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Abstract. Let M be an irreducible 3-manifold with an incompressible torus boundary

T, and g a slope on T, which bounds an incompressible surface, with genus g say. We

assume that there exists a slope r that produces an essential 2-sphere by Dehn filling.

Let q be the minimal geometric intersection number between the essential 2-sphere

and the core of the Dehn filling. Then, we show that q ¼ 2 or the minimal geometric

intersection number between g and r is bounded by 2g� 1.

In the special case that M is the exterior of a non-cable knot K in S3, we show that

qb 6 and jrja 2g� 1, where g is the genus of the knot K. We get also similar and

simpler results for the projective slopes. These imply immediately a known result that

the cabling and RP3 conjectures are true for genus one knots.

1. Introduction

All 3-manifolds are assumed to be compact and orientable. Let M be a

3-manifold, with a torus T as boundary. A slope r on T is the isotopy class of

an unoriented essential simple closed curve on T. The slopes are parametrized

by QU fyg (for more details, see [25]).

A Dehn filling on M is to glue a solid torus V ¼ S1 �D2 to M along T.

We call it an r-Dehn filling when the attaching homeomorphism sends a meri-

dian curve of qV to the slope r on T. We denote by MðrÞ the resulting 3-

manifold after the r-Dehn filling.

A 3-manifold is reducible if it contains an essential 2-sphere, that is, a 2-

sphere which does not bound a 3-ball; otherwise it is an irreducible 3-manifold.

A slope r in T is said to be a reducing slope if M is irreducible and MðrÞ is

reducible (that means that r produces an essential 2-sphere).

Similarly, a projective slope is a slope p that produces a projective plane

by Dehn filling. This means that M does not contain a projective plane but

MðpÞ contains a projective plane.

Many papers focus on projective or reducing slopes:

i) There exist at most three reducing slopes (see [15, 19]) and three pro-

jective slopes (see [22, 28]);
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ii) M is not necessarily cabled, because there exists an infinite family of

hyperbolic manifolds, which admit two reducing slopes (see [20]) and many of

them are also projective slopes;

iii) When M is the exterior of a knot in S3, reducing slopes (see [13]) and

projective slopes (see the proof of Corollary 1.4 below) are integers; and there

is at most one projective slope (see [22, 28]).

A slope g on T is called a longitudinal slope if there exists an orientable

surface F properly embedded in M, whose boundary is a loop having slope

g. In fact, for any such ðM;TÞ there is at most one longitudinal slope (see

[21, Lemma 8.1]).

Then the genus of g is defined to be the minimal genus of such F.

Recall that the distance between two distinct slopes a and b is their mini-

mal geometrical intersection number, denoted by Dða; bÞ.
The main result of this paper is the following:

Theorem 1.1. Let M be an irreducible 3-manifold with a torus T as

boundary. Assume that M is not a solid torus. Let g be a longitudinal slope,

and g the genus of g.

i) If there exists a reducing slope r, then Dðr; gÞa 2g� 1 or q ¼ 2, where

q is the minimal geometric intersection number between essential 2-spheres in

MðrÞ and the core of the r-Dehn filling.

ii) If there exists a projective slope p which is not a reducing slope, then

Dðp; gÞa 2g� 1.

Corollary 1.2. If M is hyperbolic and y is a reducing or projective slope,

then Dðg; yÞa 2g� 1.

Proof. Assume that y is a reducing slope. Recall that q is the minimal

geometric intersection number between essential 2-spheres in MðrÞ and the core

of the r-Dehn filling.

If q ¼ 2 then M contains an essential annulus, so M is Seifert fibered or

toroidal. r

Note that the examples of infinite family of irreducible manifolds M, which

admit two distinct reducing slopes (see [6, 20] for more details) are hyperbolic

manifolds.

We consider now the case that M is the exterior EðKÞ of a non-trivial knot

in S3. An r-Dehn surgery on K is an r-Dehn filling on EðKÞ. Concerning

the existence of reducing or projective slopes, we have two famous following

conjectures:

The Cabling Conjecture (González-Acuña and Short [8]).

