only the vertex V_{i}, for $i=3,4$. Since G_{Q} does not contain trivial loops, there is no loop incident to V_{3} or V_{4}. Therefore all the labels of V_{3} (and of V_{4}) are incident to edges that join V_{1} or V_{2}. Let s be the number of vertices of G_{S}. Therefore, V_{1} and V_{2} are incident to more than $4 S$ edges (since there is also the edges of σ), which is impossible.

Let B be the bigon that contains V_{3} and V_{4}. Let $B^{*}=\hat{S}-$ int B. Then B^{*} contains the edges of σ and V_{1}, V_{2}. Let J be the 3-ball of V_{r}, bounded by V_{1} and V_{2}, which does not contain V_{3} (and V_{4}).

We consider now the regular neighbourhood W of $B^{*} \cup J$. Then W is a solid torus, pierced twice by K_{r}. Let D be the disk face of G_{S} bounded by σ. Thus, the regular neighbourhood $N(W \cup D)$ is a punctured lens space. So its boundary $R=\partial N(W \cup D)$ is an essential 2-sphere, otherwise $E(K)(r)$ should be a lens space, which is an irreducible 3-manifold. Consequently, \hat{Q} is not a minimal essential 2 -sphere, which is a contradiction.

Remark. The purpose of this remark is to underline that if the knot is cable then Proposition 1.3 (i) is not necessarily true. If K is a (n, m)-cable knot then $q=2$, and there exists an incompressible Seifert surface P of Euler characteristic

$$
\chi(P)=m\left(2\left(1-g_{c}\right)-1\right)+n-n m
$$

where g_{c} is the genus of the companion, (for more details see [4]). Then the genus of P is $g=(1-\chi(P)) / 2$, so

$$
2 g-1=-\chi(P)=n m-n+m\left(2 g_{c}-1\right)
$$

and the reducing slope is $n m$ (see [11]).
Proof of ii)
If p is a projective slope, and not a reducing slope, that means that $E(K)(p)=\mathbf{R} P^{3}$. Then K is not a cable knot, by [11]. Therefore, $|p| \leq 2 g-1$ by ii) of Theorem 1.1.

4. Comments and questions

After fixing a reducing slope r, q is the minimal geometric intersection number between essential 2 -spheres in $M(r)$ and the core of the attached solid torus. We note that for the exterior of knots $q \neq 4$ holds, but this is not the
case in general (see the example in [12]). Note also that the examples in [6, 12, 20] are hyperbolic manifolds.

Due to Gordon-Litherland [13], M is a called a cabled manifold if M contains a submanifold homeomorphic to a cable space $C(m, n)$ whose one boundary component is just ∂M. We can regard $C(m, n)$ as the exterior of a (m, n)-loop lying in a solid torus.

We are interested in knowing whether $q=2$ is a characterization of cabled manifolds, as it is the case for exteriors of knots.

Here are two examples of existence of essential annuli (one non-separating case and one separating) with M non-cabled.

First, consider the 3-torus $N=S^{1} \times S^{1} \times S^{1}$ and let K be an essential loop on a torus $S^{1} \times S^{1} \times\{z\}$. Then the exterior M of K in N contains an essential non-separating annulus, but M is not cabled.

Consider now the case where N is the union of two knot complements along their boundaries and K be a knot that lies in the common 2-torus. Then the exterior M of K contains an essential separating annulus, but M is not cabled.

So, the fact that $q=2$ does not imply that M is cabled, but what about the inverse?

Question 4.1. Assume that M is irreducible and that M is not $S^{1} \times D^{2}$. Is the fact that M is cabled implies that $q=2$?

If M is reducible, then clearly $q=0$. Moreover, if $M=E(K)$ where K is a $(2,1)$-cable knot of a trivial knot (running twice in longitudinal direction) then $M=S^{1} \times D^{2}$ and is a cabled manifold. Furthermore ∂M is compressible, hence $q=1$.

Note that there exist irreducible cabled manifolds (M, T) which do not admit reducing slope. Consider a non-trivial hyperbolic knot exterior $E(K)$ and a cable space $C(m, n)$ (the exterior of a (m, n)-loop L lying in a solid torus $V)$. Let $T=\partial N(L)$ and $T^{\prime}=\partial V$ be the boundary components of $C(m, n)$. Let M be the union of $E(K)$ and $C(m, n)$, where $\partial E(K)$ is glued to T^{\prime} so that meridian of $E(K)$ goes to the (m, n)-loop on T^{\prime}. Therefore M is cabled, irreducible and $\partial M=T$.

