Нікозніма Матн. J. **33** (2003), 31–42

Removability of sets for sub-polyharmonic functions

Toshihide FUTAMURA, Kyoko KISHI and Yoshihiro MIZUTA

(Received January 22, 2002) (Revised April 25, 2002)

ABSTRACT. Our first aim in this paper is to generalize Bôcher's theorem for functions u whose Riesz measure $\mu = \Delta^m u$ is nonnegative in the punctured unit ball \mathbf{B}_0 . In fact, if u satisfies a certain integral condition and $\mu = \Delta^m u \ge 0$ in \mathbf{B}_0 , then it is shown that u can be written as the sum of a generalized potential of μ and a polyharmonic function on **B**. This is nothing but the Laurent series expansion for u.

The next aim is to give a polyharmonic version of the recent results by Riihentaus [11] concerning removability of sets for subharmonic functions.

1. Introduction and statement of results

Let \mathbf{R}^n be the *n*-dimensional Euclidean space with a point $x = (x_1, x_2, \dots, x_n)$. For a multi-index $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, we set

$$\begin{aligned} |\lambda| &= \lambda_1 + \lambda_2 + \dots + \lambda_n, \\ x^{\lambda} &= x_1^{\lambda_1} x_2^{\lambda_2} \dots x_n^{\lambda_n} \end{aligned}$$

and

$$D^{\lambda} = \left(\frac{\partial}{\partial x_1}\right)^{\lambda_1} \left(\frac{\partial}{\partial x_2}\right)^{\lambda_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\lambda_n}.$$

We denote by B(x,r) the open ball centered at x with radius r > 0, whose boundary is written as $S(x,r) = \partial B(x,r)$. We also denote by **B** the unit ball B(0,1) and by **B**₀ the punctured unit ball **B** – {0}.

A real-valued function u on an open set $G \subset \mathbb{R}^n$ is called polyharmonic of order m on G if $u \in C^{2m}(G)$ and $\Delta^m u = 0$ on G, where m is a positive integer, Δ denotes the Laplacian and $\Delta^m u = \Delta^{m-1}(\Delta u)$ (cf. [2], [10]). We denote by $H^m(G)$ the space of polyharmonic functions of order m on G. In particular, u is harmonic on G if $u \in H^1(G)$.

The fundamental solution of Δ^m is written as R_{2m} , that is,

$$R_{2m}(x) = \begin{cases} \alpha_m |x|^{2m-n} & \text{if } 2m-n \text{ is not an even nonnegative integer,} \\ \alpha_m |x|^{2m-n} \log(1/|x|) & \text{if } 2m-n \text{ is an even nonnegative integer,} \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B30

Key words and phrases. polyharmonic functions, isolated singularities, Bôcher's theorem, Laurent series expansion, Riesz decomposition, removability of sets

where the constant α_m is chosen so that $\Delta^m R_{2m}$ is the Dirac measure δ at the origin. We denote by $R_{2m,L}$ the remainder term of Taylor expansion of R_{2m} :

$$R_{2m,L}(\zeta, x) = R_{2m}(\zeta - x) - \sum_{|\lambda| \le L} \frac{\zeta^{\lambda}}{\lambda!} (D^{\lambda} R_{2m})(-x)$$

for a nonnegative integer L.

We say that a locally integrable function u on an open set $G \subset \mathbf{R}^n$ is subpolyharmonic of order m in G if $\Delta^m u \ge 0$ in G in the weak sense, that is,

$$\int_{G} u(x) \Delta^{m} \varphi(x) dx \ge 0 \quad \text{for all nonnegative } \varphi \in C_{0}^{\infty}(G).$$

Our first aim in this note is to establish Bôcher's theorem for subpolyharmonic functions $u \in L^1_{loc}(2\mathbf{B}_0)$, where $2\mathbf{B}_0 = B(0,2) - \{0\}$; for polyharmonic functions, we refer the reader to the previous paper [3] as a generalization of Armitage [1].