If a Dehn surgery on a non-trivial knot in S3 produces a reducible manifold,

then K is a cable knot.
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The RP3 Conjecture (Gordon [10]).

Any Dehn surgery on a non-trivial knot in S3 cannot produce RP3.

We prove the followings:

Proposition 1.3. Let K be a non-trivial knot in S3, and g be its genus.

i) Assume there exists a reducing slope r in qEðKÞ. Let q be the minimal

geometric intersection number with essential 2-spheres in EðKÞðrÞ and the core of

the r-Dehn surgery.

If K is not a cable knot, then qb 6 and jrja 2g� 1.

ii) Assume that there exists a projective slope p in qEðKÞ, which is not a

reducing slope, then jpja 2g� 1.

We can note that in case ii), all projective planes are pierced at least five

times by the core of the Dehn surgery (see [5]). Consequently, the spheres,

which are the 2-covering of them, are pierced at least ten times by the core of

the Dehn surgery.

Corollary 1.4. Genus one knots satisfy the cabling conjecture, and the

RP3-conjecture.

Proof. Let K be a genus one knot, and let r be a reducing slope. If K

is not a cable knot, then jrj ¼ 0 or 1 by Proposition 1.3. But EðKÞð0Þ is

irreducible by [7]. Also EðKÞðG1Þ is an irreducible homology sphere by [14,

Corollary 3.1]. This proves the cabling conjecture for genus one knots.

If p is a projective slope, which is not a reducing slope, then EðKÞðpÞ ¼
RP3. Since K is not a torus knot (by [23]), we obtain that p is an integer

(by the cyclic surgery theorem, see [2]). Finally the first homology group of

EðKÞðpÞ is H1ðEðKÞðpÞÞ ¼ Z=p. Therefore p ¼ 2 ¼ 2=1, which does not sat-

isfy the inequality 2a 2g� 1. r

This corollary is also known by [1] for the cabling conjecture, and inde-

pendently, by [3, 27] for the RP3 conjecture.

The core of the paper is divided into two parts. § 2 concerns the general

case of Dehn fillings, and the proof of the Theorem 1.1. § 3 studies the special

case of Dehn surgeries, and results towards the cabling conjecture, or the RP3

conjecture. In § 4 we give comments and questions.

We would like to thank Masakazu Teragaito for helpfull discussions and

comments, especially concerning § 4.

2. Proof of Theorem 1.1

Proof of i)

Let P be an incompressible surface in M, properly embedded in M, such
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that qP is one simple closed curve, representing the slope g in T. Let g be the

genus of P.

We suppose that T contains a reducing slope r. Let Kr be the core of the

r-Dehn filling, and Vr the attached solid torus of the r-Dehn filling.

Let Q̂Q be a minimal essential 2-sphere in MðrÞ, that means that Q̂Q is

pierced a minimal number of times by Kr, among all essential 2-spheres in

MðrÞ.
Let q be the number of intersection between Q̂Q and the core of the r-Dehn

surgery. Since M does not contain an essential 2-sphere, then q is a positive

integer. Let Q ¼ Q̂QVM ¼ Q̂Q� int Vr.

If q ¼ 1 then by the uniqueness of longitudinal slope, we have that g ¼ r

and so Dðg; rÞ ¼ 0. But the essential 2-sphere is non-separating, and so the

knot is trivial by [7]. Therefore, we may assume that q > 2.

Now we consider the pair of intersection graphs ðGP;GQÞ, which comes

from the intersection of the surfaces P and Q in the usual way (see [9] for more

details). We recall some basic definitions, useful for the following.

The (fat) vertices of GQ are the disks Q̂Q� int Q. If we cap o¤ the

boundary component of P by a disk (which corresponds to a meridian disk of

g-Dehn filling) we obtain a closed surface P̂P. The disk P̂P� int P is the vertex

of GP.

The edges of GP are the arc components of PVQ in P̂P, and similarly the

edges of GQ are the arc components of PVQ in Q̂Q. We number the com-

ponents of qT by 1; 2; . . . ; q in the order in which they appear. This gives a

numbering of the vertices of GQ. Furthermore, it induces a labelling of the

endpoints of the edges of GP: the label at one endpoint of an edge corresponds

to the number of the boundary component of Q that contains this endpoint.