Let r be the cabling slope on T (i.e. the slope defined by the cabling annulus in $C(m, n))$. Then r is the only candidate of reducing slopes for M, if we choose K as a suitable hyperbolic knot (by [11]). But $M(r)=$ $L(m, n) \# E(K)(1 / 0)=L(m, n)$ which is irreducible. Therefore r is not a reducing slope, and so ∂M does not contain reducing slopes.

By Claim 3.1, we have seen that q can never be 4 , for exteriors of knots. This result uses the fact that S^{3} does not contain non-trivial torsions. Is it the same for homology spheres?

Conjecture 4.2. Assume that M is the exterior of a knot in a homology 3-sphere. Assume that there exists a reducing slope r. Then the minimal intersection number between the core of the r-Dehn filling on M and an essential 2-sphere in $M(r)$, is not equal to four.

References

[1] S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. Math. 148 (1998), 1-66.
[2] M. Culler, C. McA. Gordon, J. Luecke and P. B. Shalen, Dehn surgery on knots, Ann. Math. 125 (1987), 237-300.
[3] M. Domergue, Dehn surgery on a knot and real 3-projective space, Progress in knot theory and related topics (Travaux en cours 56) (Hermann, Paris 1997), 3-6.
[4] M. Domergue, Y. Mathieu and B. Vincent, Surfaces incompressibles, non totalement nouées, pour les câbles d'un nœud de S^{3}, C. R. Acad. Sci. 303 (20) (1986), 993-995.
[5] M. Domergue and D. Matignon, Minimising the boundaries of punctured projective planes in S^{3}, J. Knot Theory and Its Ram. 10 (2001), 415-430.
[6] M. Eudave-Muñoz and Y.-Q. Wu, Nonhyperbolic Dehn fillings on hyperbolic 3-manifolds, Pacific J. Math. 190 (1999), 261-275.
[7] D. Gabai, Foliations and the topology of 3-manifolds, III, J. Diff. Geom. 26 (1987), 479-536.
[8] F. González-Acuña and H. Short, Knot surgery and primeness, Math. Proc. Camb. Phil. Soc. 99 (1986), 89-102.
[9] C. McA. Gordon, Combinatorial methods in Dehn surgery, Lectures at Knots 96 (1997 World Scientific Publishing), 263-290.
[10] C. McA. Gordon, Dehn surgery on knots, Proc. I.C.M. Kyoto 1990 (1991), 555-590.
[11] C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), 687-708.
[12] C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in 3-manifolds, Topology Appl. 18 (1984), 121-144.
[13] C. McA. Gordon and J. Luecke, Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Camb. Phil. Soc. 102 (1987), 94-101.
[14] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 385-409.
[15] C. McA. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996), 94-101.
[16] C. Hayashi and K. Motegi, Only single twists on unknots can produce composite knots, Trans. Amer. Math. Soc. 349 (1997), 4465-4479.
[17] J. Hempel, 3-manifold, Ann. Math. Studies. (86) Princeton Univ. Press.
[18] J. A. Hoffman, There are no strict great x-cycles after a reducing or a P^{2} surgery on a knot, J. Knot Theory and Its Ram. 7 (5) (1998), 549-569.
[19] J. A. Hoffman and D. Matignon, Producing essential 2-spheres, to appear in Topology Appl.
[20] J. A. Hoffman and D. Matignon, Examples of bireducible Dehn fillings, to appear in Pacific J. Math.
[21] L. H. Kauffman, On knots, Ann. Math. Studies. (115) Princeton Univ. Press.
[22] D. Matignon, P^{2}-reducibility of 3-manifolds, Kobe J. Math. 14 (1997), 33-47.
[23] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745.
[24] S. Oh, S. Lee and M. Teragaito, Reducing Dehn fillings and x-faces, Proc. of the conference "On Heegard Splittings and Dehn surgeries of 3-manifolds", RIMS, Kyoto Univ., June 11-June 15 (2001) 50-65.
[25] D. Rolfsen, Knots and Links, Math. Lect. Ser. 7, Publish or Perish, Berkeley, California, 1976.
[26] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990), 481-500.
[27] M. Teragaito, Cyclic surgery on genus one knots, Osaka J. Math. 34 (1997), 145-150.
[28] M. Teragaito, Dehn surgery and projective plane, Kobe J. Math. 13 (1996), 203-207.
Daniel Matignon
Université d'Aix-Marseille I
C.M.I. 39, rue Joliot Curie

F-13453 Marseille Cedex 13 (France)
E-mail address: matignon@cmi.univ-mrs.fr
Nabil Sayari
Université de Moncton
Département de Mathematiques et de Statistique NB (Canada)
E-mail address: sayarin@umoncton.ca

[^0]: 2000 Mathematics Subject Classification. 57M25, 57N10, 57M15.
 Key words and phrases. cabling conjecture, Dehn filling, genus of knots.