THEOREM 1. Suppose that $u \in L^1_{loc}(2\mathbf{B}_0)$ and $\mu = \Delta^m u$ is a nonnegative measure on $2\mathbf{B}_0$. If u satisfies

$$\int_{2\mathbf{B}_0} |u(x)| \, |x|^s dx < \infty \tag{1}$$

for some number $s \ge \max\{-2m, -n\}$, then

$$u(x) = \int_{\mathbf{B}_0} R_{2m,L}(\zeta, x) d\mu(\zeta) + h(x) + \sum_{|\lambda| \le L} C(\lambda) D^{\lambda} R_{2m}(x)$$
(2)

for a.e. $x \in \mathbf{B}_0$, where *L* is the integer such that $s + 2m - 1 < L \le s + 2m$, $h \in H^m(\mathbf{B})$ and $C(\lambda)$ denote constants.

The above expression is called the Laurent series expansion for u.

To prove Theorem 1, we first show that the generalized potential $\int_{\mathbf{B}_0} R_{2m,L}(\zeta, x) d\mu(\zeta)$ satisfies condition (1) for s' > s, and then apply Bôcher's theorem for polyharmonic functions on \mathbf{B}_0 given in [3].

Next we discuss removability of sets for sub-polyharmonic functions in \mathbb{R}^n . We say that a continuous function h on $[0, \infty)$ is a measure function if h(0) = 0, h is nondecreasing and

$$h(2r) \le Mh(r) \qquad \text{for all } r > 0, \tag{3}$$

where M is a positive constant. For $\varepsilon > 0$ and $E \subset \mathbf{R}^n$, write

$$E_{\varepsilon} = \{ x \in \mathbf{R}^n : d(x, E) < \varepsilon \},\$$

where d(x, E) denotes the distance of x from E, that is, $d(x, E) = \inf\{|x - y| : y \in E\}$. Then the upper Minkowski *h*-content of E is defined by

$$\mathcal{M}_h(E) = \limsup_{\varepsilon \to 0+} \frac{|E_\varepsilon|}{h(\varepsilon)},$$

where |F| denotes the *n*-dimensional Lebesgue measure of a set *F*. If $h(r) = r^{n-\alpha}$, $0 \le \alpha < n$, then we write \mathcal{M}_{α} for \mathcal{M}_{h} .

We introduce the result by Riihentaus [11] (see also Gardiner [4]).

THEOREM A (Riihentaus). Let $\alpha \in [0, n-2]$ and let E be a closed set in Ω such that $\mathcal{M}_{\alpha}(E) = 0$. If f is subharmonic in $\Omega \setminus E$ and satisfies

$$f(x) \le d(x, E)^{\alpha+2-n}$$
 for all $x \in \Omega \setminus E$,

then f has a subharmonic extension to Ω .

Now we state the following theorem.

THEOREM 2. Let h be a measure function. Suppose E is a closed set in Ω such that $\mathcal{M}_h(E) = 0$. If $u \in L^1_{loc}(\Omega \setminus E)$ is sub-polyharmonic of order m in $\Omega \setminus E$ and satisfies

$$|u(x)| \le d(x, E)^{2m} h(d(x, E))^{-1} \quad \text{for all } x \in \Omega \setminus E,$$
(4)

then u has a sub-polyharmonic extension to Ω of order m.

Let h and k be two measure functions on $[0,\infty)$ such that

$$\lim_{r \to 0} \frac{k(r)}{h(r)} = 0$$

In Theorem 2, if $\mathcal{M}_k(E) < \infty$ and

$$|u(x)| \le d(x, E)^{2m} h(d(x, E))^{-1} \quad \text{for all } x \in \Omega \setminus E,$$
(5)

then u is shown to have a sub-polyharmonic extension to Ω (see also Riihentaus [11, Theorem 2]).

2. Lemmas

Throughout this paper, let M denote various constants, not neccessarily the same on any two occurrences.

We need several lemmas to prove Theorem 1.

LEMMA 1. If u and μ are as in Theorem 1, then

$$\int_{A(r)} d\mu(\zeta) \le Mr^{-2m} \int_{C(r)} |u(\zeta)| d\zeta$$

whenever $0 < r < \frac{1}{2}$, where $A(r) = \{r \le |x| < 2r\}$ and $C(r) = \{r/2 < |x| < 4r\}$.