Two vertices on any graph are said to be parallel if the ordering of the

labels on each is the same (clockwise for example); otherwise the vertices are

said to be antiparallel.

A Scharlemann cycle is a cycle s which bounds a disk face, whose vertices

are parallel, and such that the endpoints of the edges of s have the same pair

of labels. Consequently, any Scharlemann cycle has two successive labels,

which are called the labels of the Scharlemann cycle.

A trivial loop is an edge that bounds a disk face.

Claim 2.1. The graphs GQ and GP do not contain a trivial loop.

Proof. Since P is an incompressible and boundary incompressible sur-

face, GQ cannot contain a trivial loop.

Similarly, since Q̂Q is minimal and q > 2, it is also an incompressible

and boundary incompressible surface. Therefore GP cannot contain a trivial

loop. r
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Let x be a label of GP. Note that GP has only one vertex. Therefore,

since Q̂Q is orientable, any edge in GP cannot have the same label at both end-

points (by the parity rule). We denote by Gx the subgraph of GP consisting

of the unique vertex and the edges with one endpoint labelled by x.

Claim 2.2. If Dðg; rÞb 2g then Gx contains a disk face, for all labels x

of GP.

Proof. The Euler characteristic calculation for Gx gives wðP̂PÞ ¼ 2� 2g ¼
V � E þ F , where V is the number of vertices, E is the number of edges of Gx,

and F ¼
P

f face of Gx

wð f Þ.

Since V ¼ 1 and E ¼ Dðg; rÞ, we obtain that F ¼ 1� 2gþ Dðg; rÞ. There-

fore, if Dðg; rÞb 2g then F b 1, which means there exists a disk face in Gx. r

Assume for contradiction that Dðg; rÞb 2g, and that qb 3.

A strict great cycle is a great cycle which is not a Scharlemann cycle.

From [18] a strict great cycle in GP implies that Q̂Q is not minimal. More

precisely, in [18] Ho¤man proves that any strict great cycle contains seemly

pairs ([18, Lemma 5.2]) and find a new essential 2-sphere, using the seemly

pairs, which is pierced less than the first by the core of the surgery. We

want to find seemly pairs, which represents a contradiction to the minimality

of Q̂Q.

Let L ¼ f1; 2; . . . ; qg be the set of labels of GP. Then for each x A L, Gx

contains a disk face. Therefore GP contains a Scharlemann cycle [16]. By

[15, Theorem 2.4] all the Scharlemann cycles in GP have the same labels.

Without loss of generality, we may assume that f1; 2g are the labels of the

Scharlemann cycle.

We consider the graph G3. Let D be a disk face of G3. Since 3 is not the

label of a Scharlemann cycle, D contains a seemly pair by [24], which gives the

required contradiction.

Proof of ii)

Let ŜS be a projective plane in MðpÞ pierced a minimal number of times s

by the core of the Dehn filling. If s ¼ 1, then S ¼ ŜS VM is a Mobius band,

and so M is a cabled manifold; therefore p is also a reducing slope or M is a

solid torus. Thus, we may assume that sb 2. Now, we consider the 2-sphere

Q̂Q, which is the 2-covering of ŜS in MðpÞ. Again, q is the intersection number

between Q̂Q and the core of the p-Dehn filling. Since Q̂Q is the boundary of a

thin regular neighbourhood of ŜS, we have that q ¼ 2s > 2.

First, we consider the graphs that come from P and S. They cannot

contain a trivial loop, by the minimality of S. Therefore, the graphs ðGP;GQÞ,
from P and Q, can also not contain a trivial loop.

We repeat exactly the same argument, as for the case i).
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3. Proof of Proposition 1.3

Let P be an incompressible Seifert surface of K in S3, and g be its genus.

Then g ¼ qP̂P, where g is the preferred longitudinal slope 0
1
on TK ¼ qEðKÞ.