Proof. Consider a function $\psi \in C_0^{\infty}(C(1))$ such that $\psi \ge 0$ and

$$\psi(x) = \begin{cases} 1 & \text{if } 1 \le |x| \le 2, \\ 0 & \text{if } |x| \le 1/2 \text{ or } |x| \ge 4. \end{cases}$$

If we set $\psi_r(x) = \psi(\frac{x}{r})$ for 0 < r < 1/2, then

$$\begin{split} \int_{A(r)} d\mu(\zeta) &\leq \int_{C(r)} \psi_r \, d\mu(\zeta) \\ &= \int_{C(r)} (\varDelta^m \psi_r) u \, d\zeta \\ &\leq \int_{C(r)} |\varDelta^m \psi_r| \, |u| d\zeta \\ &\leq M r^{-2m} \int_{C(r)} |u| d\zeta. \end{split}$$

This proves Lemma 1.

LEMMA 2. If u and μ are as above, then

$$\int_{\mathbf{B}_0} |\zeta|^\ell d\mu(\zeta) < \infty \tag{6}$$

whenever $\ell \geq s + 2m$.

PROOF. Let $A_j = A(2^{-j})$ and $C_j = C(2^{-j})$; then we have by Lemma 1

$$\begin{split} \sum_{\mathbf{B}_{0}} |\zeta|^{\ell} d\mu(\zeta) &= \sum_{j=1}^{\infty} \int_{A_{j}} |\zeta|^{\ell} d\mu(\zeta) \\ &\leq \sum_{j=1}^{\infty} 2^{\ell(-j+1)} \int_{A_{j}} d\mu(\zeta) \\ &\leq M \sum_{j=1}^{\infty} 2^{\ell(-j+1)+2mj} \int_{C_{j}} |u(\zeta)| d\zeta \\ &\leq M \sum_{j=1}^{\infty} \int_{C_{j}} |u(\zeta)| |\zeta|^{s} d\zeta \\ &\leq M \int_{2\mathbf{B}_{0}} |u(\zeta)| |\zeta|^{s} d\zeta < \infty. \end{split}$$

We put $I(x) = \int_{\mathbf{B}_0} |R_{2m,L}(\zeta, x)| d\mu(\zeta)$, where L is the integer such that $s + 2m - 1 < L \le s + 2m$; note here that $L \ge 0$ and $L \ge 2m - n$ because $s \ge \max\{-2m, -n\}$. For $x \in \mathbf{B}_0$, consider the sets

$$E_1 = \left\{ \zeta \in \mathbf{B}_0 : |\zeta| < \frac{|x|}{2} \right\},$$
$$E_2 = \left\{ \zeta \in \mathbf{B}_0 : |\zeta - x| < \frac{|\zeta|}{2} \right\},$$
$$E_3 = \mathbf{B}_0 - (E_1 \cup E_2).$$

If $2m \ge n$, then we see from [6, Lemma 4.2] and [9, Lemmas 6, 8, 9] that

$$\begin{split} I(x) &\leq M \int_{E_1} |\zeta|^{L+1} |x|^{2m-n-L-1} d\mu(\zeta) \\ &+ M \int_{E_2} \left(|\zeta|^{2m-n} + |\zeta - x|^{2m-n} \log \frac{|\zeta|}{|\zeta - x|} \right) d\mu(\zeta) \\ &+ M \int_{E_3} |\zeta|^L |x|^{2m-n-L} \log \frac{4|\zeta|}{|x|} d\mu(\zeta) \\ &= M \{ I_1(x) + I_2(x) + I_3(x) \}; \end{split}$$

if 2m < n, then $I_2(x)$ is replaced by

$$I_2(x) = \int_{E_2} |\zeta - x|^{2m-n} d\mu(\zeta).$$

We prove the following lemma.

LEMMA 3. If μ is a nonnegative measure on \mathbf{B}_0 satisfying (6) and $s' > s \ge \max\{-2m, -n\}$, then

$$\int_{\mathbf{B}} I(x) |x|^{s'} dx < \infty.$$

PROOF. We have only to treat s' satisfying s' > s and

s' - 1 < L - 2m < s'.

First, since (2m - n - L - 1 + s') + n = s' - (L - 2m + 1) < 0, we have

$$\begin{split} \int_{\mathbf{B}} I_{1}(x)|x|^{s'} dx &= \int_{\mathbf{B}} \left(\int_{E_{1}} |\zeta|^{L+1} |x|^{2m-n-L-1} d\mu(\zeta) \right) |x|^{s'} dx \\ &\leq \int_{\mathbf{B}_{0}} |\zeta|^{L+1} \left(\int_{\{x:|x| \ge 2|\zeta|\}} |x|^{2m-n-L-1+s'} dx \right) d\mu(\zeta) \\ &= M \int_{\mathbf{B}_{0}} |\zeta|^{2m+s'} d\mu(\zeta) < \infty \end{split}$$

with the aid of (6).

Toshihide FUTAMURA, Kyoko KISHI and Yoshihiro MIZUTA

Next, noting that $|\zeta|/2 < |x| < 2|\zeta|$ when $\zeta \in E_2$, we have

$$\begin{split} \int_{\mathbf{B}} I_{2}(x)|x|^{s'}dx &= \int_{\mathbf{B}} \left\{ \int_{E_{2}} \left(|\zeta|^{2m-n} + |\zeta - x|^{2m-n} \log \frac{|\zeta|}{|\zeta - x|} \right) d\mu(\zeta) \right\} |x|^{s'}dx \\ &\leq \int_{\mathbf{B}_{0}} |\zeta|^{2m-n} \left(\int_{\{x:|\zeta|/2 < |x| < 2|\zeta|\}} |x|^{s'}dx \right) d\mu(\zeta) \\ &\quad + \int_{\mathbf{B}_{0}} \left(\int_{\{x:|\zeta - x| \le |\zeta|/2\}} |\zeta - x|^{2m-n} \log \frac{|\zeta|}{|\zeta - x|} |x|^{s'}dx \right) d\mu(\zeta) \\ &\leq M \int_{\mathbf{B}_{0}} |\zeta|^{2m+s'} d\mu(\zeta) \\ &\quad + M \int_{\mathbf{B}_{0}} |\zeta|^{s'} \left(\int_{\{x:|\zeta - x| \le |\zeta|/2\}} |\zeta - x|^{2m-n} \log \frac{|\zeta|}{|\zeta - x|} dx \right) d\mu(\zeta) \\ &\leq M \int_{\mathbf{B}_{0}} |\zeta|^{s'} d\mu(\zeta) \\ &\leq M \int_{\mathbf{B}_{0}} |\zeta|^{2m+s'} d\mu(\zeta) < \infty. \end{split}$$

Finally, since (2m - n - L + s') + n = s' - (L - 2m) > 0, we establish

$$\begin{split} \int_{\mathbf{B}} I_{3}(x) |x|^{s'} dx &= \int_{\mathbf{B}} \left(\int_{E_{3}} |\zeta|^{L} |x|^{2m-n-L} \log \frac{4|\zeta|}{|x|} \, d\mu(\zeta) \right) |x|^{s'} dx \\ &\leq \int_{\mathbf{B}_{0}} |\zeta|^{L} \left(\int_{\{x:|x| \leq 2|\zeta|\}} |x|^{2m-n-L+s'} \log \frac{4|\zeta|}{|x|} \, dx \right) d\mu(\zeta) \\ &\leq M \int_{\mathbf{B}_{0}} |\zeta|^{2m+s'} d\mu(\zeta) < \infty. \end{split}$$

Thus we have obtained

$$\int_{\mathbf{B}} I(x) |x|^{s'} dx < \infty,$$

as required.

LEMMA 4. If u and μ are as above, then

$$v(x) \equiv u(x) - \int_{\mathbf{B}_0} R_{2m,L}(\zeta, x) d\mu(\zeta) \in H^m(\mathbf{B}_0)$$

with L as before.

PROOF. It is sufficient to show that $\Delta^m v = 0$ in \mathbf{B}_0 in the weak sense.