Proof of i)

Assume that there exists a reducing slope r on TK . Let Kr be the core

of the r-Dehn surgery, and Vr the attached solid torus of the r-Dehn surgery.

Then EðKÞðrÞ is the union of EðKÞ and Vr along their boundaries.

Let Q̂Q be a minimal essential 2-sphere in EðKÞðrÞ, that means that Q̂Q is

pierced a minimal number of times, q say, among all essential 2-spheres in

EðKÞðrÞ, by the core of the r-Dehn surgery. By [13] we know that r is an

integer, so the minimal geometric intersection number between the slopes g

and r is Dðg; rÞ ¼ jrj.
Since EðKÞ does not contain an essential 2-sphere, then q is a positive num-

ber. Recall that the essential 2-spheres in EðKÞðrÞ are separating. Indeed, by

[7] EðKÞð0Þ is irreducible, so r0 0. Moreover, H1ðEðKÞðrÞÞ ¼ Z=rZ, then any

2-sphere in EðKÞðrÞ is separating (otherwise H1ðKðEÞðrÞÞ should be infinite).

Consequently, qb 2 is an even integer.

Let Q ¼ Q̂QVEðKÞ ¼ Q̂Q� int Vr.

By Theorem 1.1, we obtain that if q0 2 then jrja 2g� 1.

If q ¼ 2 then EðKÞ is toroidal or Seifert fibered. Then K is respectively,

a satellite knot or a torus knot. But these knots satisfy the cabling conjecture

(see [26] and [23]). Therefore K is cabled.

So, we may assume that q > 2. Therefore jrja 2g� 1.

Claim 3.1. q0 4.

Proof. There exists a level 2-sphere ŜS in S3 corresponding to a thin

position of K in S3, so that (for more details, see [7]):

i) Boundary components of S ¼ ŜS VEðKÞ have slope y.

ii) S and Q intersect transversaly, and each component of qS meets each

component of qQ in exactly one point (since the slope r is an integer slope).

iii) each arc component of S VQ is essential in S and Q.

We consider the pair of intersection graphs ðGQ;GSÞ, which comes from

the intersection of the surfaces Q and S in the usual way (see [9] for more

details).

Since no arc component of QVS is boundary parallel in either S or Q,

the graphs GS and GQ do not contain a trivial loop.

Since S3 does not contain non-trivial torsions, GQ does not represent all

types (see [9, 14] for more details). Therefore, GS contains a Scharlemann

cycle s ([14, Proposition 2.8.1]). Without loss of generality, we may assume

that f1; 2g are the labels of a Scharlemann cycle in GS.
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Assume now that q ¼ 4. Let f3; 4g be the two remaining labels of GS.

Let Vi be the vertex numbered by i in GQ, for i A f1; 2; 3; 4g. The edges of s,

with the vertices V1 and V2 partition Q̂Q into distinct disks, called bigons.

Subclaim 3.2. The vertices V3 and V4 are in the same bigon.

Proof. If V3 and V4 are not in the same bigon, then let Bi be the bigon

which contains only the vertex Vi, for i ¼ 3; 4. Since GQ does not contain

trivial loops, there is no loop incident to V3 or V4. Therefore all the labels of

V3 (and of V4) are incident to edges that join V1 or V2. Let s be the number

of vertices of GS. Therefore, V1 and V2 are incident to more than 4S edges

(since there is also the edges of s), which is impossible. r

Let B be the bigon that contains V3 and V4. Let B� ¼ ŜS � int B. Then

B� contains the edges of s and V1;V2. Let J be the 3-ball of Vr, bounded by

V1 and V2, which does not contain V3 (and V4).

We consider now the regular neighbourhood W of B� U J. Then W is a

solid torus, pierced twice by Kr. Let D be the disk face of GS bounded by s.

Thus, the regular neighbourhood NðW UDÞ is a punctured lens space. So its

boundary R ¼ qNðW UDÞ is an essential 2-sphere, otherwise EðKÞðrÞ should

be a lens space, which is an irreducible 3-manifold. Consequently, Q̂Q is not a

minimal essential 2-sphere, which is a contradiction.