Let $\varphi \in C_0^{\infty}(\mathbf{B}_0)$. In view of Lemma 3, we can apply Fubini's theorem to obtain

$$\begin{split} \langle u - v, \Delta^m \varphi \rangle &= \left\langle \int_{\mathbf{B}_0} \left(R_{2m}(\zeta - x) - \sum_{|\lambda| \le L} \frac{\zeta^{\lambda}}{\lambda!} (D^{\lambda} R_{2m})(-x) \right) d\mu(\zeta), \Delta^m \varphi \right\rangle \\ &= \int_{\mathbf{B}_0} \left\{ \int_{\mathbf{B}_0} \left(R_{2m}(\zeta - x) - \sum_{|\lambda| \le L} \frac{\zeta^{\lambda}}{\lambda!} (D^{\lambda} R_{2m})(-x) \right) \Delta^m \varphi(x) dx \right\} d\mu(\zeta) \\ &= \int_{\mathbf{B}_0} \left(\varphi(\zeta) - \sum_{|\lambda| \le L} \frac{\zeta^{\lambda}}{\lambda!} D^{\lambda} \varphi(0) \right) d\mu(\zeta) \\ &= \int_{\mathbf{B}_0} \varphi(\zeta) d\mu(\zeta) \\ &= \langle u, \Delta^m \varphi \rangle, \end{split}$$

since φ vanishes in a neighborhood of the origin. This proves

$$\langle v, \Delta^m \varphi \rangle = 0,$$

as required.

3. Proof of Theorem 1

From Lemmas 3 and 4, we see that $v \in H^m(\mathbf{B}_0)$ and

$$\int_{\mathbf{B}_0} |v(x)| \, |x|^{s'} dx < \infty$$

for all s' > s. In view of [3], we can find $h \in H^m(\mathbf{B})$ and constants $C(\lambda)$ for which

$$v(x) = h(x) + \sum_{|\lambda| \le L} C(\lambda) D^{\lambda} R_{2m}(x)$$

holds a.e. on \mathbf{B}_0 , where L is the integer such that $s + 2m - 1 < L \le s + 2m$. This implies that u is of the form

$$u(x) = \int_{\mathbf{B}_0} R_{2m,L}(\zeta, x) d\mu(\zeta) + h(x) + \sum_{|\lambda| \le L} C(\lambda) D^{\lambda} R_{2m}(x)$$

for a.e. $x \in \mathbf{B}_0$, as required.

In case m = 1, our theorem gives the following simple result.

COROLLARY. If u is a subharmonic function on $2\mathbf{B}_0$ satisfying

$$\int_{2\mathbf{B}_0} u^+(x) |x|^{-2} dx < \infty, \tag{7}$$

then u can be extended to a subharmonic function on **B**, where $u^+(x) = \max\{u(x), 0\}$.

PROOF. Since u^+ is subharmonic on $2\mathbf{B}_0$ and satisfies (1) with s = -2, we can take L = 0 in Theorem 1, and show that u^+ is of the form

$$u^{+}(x) = \int_{\mathbf{B}_{0}} R_{2}(\zeta - x) d\mu(\zeta) + h(x) + CR_{2}(x)$$

for $x \in \mathbf{B}_0$, where $\mu = \Delta u^+ \ge 0$, $\mu(\mathbf{B}_0) < \infty$, *h* is harmonic in **B** and *C* is a constant. In view of (7),

$$\liminf_{r \to 0} r^{-1} \int_{S(0,r)} u^+(x) dS(x) = 0.$$

Moreover, by [8, Theorem 4.3.1] we see easily that

$$\lim_{r\to 0} [r\kappa(r)]^{-1} \int_{\mathcal{S}(0,r)} \left(\int_{\mathbf{B}_0} R_2(\zeta - x) d\mu(\zeta) \right) dS(x) = 0,$$

where $\kappa(r) = 1$ for $n \ge 3$ and $\kappa(r) = \log(1/r)$ for n = 2, which shows that C = 0. Thus u^+ is extended to a subharmonic function on **B**. Since $u \le u^+$, u is bounded above near the origin, so that u is extended to a subharmonic function on **B** by [6, Theorem 5.18].

4. Removability of sets

To prove Theorem 2, we need the following lemma, which is a version of partition of unity (cf. [7]).

LEMMA 5. Let $\{B_i : i = 1, ..., N\}$, $B_i = B(x_i, r_i)$, be a finite collection of balls such that $\{5^{-1}B_i\}$ is mutually disjoint. Then there is a family of nonnegative functions $\varphi_i \in C_0^{\infty}(\mathbb{R}^n)$ with support supp $\varphi_i \subset 2B_i$ such that $\sum_{i=1}^N \varphi_i(x) = 1$ for $x \in \bigcup_{i=1}^N B_i$. Furthermore, for each multi-index λ , there is a constant C_{λ} such that

$$|D^{\lambda}\varphi_i(x)| \le C_{\lambda} r_i^{-|\lambda|} \quad \text{for all } x \in \mathbf{R}^n \text{ and } i = 1, \dots, N.$$
(8)

PROOF OF THEOREM 2. By our assumption that $\mathcal{M}_h(E) = 0$, for $\varepsilon > 0$, there is r_0 , $0 < r_0 < 1$, such that

$$|E_r| \le \varepsilon h(r)$$
 whenever $0 \le r \le r_0$. (9)

We first show that

$$\int_{E_r \setminus E} d(x, E)^{2m} h(d(x, E))^{-1} dx \le M r^{2m} \varepsilon.$$
(10)

If we put $K_j = \{x \in \mathbf{R}^n \, | \, d(x, E) < r2^{-j}\}$, then

$$E_r \backslash E = \bigcup_{j=0}^{\infty} (K_j \backslash K_{j+1}).$$

Hence we have by (9)

$$\int_{E_r \setminus E} d(x, E)^{2m} h(d(x, E))^{-1} dx = \sum_{j=0}^{\infty} \int_{K_j \setminus K_{j+1}} d(x, E)^{2m} h(d(x, E))^{-1} dx$$

$$\leq \sum_{j=0}^{\infty} (r2^{-j})^{2m} h(r2^{-(j+1)})^{-1} |K_j|$$

$$\leq Mr^{2m} \varepsilon \sum_{j=0}^{\infty} 2^{-2mj}$$

$$= Mr^{2m} \varepsilon.$$
(11)

From (4) and (11) it follows that

$$\int_{E_r \setminus E} |u| dx \le M r^{2m} \varepsilon.$$
(12)

If we set u = 0 on E, then we see that $u \in L^1_{loc}(\Omega)$.

Next we show that

$$\int_{\Omega} u(x) \Delta^m \varphi(x) dx \ge 0 \tag{13}$$

for nonnegative $\varphi \in C_0^{\infty}(\Omega)$. We may assume that $0 \le \varphi \le 1$ and $|D^{\lambda}\varphi| \le 1$ for every multi-index $|\lambda| \le 2m$. We put $K = \operatorname{supp} \varphi$ and take $r_0 > 0$ such that $K_{r_0} \subset \Omega$.

Let $0 < 4r < r_0$. By a covering lemma, we can find a finite collection of balls $B_i = B(x_i, r)$ such that $\{5^{-1}B_i\}$ is mutually disjoint and

$$\bigcup_{i=1}^N B_i \supset K.$$

By re-indexing if necessary, we can find N^* such that

Toshihide FUTAMURA, Kyoko KISHI and Yoshihiro MIZUTA

$$\begin{cases} 2B_i \cap E \neq \emptyset & \text{ for } i = 1, \dots, N^*; \\ 2B_i \cap E = \emptyset & \text{ for } i = N^* + 1, \dots, N. \end{cases}$$

Let φ_i be as in Lemma 5. Since *u* is sub-polyharmonic of order *m* in $\Omega \setminus E$, we see that

$$\int_{2B_i} u \Delta^m(\varphi \varphi_i) dx \ge 0$$

for $i = N^* + 1, \ldots, N$, so that

$$\int_{\Omega} u\Delta^{m} \varphi \, dx = \int_{\Omega} u\Delta^{m} \left\{ \varphi \left(\sum_{i=1}^{N} \varphi_{i} \right) \right\} dx$$
$$= \sum_{i=1}^{N} \int_{2B_{i}} u\Delta^{m} (\varphi \varphi_{i}) dx$$
$$\geq \sum_{i=1}^{N^{*}} \int_{2B_{i}} u\Delta^{m} (\varphi \varphi_{i}) dx$$
$$\geq -\frac{M}{r^{2m}} \sum_{i=1}^{N^{*}} \int_{2B_{i}} |u| dx$$

with the aid of (8). Thus by (12) we have

$$\int u \varDelta^m \varphi \ dx \ge -M\varepsilon,$$

which gives (13). Consequently, u is sub-polyharmonic of order m in Ω .