Remark. The purpose of this remark is to underline that if the knot is

cable then Proposition 1.3 (i) is not necessarily true. If K is a ðn;mÞ-cable
knot then q ¼ 2, and there exists an incompressible Seifert surface P of Euler

characteristic

wðPÞ ¼ mð2ð1� gcÞ � 1Þ þ n� nm

where gc is the genus of the companion, (for more details see [4]). Then the

genus of P is g ¼ ð1� wðPÞÞ=2, so

2g� 1 ¼ �wðPÞ ¼ nm� nþmð2gc � 1Þ

and the reducing slope is nm (see [11]).

Proof of ii)

If p is a projective slope, and not a reducing slope, that means that

EðKÞðpÞ ¼ RP3. Then K is not a cable knot, by [11]. Therefore, jpja 2g� 1

by ii) of Theorem 1.1.

4. Comments and questions

After fixing a reducing slope r, q is the minimal geometric intersection

number between essential 2-spheres in MðrÞ and the core of the attached solid

torus. We note that for the exterior of knots q0 4 holds, but this is not the
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case in general (see the example in [12]). Note also that the examples in [6,

12, 20] are hyperbolic manifolds.

Due to Gordon-Litherland [13], M is a called a cabled manifold if M

contains a submanifold homeomorphic to a cable space Cðm; nÞ whose one

boundary component is just qM. We can regard Cðm; nÞ as the exterior of a

ðm; nÞ-loop lying in a solid torus.

We are interested in knowing whether q ¼ 2 is a characterization of cabled

manifolds, as it is the case for exteriors of knots.

Here are two examples of existence of essential annuli (one non-separating

case and one separating) with M non-cabled.

First, consider the 3-torus N ¼ S1 � S1 � S1 and let K be an essential loop

on a torus S1 � S1 � fzg. Then the exterior M of K in N contains an essential

non-separating annulus, but M is not cabled.

Consider now the case where N is the union of two knot complements

along their boundaries and K be a knot that lies in the common 2-torus. Then

the exterior M of K contains an essential separating annulus, but M is not

cabled.

So, the fact that q ¼ 2 does not imply that M is cabled, but what about

the inverse?

Question 4.1. Assume that M is irreducible and that M is not S1 �D2.

Is the fact that M is cabled implies that q ¼ 2?

If M is reducible, then clearly q ¼ 0. Moreover, if M ¼ EðKÞ where K

is a ð2; 1Þ-cable knot of a trivial knot (running twice in longitudinal direction)

then M ¼ S1 �D2 and is a cabled manifold. Furthermore qM is compres-

sible, hence q ¼ 1.

Note that there exist irreducible cabled manifolds ðM;TÞ which do not

admit reducing slope. Consider a non-trivial hyperbolic knot exterior EðKÞ
and a cable space Cðm; nÞ (the exterior of a ðm; nÞ-loop L lying in a solid torus

V ). Let T ¼ qNðLÞ and T 0 ¼ qV be the boundary components of Cðm; nÞ.
Let M be the union of EðKÞ and Cðm; nÞ, where qEðKÞ is glued to T 0 so that

meridian of EðKÞ goes to the ðm; nÞ-loop on T 0. Therefore M is cabled, irre-

ducible and qM ¼ T .

Let r be the cabling slope on T (i.e. the slope defined by the cabling

annulus in Cðm; nÞ). Then r is the only candidate of reducing slopes for

M, if we choose K as a suitable hyperbolic knot (by [11]). But MðrÞ ¼
Lðm; nÞ#EðKÞð1=0Þ ¼ Lðm; nÞ which is irreducible. Therefore r is not a reduc-

ing slope, and so qM does not contain reducing slopes.

By Claim 3.1, we have seen that q can never be 4, for exteriors of knots.

This result uses the fact that S3 does not contain non-trivial torsions. Is it the

same for homology spheres?
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Conjecture 4.2. Assume that M is the exterior of a knot in a homology

3-sphere. Assume that there exists a reducing slope r. Then the minimal

intersection number between the core of the r-Dehn filling on M and an

essential 2-sphere in MðrÞ, is not equal to four.
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