For a measure function h and $f \in L^{1}_{loc}(\Omega)$, define

$$A_{f,h}(x) = \sup_{B} r^{-2m} h(r)^{-1} \inf_{v} \int_{B} |f(y) - v(y)| dy,$$

where the supremum is taken over all balls $B = B(x, r) \subset \Omega$ and the infimum is taken over all $v \in L^1_{loc}(\Omega)$ such that $\Delta^m v \ge 0$ on B. Further consider the set S_f of all $x \in \Omega$ such that

$$\limsup_{r \to 0} r^{-n-2m} \int_{B(x,r)} |f(y) - v(y)| dy > 0$$

for all functions $v \in L^1_{loc}(\Omega)$ satisfying $\Delta^m v \ge 0$ on a neighborhood of x.

As in [7] we can prove the following theorem, which gives an extension of a theorem in Gardiner [4].

THEOREM 3. If $A_{u,h} \in L^{\infty}(\Omega)$ and $H_h(S_u) = 0$, then u has a subpolyharmonic extension to Ω , where H_h denotes the Hausdorff measure with a measure function h.

5. Remarks on Theorem 1

Suppose that $u \in L^1_{loc}(2\mathbf{B}_0)$ and $\mu = \Delta^m u$ is a nonnegative measure on $2\mathbf{B}_0$. Then, as in the book of Hayman-Kennedy [6], u can be represented as

$$u(x) = \int_{\mathbf{B}_0} R_{2m, L(|\zeta|)}(\zeta, x) d\mu(\zeta) + h(x) + \sum_{\lambda} C(\lambda) D^{\lambda} R_{2m}(x)$$
(14)

for a.e. $x \in \mathbf{B}_0$, where L(r) is a nonincreasing positive function on (0, 1], $h \in H^m(\mathbf{B})$ and $C(\lambda)$ denote constants. To prove this, we use the estimate

$$|R_{2m,\ell}(\zeta, x)| \le M^{\ell} |\zeta|^{\ell+1} |x|^{2m-n-\ell-1}$$

whenever $2|\zeta| \le |x|$ and $2m - n < \ell + 1$, where *M* is a positive constant depending only on *m* and *n*.

Thus our theorem gives a condition which assures that L is bounded and the above sum contains only finite terms.

REMARK. We do not know whether u has a similar Laurent expansion or not, if we replace condition (1) by

$$\int_{2\mathbf{B}_0} u^+(x) |x|^s dx < \infty.$$

References

- [1] D. H. Armitage, On polyharmonic functions in $\mathbb{R}^n \{0\}$, J. London Math. Soc. (2) 8 (1974), 561–569.
- [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.
- [3] T. Futamura, K. Kishi and Y. Mizuta, A generalization of Bôcher's theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 59–70.
- [4] S. J. Gardiner, Removable singularities for subharmonic functions, Pacific J. Math. 147 (1991), 71–80.
- [5] R. Harvey and J. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39–56.
- [6] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
- Y. Mizuta, On removability of sets for holomorphic and harmonic functions, J. Math. Soc. Japan 38 (1986), 509–513.
- [8] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.

- [9] Y. Mizuta, An integral representation and fine limits at infinity for functions whose Laplacians iterated *m* times are measures, Hiroshima Math. J. **27** (1997), 415–427.
- [10] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. École Norm Sup. 52 (1935), 183–220.
- [11] J. Riihentaus, Removable sets for subharmonic functions, Pacific J. Math. 194 (2000), 199-208.

Toshihide Futamura and Kyoko Kishi Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima 739-8526, Japan e-mail: T. Futamura: toshi@mis.hiroshima-u.ac.jp e-mail: K. Kishi: kyo@mis.hiroshima-u.ac.jp

Yoshihiro Mizuta The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail: mizuta@mis.hiroshima-u.ac.jp